JP2022089623A - Amide compound decomposing method and amine production method - Google Patents
Amide compound decomposing method and amine production method Download PDFInfo
- Publication number
- JP2022089623A JP2022089623A JP2020202163A JP2020202163A JP2022089623A JP 2022089623 A JP2022089623 A JP 2022089623A JP 2020202163 A JP2020202163 A JP 2020202163A JP 2020202163 A JP2020202163 A JP 2020202163A JP 2022089623 A JP2022089623 A JP 2022089623A
- Authority
- JP
- Japan
- Prior art keywords
- amide compound
- amine
- glycosidic bond
- reaction solution
- decomposition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- -1 Amide compound Chemical class 0.000 title claims abstract description 66
- 150000001412 amines Chemical class 0.000 title claims abstract description 45
- 238000000034 method Methods 0.000 title claims abstract description 32
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 11
- 239000002994 raw material Substances 0.000 claims abstract description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 16
- 238000010335 hydrothermal treatment Methods 0.000 claims abstract description 13
- 238000006243 chemical reaction Methods 0.000 claims description 41
- 238000000354 decomposition reaction Methods 0.000 claims description 29
- 150000002305 glucosylceramides Chemical class 0.000 claims description 14
- 150000002339 glycosphingolipids Chemical class 0.000 claims description 6
- 238000000605 extraction Methods 0.000 claims description 5
- 239000012295 chemical reaction liquid Substances 0.000 abstract description 3
- 239000000243 solution Substances 0.000 description 34
- 239000000843 powder Substances 0.000 description 11
- 241000196324 Embryophyta Species 0.000 description 10
- YDNKGFDKKRUKPY-JHOUSYSJSA-N C16 ceramide Natural products CCCCCCCCCCCCCCCC(=O)N[C@@H](CO)[C@H](O)C=CCCCCCCCCCCCCC YDNKGFDKKRUKPY-JHOUSYSJSA-N 0.000 description 9
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- CRJGESKKUOMBCT-VQTJNVASSA-N N-acetylsphinganine Chemical compound CCCCCCCCCCCCCCC[C@@H](O)[C@H](CO)NC(C)=O CRJGESKKUOMBCT-VQTJNVASSA-N 0.000 description 9
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 229940106189 ceramide Drugs 0.000 description 9
- ZVEQCJWYRWKARO-UHFFFAOYSA-N ceramide Natural products CCCCCCCCCCCCCCC(O)C(=O)NC(CO)C(O)C=CCCC=C(C)CCCCCCCCC ZVEQCJWYRWKARO-UHFFFAOYSA-N 0.000 description 9
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 9
- VVGIYYKRAMHVLU-UHFFFAOYSA-N newbouldiamide Natural products CCCCCCCCCCCCCCCCCCCC(O)C(O)C(O)C(CO)NC(=O)CCCCCCCCCCCCCCCCC VVGIYYKRAMHVLU-UHFFFAOYSA-N 0.000 description 9
- 239000012141 concentrate Substances 0.000 description 8
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 6
- 238000001816 cooling Methods 0.000 description 6
- 235000013312 flour Nutrition 0.000 description 6
- 238000006460 hydrolysis reaction Methods 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 229920006395 saturated elastomer Polymers 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 235000000346 sugar Nutrition 0.000 description 5
- 229930182470 glycoside Natural products 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 150000008163 sugars Chemical class 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 239000013256 coordination polymer Substances 0.000 description 3
- 239000012046 mixed solvent Substances 0.000 description 3
- 230000035484 reaction time Effects 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 229910021642 ultra pure water Inorganic materials 0.000 description 3
- 239000012498 ultrapure water Substances 0.000 description 3
- 241001474374 Blennius Species 0.000 description 2
- 244000241257 Cucumis melo Species 0.000 description 2
- 235000015510 Cucumis melo subsp melo Nutrition 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- 240000007594 Oryza sativa Species 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 235000013325 dietary fiber Nutrition 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 235000013399 edible fruits Nutrition 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 230000001766 physiological effect Effects 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 238000004809 thin layer chromatography Methods 0.000 description 2
- WWUZIQQURGPMPG-UHFFFAOYSA-N (-)-D-erythro-Sphingosine Natural products CCCCCCCCCCCCCC=CC(O)C(N)CO WWUZIQQURGPMPG-UHFFFAOYSA-N 0.000 description 1
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 244000144730 Amygdalus persica Species 0.000 description 1
- 235000016068 Berberis vulgaris Nutrition 0.000 description 1
- 241000335053 Beta vulgaris Species 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 241001070941 Castanea Species 0.000 description 1
- 235000014036 Castanea Nutrition 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 240000000731 Fagus sylvatica Species 0.000 description 1
- 235000010099 Fagus sylvatica Nutrition 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 241000208818 Helianthus Species 0.000 description 1
- 235000003222 Helianthus annuus Nutrition 0.000 description 1
- 244000267823 Hydrangea macrophylla Species 0.000 description 1
- 235000014486 Hydrangea macrophylla Nutrition 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 235000006040 Prunus persica var persica Nutrition 0.000 description 1
- 241000220222 Rosaceae Species 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 210000005013 brain tissue Anatomy 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 235000013373 food additive Nutrition 0.000 description 1
- 239000002778 food additive Substances 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 150000002433 hydrophilic molecules Chemical class 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 238000010813 internal standard method Methods 0.000 description 1
- 235000021374 legumes Nutrition 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 235000018102 proteins Nutrition 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- WWUZIQQURGPMPG-KRWOKUGFSA-N sphingosine Chemical compound CCCCCCCCCCCCC\C=C\[C@@H](O)[C@@H](N)CO WWUZIQQURGPMPG-KRWOKUGFSA-N 0.000 description 1
- 150000003410 sphingosines Chemical class 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229940095064 tartrate Drugs 0.000 description 1
- 238000003828 vacuum filtration Methods 0.000 description 1
Landscapes
- Saccharide Compounds (AREA)
Abstract
Description
本発明は、アミド化合物の分解方法及びアミンの製造方法に関する。 The present invention relates to a method for decomposing an amide compound and a method for producing an amine.
グリコシド結合を有するアミンとして、例えば、サイコシンが知られている。サイコシンは、生理活性を示し、例えば、分解酵素欠損症の病態発生に関与していると推察されている。 As an amine having a glycosidic bond, for example, psychosin is known. Psychocin exhibits physiological activity and is presumed to be involved in the pathogenesis of degrading enzyme deficiency, for example.
このようなグリコシド結合を有するアミンの生理活性を明らかにするための研究の試薬等を得る観点から、グリコシド結合を有するアミンを製造することは重要である。 It is important to produce an amine having a glycosidic bond from the viewpoint of obtaining a reagent for research for clarifying the physiological activity of such an amine having a glycosidic bond.
グリコシド結合を有するアミンを得る方法として、例えば、特許文献1には、ウシの脳組織からサイコシン・酒石酸塩を抽出する方法が開示されている。 As a method for obtaining an amine having a glycosidic bond, for example, Patent Document 1 discloses a method for extracting psychocin / tartrate from bovine brain tissue.
ところで、グリコシド結合を有するアミンのアミノ基と、脂肪酸のカルボキシル基とが脱水縮合することにより得られるアミド化合物は、天然に広く存在し、様々な植物の花、葉、根、茎、果実及び種子等に含まれている。そのため、このようなアミド化合物を分解して、グリコシド結合を有するアミンとして回収できれば、様々な原料からグリコシド結合を有するアミンを製造できると考えられる。 By the way, the amide compound obtained by dehydration condensation of the amino group of an amine having a glycosidic bond and the carboxyl group of a fatty acid is widely present in nature, and flowers, leaves, roots, stems, fruits and seeds of various plants. Etc. are included. Therefore, if such an amide compound can be decomposed and recovered as an amine having a glycosidic bond, it is considered that an amine having a glycosidic bond can be produced from various raw materials.
アミド化合物を分解し、グリコシド結合を有するアミンとして回収する方法として、アミド化合物が有するアミド結合を加水分解する方法が考えられる。しかし、本発明者らの検討によれば、グリコシド結合を有するアミド化合物を加水分解すると、グリコシド結合の加水分解反応が進行してしまい、目的とするグリコシド結合を有するアミンが得られない。 As a method of decomposing the amide compound and recovering it as an amine having a glycosidic bond, a method of hydrolyzing the amide bond of the amide compound can be considered. However, according to the studies by the present inventors, when an amide compound having a glycosidic bond is hydrolyzed, the hydrolysis reaction of the glycosidic bond proceeds, and an amine having the desired glycosidic bond cannot be obtained.
本発明は、上記の課題に鑑みてなされたものであり、グリコシド結合を有するアミド化合物を分解してグリコシド結合を有するアミンを効率的に生成できるアミド化合物の分解方法、及び、アミド結合を有するアミンを高い収率で得ることができるアミンの製造方法を提供することを目的とする。 The present invention has been made in view of the above problems, and is a method for decomposing an amide compound capable of efficiently producing an amine having a glycosidic bond by decomposing an amide compound having a glycosidic bond, and an amine having an amide bond. It is an object of the present invention to provide a method for producing an amine capable of obtaining a high yield.
上記目的を達成するために、本発明は、グリコシド結合を有するアミド化合物を含む原料及び水を含有する反応液を水熱処理することで、アミド化合物を分解してグリコシド結合を有するアミンを生成する分解工程を有し、反応液のpHが8.0以上である、アミド化合物の分解方法を提供する。 In order to achieve the above object, the present invention decomposes a amide compound to produce an amine having a glycoside bond by hydrothermally treating a raw material containing an amide compound having a glycoside bond and a reaction solution containing water. Provided is a method for decomposing an amide compound, which comprises a step and has a pH of a reaction solution of 8.0 or more.
上記方法によれば、グリコシド結合を有するアミド化合物を分解してグリコシド結合を有するアミンを効率的に生成できる。 According to the above method, an amide compound having a glycosidic bond can be decomposed to efficiently produce an amine having a glycosidic bond.
本発明者らは、グリコシド結合を有するアミド化合物を水熱処理により分解した場合、グリコシド結合の加水分解反応が進行し、グリコシド結合を有するアミンの収率が低下することを見出した。例えば、グリコシド結合を有するアミド化合物として、グルコシルセラミドを用いた場合には、グリコシド結合の加水分解反応が進行することで、フリーセラミドが副生してしまう。この問題を解決するために、本発明者らは鋭意検討した結果、反応液のpHを8.0以上とすることで、グリコシド結合の加水分解反応が抑制され、且つ、アミド化合物が有するアミド結合の加水分解反応が促進されることを見出した。その結果、グリコシド結合を有するアミド化合物を分解してグリコシド結合を有するアミンを効率的に生成できる。 The present inventors have found that when an amide compound having a glycosidic bond is decomposed by hydrothermal treatment, the hydrolysis reaction of the glycosidic bond proceeds and the yield of the amine having a glycosidic bond decreases. For example, when glucosylceramide is used as an amide compound having a glycosidic bond, free ceramide is by-produced as the hydrolysis reaction of the glycosidic bond proceeds. As a result of diligent studies to solve this problem, the present inventors suppressed the hydrolysis reaction of the glycosidic bond by setting the pH of the reaction solution to 8.0 or higher, and the amide bond possessed by the amide compound was suppressed. It was found that the hydrolysis reaction of amide was promoted. As a result, the amide compound having a glycosidic bond can be decomposed to efficiently produce an amine having a glycosidic bond.
上記方法において、上記アミド化合物は、スフィンゴ糖脂質を含んでいてもよい。上記方法によれば、スフィンゴ糖脂質を特に効率的に分解することができる。 In the above method, the amide compound may contain glycosphingolipid. According to the above method, glycosphingolipids can be decomposed particularly efficiently.
上記方法において、上記アミド化合物は、グルコシルセラミドを含んでいてもよい。上記方法によれば、グルコシルセラミドを特に効率的に分解することができる。 In the above method, the amide compound may contain glucosylceramide. According to the above method, glucosylceramide can be decomposed particularly efficiently.
上記方法において、上記原料は、植物原料であってよい。 In the above method, the raw material may be a plant raw material.
上記方法において、上記反応液中の上記アミド化合物の含有量は、反応液全量を基準として、0.05質量%以上であってよい。上記アミド化合物の質量割合が0.05質量%以上であることにより、アミド化合物を特に効率的に分解することができる。 In the above method, the content of the amide compound in the reaction solution may be 0.05% by mass or more based on the total amount of the reaction solution. When the mass ratio of the amide compound is 0.05% by mass or more, the amide compound can be decomposed particularly efficiently.
上記方法において、上記水熱処理は、110~300℃の条件で行われてもよい。上記範囲内の温度であると、アミド化合物の分解をより促進することができる。 In the above method, the above hydrothermal treatment may be performed under the condition of 110 to 300 ° C. When the temperature is within the above range, the decomposition of the amide compound can be further promoted.
本発明はまた、上記本発明の方法によりアミド化合物を分解する分解工程と、上記分解工程で得られた分解生成物からグリコシド結合を有するアミンを抽出する抽出工程と、を含む、アミンの製造方法を提供する。かかる製造方法によれば、グリコシド結合を有するアミンを高い収率で製造することができる。 The present invention also comprises a decomposition step of decomposing an amide compound by the method of the present invention, and an extraction step of extracting an amine having a glycosidic bond from the decomposition product obtained in the decomposition step. I will provide a. According to such a production method, an amine having a glycosidic bond can be produced in a high yield.
本発明によれば、グリコシド結合を有するアミド化合物を分解してグリコシド結合を有するアミンを効率的に生成できるアミド化合物の分解方法、及び、アミド結合を有するアミンを高い収率で得ることができるアミンの製造方法を提供することができる。 According to the present invention, a method for decomposing an amide compound capable of efficiently producing an amine having a glycoside bond by decomposing an amide compound having a glycoside bond, and an amine capable of obtaining an amine having an amide bond in a high yield. Production method can be provided.
以下、本発明をその好適な実施形態に即して詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。 Hereinafter, the present invention will be described in detail according to the preferred embodiment thereof. However, the present invention is not limited to the following embodiments.
本明細書において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値と任意に組み合わせることができる。本明細書に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。「A又はB」とは、A及びBのどちらか一方を含んでいればよく、両方とも含んでいてもよい。本明細書に例示する材料は、特に断らない限り、1種を単独で又は2種以上を組み合わせて用いることができる。 In the present specification, the numerical range indicated by using "-" indicates a range including the numerical values before and after "-" as the minimum value and the maximum value, respectively. Within the numerical range described stepwise herein, the upper or lower limit of the numerical range at one stage may be optionally combined with the upper or lower limit of the numerical range at another stage. In the numerical range described in the present specification, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples. "A or B" may include either A or B, and may include both. Unless otherwise specified, the materials exemplified in the present specification may be used alone or in combination of two or more.
(アミド化合物の分解方法)
本実施形態に係るアミド化合物の分解方法は、グリコシド結合を有するアミド化合物(以下、単に「アミド化合物」ともいう。)を含む原料及び水を含む反応液を水熱処理することで、アミド化合物を分解してグリコシド結合を有するアミンを生成する分解工程を有する。反応液のpHが8.0以上である。
(Decomposition method of amide compound)
The method for decomposing an amide compound according to the present embodiment is to decompose the amide compound by hydrothermally treating a raw material containing an amide compound having a glycosidic bond (hereinafter, also simply referred to as “amide compound”) and a reaction solution containing water. It has a decomposition step to produce an amine having a glycosidic bond. The pH of the reaction solution is 8.0 or higher.
アミド化合物は、グリコシド結合を有するアミンにおけるアミノ基(-NH2)と、脂肪酸のカルボキシル基(-COOH)とがアミド結合(-CONH-)により結合した親水性の化合物である。本発明に供されるアミド化合物は、例えば、スフィンゴ糖脂質が挙げられるが、これらに限定されない。 The amide compound is a hydrophilic compound in which an amino group (-NH 2 ) in an amine having a glycosidic bond and a carboxyl group (-COOH) of a fatty acid are bonded by an amide bond (-CONH-). Examples of the amide compound used in the present invention include, but are not limited to, glycosphingolipids.
スフィンゴ糖脂質は、糖とスフィンゴシンとがグリコシド結合により結合している。スフィンゴ糖脂質としては、例えば、グルコシルセラミドが挙げられる。 In glycosphingolipids, sugars and sphingosine are bound by glycosidic bonds. Examples of glycosphingolipids include glucosylceramide.
アミド化合物の元となる糖としては特に限定されない。上述したアミド化合物を形成することができる公知の糖が挙げられる。 The sugar that is the source of the amide compound is not particularly limited. Known sugars capable of forming the above-mentioned amide compounds can be mentioned.
アミド化合物の分解処理に処する原料は、アミド化合物以外の他の成分を含んでいてもよい。他の成分としては、例えば、グリコシド結合を有するアミン、水溶性食物繊維、難溶性食物繊維、糖類、タンパク質、有機酸等が挙げられる。原料におけるアミド化合物の含有量は、原料の固形分全量を基準として、0.1質量%以上であることが好ましく、0.25~30質量%であることがより好ましく、0.5~15質量%であることが更に好ましい。原料がグリコシド結合を有するアミンを更に含む場合、アミド化合物の含有量は、当該アミンの含有量1質量部に対して、0.25質量部以上であることが好ましく、0.5~100質量部であることがより好ましく、5~50質量部であることが更に好ましい。 The raw material to be subjected to the decomposition treatment of the amide compound may contain components other than the amide compound. Examples of other components include amines having a glycosidic bond, water-soluble dietary fiber, poorly soluble dietary fiber, sugars, proteins, organic acids and the like. The content of the amide compound in the raw material is preferably 0.1% by mass or more, more preferably 0.25 to 30% by mass, and 0.5 to 15% by mass, based on the total solid content of the raw material. % Is more preferable. When the raw material further contains an amine having a glycosidic bond, the content of the amide compound is preferably 0.25 parts by mass or more, preferably 0.5 to 100 parts by mass, based on 1 part by mass of the amine content. Is more preferable, and 5 to 50 parts by mass is further preferable.
原料としては、例えば、植物及び海草が挙げられる。具体的には、植物並びに海草の花、葉、根、茎、果実及び種子等を用いることができる。植物としては、例えば、ダイズ等のマメ科植物、メロン等のウリ科植物、イネ、トウモロコシ等のイネ科植物、ビート等のヒユ科の植物、クリ等のブナ科の植物、ひまわり等のキク科植物、モモ等のバラ科の植物が挙げられる。本実施形態に係るアミド化合物の分解方法は、アミド化合物を分解するため、グリコシド結合を有するアミンの含有量が少ない原料であっても、原料として用いることができる。 Examples of raw materials include plants and seaweeds. Specifically, flowers, leaves, roots, stems, fruits, seeds and the like of plants and seaweeds can be used. Examples of plants include legumes such as soybeans, melons such as melons, rice plants such as rice and corn, plants of the family Hydrangea such as beets, plants of the family Beech such as chestnuts, and plants of the family Kiku such as sunflowers. Examples include plants and plants of the rose family such as peaches. Since the method for decomposing an amide compound according to the present embodiment decomposes an amide compound, even a raw material having a low content of an amine having a glycosidic bond can be used as a raw material.
反応液は、水以外の溶媒を含んでいてもよい。水以外の溶媒としては、例えば、アルコール、ジメチルホルムアミド、ジメチルスルホキシド等が挙げられる。反応液が水以外の溶媒を含む場合、水及び水以外の溶媒に占める水の割合は、5質量%以上であってよい。 The reaction solution may contain a solvent other than water. Examples of the solvent other than water include alcohol, dimethylformamide, dimethyl sulfoxide and the like. When the reaction solution contains a solvent other than water, the ratio of water to the water and the solvent other than water may be 5% by mass or more.
水熱処理は、原料を水と共に耐圧性の密閉容器内に封入し、密閉したまま100℃を超える温度で加熱することで行うことができる。上記原料及び水を含む反応液が密閉容器内で加熱されることで、密閉容器内が加熱及び加圧環境となり、亜臨界状態の水による水熱処理(水熱合成)が行われる。水熱処理は、反応液を撹拌しながら行ってもよい。耐圧性の密閉容器としては、水熱処理に使用可能な公知の容器を特に制限なく用いることができる。密閉容器における反応液の充填率は、高い分解効率を得る観点から、密閉容器の容積を基準として20体積%以上であることが好ましく、40~80体積%であることがより好ましい。 The hydrothermal treatment can be performed by enclosing the raw material together with water in a pressure-resistant airtight container and heating the raw material at a temperature exceeding 100 ° C. while keeping the airtight. When the reaction liquid containing the raw materials and water is heated in the closed container, the inside of the closed container becomes a heating and pressurizing environment, and hydrothermal heat treatment (hydrothermal synthesis) is performed with water in a subcritical state. The hydrothermal treatment may be performed while stirring the reaction solution. As the pressure-resistant closed container, a known container that can be used for hydrothermal treatment can be used without particular limitation. The filling rate of the reaction solution in the closed container is preferably 20% by volume or more, more preferably 40 to 80% by volume, based on the volume of the closed container, from the viewpoint of obtaining high decomposition efficiency.
反応液中のアミド化合物の含有量は、特に限定されないが、反応液全量を基準として、例えば、0.05質量%以上であることが好ましく、5質量%以上であることがより好ましく、25質量%以下であることが好ましく、15質量%以下であることがより好ましい。反応液中のアミド化合物の含有量が上記範囲内であると、アミド化合物の分解を効率的に行うことができる。 The content of the amide compound in the reaction solution is not particularly limited, but is preferably 0.05% by mass or more, more preferably 5% by mass or more, and 25% by mass, based on the total amount of the reaction solution. % Or less, more preferably 15% by mass or less. When the content of the amide compound in the reaction solution is within the above range, the amide compound can be efficiently decomposed.
水熱処理の反応条件は特に限定されないが、例えば、110~300℃で0.5~20時間とすることができる。反応温度は、120~200℃であることが好ましく、140~195℃であることがより好ましい。反応温度が110℃以上であると、アミド結合の加水分解反応がより良好に進行しやすい傾向があり、300℃以下であると、原料及びグリコシド結合を有するアミンの炭化が進行しにくく、収率がより向上する傾向がある。反応時間は、0.2~20時間であることが好ましく、0.5~10時間であることがより好ましい。反応時間が0.2時間以上であると、反応がより進みやすくなる傾向があり、20時間以下であると、反応の進行とコストとのバランスがとりやすくなる傾向がある。 The reaction conditions for the hydrothermal treatment are not particularly limited, but can be, for example, 0.5 to 20 hours at 110 to 300 ° C. The reaction temperature is preferably 120 to 200 ° C, more preferably 140 to 195 ° C. When the reaction temperature is 110 ° C. or higher, the hydrolysis reaction of the amide bond tends to proceed more satisfactorily, and when the reaction temperature is 300 ° C. or lower, the carbonization of the raw material and the amine having a glycosidic bond does not easily proceed, and the yield Tends to improve. The reaction time is preferably 0.2 to 20 hours, more preferably 0.5 to 10 hours. When the reaction time is 0.2 hours or more, the reaction tends to proceed more easily, and when the reaction time is 20 hours or less, the progress of the reaction and the cost tend to be easily balanced.
水熱処理時の容器内の圧力は、上記反応温度に対応する飽和蒸気圧又はそれ以上であればよいが、装置の耐圧性の観点から、飽和蒸気圧であることが好ましい。密閉容器内に水蒸気を供給する場合、上述した反応温度の飽和水蒸気を供給することが好ましい。水熱処理時の密閉容器内の圧力は、例えば、0.2~1.6MPaとすることができる。 The pressure in the container at the time of hydrothermal treatment may be a saturated vapor pressure corresponding to the above reaction temperature or higher, but is preferably a saturated vapor pressure from the viewpoint of pressure resistance of the apparatus. When supplying steam into the closed container, it is preferable to supply saturated steam at the above-mentioned reaction temperature. The pressure in the closed container during the hydrothermal treatment can be, for example, 0.2 to 1.6 MPa.
上記反応液のpHは、8.0以上であり、アミド化合物を分解し、グリコシド結合を有するアミンを一層効率的に生成することから、9.0以上であることが好ましく、10.0以上であることがより好ましく、11.0以上であることが更に好ましい。上記反応液のpHは、13.5以下であってよい。
ってよい。
The pH of the reaction solution is 8.0 or more, and since it decomposes the amide compound and more efficiently produces an amine having a glycosidic bond, it is preferably 9.0 or more, preferably 10.0 or more. It is more preferably present, and further preferably 11.0 or more. The pH of the reaction solution may be 13.5 or less.
It's okay.
反応液のpHの調整は、所定のアミド化合物を含む原料紛の水溶液に酸、塩基を溶解させることで可能となる。使用する酸、塩基には食品添加物として認められている物質を使用することが好ましい。酸としては、例えば、クエン酸、酢酸、リンゴ酸等を挙げることができる。塩基としては、例えば、水酸化ナトリウム等を挙げることができる。 The pH of the reaction solution can be adjusted by dissolving an acid or a base in an aqueous solution of a raw material powder containing a predetermined amide compound. It is preferable to use substances recognized as food additives as the acid and base to be used. Examples of the acid include citric acid, acetic acid, malic acid and the like. Examples of the base include sodium hydroxide and the like.
上記条件で水熱処理を行うことで、アミド化合物を分解してグリコシド結合を有するアミンを効率的に生成できる。 By performing hydrothermal treatment under the above conditions, the amide compound can be decomposed to efficiently produce an amine having a glycosidic bond.
(グリコシド結合を有するアミンの製造方法)
本実施形態に係るアミンの製造方法は、アミド化合物を分解する分解工程と、分解工程で得られた分解生成物からグリコシド結合を有するアミンを抽出する抽出工程と、を含む。分解工程は、上述した本実施形態に係るアミド化合物の分解方法によりアミド化合物を分解する工程である。
(Method for producing amine having glycosidic bond)
The method for producing an amine according to the present embodiment includes a decomposition step of decomposing an amide compound and an extraction step of extracting an amine having a glycosidic bond from the decomposition product obtained in the decomposition step. The decomposition step is a step of decomposing the amide compound by the above-mentioned method for decomposing the amide compound according to the present embodiment.
抽出工程では、分解工程で得られた分解生成物からグリコシド結合を有するアミンを抽出する。分解生成物には、グリコシド結合を有するアミンの他に、糖、分解させずに残ったアミド化合物、水溶性及び難溶性セルロース並びにその分解物等が含まれている。グリコシド結合を有するアミンは、例えば、60℃に加温したエタノールにより抽出できる。 In the extraction step, an amine having a glycosidic bond is extracted from the decomposition product obtained in the decomposition step. The decomposition products include, in addition to amines having a glycosidic bond, sugars, amide compounds remaining without decomposition, water-soluble and sparingly soluble cellulose, and decomposition products thereof. Amines with glycosidic bonds can be extracted, for example, with ethanol heated to 60 ° C.
以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail based on Examples and Comparative Examples, but the present invention is not limited to the following Examples.
<サイコシンの製造>
(実施例1)
フリーセラミド含有量0.5質量%、グルコシルセラミド含有量3質量%であるニップンセラミドCP(商品名、日本製粉株式会社製)3gを超純水147gに溶解/分散させ、水酸化ナトリウム粉末(富士フイルム和光純薬株式会社製)0.134gを更に加え、反応液を得た。得られた反応液のpHをpHメータで測定したところ、12.0であった。この反応液を容量200mlのテフロン(登録商標)容器に入れた。次いで、槽内容積2m3の熱風循環式オートクレーブ(株式会社芦田製作所製)に容器を収容し、180℃で1時間、反応液を水熱処理した。水熱処理は、ボイラーからオートクレーブの槽(圧力容器)内に180℃の飽和水蒸気を供給し、槽内圧力が180℃の水の飽和水蒸気圧である1MPaになるように水蒸気の供給量及び圧力弁を調整しながら行った。水熱処理後の槽内の圧力は、圧力0.9MPa、槽内の温度は180℃であった。槽内の圧力が0.7MPa、槽内の温度が165℃となるまで、オートクレーブを10分間自然冷却した。自然冷却後、バルブを開き、装置に取り付けられているコンプレッサーを用いて、圧力1MPaの圧縮空気を槽内に送り込んだ。圧縮空気を送り込んだ直後の槽内の圧力は、1MPaを超えていたため、排気弁の開閉を手動で行うことにより、0.75MPaを下回らない圧力を維持しながら、圧縮空気を槽内に導入し、圧縮空気による冷却を開始した。冷却中、適宜、その時点での飽和水蒸気圧を下回らないよう槽内圧力を低下させながら冷却を行った。圧縮空気による冷却開始から2時間後に、溶液の温度が100℃を下回った(水分散液の飽和水蒸気圧が常圧(0.1MPa)を下回った)ため、槽の蓋を開けて容器を取り出し、常温(25℃)まで自然冷却した。冷却後、容器内面に析出又は付着したアミド化合物の分解物を、薬さじを用いて取り出した。
<Manufacturing of psychosin>
(Example 1)
Nippon Flour Mills CP (trade name, manufactured by Nippon Flour Mills Co., Ltd.), which has a free ceramide content of 0.5% by mass and a glucosyl ceramide content of 3% by mass, is dissolved / dispersed in 147 g of ultrapure water to dissolve / disperse sodium hydroxide powder (Fuji). Further, 0.134 g of film Wako Junyaku Co., Ltd. was added to obtain a reaction solution. The pH of the obtained reaction solution was measured with a pH meter and found to be 12.0. This reaction solution was placed in a Teflon® container having a capacity of 200 ml. Next, the container was housed in a hot air circulation type autoclave (manufactured by Ashida Seisakusho Co., Ltd.) having a tank internal volume of 2 m 3 , and the reaction solution was hydroheat treated at 180 ° C. for 1 hour. In hydrothermal treatment, saturated steam at 180 ° C is supplied from the boiler into the tank (pressure vessel) of the autoclave, and the amount of steam supplied and the pressure valve so that the pressure inside the tank becomes 1 MPa, which is the saturated steam pressure of water at 180 ° C. I went while adjusting. The pressure in the tank after the hydrothermal treatment was 0.9 MPa, and the temperature in the tank was 180 ° C. The autoclave was naturally cooled for 10 minutes until the pressure in the tank reached 0.7 MPa and the temperature in the tank reached 165 ° C. After natural cooling, the valve was opened and compressed air with a pressure of 1 MPa was sent into the tank using the compressor attached to the device. Since the pressure in the tank immediately after sending the compressed air exceeded 1 MPa, by manually opening and closing the exhaust valve, the compressed air was introduced into the tank while maintaining the pressure not less than 0.75 MPa. , Cooling with compressed air was started. During cooling, cooling was performed while appropriately reducing the pressure in the tank so as not to fall below the saturated water vapor pressure at that time. Two hours after the start of cooling with compressed air, the temperature of the solution fell below 100 ° C (the saturated water vapor pressure of the aqueous dispersion fell below the normal pressure (0.1 MPa)), so the lid of the tank was opened and the container was taken out. , Naturally cooled to room temperature (25 ° C). After cooling, the decomposition product of the amide compound precipitated or adhered to the inner surface of the container was taken out using a spatula.
次に、容器内の溶液及び固形分を目開き0.2μmの親水化PTFE製メンブレンフィルター(Omnipore 0.2μm JG(メルク-ミリポア社、商品名))を用いて、ダイアフラムポンプを用いて減圧濾過した。得られた固形物を、オーブンで120℃にて5時間乾燥して、アミド化合物の分解物の粉末を得た。次いでアミド化合物の分解物をエタノールにて5%分散液になるよう調整し、還流下60℃で1時間処理し、目開き0.2μmの親水化PTFE製メンブレンフィルター(Omnipore 0.2μm JG(メルク-ミリポア社、商品名))を用いて、ダイアフラムポンプを用いて減圧濾過した。得られた溶液を60℃加温下でダイアフラムポンプを用いて真空乾燥し、サイコシン濃縮物の粉末を0.04g得た。 Next, the solution and solid content in the container are filtered under reduced pressure using a diaphragm pump using a hydrophilic PTFE membrane filter (Omnipore 0.2 μm JG (Merck-Millipore, trade name)) with an opening of 0.2 μm. did. The obtained solid was dried in an oven at 120 ° C. for 5 hours to obtain a powder of a decomposition product of the amide compound. Next, the decomposition product of the amide compound was adjusted to a 5% dispersion with ethanol, treated at 60 ° C. for 1 hour under reflux, and a hydrophilized PTFE membrane filter with an opening of 0.2 μm (Omnipore 0.2 μm JG (Merck)). -Millipore, trade name)) was used for vacuum filtration using a diaphragm pump. The obtained solution was vacuum dried using a diaphragm pump under heating at 60 ° C. to obtain 0.04 g of a powder of psychocin concentrate.
(比較例1)
反応液を調整する際に水酸化ナトリウムを添加しなかったこと以外は、実施例1と同様にして、サイコシン濃縮物の粉末を0.115g得た。反応液のpHは、7.0であった。
(Comparative Example 1)
0.115 g of powder of psychosin concentrate was obtained in the same manner as in Example 1 except that sodium hydroxide was not added when preparing the reaction solution. The pH of the reaction solution was 7.0.
(比較例2)
反応液として、ニップンセラミドCP(商品名、日本製粉株式会社製)3gを超純水147gに溶解/分散させ、クエン酸を0.005g更に添加した溶液を反応液として用いたこと以外は、実施例1と同様にして、サイコシン濃縮物の粉末を0.156g得た。反応液のpHは、4.0であった。
(Comparative Example 2)
As a reaction solution, 3 g of Nippon Flour Mills CP (trade name, manufactured by Nippon Flour Mills Co., Ltd.) was dissolved / dispersed in 147 g of ultrapure water, and 0.005 g of citric acid was further added as a reaction solution. In the same manner as in Example 1, 0.156 g of the powder of the psychocin concentrate was obtained. The pH of the reaction solution was 4.0.
(比較例3)
反応液として、ニップンセラミドCP(商品名、日本製粉株式会社製)3gを超純水147gに溶解/分散させ、クエン酸を0.266g更に添加した溶液を反応液として用いたこと以外は、実施例1と同様にして、サイコシン濃縮物の粉末を0.115g得た。反応液のpHは、2.6であった。
(Comparative Example 3)
As a reaction solution, 3 g of Nippon Flour Mills CP (trade name, manufactured by Nippon Flour Mills Co., Ltd.) was dissolved / dispersed in 147 g of ultrapure water, and 0.266 g of citric acid was further added as a reaction solution. In the same manner as in Example 1, 0.115 g of the powder of the psychocin concentrate was obtained. The pH of the reaction solution was 2.6.
<サイコシン、グルコシルセラミド及びフリーセラミドの含有量の測定>
(実施例1及び比較例1~3)
得られたサイコシン濃縮物の粉末について、サイコシン、グルコシルセラミド及びフリーセラミドの含有量を以下の方法により測定した。まず、サイコシン濃縮物の粉末20mgを希釈倍率が50倍となるようにクロロホルム:メタノール=2:1の混合溶媒により希釈し、溶液を得た。得られた溶液0.1mLを薄層クロマトグラフィー(TLC)によりサイコシン、グルコシルセラミド及びフリーセラミドをそれぞれ分離した。展開溶媒は、フリーセラミド及びグルコシルセラミドを分離する際には、クロロホルム:メタノール=95:12の混合溶媒を、サイコシンを分離する際には、クロロホルム:メタノール:2Nアンモニア水溶液=80:20:2の混合溶媒を用いた。分離されたサイコシン、グルコシルセラミド及びフリーセラミドについて、ガスクロマトグラフィーを用いて定量分析した。標準物質として、市販のフリーセラミド、グルコシルセラミド及びサイコシン標準生成試料に内部標準物質として構成スフィンゴイド塩基を添加し、内部標準法にて定量分析した。結果を表1に示した。表1に示す含有量は、サイコシン濃縮物の粉末100gに含まれる、フリーセラミド、グルコシルセラミド及びサイコシンの物質量(mmol)である。また、サイコシンの収率を表1に示した。サイコシンの収率は、得られたサイコシン濃縮物の粉末中のサイコシンの物質量を原料中のグルコシルセラミドの物質量で除した値である。
<Measurement of content of psychocin, glucosylceramide and free ceramide>
(Example 1 and Comparative Examples 1 to 3)
The contents of psychocin, glucosylceramide and free ceramide in the obtained powder of psychocin concentrate were measured by the following method. First, 20 mg of the powder of the psychocin concentrate was diluted with a mixed solvent of chloroform: methanol = 2: 1 so that the dilution ratio was 50 times to obtain a solution. Psychocin, glucosylceramide and free ceramide were separated from each of 0.1 mL of the obtained solution by thin layer chromatography (TLC). The developing solvent is a mixed solvent of chloroform: methanol = 95: 12 when separating free ceramide and glucosyl ceramide, and chloroform: methanol: 2N ammonia aqueous solution = 80: 20: 2 when separating psychocin. A mixed solvent was used. The separated psychocin, glucosylceramide and free ceramide were quantitatively analyzed using gas chromatography. As a standard substance, a constituent sphingoid base was added as an internal standard substance to a commercially available free ceramide, glucosyl ceramide and psychosin standard production sample, and quantitative analysis was performed by an internal standard method. The results are shown in Table 1. The content shown in Table 1 is the amount of substance (mmol) of free ceramide, glucosylceramide and psychocin contained in 100 g of the powder of the psychocin concentrate. The yield of psychocin is shown in Table 1. The yield of psychocin is a value obtained by dividing the amount of substance of psychocin in the powder of the obtained psychosin concentrate by the amount of substance of glucosylceramide in the raw material.
Claims (7)
前記反応液のpHが8.0以上である、アミド化合物の分解方法。 It has a decomposition step of decomposing the amide compound to produce an amine having a glycosidic bond by hydrothermally treating a raw material containing an amide compound having a glycosidic bond and a reaction solution containing water.
A method for decomposing an amide compound, wherein the pH of the reaction solution is 8.0 or higher.
前記分解工程で得られた分解生成物からグリコシド結合を有するアミンを抽出する抽出工程と、
を含む、アミンの製造方法。
The decomposition step of decomposing the amide compound by the method according to any one of claims 1 to 6.
An extraction step of extracting an amine having a glycosidic bond from the decomposition product obtained in the decomposition step, and an extraction step.
A method for producing an amine, including.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020202163A JP2022089623A (en) | 2020-12-04 | 2020-12-04 | Amide compound decomposing method and amine production method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020202163A JP2022089623A (en) | 2020-12-04 | 2020-12-04 | Amide compound decomposing method and amine production method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2022089623A true JP2022089623A (en) | 2022-06-16 |
Family
ID=81989370
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020202163A Pending JP2022089623A (en) | 2020-12-04 | 2020-12-04 | Amide compound decomposing method and amine production method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2022089623A (en) |
-
2020
- 2020-12-04 JP JP2020202163A patent/JP2022089623A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10398162B2 (en) | Method for manufacturing aloe extract, and aloe extract | |
KR101933540B1 (en) | Method of deodorizing collagen peptide and food, drink or composition using the same | |
TWI506009B (en) | Method for preparing polyamine from plant | |
CN111772195B (en) | Giant salamander collagen peptide, preparation method and preparation thereof | |
CN111758967B (en) | Giant salamander collagen peptide composition and application thereof | |
CN106333935B (en) | A kind of method that wet method glycosylation modification zeins prepares soft capsule | |
JP2022089623A (en) | Amide compound decomposing method and amine production method | |
RU2389498C1 (en) | Enterosorbent | |
JP2022089621A (en) | Glycoside decomposing method and aglycon production method | |
CN105851458A (en) | Method for preparing abalone internal organs antioxidative peptide | |
CN109369775A (en) | Low purine marine fishes oligopeptide and preparation method thereof | |
CN109805406B (en) | Extraction method for ultrahigh pressure-alkali-acid hydrolysis step-by-step release of rice bran-bound phenol | |
JP7264244B2 (en) | Method for decomposing flavonoid glycosides and method for producing flavonoids | |
WO2020022508A1 (en) | Method for decomposing flavonoid glycoside and method for producing flavonoid | |
CN107142186B (en) | Preparation method of narcissus seed natural peptide wine | |
RU2342847C2 (en) | Method of manufacturing modified food protein product from flax seeds | |
JP2020193171A (en) | Method for decomposing flavonoid glycoside and method for producing flavonoid | |
JP2020193170A (en) | Method for decomposing flavonoid glycoside and method for producing flavonoid | |
WO2022070418A1 (en) | Method for breaking down flavonoid glycoside and method for producing flavonoid | |
KR102494672B1 (en) | Method for preparing compound K using red ginseng, enzymes and natural products | |
JP2020193168A (en) | Method for decomposing flavonoid glycoside and method for producing flavonoid | |
WO2020240705A1 (en) | Flavonoid glycoside degradation method, flavonoid production method, and method for cooling solution inside autoclave | |
WO2005070234A1 (en) | Process for the production of sediment free clarified fruit juices | |
CN109762469A (en) | The preparation method of water-white rosin | |
JP2023104561A (en) | Methods for extracting sphingoglycolipid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20231010 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20241015 |