JP2022088333A - Nanosheet containing niobate dielectric and dielectric thin film containing the same - Google Patents

Nanosheet containing niobate dielectric and dielectric thin film containing the same Download PDF

Info

Publication number
JP2022088333A
JP2022088333A JP2021193211A JP2021193211A JP2022088333A JP 2022088333 A JP2022088333 A JP 2022088333A JP 2021193211 A JP2021193211 A JP 2021193211A JP 2021193211 A JP2021193211 A JP 2021193211A JP 2022088333 A JP2022088333 A JP 2022088333A
Authority
JP
Japan
Prior art keywords
dielectric
thin film
niobate
nanosheets
nanosheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021193211A
Other languages
Japanese (ja)
Inventor
ジウォン・チェ
Ji Won Choi
ジンサン・キム
Jin Sang Kim
ジョンユン・ガン
Chong Yun Kang
スンヒョプ・ペク
Seung Hyub Baek
ソングン・キム
Seong Keun Kim
ヒョンチョル・ソン
Hyun Cheol Song
ジュンホ・ユン
Jungho Yoon
ヘナ・イム
Haena Yim
ソヨン・ユ
Soyeon Yoo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Korea Advanced Institute of Science and Technology KAIST
Korea Institute of Science and Technology KIST
Original Assignee
Korea Advanced Institute of Science and Technology KAIST
Korea Institute of Science and Technology KIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Korea Advanced Institute of Science and Technology KAIST, Korea Institute of Science and Technology KIST filed Critical Korea Advanced Institute of Science and Technology KAIST
Publication of JP2022088333A publication Critical patent/JP2022088333A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62218Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0016Apparatus or processes specially adapted for manufacturing conductors or cables for heat treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0026Apparatus for manufacturing conducting or semi-conducting layers, e.g. deposition of metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1254Ceramic dielectrics characterised by the ceramic dielectric material based on niobium or tungsteen, tantalum oxides or niobates, tantalates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • H01G4/306Stacked capacitors made by thin film techniques
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/781Nanograined materials, i.e. having grain sizes below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Abstract

To provide a nanosheet having a high dielectric constant and low dielectric loss characteristics.SOLUTION: A nanosheet comprises a niobate dielectric having a composition of Formula 1 and having a high dielectric constant and low dielectric loss characteristics. (Formula 1): Sr2(1-x)Bi2xNb3O10 (wherein x is 0<x≤0.2).SELECTED DRAWING: Figure 1

Description

本明細書は、高誘電率と低誘電損失特性を持つニオベート誘電体ナノシートおよびこれを含む誘電体薄膜に係り、より詳しくは、高誘電率の誘電定数を維持しつつも誘電損失が極めて低い特性を示すニオベート誘電体ナノシートおよびこれを含む誘電体薄膜に関する。 The present specification relates to a niobate dielectric nanosheet having a high dielectric constant and a low dielectric loss characteristic and a dielectric thin film containing the same, and more specifically, a characteristic having an extremely low dielectric loss while maintaining a high dielectric constant dielectric constant. The present invention relates to a niobate dielectric nanosheet showing the above and a dielectric thin film containing the same.

近年、移動通信端末のデュプレックサー(Duplexer)、帯域濾波器(Band Pass Filter)、トランジスタ用絶縁体、周波数フィルタのような電子部品、積層セラミックキャパシタ(MLCC、multilayer ceramic capacitor)、トランジスタのゲート酸化物(gate oxide)などの多様な電子機器の集積化、超小型化に伴い、それらの中に用いられる誘電体材料もまた小型および高性能化が要求されている。 In recent years, duplexers for mobile communication terminals, Band Pass Filters, insulators for transistors, electronic components such as frequency filters, multilayer ceramic capacitors (MLCCs), and gate oxidation of transistors. With the integration and ultra-miniaturization of various electronic devices such as gate oxides, the dielectric materials used in them are also required to be smaller and have higher performance.

また、スマートフォン、スマートカード、車両用ブルートゥース(登録商標)などの高付加機能が搭載されている高性能の半導体素子の開発に伴いより高性能のキャパシタの要求が増加しており、半導体加工技術の発展に伴いより集積化された超小型の高容量セラミックキャパシタの開発が必須になっている。次世代デバイスに適合した高容量のMLCCなどのセラミックキャパシタを実現するためには、誘電体層の厚さを超薄型に減らすことが必須となっているが、従来技術では誘電体の厚さを減らすには大きな限界がある。 In addition, with the development of high-performance semiconductor devices equipped with high-addition functions such as smartphones, smart cards, and Bluetooth (registered trademark) for vehicles, the demand for higher-performance capacitors is increasing, and semiconductor processing technology With the development, it is essential to develop more integrated ultra-small high-capacity ceramic capacitors. In order to realize a high-capacity ceramic capacitor such as MLCC suitable for next-generation devices, it is essential to reduce the thickness of the dielectric layer to an ultra-thin layer. There is a big limit to reducing.

代表的に用いられる誘電体層の材料として、高い誘電定数を持つ(Ba、Sr)TiO、CaTiO、あるいはこれらを組み合わせた組成などのチタニウム酸化物が主に用いられている。しかし、このようなペロブスカイト系チタニウム酸化物誘電体物質では、数十ナノ厚さの薄い薄膜で作製する場合、熱処理過程で示される基板との界面劣化問題、組成のずれ、多くの結晶粒界面によって誘電特性の低下および高い誘電損失を引き起こす。 As the material of the dielectric layer typically used, titanium oxide having a high dielectric constant (Ba, Sr) TiO 3 , CaTiO 3 , or a composition in which these are combined is mainly used. However, in such a perovskite-based titanium oxide dielectric material, when it is manufactured with a thin thin film having a thickness of several tens of nanometers, it is caused by the problem of interface deterioration with the substrate, composition deviation, and many crystal grain interfaces shown in the heat treatment process. It causes deterioration of dielectric properties and high dielectric loss.

また、既存の誘電体材料を合成してセラミックキャパシタを作製するスクリーン印刷方式を用いて超薄膜化を実現するためには、数ナノ粒子で誘電体材料を合成しなければならないという困難があるだけでなく、高温負荷時の耐久性が悪化して高積層化を実現するにも限界がある。したがって、次世代デバイスへの適用が可能な超小型高容量のセラミックキャパシタまたはコンデンサの実現のためには、ナノ厚さレベルの薄膜でも優れた特性を持つ誘電体物質の研究開発が必須とされる。 In addition, in order to realize ultra-thin film formation by using a screen printing method that synthesizes existing dielectric materials to produce ceramic capacitors, there is only the difficulty that the dielectric material must be synthesized with several nanoparticles. Not only that, the durability under high temperature load deteriorates, and there is a limit to achieving high stacking. Therefore, in order to realize ultra-compact and high-capacity ceramic capacitors or capacitors that can be applied to next-generation devices, it is essential to research and develop dielectric materials that have excellent properties even in thin films at the nano-thickness level. ..

それだけでなく優れた特性を持つ誘電体物質を開発したとしてもナノシート粒子の大きさが小さすぎると、多くの結晶粒界で大きい誘電損失を招く。また、開発したナノシートを持って薄膜を作製するにあたって、工程過程で均一且つ平坦な薄膜が得られないと大きなリーク電流を招くだけでなく薄膜作製の均一度が低下するため、ナノシートを利用してより緻密且つ均一な薄膜を作製できる製造法が必須とされる。 Not only that, even if a dielectric material with excellent properties is developed, if the size of the nanosheet particles is too small, a large dielectric loss will occur at many grain boundaries. In addition, when manufacturing a thin film with the developed nanosheet, if a uniform and flat thin film cannot be obtained in the process, not only a large leakage current will be caused but also the uniformity of thin film production will decrease. Therefore, nanosheets are used. A manufacturing method capable of producing a more dense and uniform thin film is indispensable.

このような問題点を解決するために、本発明の実現例は、層状構造のペロブスカイト物質であるKSr2(1-x)Bi2xNb10誘電体物質を多様な条件で合成した後、K+イオンをカチオン置換して得られた多様な大きさのSr2(1-x)BixNb10単結晶ナノシートを合成する方法を提供する。
また、ナノシート分散溶液を用いる溶液蒸着工程でより均一且つ平坦な誘電体薄膜を製造する方法を提供する。
In order to solve such a problem, a realization example of the present invention is to synthesize a KSr 2 (1-x) Bi 2x Nb 3 O 10 dielectric material, which is a perovskite material having a layered structure, under various conditions. Provided are methods for synthesizing Sr 2 (1-x) Bi 2 x Nb 3 O 10 single crystal nanosheets of various sizes obtained by cation substitution of K + ions.
Further, the present invention provides a method for producing a more uniform and flat dielectric thin film in a solution vapor deposition step using a nanosheet dispersion solution.

前述した目的を達成するために、本発明に係る一具現例において、下記の化学式1で表される組成を有するニオベート誘電体を含み、高誘電率および低誘電損失特性を持つ、ナノシートを提供する。

Figure 2022088333000002

ここで、xは0<x≦0.2 In order to achieve the above-mentioned object, in one embodiment of the present invention, a nanosheet containing a niobate dielectric having a composition represented by the following chemical formula 1 and having a high dielectric constant and a low dielectric loss property is provided. ..
Figure 2022088333000002

Here, x is 0 <x ≦ 0.2.

一具現例において、前記ナノシートは、50nm~50μmの平均直径を有してよい。 In one embodiment, the nanosheets may have an average diameter of 50 nm to 50 μm.

一具現例において、前記ナノシートは、10nm以下の厚さを有してよい。 In one embodiment, the nanosheets may have a thickness of 10 nm or less.

一具現例において、前記ナノシートは、10nm以下の厚さで500以上の誘電率を示してよい。 In one embodiment, the nanosheet may exhibit a dielectric constant of 500 or more with a thickness of 10 nm or less.

本発明に係る一具現例において、前駆体混合物を形成する段階;前記前駆体混合物を仮焼してバルクニオベート誘電体を形成する段階;および前記バルクニオベート誘電体を層状で剥離してナノシートを形成する段階;を含む、ナノシートの製造方法を提供する。 In one embodiment of the present invention, a step of forming a precursor mixture; a step of calcining the precursor mixture to form a bulk niobate dielectric; and a step of peeling the bulk niobate dielectric in layers to form nanosheets. Provided is a method for producing a nanosheet, which comprises the stage of forming the nanosheet.

一具現例において、前記前駆体混合物は、KCO、SrCO、Bi、およびNbを含んでよい。 In one embodiment, the precursor mixture may include K 2 CO 3 , SrCO 3 , Bi 2 O 3 , and Nb 2 O 5 .

一具現例において、前記前駆体混合物は、ボールミル工程で湿式混合して形成してよい。 In one embodiment, the precursor mixture may be formed by wet mixing in a ball mill step.

一具現例において、前記バルクニオベート誘電体は、700~1300℃の温度で焼結して形成してよい。 In one embodiment, the bulk niobate dielectric may be formed by sintering at a temperature of 700 to 1300 ° C.

一具現例において、焼結に先立ち、700~1100℃の温度で5~20時間仮焼してよい。 In one embodiment, prior to sintering, calcination may be performed at a temperature of 700 to 1100 ° C. for 5 to 20 hours.

本発明に係る一具現例において、複数の本発明の一具現例に係るナノシートを含む誘電体層を含み、前記複数のナノシートは、誘電体層で単層構造にて配列された、ニオベート誘電体薄膜が提供される。 In one embodiment of the present invention, a dielectric layer containing a plurality of nanosheets according to the embodiment of the present invention is included, and the plurality of nanosheets are arranged in a single-layer structure with a dielectric layer. A thin film is provided.

一具現例において、前記ニオベート誘電体薄膜は、複数の誘電体層を含む多層積層構造を有してよい。 In one embodiment, the niobate dielectric thin film may have a multi-layered laminated structure including a plurality of dielectric layers.

一具現例において、前記ニオベート誘電体薄膜は、下部基板をさらに含んでよい。 In one embodiment, the niobate dielectric thin film may further include a lower substrate.

一具現例において、前記下部基板は、伝導性ペロブスカイト基板、ガラス基板、プラスチック基板、金属電極、および酸化物/金属/酸化物構造の酸化物透明電極からなる群より選択される一つ以上を含んでよい。 In one embodiment, the lower substrate comprises one or more selected from the group consisting of a conductive perovskite substrate, a glass substrate, a plastic substrate, a metal electrode, and an oxide transparent electrode having an oxide / metal / oxide structure. It's fine.

一具現例において、前記ナノシートは、90%以上のカバレッジを有してよい。 In one embodiment, the nanosheets may have 90% or more coverage.

一具現例において、前記ニオベート誘電体薄膜は、10nm以下の厚さで500以上の誘電率を示してよい。 In one embodiment, the niobate dielectric thin film may exhibit a dielectric constant of 500 or more with a thickness of 10 nm or less.

一具現例において、前記ニオベート誘電体薄膜は、0.1~3.0nm範囲の粗さ(RMS)を有してよい。 In one embodiment, the niobate dielectric thin film may have a roughness (RMS) in the range 0.1-3.0 nm.

本発明に係る一具現例において、複数の本発明の一具現例に係るナノシートが分散された分散溶液を展開する段階;および前記ナノシートを下部基板上に蒸着する段階を含む、ニオベート誘電体薄膜の製造方法が提供される。 In one embodiment of the present invention, a niobate dielectric thin film comprising a step of developing a dispersion solution in which a plurality of nanosheets according to the embodiment of the present invention are dispersed; and a step of depositing the nanosheets on a lower substrate. A manufacturing method is provided.

一具現例において、前記蒸着段階は、電気泳動法またはラングミュア・ブロジェット法で蒸着されることであってよい。 In one embodiment, the vapor deposition step may be vapor deposition by an electrophoresis method or a Langmuir Brodget method.

一具現例において、蒸着に先立ち、展開された分散溶液を5~20分間安定化させてよい。 In one embodiment, the developed dispersion may be stabilized for 5-20 minutes prior to deposition.

一具現例において、前記蒸着段階で、所定の蒸着圧力を維持しながら下部基板を移動させて誘電体層を形成してよい。 In one embodiment, the lower substrate may be moved to form a dielectric layer while maintaining a predetermined vapor deposition pressure at the vapor deposition step.

一具現例において、前記蒸着段階で、0.1~20mm/minのバリアーの移動速度で蒸着圧力に達してよい。 In one embodiment, the vapor deposition pressure may be reached at a barrier moving speed of 0.1 to 20 mm / min at the vapor deposition step.

一具現例において、前記蒸着段階で、蒸着圧力は、5~30mN/mの範囲であってよい。 In one embodiment, the vapor deposition pressure may be in the range of 5 to 30 mN / m at the vapor deposition step.

本発明に係るニオベート誘電体ナノシートは、誘電率が大きく誘電損失は低い特性を持ち、ナノレベルの厚さでも線形的で優れた誘電率を持って絶縁特性を実現できる、低温素子の作製に応用可能なナノシート形態の誘電物質を提供することができる。また、出発粒子を球形ではないシート形態で作製することによって粒界面を最大限減らすことができるだけでなく結晶質のシートを用いる場合、熱処理工程を不要とする長所を有する。 The niobate dielectric nanosheet according to the present invention has a large dielectric constant and a low dielectric loss, and is applied to the fabrication of a low-temperature element capable of realizing insulation characteristics with linear and excellent dielectric constant even at a nano-level thickness. It is possible to provide a dielectric material in the form of a possible nanosheet. Further, not only can the grain interface be reduced to the maximum by producing the starting particles in the form of a non-spherical sheet, but also when a crystalline sheet is used, there is an advantage that a heat treatment step is not required.

また、従来の誘電体素子製造工程で要求されていた真空装置や高価の蒸着装備を不要とするため、低コストおよび早期作製時間を満たす素子の製造工程設計を可能にした。
さらに、ニオベート誘電体合成条件に応じてナノシートの大きさを調節でき、用途に合った大きさのナノシートを合成できる技術を提供し、素子に適用した場合により均一な薄膜を作製できる方法を提供する。
In addition, since it eliminates the need for vacuum equipment and expensive vapor deposition equipment required in the conventional dielectric element manufacturing process, it has made it possible to design an element manufacturing process that satisfies low cost and early manufacturing time.
Furthermore, we will provide a technique that can adjust the size of nanosheets according to the conditions for synthesizing niobate dielectrics, synthesize nanosheets of a size suitable for the application, and provide a method that can produce a more uniform thin film when applied to devices. ..

したがって、従来の素子製造工程で生じる基板と誘電物質間の劣化問題を解決でき且つ次世代積層セラミックキャパシタ、マイクロ波誘電体、トランジスタ用ゲート、次世代TFTなどの多様な種類の電子機器に応用され得る。また、本発明の素子は常温で作製されるため、多様な種類のポリマー基板、紙基板などに適用できると共に有機物と複合して積層する新規な構造の素子を作製でき、有機-無機ハイブリッド素子、分子エレクトロニクスの誘電体材料として用いることができる。本発明を用いた誘電体素子は、薄い厚さで従来の材料を代替することができ、且つ高い誘電率と良好な絶縁特性を同時に実現するため、莫大な経済的波及効果を期待することができる。 Therefore, it can solve the deterioration problem between the substrate and the dielectric material that occurs in the conventional element manufacturing process, and is applied to various types of electronic devices such as next-generation laminated ceramic capacitors, microwave dielectrics, transistor gates, and next-generation TFTs. obtain. Further, since the element of the present invention is manufactured at room temperature, it can be applied to various types of polymer substrates, paper substrates, etc., and an element having a novel structure that can be composited and laminated with an organic substance can be produced. It can be used as a dielectric material for molecular electronics. The dielectric element using the present invention can replace the conventional material with a thin thickness, and realizes high dielectric constant and good insulating properties at the same time, so that a huge economic ripple effect can be expected. can.

本発明の一実施例に係る母組成のKSr1.8Bi0.2Nb10の焼結条件に応じて変化したSr1.8Bi0.2Nb10ナノシートの走査電子顕微鏡写真を示すものである。Scanning electron micrograph of Sr 1.8 Bi 0.2 Nb 3 O 10 nanosheet changed according to the sintering conditions of KSr 1.8 Bi 0.2 Nb 3 O 10 of the mother composition according to one embodiment of the present invention. Is shown. 本発明の一実施例に係るSr1.8Bi0.2Nb10ナノシート単層膜のC-AFM写真を示すものである。It shows the C-AFM photograph of the Sr 1.8 Bi 0.2 Nb 3 O 10 nanosheet monolayer film which concerns on one Example of this invention. 本発明の一実施例に従って多様な表面圧力条件で10層積層されたSr1.8Bi0.2Nb10ナノ薄膜のTEM写真を示すものである。It is a TEM photograph of an Sr 1.8 Bi 0.2 Nb 3 O 10 nano-thin film laminated in 10 layers under various surface pressure conditions according to an embodiment of the present invention. 本発明の一実施例に従って作製されたPt/Sr1.8Bi0.2Nb10/Nb-SrTiOキャパシタの断面透過電子顕微鏡写真を示すものである。The following is a cross-sectional electron micrograph of a Pt / Sr 1.8 Bi 0.2 Nb 3O 10 / Nb-SrTiO 3 capacitor manufactured according to an embodiment of the present invention. 本発明の一実施例に係るSr1.8Bi0.2Nb10ナノシートとして焼結温度を1225℃にして製造されたサンプルの走査電子顕微鏡写真を示すものである。It is a scanning electron micrograph of a sample produced as Sr 1.8 Bi 0.2 Nb 3 O 10 nanosheet which concerns on one Example of this invention at a sintering temperature of 1225 ° C. 本発明の一実施例に係るSr1.8Bi0.2Nb10ナノシートとして焼結温度を1250℃にして製造されたサンプルの走査電子顕微鏡写真を示すものである。It is a scanning electron micrograph of a sample manufactured at a sintering temperature of 1250 ° C. as an Sr 1.8 Bi 0.2 Nb 3 O 10 nanosheet according to an embodiment of the present invention. 本発明の一実施例に係るSr1.8Bi0.2Nb10ナノシートとして焼結温度を1275℃にして製造されたサンプルの走査電子顕微鏡写真を示すものである。It is a scanning electron micrograph of a sample produced as Sr 1.8 Bi 0.2 Nb 3 O 10 nanosheet which concerns on one Example of this invention at a sintering temperature of 1275 ° C. 本発明の一実施例に係るSr1.8Bi0.2Nb10ナノシートとして焼結温度を1300℃にして製造されたサンプルの走査電子顕微鏡写真を示すものである。It is a scanning electron micrograph of a sample manufactured as Sr 1.8 Bi 0.2 Nb 3 O 10 nanosheet which concerns on one Example of this invention at a sintering temperature of 1300 ℃. 本発明の一実施例に従って測定されたSr1.8Bi0.2Nb10ナノシート薄膜の誘電定数および誘電損失値を示したものである。It shows the dielectric constant and the dielectric loss value of the Sr 1.8 Bi 0.2 Nb 3 O 10 nanosheet thin film measured according to one embodiment of the present invention.

以下、本発明の実施例をより詳細に説明することにする。
本文に開示されている本発明の実施例は、単に説明のための目的から例示されたものであって、本発明の実施例は多様な形態で実施でき、本文に説明された実施例に限定されると解釈されてはいけない。
Hereinafter, embodiments of the present invention will be described in more detail.
The examples of the present invention disclosed in the text are exemplified only for the purpose of explanation, and the examples of the present invention can be carried out in various forms and are limited to the examples described in the text. Should not be interpreted as being done.

本発明は、多様な変更を加えることができ且つ種々の形態を持つことができるところ、実施例は本発明を特定の開示形態に限定しようとするものではなくて、本発明の思想および技術範囲に含まれるすべての変更、均等物乃至代替物を含むものと理解されるべきである。 Although the present invention can be modified in various ways and can have various forms, the examples are not intended to limit the present invention to a specific disclosed form, and the idea and technical scope of the present invention are not limited to the present invention. It should be understood to include all modifications, equivalents or alternatives contained in.

単数の表現は、文脈上明らかに言及しない限り、複数の表現を含む。本出願における「含む」または「有する」などの用語は、明細書上に記載された特徴、数字、段階、動作、構成要素、部品またはこれらの組み合わせが存在することを表すためのものであって、一つまたはそれ以上の他の特徴や数字、段階、動作、構成要素、部品またはそれらの組み合わせなどの存在または付加可能性を予め排除するためのものではないと理解されるべきである。 Singular expressions include multiple expressions unless explicitly mentioned in the context. Terms such as "include" or "have" in this application are meant to indicate the existence of the features, numbers, stages, actions, components, parts or combinations thereof described herein. It should be understood that it is not intended to preclude the existence or addability of one or more other features or numbers, stages, actions, components, parts or combinations thereof.

ニオベート誘電体ナノシート
前述した目的を達成するために、本発明に係る一具現例において、下記の化学式1で表される組成を有するニオベート誘電体を含み、高誘電率および低誘電損失特性を持つ、ナノシートを提供する。

Figure 2022088333000003

ここで、xは0<x≦0.2
一方、Biの置換量に関連して、xが0.2以上である場合、Srイオンの位置を置換するよりは二次相を形成して層状構造が破壊され得る。 Niobate Dielectric Nanosheet In order to achieve the above-mentioned object, in one embodiment of the present invention, the niobate dielectric having the composition represented by the following chemical formula 1 is contained, and has high dielectric constant and low dielectric loss characteristics. Provide nanosheets.
Figure 2022088333000003

Here, x is 0 <x ≦ 0.2.
On the other hand, when x is 0.2 or more in relation to the substitution amount of Bi, the layered structure can be destroyed by forming a secondary phase rather than substituting the position of the Sr ion.

一具現例において、前記ナノシートは、50nm~50μmの平均直径を有してよい。 In one embodiment, the nanosheets may have an average diameter of 50 nm to 50 μm.

一具現例において、前記ナノシートは、10nm以下の厚さを有してよい。 In one embodiment, the nanosheets may have a thickness of 10 nm or less.

一具現例において、前記ナノシートは、10nm以下の厚さで500以上の誘電率を示してよい。 In one embodiment, the nanosheet may exhibit a dielectric constant of 500 or more with a thickness of 10 nm or less.

ナノシートの製造方法
本発明に係る一具現例において、前駆体混合物を形成する段階;前記前駆体混合物を焼結してバルクニオベート誘電体を形成する段階;および前記バルクニオベート誘電体を層状で剥離してナノシートを形成する段階;を含む、ナノシートの製造方法を提供する。
Method for Producing Nanosheets In one embodiment of the present invention, a step of forming a precursor mixture; a step of sintering the precursor mixture to form a bulk niobate dielectric; and a step of forming the bulk niobate dielectric in layers; Provided is a method for producing nanosheets, which comprises a step of peeling to form nanosheets;

先ず、前駆体混合物を形成してよい。
例示的な具現例において、前記前駆体混合物は、カリウム前駆体、ストロンチウム前駆体、ビズマス前駆体、およびニオベート前駆体を含んでよく、例えば、前記カリウム前駆体、ストロンチウム前駆体、ビズマス前駆体、ニオベート前駆体は、それぞれKCO、SrCO、Bi、およびNbであってよいが、これらに限定されるものではない。
First, a precursor mixture may be formed.
In an exemplary embodiment, the precursor mixture may comprise a potassium precursor, a strontium precursor, a bizmas precursor, and a niobate precursor, eg, the potassium precursor, a strontium precursor, a bizmas precursor, a niobate. The precursors may be, but are not limited to, K 2 CO 3 , SrCO 3 , Bi 2 O 3 , and Nb 2 O 5 , respectively.

例示的な具現例において、前記前駆体混合物は、純度99%以上のKCO、SrCO、Bi、およびNbを用いて、一般式KSr2(1-x)Bi(y/3)xNb10+δを満たす組成比にて称量した後、エタノールを溶媒とする前駆体混合物を形成してよい。 In an exemplary embodiment, the precursor mixture uses the general formula KSr 2 (1-x) Bi with K2 CO 3 , SrCO 3 , Bi 2 O 3 and Nb 2 O 5 with a purity of 99% or greater. After nominated with a composition ratio satisfying (y / 3) x Nb 3 O 10 + δ , a precursor mixture using ethanol as a solvent may be formed.

例示的な具現例において、前記前駆体混合物は、湿式混合して形成してよく、具体的に、ジルコニアボールと共にボールミル工程によって湿式混合して前駆体混合物を形成してよい。 In an exemplary embodiment, the precursor mixture may be wet-mixed to form, specifically, wet-mixed with zirconia balls by a ball mill step to form a precursor mixture.

次いで、前記前駆体混合物を仮焼してバルクニオベート誘電体を形成してよい。
具体的に、形成された前駆体混合物を100℃のオーブンで乾燥した後、1200℃で焼結してKSBNOを得てよい。
ここで、KSBNOは、下記の化学式2で表される組成を有する高誘電率と低誘電損失特性を持つビズマスニオベート誘電体であってよい。

Figure 2022088333000004

(前記化学式2中、モル分率xは0<x≦0.2の範囲である。) The precursor mixture may then be calcined to form a bulk niobate dielectric.
Specifically, the formed precursor mixture may be dried in an oven at 100 ° C. and then sintered at 1200 ° C. to obtain KSBNO.
Here, KSBNO may be a bizmas niobate dielectric having a composition represented by the following chemical formula 2 and having a high dielectric constant and a low dielectric loss characteristic.
Figure 2022088333000004

(In the chemical formula 2, the mole fraction x is in the range of 0 <x ≦ 0.2.)

前記化学式2で表される誘電体は層状構造を有するKSrNb10誘電体物質を基にして15族元素であるBiをSrサイトに置換することで製造される。例えば、前記KSBNO誘電体を製造するために、層状構造を有するKSrNb10セラミックのSrサイトをBiで置換して一般式KSBNOで表される誘電物質を製造するが、Srイオンに比べてBiイオンは小さいイオン半径を有しているので、x=0.2以上ではSrイオンのサイトを置換するよりは二次相を形成して層状構造が破壊される。前記化学式2においてBiの酸化数は3+であり、Biが2+イオンで置換される場合に比べて3+イオンで置換される場合により優れた誘電特性を持つことができる。 The dielectric represented by the chemical formula 2 is produced by substituting Bi, which is a Group 15 element, with Sr sites based on the KSr 2 Nb 3 O 10 dielectric substance having a layered structure. For example, in order to produce the KSBNO dielectric, the Sr site of the KSr 2 Nb 3 O 10 ceramic having a layered structure is replaced with Bi to produce a dielectric material represented by the general formula KSBNO, but compared to Sr ions. Since Bi ions have a small ionic radius, when x = 0.2 or more, a secondary phase is formed and the layered structure is destroyed rather than replacing the site of Sr ions. In the chemical formula 2, the oxidation number of Bi is 3+, and it is possible to have better dielectric properties when Bi is substituted with 3+ ions than when Bi is substituted with 2+ ions.

一具現例において、前記バルクニオベート誘電体は、700~1300℃の温度で焼結して形成してよい。前記焼結温度を調節することで、形成されるナノ粒子の大きさを制御することができる。前記焼結温度が700℃未満であると相が合成しないことがあり、1300℃超であると、二次相が生じることがある。 In one embodiment, the bulk niobate dielectric may be formed by sintering at a temperature of 700 to 1300 ° C. By adjusting the sintering temperature, the size of the nanoparticles formed can be controlled. If the sintering temperature is less than 700 ° C., the phase may not be synthesized, and if it is more than 1300 ° C., a secondary phase may occur.

一方、焼結に先立ち、所定の温度および時間で仮焼をしてよく、これによりナノシート粒子の大きさを制御することができる。前記仮焼は、700~1100℃の温度で2~24時間行われてよい。700~1100℃の温度で2~24時間仮焼すると、所望の単一相で合成することができ、仮焼時間が増加するにつれて粒子(Grain)サイズが増加することがある。特に、焼結工程だけを経る場合に比べて、焼結に先立ち所定の温度および時間で仮焼させると、合成される粒子の大きさをより大きくすることができ、後で剥離段階によって形成されるナノシートの粒子の大きさを大きく制御できるため有利である。 On the other hand, prior to sintering, calcining may be performed at a predetermined temperature and time, whereby the size of the nanosheet particles can be controlled. The calcining may be carried out at a temperature of 700 to 1100 ° C. for 2 to 24 hours. Pre-baking at a temperature of 700 to 1100 ° C. for 2 to 24 hours can be synthesized in the desired single phase, and the grain size may increase as the pre-baking time increases. In particular, if the particles are calcined at a predetermined temperature and time prior to sintering as compared with the case where only the sintering step is performed, the size of the synthesized particles can be increased, and the particles are formed later by the peeling step. It is advantageous because the size of the particles of the nanosheet can be greatly controlled.

次いで、前記バルクニオベート誘電体を層状で剥離してナノシートを形成してよい。
例示的実現例において、前記剥離段階は、バルクニオベート誘電体を層状で化学的剥離してナノシートを形成することであってよい。具体的に、組成の変化によって高い誘電特性を持つKSBNO誘電体を合成した後、前記KSBNO誘電体を基にH+イオンを用いたK+イオンの置換によってKSBNOが有する非線形的誘電特性を線形的誘電特性に変化させて誘電損失を減少させることで高い誘電率、低い誘電損失、線形的誘電特性を持つHSBNO誘電体を合成することができる。しかる後、前記HSBNO誘電体のH+イオンをTBA+イオンで置換して剥離することでSBNO誘電体を製造することであってもよい。
Next, the bulk niobate dielectric may be exfoliated in layers to form nanosheets.
In an exemplary implementation, the stripping step may be to chemically strip the bulk niobate dielectric in layers to form nanosheets. Specifically, after synthesizing a KSBNO dielectric having high dielectric properties due to changes in composition, the non-linear dielectric properties of KSBNO are linearly dielectric properties by substituting K + ions with H + ions based on the KSBNO dielectric. By changing to the above to reduce the dielectric loss, it is possible to synthesize an HSBNO dielectric having a high dielectric constant, a low dielectric loss, and a linear dielectric property. After that, the SBNO dielectric may be produced by substituting the H + ions of the HSBNO dielectric with TBA + ions and exfoliating them.

例示的実現例において、化学式2で表されるKSBNOにおいてK+イオンをH+イオンでカチオン置換し仮焼して化学式3で表されるHSBNO誘電体を製造してよい。

Figure 2022088333000005

(前記化学式3中、モル分率xは0<x≦0.2の範囲である。) In an exemplary embodiment, K + ions may be cationically substituted with H + ions in KSBNO represented by Chemical Formula 2 and calcined to produce an HSBNO dielectric represented by Chemical Formula 3.
Figure 2022088333000005

(In the chemical formula 3, the mole fraction x is in the range of 0 <x ≦ 0.2.)

例えば、前記HSBNO誘電体組成物を製造するために前記合成されたKSBNO粉末を5Mあるいは7MのHNO、HCl、HSOなどの酸を用いて4日間撹拌してSBNO間に挿入されているK+イオンをH+イオンで置換する。置換が終わった溶液は遠心分離機を用いてDI Waterで数回洗浄する。その後、50℃で24時間乾燥すると、HSBNOを得ることができる。 For example, the synthesized KSBNO powder for producing the HSBNO dielectric composition is stirred with 5M or 7M acids such as HNO 3 , HCl, H 2 SO 4 for 4 days and inserted between SBNOs. The existing K + ion is replaced with H + ion. The replaced solution is washed several times with DI Water using a centrifuge. Then, it is dried at 50 degreeC for 24 hours, and HSBNO can be obtained.

また、例示的具現例において、前記化学式3で表されるHSBNO誘電体のH+イオンをTBA+イオンで置換して剥離することで化学式1で表される組成を有するニオベート誘電体を含むナノシートを得ることができる。具体的に、例えば、前記HSBNO誘電体試片をテトラブチルアンモニウム(TBAOH)溶液に数日間撹拌すると、Sr2(1-x)Bi(y/3)xNb10+δ層間に存在しているH+イオンをTBA+イオンが安定化させ、バルク試片がコロイド化し、Sr2(1-x)Bi2xNb10単結晶シートに1枚ずつ剥離されるようになる。 Further, in the exemplary embodiment, the H + ion of the HSBNO dielectric represented by the chemical formula 3 is replaced with a TBA + ion and peeled off to obtain a nanosheet containing the niobate dielectric having the composition represented by the chemical formula 1. Can be done. Specifically, for example, when the HSBNO dielectric sample is stirred in a tetrabutylammonium (TBAOH) solution for several days, it exists between Sr 2 (1-x) Bi (y / 3) x Nb 3 O 10 + δ layers. The H + ions are stabilized by the TBA + ions, and the bulk specimen becomes colloidal and is peeled off one by one on the Sr 2 (1-x) Bi 2x Nb 3 O 10 single crystal sheet.

前記本発明の一具現例に係るKSBNOおよびHSBNO誘電体は、高い誘電定数を維持しつつも極めて低い誘電損失を示す。特にBiが過量で添加されたHSBNOの場合、高誘電率材料として、10Hz~10Hzの間の周波数範囲でe=460と一定の誘電定数値と0<x≦0.25の間の誘電損失を有する。さらに、前記HSBNOは、線形的な誘電特性を示すことから、積層セラミックキャパシタ、マイクロ波誘電体、次世代TFTの誘電膜などに用いられ得る。 The KSBNO and HSBNO dielectrics according to one embodiment of the present invention exhibit extremely low dielectric loss while maintaining a high dielectric constant. Especially in the case of HSBNO to which Bi is added in an excessive amount, as a high dielectric constant material, er = 460 and a constant dielectric constant value of 0 <x ≦ 0.25 in the frequency range between 102 Hz and 107 Hz. Has a dielectric loss between. Further, since the HSBNO exhibits linear dielectric properties, it can be used for laminated ceramic capacitors, microwave dielectrics, dielectric films of next-generation TFTs, and the like.

ニオベート誘電体薄膜
本発明に係る一具現例において、複数の本発明の一具現例に係るナノシートを含む誘電体層を含み、前記複数のナノシートは、誘電体層で単層構造にて配列された、ニオベート誘電体薄膜が提供される。
Niobate Dielectric Thin Film In one embodiment of the present invention, a dielectric layer containing a plurality of nanosheets according to one embodiment of the present invention is included, and the plurality of nanosheets are arranged in a single layer structure with a dielectric layer. , Niobate Dielectric Thin Films are provided.

一具現例において、前記ニオベート誘電体薄膜は、複数の誘電体層を含む多層積層構造を有してよい。例えば、前記ニオベート誘電体薄膜は、2層以上の誘電体層を含む多層積層構造を有してよい。単層積層構造の場合、誘電体薄膜層が下部基板を完ぺきに(例えば、約100%カバレッジ)カバーできないため、単層積層構造を有するニオベート誘電体薄膜を素子に適用する場合、リーク電流(leakage current)が大きく発生することがある。 In one embodiment, the niobate dielectric thin film may have a multi-layered laminated structure including a plurality of dielectric layers. For example, the niobate dielectric thin film may have a multi-layered laminated structure including two or more dielectric layers. In the case of a single-layer laminated structure, the dielectric thin film cannot completely cover the lower substrate (for example, about 100% coverage). Therefore, when a niobate dielectric thin film having a single-layer laminated structure is applied to a device, a leak current (leakage) is applied. Currant) may occur significantly.

一具現例において、前記ニオベート誘電体薄膜は下部基板をさらに含んでよい。 In one embodiment, the niobate dielectric thin film may further include a lower substrate.

一具現例において、前記下部基板は、伝導性ペロブスカイト基板(例えば、Nb-SrTiOおよびSrRuOなど)、ガラス基板、プラスチック基板、金属電極(例えば、金およびアルミニウムなど)、およびoxide/metal/oxide構造の酸化物透明電極からなる群より選択される一つ以上を含んでよく、ニオベート誘電体ナノシートを均一に蒸着させることができる基板であれば特に制限されない。 In one embodiment, the lower substrate is a conductive perovskite substrate (eg, Nb-SrTiO 3 and SrRuO 3 , etc.), a glass substrate, a plastic substrate, a metal electrode (eg, gold and aluminum, etc.), and an oxide / metal / oxide. It may contain one or more selected from the group consisting of oxide transparent electrodes having a structure, and is not particularly limited as long as it is a substrate capable of uniformly depositing niobium dielectric nanosheets.

一具現例において、前記ニオベート誘電体薄膜は、数nm水準で表面の粗さ(RMS)値が制御されてよく、特に、複数の誘電体層で積層する場合、ニオベート誘電体ナノシートを均一に蒸着させて表面粗さを制御することが重要である。具体的に、前記ニオベート誘電体薄膜は、0.1nm~3nm範囲の粗さ(RMS)を有してよい。前記粗さの値が3nm超過であると、上部に積層される薄膜との界面接合性が低下し上部薄膜の均一度を低下させることがある。 In one embodiment, the surface roughness (RMS) value of the niobate dielectric thin film may be controlled at the level of several nm, and in particular, when laminated with a plurality of dielectric layers, the niobate dielectric nanosheets are uniformly vapor-deposited. It is important to control the surface roughness. Specifically, the niobate dielectric thin film may have a roughness (RMS) in the range of 0.1 nm to 3 nm. If the roughness value exceeds 3 nm, the interfacial bondability with the thin film laminated on the upper portion may be lowered, and the uniformity of the upper thin film may be lowered.

一具現例において、前記誘電体薄膜は、適用分野に応じてナノシートのカバレッジを変えてよく、具体的に、セラミックキャパシタ、トランジスタなどのゲート誘電体に適用される場合、高いカバレッジ値を有することが有利になることがある。例えば、前記ナノシートは、90%以上のカバレッジを有してよく、前記ナノシートは、95%以上、98%以上のカバレッジを有してよい。カバレッジが前述した範囲未満であると、誘電体薄膜層が下部基板を完ぺきに(例えば、約100%カバレッジ)カバーできないため、単層積層構造を有するニオベート誘電体薄膜を素子に適用する場合、リーク電流(leakage current)が大きく発生することがある。 In one embodiment, the dielectric thin film may have different nanosheet coverage depending on the field of application, and may have a high coverage value when specifically applied to gated dielectrics such as ceramic capacitors and transistors. It may be advantageous. For example, the nanosheets may have 90% or more coverage, and the nanosheets may have 95% or more, 98% or more coverage. If the coverage is less than the above-mentioned range, the dielectric thin film layer cannot completely cover the lower substrate (for example, about 100% coverage). Therefore, when a niobate dielectric thin film having a single-layer laminated structure is applied to the device, a leak occurs. A large current (leakage leakage) may be generated.

一方、前記誘電体薄膜が燃料電池、水分解電極などに適用される場合、電極の表面を完全に覆ってしまうと特性が低下する可能性があるため、90%以下の低いカバレッジを有してよい。 On the other hand, when the dielectric thin film is applied to a fuel cell, a water splitting electrode, etc., it has a low coverage of 90% or less because the characteristics may deteriorate if the surface of the electrode is completely covered. good.

一具現例において、前記ニオベート誘電体薄膜は、10nm以下の厚さで500以上の誘電率を示してよい。したがって、本発明の具現例に係るニオベート誘電体薄膜は、優れた誘電特性を持ち、このため、積層セラミックキャパシタ、マイクロ波誘電体、次世代TFTの誘電膜などに適用され得る。 In one embodiment, the niobate dielectric thin film may exhibit a dielectric constant of 500 or more with a thickness of 10 nm or less. Therefore, the niobate dielectric thin film according to the embodiment of the present invention has excellent dielectric properties, and therefore can be applied to laminated ceramic capacitors, microwave dielectrics, dielectric films of next-generation TFTs, and the like.

ニオベート誘電体薄膜の製造方法
本発明に係る一具現例において、複数の本発明の一具現例に係るナノシートが分散された分散溶液を展開する段階;および前記展開されたナノシートを下部基板上に蒸着させてナノシートを含む誘電体層を形成する段階;を含む、ニオベート誘電体薄膜の製造方法が提供される。
Method for Producing Niobate Dielectric Thin Film In one embodiment of the present invention, a step of developing a dispersion solution in which nanosheets according to one embodiment of the present invention are dispersed; and the developed nanosheets are vapor-deposited on a lower substrate. A method for producing a niobate dielectric thin film is provided, which comprises a step of forming a dielectric layer containing nanosheets.

先ず、複数のナノシートが分散された分散溶液を展開させてよい。
例示的具現例において、前記分散溶液は、前述したように化学式1で表される組成を有するニオベート誘電体を含むナノシートが分散された分散溶液であってよい。
例えば、ペロブスカイト構造のSr1.8Bi0.2Nb10ナノシートが分散された不透明のコロイド溶液をLB(Langmuir-Blodgett)トラフに満たされた超純水に分散させてよい。
First, a dispersion solution in which a plurality of nanosheets are dispersed may be developed.
In the exemplary embodiment, the dispersion solution may be a dispersion solution in which nanosheets containing a niobate dielectric having the composition represented by Chemical Formula 1 are dispersed as described above.
For example, an opaque colloidal solution in which Sr 1.8 Bi 0.2 Nb 3 O 10 nanosheets having a perovskite structure are dispersed may be dispersed in ultrapure water filled with an LB (Langmuir-Blodgett) trough.

次いで、ナノシートを下部基板上に蒸着してよい。
一具現例において、前記蒸着段階は、溶液蒸着工程によって行われてよく、具体的に、電気泳動法、ラングミュア・ブロジェット法、LBL法、およびspin-coating法のうちの一つ以上の工程で蒸着されることであってよい。特に、Langmuir-Blodgett法によって一層ずつ精密な制御が可能な均一な薄膜を得ることができる条件を提供することができる。
The nanosheets may then be deposited on the lower substrate.
In one embodiment, the vapor deposition step may be performed by a solution vapor deposition step, specifically in one or more of the electrophoresis, Langmuir-Bloggett, LBL, and spin-coating processes. It may be vapor-deposited. In particular, it is possible to provide a condition capable of obtaining a uniform thin film capable of precise control one by one by the Langmuir-Blodgett method.

また、例えば、誘電体ナノシートコロイドをアセトンあるいはエタノールなどの溶液に分散させて濃度を調節した後、(+)極には下部電極基板を位置させ、(-)極には相手電極としてPt plateを位置させ、DC power supplyで電界を加えて電気泳動法にて誘電体薄膜を蒸着することができる。 Further, for example, after adjusting the concentration by dispersing the dielectric nanosheet colloid in a solution such as acetone or ethanol, the lower electrode substrate is positioned on the (+) pole, and the Pt plate is placed on the (-) pole as the mating electrode. A dielectric thin film can be vapor-deposited by electrophoresis by applying an electric field at a position and DC power supply.

一具現例において、蒸着に先立ち、展開された分散溶液を5~20分間安定化させてよい。かかる安定化過程によって分散溶液の水面の安定および下層液の温度が一定になるようにすることができる。 In one embodiment, the developed dispersion may be stabilized for 5-20 minutes prior to deposition. By such a stabilization process, the water surface of the dispersion solution can be stabilized and the temperature of the underlying solution can be kept constant.

一具現例において、前記蒸着段階で、所定の蒸着圧力を維持しながら下部基板を移動させて誘電体層を形成してよい。このように垂直方向に下部基板を移動させると、展開されたナノシートが下部基板に蒸着され、それにより、水面上に展開されたナノシートの蒸着圧力が減少することがあり、蒸着圧力の減少は、蒸着された誘電体層の安定性を損なうことがある。そこで、蒸着圧力を維持するためにLB(Langmuir-Blodgett)トラフでバリアーを所定の移動速度で移動させる方法を用いてよい。例えば、前記蒸着段階で、0.1~20mm/minの移動速度を有する両側のバリアーを用いて分散溶液の表面圧力を所望の蒸着圧力まで到達させることができる。バリアーを移動して蒸着圧力に到達した後は、0.1~20mm/minの速度で基板を垂直または水平下降させ、両側にあるバリアー移動によって表面圧力を維持させながら基板表面に単層膜を転移させることができる。バリアーの移動速度が0.1mm/min未満であると、ナノシート粒子の安定性が低下して表面から沈むことで所望の圧力に到達するのに時間が長くかかることがあり、また、バリアーの移動速度が20mm/min超であると、早すぎる移動速度によってナノシート同士で重なる部分が生じることがある。 In one embodiment, the lower substrate may be moved to form a dielectric layer while maintaining a predetermined vapor deposition pressure at the vapor deposition step. When the lower substrate is moved in the vertical direction in this way, the developed nanosheets are vapor-deposited on the lower substrate, which may reduce the vapor deposition pressure of the nanosheets deployed on the water surface. The stability of the vapor-filmed dielectric layer may be impaired. Therefore, in order to maintain the vapor deposition pressure, a method of moving the barrier at a predetermined moving speed with an LB (Langmuir-Blodgett) trough may be used. For example, in the vapor deposition step, the surface pressure of the dispersion solution can be reached to a desired vapor deposition pressure by using barriers on both sides having a moving speed of 0.1 to 20 mm / min. After moving the barrier to reach the vapor deposition pressure, the substrate is lowered vertically or horizontally at a speed of 0.1 to 20 mm / min, and a single-layer film is formed on the surface of the substrate while maintaining the surface pressure by moving the barriers on both sides. Can be transferred. If the moving speed of the barrier is less than 0.1 mm / min, the stability of the nanosheet particles may decrease and it may take a long time to reach the desired pressure by sinking from the surface, and the movement of the barrier may occur. If the speed is more than 20 mm / min, the nanosheets may overlap with each other due to the moving speed being too fast.

一具現例において、前記蒸着段階で、蒸着圧力は、5~30mN/m範囲で維持されてよい。蒸着圧力が5mN/m未満であると、ナノシートがガス相(gas phase)状態で薄膜の均一度が低下し10%以下のカバレッジを有する形態で蒸着されることがあり、また、蒸着圧力が30mN/m超であると、液体凝縮相(Liquid-condensed phase)状態でナノシートが重なる部分が多く発生し、カバレッジは98%以上と優れるものの、薄膜の表面粗さが悪化することがある。 In one embodiment, the vapor deposition pressure may be maintained in the range of 5 to 30 mN / m at the vapor deposition step. If the vapor deposition pressure is less than 5 mN / m, the nanosheet may be vaporized in a form having a coverage of 10% or less due to a decrease in the uniformity of the thin film in a gas phase state, and the vapor deposition pressure is 30 mN. If it exceeds / m, many portions where nanosheets overlap are generated in the liquid-condensed phase state, and the coverage is excellent at 98% or more, but the surface roughness of the thin film may deteriorate.

例示的具現例において、ナノシートを蒸着させる段階は数回繰り返されてよく、これによって、ナノシート単一層である誘電体層を複数含んで多層積層構造を有するニオベート誘電体薄膜を形成することができる。例えば、ナノシート蒸着段階は2回以上繰り返し行われ、下部基板が露出しないように成膜することができる。単層積層構造の場合、誘電体薄膜層が下部基板を完ぺきに(例えば、約100%カバレッジ)カバーできないため、単層積層構造を有するニオベート誘電体薄膜を素子に適用する場合、リーク電流(leakage current)が大きく発生することがある。 In the exemplary embodiment, the step of depositing the nanosheets may be repeated several times, whereby a niobate dielectric thin film having a multi-layered laminated structure can be formed by including a plurality of dielectric layers which are a single layer of nanosheets. For example, the nanosheet vapor deposition step is repeated twice or more, and the film can be formed so that the lower substrate is not exposed. In the case of a single-layer laminated structure, the dielectric thin film cannot completely cover the lower substrate (for example, about 100% coverage). Therefore, when a niobate dielectric thin film having a single-layer laminated structure is applied to a device, a leak current (leakage) is applied. Currant) may occur significantly.

一方、蒸着に先立ち、下部基板をエタノールおよび/またはアセトンで洗浄してからUVを照射して、親水性表面を有するように表面処理してよい。ナノシート薄膜の蒸着は空気-水界面(air-water interface)で転移するため、親水性表面を形成させてより優れた接合特性を得ることができる。 On the other hand, prior to the vapor deposition, the lower substrate may be washed with ethanol and / or acetone and then irradiated with UV to be surface-treated so as to have a hydrophilic surface. Since the vapor deposition of the nanosheet thin film is transferred at the air-water interface, a hydrophilic surface can be formed and better bonding properties can be obtained.

例示的具現例において、蒸着段階の後、PtまたはAu電極をスパッタリング(sputtering)して蒸着して、誘電体薄膜キャパシタ、薄膜トランジスタの誘電体ゲート層に必要とする上部電極を形成してよい。 In an exemplary embodiment, after the vapor deposition step, the Pt or Au electrodes may be sputtered and vapor-deposited to form the dielectric thin film capacitor, the upper electrode required for the dielectric gate layer of the thin film transistor.

また、UV-OzoneまたはUV処理によって有機物を除去してよい。一方、有機物の除去のためにニオベート誘電体薄膜を500℃以下で熱処理してよい。 In addition, organic substances may be removed by UV-Ozone or UV treatment. On the other hand, the niobate dielectric thin film may be heat-treated at 500 ° C. or lower to remove organic substances.

したがって、本発明の具現例に係るニオベート誘電体薄膜の製造方法によって形成されたペロブスカイトナノシート薄膜は、10nm以下の薄膜厚さでも500以上の高い比誘電率を有し且つ優れた絶縁特性を持つため、既存の高誘電率酸化物材料を越える次世代材料として用いられ得る。 Therefore, the perovskite nanosheet thin film formed by the method for producing a niobate dielectric thin film according to the embodiment of the present invention has a high relative permittivity of 500 or more and excellent insulating properties even with a thin film thickness of 10 nm or less. , Can be used as a next-generation material that surpasses existing high dielectric constant oxide materials.

実施例
以下、実施例を挙げて本発明の構成および効果をより具体的に説明する。なお、これらの実施例は本発明についての理解を助けるために例示の目的で提供されただけのものであり、本発明の範疇および範囲が下記の実施例によって制限されるものではない。
Examples Hereinafter, the configuration and effects of the present invention will be described in more detail with reference to examples. It should be noted that these examples are provided only for the purpose of illustration to help understanding of the present invention, and the scope and scope of the present invention are not limited by the following examples.

[実施例1]Sr1.8Bi0.2Nb10ナノシートの製造(仮焼温度900℃、焼結温度1200℃)
Sr1.8Bi0.2Nb10ナノシートは化学的剥離法を用いて得られた。ナノシートを得るための母組成としてKCO、SrCO、BiおよびNbを用いて、一般式KSr1.8Bi0.2Nb10を満たす組成比にて称量した後、エタノールを溶媒としてジルコニアボールと共にボールミル工程を用いて湿式混合してから、100℃のオーブンで乾燥した後、1200℃の焼結温度を選択してバルクSr1.8Bi0.2Nb10を収得した。このとき、収得したナノシートの粒子の大きさを調節するために、焼結前に900℃で10時間仮焼を行って母組成の粒子の大きさを調節した。
その後、HNO、HCl、HSOなどを用いたカチオン置換によってHSr2(1-x)Bi2xNb10ニオベート組成物を得、TBAOH、TMAOHなどの有機カチオン置換によって単結晶のSr2(1-x)Bi2xNb10ニオベート誘電体ナノシート組成物を得た。具体的に、K+イオンがSr2(1-x)Bi2xNb10層間に挿入されて層状構造を有している本発明のKSr2(1-x)Bi2xNb10試片を酸溶液で数日間撹拌してSr2(1-x)Bi2xNb10層間に存在しているK+イオンをH+イオンで置換し、カチオン性有機物であるTBAイオン溶液で数日間撹拌してバルク試片をコロイド化させて、Sr2(1-x)Bi2xNb10単結晶のナノシートとして剥離した(図1中の「900~1200℃ synthesize」)。
コロイド化されたナノシート薄膜を高分解能透過型電子顕微鏡観察にて分析した写真が図1に示されている。図1に示されたナノシートは横および縦100nmの粒子大きさを有するが、これに限られず、大きくは数十・mの粒子大きさを有してよい。剥離されたナノシートは厚さが5nm以下で構成され、粒子の横および縦の大きさは50nm~50μmと確認された(図1)。
[Example 1] Manufacture of Sr 1.8 Bi 0.2 Nb 3 O 10 nanosheets (calcination temperature 900 ° C., sintering temperature 1200 ° C.)
Sr 1.8 Bi 0.2 Nb 3 O 10 nanosheets were obtained using a chemical stripping method. K 2 CO 3 , SrCO 3 , Bi 2 O 3 and Nb 2 O 5 are used as the mother composition for obtaining the nanosheet, and the composition ratio satisfies the general formula KSr 1.8 Bi 0.2 Nb 3 O 10 . After weighing, wet mixing with zirconia balls using ethanol as a solvent using a ball mill step, drying in an oven at 100 ° C., and selecting a sintering temperature of 1200 ° C. for bulk Sr 1.8 Bi 0.2 . Nb 3 O 10 was obtained. At this time, in order to adjust the size of the particles of the obtained nanosheets, calcining was performed at 900 ° C. for 10 hours before sintering to adjust the size of the particles of the mother composition.
Then, HSr 2 (1-x) Bi 2x Nb 3 O 10 niobate composition was obtained by cation substitution using HNO 3 , HCl, H 2 SO 4 , etc., and single crystal Sr was obtained by organic cation substitution such as TBAOH, TMAOH. A 2 (1-x) Bi 2x Nb 3 O 10 niobium dielectric nanosheet composition was obtained. Specifically, the KSr 2 (1-x) Bi 2x Nb 3 O 10 specimen of the present invention having a layered structure in which K + ions are inserted between Sr 2 (1-x) Bi 2x Nb 3 O 10 layers. Was stirred with an acid solution for several days to replace the K + ions existing between the Sr 2 (1-x) Bi 2x Nb 3 O 10 layers with H + ions, and stirred with a cationic organic substance TBA + ion solution for several days. Then, the bulk specimen was colloidalized and peeled off as a nanosheet of Sr 2 (1-x) Bi 2x Nb 3 O 10 single crystal (“900 to 1200 ° C. synchronize” in FIG. 1).
A photograph of a colloidalized nanosheet thin film analyzed by high-resolution electron microscope observation is shown in FIG. The nanosheet shown in FIG. 1 has a particle size of 100 nm in width and length, but is not limited to this, and may have a particle size of several tens of m. It was confirmed that the peeled nanosheets were composed of 5 nm or less in thickness, and the horizontal and vertical sizes of the particles were 50 nm to 50 μm (FIG. 1).

[実施例2]Sr1.8Bi0.2Nb10ナノシートの製造(焼結温度1200℃)
焼結前に900℃で10時間仮焼させることを省略したことを除き、実施例1と同様な方法にてナノシートを製造した(図1中の「1200℃ synthesize」)。
[Example 2] Production of Sr 1.8 Bi 0.2 Nb 3 O 10 nanosheet (sintering temperature 1200 ° C.)
Nanosheets were produced in the same manner as in Example 1 except that the calcination at 900 ° C. for 10 hours was omitted (“1200 ° C. synchronize” in FIG. 1).

[実施例3]Sr1.8Bi0.2Nb10ナノシートの製造(焼結温度1225℃、1250℃、1275℃、1300℃)
焼結温度をそれぞれ1225℃、1250℃、1275℃、および1300℃にしたことを除き、実施例1と同様な方法にてナノシートを製造した。
[Example 3] Production of Sr 1.8 Bi 0.2 Nb 3 O 10 nanosheets (sintering temperature 1225 ° C., 1250 ° C., 1275 ° C., 1300 ° C.)
Nanosheets were produced in the same manner as in Example 1 except that the sintering temperatures were 1225 ° C, 1250 ° C, 1275 ° C, and 1300 ° C, respectively.

[実施例4]Langmuir-Blodgett法によるSr1.8Bi0.2Nb10ニオベート誘電体単層構造の薄膜蒸着
実施例1および2で製造されたナノシートを下部基板上に蒸着してニオベート誘電体薄膜を製造した。
下部電極基板をエタノールおよびアセトンで洗浄してからUVを照射して、親水性表面を有するように処理する。次いで、ペロブスカイト構造のSr1.8Bi0.2Nb10ナノシートが分散された不透明のコロイド溶液をLB(Langmuir-Blodgett)トラフに満たされた超純水に分散させた。前記分散溶液を展開後、水面の安定および下層液の温度が一定になることを目的として10分間安定化時間を持った後、Pt下部電極が蒸着されたSi基板を用いて垂直または水平下降させ、バリアーは両側で12mN/mの表面圧力を維持させる程の0.1mm/secの速度で圧縮して基板表面に単層膜を転移させた。一方、表面圧力はLangmuir-blodgett装備上に取り付けられている超高感度圧力センサで表面圧力を感知して測定し、圧力感知のために白金板と共に標準化されたWilhelmy方法を用いた。
図2に示された原子力顕微鏡分析によって下部電極上にナノシートが原子レベルで平坦且つ緻密に蒸着されたことを確認することができる。また、図2の右図である単層膜に電界を加えて測定した原子力顕微鏡写真から非伝導性を持つことを確認することができる。
[Example 4] Thin-film deposition of Sr 1.8 Bi 0.2 Nb 3 O 10 niobate dielectric single-layer structure by Langmuir-Blodgett method The nanosheets produced in Examples 1 and 2 are vapor-deposited on a lower substrate and niobate. A dielectric thin film was manufactured.
The lower electrode substrate is washed with ethanol and acetone and then irradiated with UV to treat it so that it has a hydrophilic surface. Then, an opaque colloidal solution in which Sr 1.8 Bi 0.2 Nb 3 O 10 nanosheets having a perovskite structure were dispersed was dispersed in ultrapure water filled with an LB (Langmuir-Blodgett) trough. After developing the dispersion solution, after having a stabilization time of 10 minutes for the purpose of stabilizing the water surface and keeping the temperature of the lower layer liquid constant, the solution is vertically or horizontally lowered using a Si substrate on which a Pt lower electrode is vapor-deposited. The barrier was compressed at a rate of 0.1 mm / sec to maintain a surface pressure of 12 mN / m on both sides, and the monolayer film was transferred to the surface of the substrate. On the other hand, the surface pressure was measured by sensing the surface pressure with an ultrasensitive pressure sensor mounted on the Langmuir-Blodgett equipment, and the standardized Wilhelmy method was used together with the platinum plate for the pressure sensing.
By the nuclear microscopic analysis shown in FIG. 2, it can be confirmed that the nanosheets are deposited flatly and densely on the lower electrode at the atomic level. In addition, it can be confirmed from the nuclear micrographs measured by applying an electric field to the single-layer film shown on the right of FIG. 2 that the film has non-conductivity.

[実施例5]Langmuir-Blodgett法によるSr1.8Bi0.2Nb10ニオベート誘電体多層積層構造の薄膜蒸着
実施例4の蒸着方法を数回繰り返して多層積層構造を有するペロブスカイトナノシート薄膜を作製し、作製された薄膜に残っている有機ポリマーはUV処理によって除去された。その後、上部電極としてPtまたはAu電極をスパッタリング法で蒸着した。このようにして作製した誘電体素子の透過電子顕微鏡写真を図3に示した。
[Example 5] Thin film deposition of Sr 1.8 Bi 0.2 Nb 3 O 10 niobate dielectric multilayer structure by Langmuir-Blodgett method The vapor deposition method of Example 4 is repeated several times to form a perovskite nanosheet thin film having a multilayer structure. The organic polymer remaining in the prepared thin film was removed by UV treatment. Then, a Pt or Au electrode was deposited as an upper electrode by a sputtering method. A transmission electron micrograph of the dielectric element thus produced is shown in FIG.

[実験例1]Sr1.8Bi0.2Nb10ニオベート誘電体薄膜の誘電特性の測定
実施例4のニオベート誘電体薄膜に残っている有機物の除去のためにUVO処理を行った。その後、上部電極として用いられるPtを電子走査顕微鏡内で蒸着した。
作製されたPt/Sr1.8Bi0.2Nb10/Nb-SrTiOキャパシタの断面透過電子顕微鏡写真を図4に示し、測定された誘電特性を図6に示した。ナノシートは、10nm以下の厚さでも500以上の優れた誘電特性と優れた誘電損失値を示した。
したがって、本発明の具現例に係るニオベート誘電体薄膜は、10nm以下の薄膜厚さでも500以上の高い比誘電率を有し且つ優れた絶縁特性を持つため、既存の高誘電率酸化物材料を越える次世代材料として用いられ得る。
[Experimental Example 1] Sr 1.8 Bi 0.2 Nb 3 O 10 Measurement of Dielectric Characteristics of Niobium Dielectric Thin Film UVO treatment was performed to remove organic substances remaining in the niobium dielectric thin film of Example 4. Then, Pt used as an upper electrode was vapor-deposited in an electron scanning microscope.
A cross-sectional electron micrograph of the produced Pt / Sr 1.8 Bi 0.2 Nb 3 O 10 / Nb-SrTiO 3 capacitor is shown in FIG. 4, and the measured dielectric properties are shown in FIG. Nanosheets exhibited excellent dielectric properties of 500 or more and excellent dielectric loss values even at thicknesses of 10 nm or less.
Therefore, since the niobate dielectric thin film according to the embodiment of the present invention has a high relative permittivity of 500 or more and excellent insulating properties even with a thin film thickness of 10 nm or less, the existing high dielectric constant oxide material can be used. It can be used as a next-generation material that surpasses.

[実験例2]焼結温度に応じたSr1.8Bi0.2Nb10ナノシート母組成の粒子大きさの変化
実施例3で製造されたナノシートの母組成を走査電子顕微鏡観察で分析し、その結果を図5a~5dに示した。
その結果、焼結温度の増加に応じてナノシートの粒子大きさを決めるナノシート母組成の粒子大きさが大きくなることを確認することができた。
[Experimental Example 2] Change in particle size of Sr 1.8 Bi 0.2 Nb 3 O 10 nanosheet mother composition according to sintering temperature The mother composition of the nanosheet produced in Example 3 is analyzed by scanning electron microscope observation. The results are shown in FIGS. 5a to 5d.
As a result, it was confirmed that the particle size of the nanosheet matrix composition, which determines the particle size of the nanosheet, increases as the sintering temperature increases.

前述した本発明の実施例が本発明の技術的思想を限定するものと解釈されてはいけない。本発明の保護範囲は特許請求の範囲に記載された事項によって制限され、本発明の技術分野における通常の知識を有する者は本発明の技術的思想を種々の形態で改良変更することが可能である。したがって、このような改良および変更は通常の知識を有する者にとって自明なことであるところ、本発明の保護範囲に属することになる。 The aforementioned embodiments of the present invention should not be construed as limiting the technical ideas of the present invention. The scope of protection of the present invention is limited by the matters described in the claims, and a person having ordinary knowledge in the technical field of the present invention can improve and change the technical idea of the present invention in various forms. be. Therefore, such improvements and changes are self-evident to those of ordinary knowledge and fall within the scope of protection of the present invention.

Claims (22)

化学式1で表される組成を有するニオベート誘電体を含み、高誘電率および低誘電損失特性を持つ、ナノシート。
Figure 2022088333000006

前記式中、xは0<x≦0.2
A nanosheet containing a niobate dielectric having the composition represented by Chemical Formula 1 and having high dielectric constant and low dielectric loss characteristics.
Figure 2022088333000006

In the above formula, x is 0 <x ≦ 0.2.
前記ナノシートは、50nm~50μmの平均直径を有することを特徴とする、請求項1に記載のナノシート。 The nanosheet according to claim 1, wherein the nanosheet has an average diameter of 50 nm to 50 μm. 前記ナノシートは、10nm以下の厚さを有することを特徴とする、請求項1に記載のナノシート。 The nanosheet according to claim 1, wherein the nanosheet has a thickness of 10 nm or less. 前記ナノシートは、10nm以下の厚さで500以上の誘電率を示すことを特徴とする、請求項1に記載のナノシート。 The nanosheet according to claim 1, wherein the nanosheet has a thickness of 10 nm or less and a dielectric constant of 500 or more. 前駆体混合物を形成する段階;
前記前駆体混合物を焼結してバルクニオベート誘電体を形成する段階;および
前記バルクニオベート誘電体を層状で剥離してナノシートを形成する段階;を含む、ナノシートの製造方法。
The stage of forming a precursor mixture;
A method for producing nanosheets, comprising a step of sintering the precursor mixture to form a bulk niobate dielectric; and a step of exfoliating the bulk niobate dielectric in layers to form nanosheets.
前記前駆体混合物は、KCO、SrCO、Bi、およびNbを含むことを特徴とする、請求項5に記載のナノシートの製造方法。 The method for producing nanosheets according to claim 5, wherein the precursor mixture contains K 2 CO 3 , SrCO 3 , Bi 2 O 3 , and Nb 2 O 5 . 前記前駆体混合物は、ボールミル工程で湿式混合して形成することを特徴とする、請求項5に記載のナノシートの製造方法。 The method for producing nanosheets according to claim 5, wherein the precursor mixture is formed by wet mixing in a ball mill step. 前記バルクニオベート誘電体は、700~1300℃の温度で焼結して形成することを特徴とする、請求項5に記載のナノシートの製造方法。 The method for producing nanosheets according to claim 5, wherein the bulk niobate dielectric is formed by sintering at a temperature of 700 to 1300 ° C. 焼結に先立ち、700~1100℃の温度で5~20時間仮焼することを特徴とする、請求項8に記載のナノシートの製造方法。 The method for producing nanosheets according to claim 8, wherein the nanosheets are calcined at a temperature of 700 to 1100 ° C. for 5 to 20 hours prior to sintering. 複数の請求項1に記載のナノシートを含む誘電体層を含み、
前記複数のナノシートは、誘電体層で単層構造にて配列された、ニオベート誘電体薄膜。
A dielectric layer comprising a plurality of the nanosheets according to claim 1 is included.
The plurality of nanosheets are niobate dielectric thin films arranged in a single layer structure with a dielectric layer.
前記ニオベート誘電体薄膜は、複数の誘電体層を含む多層積層構造を有することを特徴とする、請求項10に記載のニオベート誘電体薄膜。 The niobate dielectric thin film according to claim 10, wherein the niobate dielectric thin film has a multilayer laminated structure including a plurality of dielectric layers. 前記ニオベート誘電体薄膜は、下部基板をさらに含むことを特徴とする、請求項10に記載のニオベート誘電体薄膜。 The niobate dielectric thin film according to claim 10, wherein the niobate dielectric thin film further includes a lower substrate. 前記下部基板は、伝導性ペロブスカイト基板、ガラス基板、プラスチック基板、金属電極、および酸化物/金属/酸化物構造の酸化物透明電極からなる群より選択される一つ以上を含むことを特徴とする、請求項10に記載のニオベート誘電体薄膜。 The lower substrate comprises one or more selected from the group consisting of a conductive perovskite substrate, a glass substrate, a plastic substrate, a metal electrode, and an oxide transparent electrode having an oxide / metal / oxide structure. The niobate dielectric thin film according to claim 10. 前記ナノシートは、誘電体層で90%以上のカバレッジを有することを特徴とする、請求項10に記載のニオベート誘電体薄膜。 The niobate dielectric thin film according to claim 10, wherein the nanosheet has a coverage of 90% or more in the dielectric layer. 前記ニオベート誘電体薄膜は、0.1~3nm範囲の粗さ(RMS)を有することを特徴とする、請求項10に記載のニオベート誘電体薄膜。 The niobate dielectric thin film according to claim 10, wherein the niobate dielectric thin film has a roughness (RMS) in the range of 0.1 to 3 nm. 前記ニオベート誘電体薄膜は、10nm以下の厚さで500以上の誘電率を示すことを特徴とする、請求項10に記載のニオベート誘電体薄膜。 The niobate dielectric thin film according to claim 10, wherein the niobate dielectric thin film exhibits a dielectric constant of 500 or more at a thickness of 10 nm or less. 請求項1に記載のナノシートが分散された分散溶液を水面上に展開する段階;および
前記展開されたナノシートを下部基板上に蒸着させてナノシートを含む誘電体層を形成する段階;を含む、ニオベート誘電体薄膜の製造方法。
A niobate comprising the step of developing the dispersion solution in which the nanosheets according to claim 1 are dispersed on the water surface; and the step of depositing the developed nanosheets on a lower substrate to form a dielectric layer containing the nanosheets. A method for manufacturing a dielectric thin film.
前記蒸着段階は、電気泳動法またはラングミュア・ブロジェット法で蒸着されることを特徴とする、請求項17に記載のニオベート誘電体薄膜の製造方法。 The method for producing a niobate dielectric thin film according to claim 17, wherein the vapor deposition step is vapor deposition by an electrophoresis method or a Langmuir Brodget method. 蒸着に先立ち、展開された分散溶液を5~20分間安定化させることを特徴とする、請求項17に記載のニオベート誘電体薄膜の製造方法。 The method for producing a niobate dielectric thin film according to claim 17, wherein the developed dispersion solution is stabilized for 5 to 20 minutes prior to vapor deposition. 前記蒸着段階で、所定の蒸着圧力を維持しながら下部基板を移動させて誘電体層を形成することを特徴とする、請求項17に記載のニオベート誘電体薄膜の製造方法。 The method for producing a niobate dielectric thin film according to claim 17, wherein the lower substrate is moved to form a dielectric layer while maintaining a predetermined vapor deposition pressure at the vapor deposition step. 前記蒸着段階で、0.1~20mm/minのバリアーの移動速度で蒸着圧力に到達することを特徴とする、請求項17に記載のニオベート誘電体薄膜の製造方法。 The method for producing a niobate dielectric thin film according to claim 17, wherein the vapor deposition pressure is reached at a barrier moving speed of 0.1 to 20 mm / min in the vapor deposition step. 前記蒸着段階で、蒸着圧力は5~30mN/m範囲で維持することを特徴とする、請求項17に記載のニオベート誘電体薄膜の製造方法。 The method for producing a niobate dielectric thin film according to claim 17, wherein the vapor deposition pressure is maintained in the range of 5 to 30 mN / m at the vapor deposition step.
JP2021193211A 2020-12-02 2021-11-29 Nanosheet containing niobate dielectric and dielectric thin film containing the same Pending JP2022088333A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0166751 2020-12-02
KR1020200166751A KR102558060B1 (en) 2020-12-02 2020-12-02 A nano sheet comprising niobate dielectric and dielectric thin film comprising the same

Publications (1)

Publication Number Publication Date
JP2022088333A true JP2022088333A (en) 2022-06-14

Family

ID=81982290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021193211A Pending JP2022088333A (en) 2020-12-02 2021-11-29 Nanosheet containing niobate dielectric and dielectric thin film containing the same

Country Status (2)

Country Link
JP (1) JP2022088333A (en)
KR (1) KR102558060B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009142325A1 (en) * 2008-05-23 2009-11-26 独立行政法人物質・材料研究機構 Dielectric film, dielectric element, and process for producing the dielectric element
JP2014144904A (en) * 2013-01-29 2014-08-14 Korea Institute Of Science And Technology Niobate dielectric composition and nanosheet thin film using the same
JP2014227335A (en) * 2013-05-27 2014-12-08 コリア・インスティテュート・オブ・サイエンス・アンド・テクノロジー Niobate bismuth dielectric composition having high dielectric constant and low dielectric loss characteristics
JP2015119184A (en) * 2013-12-16 2015-06-25 コリア・インスティテュート・オブ・サイエンス・アンド・テクノロジー Multilayer ceramic capacitor and manufacturing method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010161330A (en) * 2008-12-08 2010-07-22 Hitachi Cable Ltd Piezoelectric thin film element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009142325A1 (en) * 2008-05-23 2009-11-26 独立行政法人物質・材料研究機構 Dielectric film, dielectric element, and process for producing the dielectric element
JP2014144904A (en) * 2013-01-29 2014-08-14 Korea Institute Of Science And Technology Niobate dielectric composition and nanosheet thin film using the same
JP2014227335A (en) * 2013-05-27 2014-12-08 コリア・インスティテュート・オブ・サイエンス・アンド・テクノロジー Niobate bismuth dielectric composition having high dielectric constant and low dielectric loss characteristics
JP2015119184A (en) * 2013-12-16 2015-06-25 コリア・インスティテュート・オブ・サイエンス・アンド・テクノロジー Multilayer ceramic capacitor and manufacturing method thereof

Also Published As

Publication number Publication date
KR20220077989A (en) 2022-06-10
KR102558060B1 (en) 2023-07-25

Similar Documents

Publication Publication Date Title
KR101575667B1 (en) Dielectric film, dielectric element, and process for producing the dielectric element
Ashiri et al. Crack-free nanostructured BaTiO3 thin films prepared by sol–gel dip-coating technique
Diao et al. Enhanced energy storage properties of BaTiO3 thin films by Ba0. 4Sr0. 6TiO3 layers modulation
KR101398553B1 (en) Niobate dielectric composition and nano sheet thin film using the same
Puli et al. Observation of large enhancement in energy-storage properties of lead-free polycrystalline 0.5 BaZr0. 2Ti0. 8O3–0.5 Ba0. 7Ca0. 3TiO3 ferroelectric thin films
Xie et al. Large energy-storage density with good dielectric property in bismuth sodium titanate-based thin films
Menesklou et al. Nonlinear ceramics for tunable microwave devices part I: materials properties and processing
Sindhu et al. Effect of Zr substitution on phase transformation and dielectric properties of Ba0. 9Ca0. 1TiO3 ceramics
Xie et al. The energy-storage performance and dielectric properties of (0.94-x) BNT-0.06 BT-xST thin films prepared by sol–gel method
Xie et al. Ultra-high energy storage density and enhanced dielectric properties in BNT-BT based thin film
Viruthagiri et al. Synthesis and characterization of pure and nickel doped SrTiO3 nanoparticles via solid state reaction route
CN113963951A (en) Dielectric material, method of manufacturing the same, device including the same, and memory cell
Koo et al. Stability of co-fired CuAg/(Bi0. 37Na0. 37Sr0. 26) TiO3 multilayer piezoelectric device
Wang et al. Enhanced energy storage properties in PbZrO3 thin films via the incorporation of NiO
Chaou et al. Optimisation of electrical conductivity and dielectric properties of Sn4+-doped (Na0. 5Bi0. 5) TiO3 perovskite
Xue et al. Microstructural, dielectric, and nonlinear properties of Ca1–xCdxCu3Ti4O12 thin films
Kathait et al. Dielectric, piezoelectric and energy storage properties of large grain Ba1− xSrxTiO3 (BST) ceramic system for 0.17≤ x≤ 0.26
Wang et al. Improvement of the energy storage performance in Pb0. 88La0. 12ZrO3 thin films by inserting ZrO2 layer
Dewi et al. The effect of heating rate on BaZrxTi1-xO3 thin film for x= 0.4 and x= 0.6 as capacitors
Chen et al. A novel way to prepare PbZrO3 nanocomposite films for increasing electrical properties and energy storage performance
JP6368751B2 (en) Silver-substituted strontium niobate dielectric composition and method for producing the same
JP2022088333A (en) Nanosheet containing niobate dielectric and dielectric thin film containing the same
JP5855159B2 (en) Bismuth niobate dielectric composition with high dielectric constant and low dielectric loss characteristics
Wu et al. Dielectric tunable properties of BaTi1-xSnxO3 thin films derived from sol-gel soft chemistry
KR102417137B1 (en) Dispersion free calcium lithium niobate dielectric and the method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230731

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231024