JP2014227335A - Niobate bismuth dielectric composition having high dielectric constant and low dielectric loss characteristics - Google Patents

Niobate bismuth dielectric composition having high dielectric constant and low dielectric loss characteristics Download PDF

Info

Publication number
JP2014227335A
JP2014227335A JP2014092562A JP2014092562A JP2014227335A JP 2014227335 A JP2014227335 A JP 2014227335A JP 2014092562 A JP2014092562 A JP 2014092562A JP 2014092562 A JP2014092562 A JP 2014092562A JP 2014227335 A JP2014227335 A JP 2014227335A
Authority
JP
Japan
Prior art keywords
dielectric
composition
dielectric constant
range
chemical formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014092562A
Other languages
Japanese (ja)
Other versions
JP5855159B2 (en
Inventor
チェ・ジ−ウォン
Ji-Won Choi
イム・ヘナ
Haena Yim
ユ・ソ−ヨン
So-Yeon Yoo
キム・ジンサン
Jin Sang Kim
ペク・スンヒョプ
Seung Hyub Baek
キム・ソングン
Song Kun Kim
カン・チョンユン
Chong Yun Kang
ユン・ソクジン
Seok Jin Yoon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Korea Advanced Institute of Science and Technology KAIST
Korea Institute of Science and Technology KIST
Original Assignee
Korea Advanced Institute of Science and Technology KAIST
Korea Institute of Science and Technology KIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Korea Advanced Institute of Science and Technology KAIST, Korea Institute of Science and Technology KIST filed Critical Korea Advanced Institute of Science and Technology KAIST
Publication of JP2014227335A publication Critical patent/JP2014227335A/en
Application granted granted Critical
Publication of JP5855159B2 publication Critical patent/JP5855159B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1254Ceramic dielectrics characterised by the ceramic dielectric material based on niobium or tungsteen, tantalum oxides or niobates, tantalates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Formation Of Insulating Films (AREA)
  • Semiconductor Memories (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a composition showing a characteristic of a dielectric loss being extremely low while a dielectric constant of high dielectric constant is kept, and provide a dielectric material of a nano-sheet form which can be applied for the preparation of a low temperature element, being linear in a nano-level thin film, having an excellent dielectric constant and achieving insulation characteristics.SOLUTION: This invention relates to a niobate bismuth dielectric composition having high dielectric constant and low dielectric loss characteristics, in particular, a niobate bismuth dielectric composition having high dielectric constant and low dielectric loss characteristic, having a composition represented by chemical formula 1: KSrBiNbO(KSBNO), where molar fraction x is 0<x≤0.3, y is 4≤y≤6, δ is 0≤x≤0.3.

Description

本発明は、高誘電率と低誘電損失特性を持つニオブ酸ビスマス誘電体組成物に係り、より詳しくは、高誘電率の誘電定数を保持しながらも誘電損失が極めて低い特性を示す層状ペロブスカイト構造のニオブ酸ビスマス誘電体組成物に関する。   The present invention relates to a bismuth niobate dielectric composition having high dielectric constant and low dielectric loss characteristics, and more specifically, a layered perovskite structure that exhibits extremely low dielectric loss characteristics while maintaining a high dielectric constant dielectric constant. Relates to a bismuth niobate dielectric composition.

[国家支援研究開発に関する説明]
本研究は、梨花女子大学産学協力団(参加機関:韓国科学技術研究院)の主管下で 韓国産業通商資源部の部品・素材産業の競争力向上(素材・部品の技術開発)事業(課題名:誘電率400以上を有する誘電体無機ナノシートの合成技術及びこれを用いたMLCC素子用高誘電体の薄膜製造技術開発、課題固有番号:1415125378)の支援によって行われたものである。
[Explanation on national support research and development]
This research is under the supervision of the Ewha Womans University Industry-Academia Cooperation Group (participating organization: Korea Institute of Science and Technology). : Development of a technology for synthesizing dielectric inorganic nanosheets having a dielectric constant of 400 or more, and development of a high-dielectric thin film manufacturing technology for MLCC elements using the same, issue specific number: 1415125378).

近年、電子機器の集積化、超小型化に伴い、無線電話機や移動通信端末のデュプレクサ(Duplexer)及びバンドパスフィルタ(Band pass filter)、共振器や周波数フィルタ、並びに積層セラミックコンデンサ(MLCC、multilayer ceramic capacitor)に用いられる高誘電率の誘電体材料が要求されている。特に、MLCCの場合、小型でありながらも比較的大容量を実現し得るという強みを活かし、固定コンデンサー市場の75%以上を占めている。   In recent years, with the integration and miniaturization of electronic devices, duplexers and bandpass filters, resonators and frequency filters, and multilayer ceramic capacitors (MLCCs, multilayer ceramics) for wireless telephones and mobile communication terminals. There is a demand for a dielectric material having a high dielectric constant used for a capacitor. In particular, MLCCs occupy 75% or more of the fixed capacitor market by taking advantage of the fact that they are small and can achieve a relatively large capacity.

しかしながら、積層セラミックコンデンサの静電容量の範囲は今までも低容量領域に限定されており、これを克服するために大きな誘電率値を有する材料を用いることが考えられるが、これでは損失値の増大を避けられず、ある程度の損失値を有する範囲内で優れた誘電率を示し且つ広い範囲の周波数領域で使用可能な材料が要求されている。   However, the capacitance range of monolithic ceramic capacitors has been limited to the low-capacity region so far, and it is conceivable to use a material having a large dielectric constant value to overcome this. There is a demand for a material that cannot avoid an increase, exhibits an excellent dielectric constant within a certain range of loss values, and can be used in a wide frequency range.

また、近年、スマートフォン、車輌向けブルートゥース、DMBなどの高付加機能が搭載されている高性能の半導体素子が多く開発され、当該素子の電力消耗が大きくなり、それに伴い、より多くの小型で高容量のMLCCの使用を必要とする。次世代デバイスに好適な高容量のMLCCを実現するためには、誘電体の容量を決める内部電極の面積を拡大すると共に電極や誘電体の厚みを低減することが必須である。   In recent years, many high-performance semiconductor devices equipped with high-added functions such as smartphones, Bluetooth for vehicles, and DMB have been developed, and the power consumption of the devices has increased. Of MLCC. In order to realize a high-capacity MLCC suitable for a next-generation device, it is essential to increase the area of the internal electrode that determines the capacitance of the dielectric and reduce the thickness of the electrode and the dielectric.

従来技術によると、MLCCの誘電体材料としては、高い誘電定数を持つBaTiO、SrTiO、CaTiO、あるいはこれらを組み合わせた組成などのチタン酸化物が主に用いられている。しかしながら、この種のチタン酸化物誘電体物質の場合、薄膜の製作後の熱処理工程の際に基板界面の劣化や組成のバラツキという問題によって非線形誘電特性(non-linear dielectric property、ΔC/C)を生じさせ高い誘電損失を示す。また誘電体層が1〜3μm程度までに薄層化すると絶縁性や高温負荷時の耐久性が悪くなり、信頼性の低下をもたらすようになるため、これらの材料の場合には、高容量化を目標とするナノ厚さレベルのMLCCに適用されにくい。 According to the prior art, as the dielectric material of MLCC, titanium oxide such as BaTiO 3 , SrTiO 3 , CaTiO 3 having a high dielectric constant, or a combination thereof is mainly used. However, in the case of this type of titanium oxide dielectric material, non-linear dielectric properties (ΔC / C 0 ) due to problems such as deterioration of the substrate interface and variation in composition during the heat treatment process after the thin film is manufactured. Cause high dielectric loss. In addition, if the dielectric layer is thinned to about 1 to 3 μm, the insulation and durability at high temperature load deteriorate, leading to a decrease in reliability. It is difficult to apply to MLCCs with nano-thickness levels targeting

また、近年、積層セラミックコンデンサは、セラミック層が1mm未満の領域で実用化されており、これよりも小さいサイズで高容量を実現するためには、層厚さの減少と出発原料の微粒化が必須である。しかしながら、既存の誘電体材料を合成する固相合成法とMLCC構成単位を製作するスクリーン印刷方式(シートに電極ペーストを印刷して多層に積層し、切断した後に高温焼結を行う工程)にて薄膜化及び多層化、小型化を実現することには限界がある。   In recent years, multilayer ceramic capacitors have been put into practical use in a region where the ceramic layer is less than 1 mm. In order to achieve a high capacity with a size smaller than this, reduction of the layer thickness and atomization of the starting material are required. It is essential. However, in the solid-phase synthesis method for synthesizing existing dielectric materials and the screen printing method for producing MLCC building blocks (the process of printing electrode paste on a sheet, laminating it in multiple layers, cutting it and then performing high-temperature sintering) There is a limit in realizing thinning, multilayering, and miniaturization.

したがって、次世代デバイスに適用可能な高容量のMLCCの実現のためには、ナノ厚さレベルの薄膜でも線形で且つ優れた特性を持つ誘電体物質の研究・開発のみならず、ナノサイズの薄膜が製作可能な新規な製法の開発の必要性が増している。   Therefore, in order to realize a high-capacity MLCC applicable to next-generation devices, not only research and development of dielectric materials having linear and excellent properties even with nano-thickness thin films, but also nano-sized thin films There is an increasing need for the development of new manufacturing methods that can be manufactured.

韓国公開特許公報第10-2010-0014232号Korean Published Patent Publication No. 10-2010-0014232

ACS NANO, VOL. 4, NO. 9, 52255232(2010)ACS NANO, VOL. 4, NO. 9, 52255232 (2010) International Journal of Applied Ceramic Technology、Vol. 9, No. 1, 2012International Journal of Applied Ceramic Technology, Vol. 9, No. 1, 2012

したがって、本発明は、前記のような問題点を解決するために、高誘電率の誘電定数を保持しながらも誘電損失が極めて低い特性を示す組成物を提供することを目的とする。
また、本発明は、ナノレベルの薄膜でも線形で且つ優れた誘電率を有し絶縁特性を実現することができる低温素子の製作に応用可能なナノシート形態の誘電物質を提供することを他の目的とする。
Accordingly, an object of the present invention is to provide a composition exhibiting extremely low dielectric loss characteristics while maintaining a high dielectric constant dielectric constant in order to solve the above problems.
It is another object of the present invention to provide a dielectric material in the form of a nanosheet that can be applied to the fabrication of a low-temperature device that is linear and has an excellent dielectric constant even in a nano-level thin film and can realize insulation characteristics. And

本発明の目的を達成するための一具現例において、化学式1で示される組成を有する高誘電率と低誘電損失特性を持つニオブ酸ビスマス誘電体組成物を提供する(化学式1、KSr2(1−x)Bi(y/3)xNb10+δ(前記化学式1中、モル分率xは0<x≦0.3、yは4≦y≦6、δは0≦x≦0.3の範囲である。))。 In one embodiment for achieving the object of the present invention, a bismuth niobate dielectric composition having a high dielectric constant and a low dielectric loss characteristic having a composition represented by Chemical Formula 1 is provided (Chemical Formula 1, KSr 2 (1 -X) Bi (y / 3) x Nb 3 O 10 + δ (In the above chemical formula 1, the molar fraction x is 0 <x ≦ 0.3, y is 4 ≦ y ≦ 6, and δ is 0 ≦ x ≦ 0.3. Range))).

本発明の目的を達成するための他の一具現例において、化学式2で示される組成を有する高誘電率と低誘電損失特性を持つニオブ酸ビスマス誘電体組成物を提供する(化学式2、HSr2(1−x)Bi(y/3)xNb10+δ(前記化学式2中、モル分率xは0<x≦0.3、yは4≦y≦6、δは0≦x≦0.3の範囲である。))。 In another embodiment for achieving the object of the present invention, a bismuth niobate dielectric composition having a high dielectric constant and low dielectric loss characteristics having a composition represented by Chemical Formula 2 is provided (Chemical Formula 2, HSr 2). (1-x) Bi (y / 3) x Nb 3 O 10 + δ (in the chemical formula 2, the molar fraction x is 0 <x ≦ 0.3, y is 4 ≦ y ≦ 6, and δ is 0 ≦ x ≦ 0. .3 range))).

本発明の目的を達成するためのまた他の一具現例において、化学式3で示される組成を有する高誘電率と低誘電損失特性を持つニオブ酸ビスマス誘電体組成物を提供する(化学式3、Sr2(1−x)Bi(y/3)xNb10+δ(前記化学式3中、モル分率xは0<x≦0.3、yは4≦y≦6、δは0≦x≦0.3の範囲である。))。 In another embodiment for achieving the object of the present invention, a bismuth niobate dielectric composition having a high dielectric constant and a low dielectric loss characteristic having a composition represented by Formula 3 is provided (Formula 3, Sr). 2 (1-x) Bi (y / 3) x Nb 3 O 10 + δ (in the above chemical formula 3, the molar fraction x is 0 <x ≦ 0.3, y is 4 ≦ y ≦ 6, δ is 0 ≦ x ≦ 0.3))).

本発明の目的を達成するためのまた他の一具現例において、前記ニオブ酸ビスマス誘電体組成物を含むナノシート薄膜を提供する。
本発明の目的を達成するためのまた他の一具現例において、前記ニオブ酸ビスマス誘電体組成物を含む積層セラミックコンデンサを提供する。
本発明の目的を達成するためのまた他の一具現例において、前記ニオブ酸ビスマス誘電体組成物を含むマイクロ波誘電体を提供する。
本発明の目的を達成するためのまた他の一具現例において、前記ニオブ酸ビスマス誘電体組成物を含むコンピュータ用DRAMメモリを提供する。
In another embodiment for achieving the object of the present invention, a nanosheet thin film including the bismuth niobate dielectric composition is provided.
In another embodiment for achieving the object of the present invention, a multilayer ceramic capacitor including the bismuth niobate dielectric composition is provided.
In another embodiment for achieving the object of the present invention, a microwave dielectric including the bismuth niobate dielectric composition is provided.
In another embodiment for achieving the object of the present invention, a computer DRAM memory including the bismuth niobate dielectric composition is provided.

本発明に係る高誘電率と低誘電損失特性を持つニオブ酸ビスマス誘電体組成物は、高い誘電定数を保持しながらも誘電損失が極めて低い特性を持つ。
本発明に係る高誘電率と低誘電損失特性を持つニオブ酸ビスマス誘電体組成物は、高い誘電率と良好な絶縁特性を持つので、積層セラミックコンデンサ、マイクロ波誘電体、次世代TFTの誘電膜などに活用できる。
また、本発明に係る高誘電率と低誘電損失特性を持つニオブ酸ビスマス誘電体組成物は、次世代デバイスに適用可能なナノレベルのMLCCに機能性誘電薄膜として応用できる。
The bismuth niobate dielectric composition having high dielectric constant and low dielectric loss characteristics according to the present invention has characteristics of extremely low dielectric loss while maintaining a high dielectric constant.
Since the bismuth niobate dielectric composition having high dielectric constant and low dielectric loss characteristics according to the present invention has high dielectric constant and good insulation characteristics, it is a multilayer ceramic capacitor, microwave dielectric, and dielectric film for next generation TFT It can be used for
Further, the bismuth niobate dielectric composition having high dielectric constant and low dielectric loss characteristics according to the present invention can be applied as a functional dielectric thin film to nano-level MLCC applicable to next-generation devices.

本発明の一具現例に係るKSr2(1−x)Bi2xNb10+δのX−線回折分析特性を示す図である(ここで、xは0<x≦0.3の範囲)。Is a diagram illustrating a KSr 2 (1-x) Bi 2x Nb 3 O 10 + δ of X- ray diffraction analysis characteristics according to an embodiment of the present invention (where, x is the range of 0 <x ≦ 0.3). 本発明の一具現例に係るKSr2(1−x)Bi2xNb10+δをX−線光電子分光法にてBi酸化数を分析した図である(ここで、x=0.1)。Is a diagram of analyzing the Bi oxidation number at KSr 2 (1-x) Bi 2x Nb 3 O 10 + δ the X- ray photoelectron spectroscopy according to an embodiment of the present invention (where, x = 0.1). 本発明の一具現例に係るKSr2(1−x)Bi2xNb10+δの走査顕微鏡微鏡写真を示す図である(ここで、x=0.1)。Is a diagram illustrating a KSr 2 (1-x) Bi 2x Nb 3 O 10 + δ scanning microscope micrograph in accordance with an embodiment of the present invention (where, x = 0.1). 本発明の一具現例に係るKSr2(1−x)Bi2xNb10+δの誘電定数及び誘電損失を示す図である(ここで、xは0<x≦0.3の範囲)。It is a diagram showing the dielectric constant and dielectric loss of KSr 2 (1-x) Bi 2x Nb 3 O 10 + δ according to an embodiment of the present invention (where, x is the range of 0 <x ≦ 0.3). 本発明の一具現例に係るHSr2(1−x)Bi2xNb10+δの走査顕微鏡微鏡写真を示す図である(ここで、x=0.1)。It is a diagram illustrating a HSr 2 (1-x) Bi 2x Nb 3 O 10 + δ scanning microscope micrograph in accordance with an embodiment of the present invention (where, x = 0.1). 本発明の一具現例に係るHSr2(1−x)Bi2xNb10+δの誘電定数及び誘電損失を示す図である(ここで、xは0<x≦0.3の範囲)。It is a diagram showing the dielectric constant and dielectric loss of HSr 2 (1-x) Bi 2x Nb 3 O 10 + δ according to an embodiment of the present invention (where, x is the range of 0 <x ≦ 0.3). 本発明の一具現例に係るCa2(1−x)Sr2xNb10+δの透過電子顕微鏡写真とED pattern写真を示す図である(x=0)。Shows a transmission electron micrograph and ED pattern photo one exemplary according to Example Ca 2 (1-x) Sr 2x Nb 3 O 10 + δ of the present invention (x = 0). 本発明の一具現例に係るSr2(1−x)Bi2xNb10+δのLBグラフ及び保持圧力を25mN/mにして製作したLB膜の透過電子顕微鏡写真を示す図である(ここで、x=0.1)。It shows a transmission electron micrograph of Sr 2 (1-x) Bi 2x Nb 3 O 10 + δ of LB graph and LB film holding pressure was fabricated in the 25 mN / m according to an embodiment of the present invention (here X = 0.1). 本発明の一具現例に係るKSr2(1−x)Bi4/3xNb10の誘電定数及び誘電損失を示す図である(ここで、xは0<x≦0.3の範囲)。Is a diagram showing the dielectric constant and dielectric loss of KSr 2 (1-x) Bi 4 / 3x Nb 3 O 10 according to an embodiment of the present invention (where, x is the range of 0 <x ≦ 0.3) . 本発明の一具現例に係るHSr2(1−x)Bi4/3xNb10の誘電定数及び誘電損失を示す図である(ここで、xは0<x≦0.3の範囲)。Is a diagram showing the dielectric constant and dielectric loss of HSr 2 (1-x) Bi 4 / 3x Nb 3 O 10 according to an embodiment of the present invention (where, x is the range of 0 <x ≦ 0.3) .

以下、本発明の属する技術分野における通常の知識を有する者が本発明を容易に実施できるようにするために、本発明の好適な具現例に関して詳しく説明することにする。
本発明は、一般式KSr2(1-x)Bi(y/3)xNb10+δ(KSBNO)HSr2(1−x)Bi(y/3)xNb10+δ(HSBNO)Sr2(1−x)Bi(y/3)xNb10+δ(SBNO)で示される(ここで、全ての組成のモル分率xは0<x≦0.3、yは4≦y≦6、δは0≦x≦0.3の範囲である。)誘電体組成物に関するものであって、組成の変化により高い誘電特性を持つKSBNO誘電体組成物を合成する。また、前記KSBNO誘電体組成物を基盤にHイオンを用いたKイオンの置換を通じてKSBNOが持つ非線形誘電特性を線形誘電特性に変化させ且つ誘電損失を減少させることで、高い誘電率、低い誘電損失、線形誘電特性を持つHSBNO誘電体組成物を合成する。また、前記HSBNO誘電体組成物のHイオンをTBAイオンに置換し剥離することでSBNO誘電体組成物を製造する。
Hereinafter, preferred embodiments of the present invention will be described in detail so that those skilled in the art to which the present invention pertains can easily implement the present invention.
The present invention has the general formula KSr 2 (1-x) Bi (y / 3) x Nb 3 O 10 + δ (KSBNO), HSr 2 (1-x) Bi (y / 3) x Nb 3 O 10 + δ (HSBNO), Sr 2 (1-x) Bi (y / 3) x Nb 3 O 10 + δ (SBNO) (wherein the molar fraction x of all compositions is 0 <x ≦ 0.3, y is 4 ≦ y) ≦ 6, δ is in the range of 0 ≦ x ≦ 0.3.) This relates to a dielectric composition, and a KSBNO dielectric composition having high dielectric properties is synthesized by changing the composition. Further, by changing the nonlinear dielectric characteristic of KSBNO to the linear dielectric characteristic through the replacement of K + ion using H + ion based on the KSBNO dielectric composition, the dielectric constant is reduced and the dielectric constant is low. An HSBNO dielectric composition with dielectric loss and linear dielectric properties is synthesized. Also, the SBNO dielectric composition is manufactured by replacing the H + ions of the HSBNO dielectric composition with TBA + ions and peeling them.

前記目的を達成するための本発明の一具現例において、下記の化学式1で示される組成を有する高誘電率と低誘電損失特性を持つニオブ酸ビスマス誘電体組成物を提供する。   In order to achieve the above object, a bismuth niobate dielectric composition having a high dielectric constant and low dielectric loss characteristics having a composition represented by the following chemical formula 1 is provided.

(化学式1)
KSr2(1−x)Bi(y/3)xNb10+δ (KSBNO)
(前記化学式1中、モル分率xは0<x≦0.3、yは4≦y≦6、δは0≦x≦0.3の範囲である。)
(Chemical formula 1)
KSr 2 (1-x) Bi (y / 3) x Nb 3 O 10 + δ (KSBNO)
(In the chemical formula 1, the molar fraction x is in the range of 0 <x ≦ 0.3, y is in the range of 4 ≦ y ≦ 6, and δ is in the range of 0 ≦ x ≦ 0.3.)

前記組成物は、層状構造を有するKSrNb10誘電体物質に基づいて15族元素であるBiをSrサイトに置換することで製造される。例えば、前記KSBNO誘電体組成物を製造するために、層状構造を有するKSrNb10セラミック組成物のSrサイトをBiで置換して一般式KSr2(1−x)Bi(y/3)xNb10+δ(KSBNO)で示される誘電物質を製造しており、Srイオンに比べてBiイオンは小さいイオン半径を有していることから、x=0.2以上では、Srイオンのサイトを置換するのではなく2次相を形成することで層状構造が破壊される。 The composition is manufactured by replacing Bi, which is a group 15 element, with an Sr site based on a KSr 2 Nb 3 O 10 dielectric material having a layered structure. For example, in order to manufacture the KSBNO dielectric composition, the Sr site of the KSr 2 Nb 3 O 10 ceramic composition having a layered structure is replaced with Bi, and the general formula KSr 2 (1-x) Bi (y / 3 ) ) X Nb 3 O 10 + δ (KSBNO) is manufactured, and Bi ions have a smaller ion radius than Sr ions. The layered structure is destroyed by forming a secondary phase rather than replacing sites.

本発明の一具現例によれば、純度99%以上のKCO、SrCO、Bi、及びNbを用いて、一般式KSr2(1−x)Bi(y/3)xNb10+δを満足する組成比によって秤量したのち、エタノールを溶媒としジルコニアボールを用いてボールミル工程を行うことで湿式混合をし、その後、100℃オーブンで乾燥してから1200℃で仮焼してKSBNOを得ることができる。 According to an embodiment of the present invention, the general formula KSr 2 (1-x) Bi (y / y ) is used using 99% pure K 2 CO 3 , SrCO 3 , Bi 2 O 3 , and Nb 2 O 5. 3) After weighing by a composition ratio satisfying xNb 3 O 10 + δ , wet mixing is performed by performing a ball mill process using ethanol as a solvent and zirconia balls, then drying in a 100 ° C. oven and then at 1200 ° C. KSBNO can be obtained by calcination.

本発明のまた他の一具現例において、下記の化学式2で示される組成を有する高誘電率と低誘電損失特性を持つニオブ酸ビスマス誘電体組成物を提供する。   In another embodiment of the present invention, a bismuth niobate dielectric composition having a high dielectric constant and a low dielectric loss characteristic having a composition represented by Formula 2 below is provided.

(化学式2)
HSr2(1−x)Bi(y/3)xNb10+δ (HSBNO)
(前記化学式2中、モル分率xは0<x≦0.3、yは4≦y≦6、δは0≦x≦0.3の範囲である。)
(Chemical formula 2)
HSr 2 (1-x) Bi (y / 3) x Nb 3 O 10 + δ (HSBNO)
(In the chemical formula 2, the molar fraction x is in the range of 0 <x ≦ 0.3, y is in the range of 4 ≦ y ≦ 6, and δ is in the range of 0 ≦ x ≦ 0.3.)

前記物質は、前記KSBNO組成物のKイオンをHイオンに陽イオン置換し仮焼することで製造される。例えば、前記HSBNO誘電体組成物を製造するために、前記合成されたKSBNO粉末を5Mあるいは7MのHNO、HCl、HSOなどの酸を用いて4日間撹拌して、SBNO間に挿入されているKイオンをHイオンで置換する。置換済みの溶液は遠心分離機を利用して脱イオン水(DI Water)で数回洗浄する。その後、50℃で24時間乾燥すればHSBNOを得ることができる。 The substance is produced by calcination of K + ions in the KSBNO composition by cation substitution with H + ions. For example, in order to manufacture the HSBNO dielectric composition, the synthesized KSBNO powder is stirred for 4 days using 5M or 7M acid such as HNO 3 , HCl, H 2 SO 4 and inserted between SBNOs. Replace the K + ion with H + ion. The substituted solution is washed several times with deionized water (DI Water) using a centrifuge. Thereafter, HSBNO can be obtained by drying at 50 ° C. for 24 hours.

本発明のまた他の一具現例において、下記の化学式3で示される組成を有する高誘電率と低誘電損失特性を持つニオブ酸ビスマス誘電体組成物を提供する。   In another embodiment of the present invention, a bismuth niobate dielectric composition having a high dielectric constant and low dielectric loss characteristics having a composition represented by Formula 3 below is provided.

(化学式3)
Sr2(1-x)Bi(y/3)xNb10+δ (SBNO)
(前記化学式3中、モル分率xは0<x≦0.3、yは4≦y≦6、δは0≦x≦0.3の範囲である。)
(Chemical formula 3)
Sr 2 (1-x) Bi (y / 3) x Nb 3 O 10 + δ (SBNO)
(In the chemical formula 3, the molar fraction x is in the range of 0 <x ≦ 0.3, y is in the range of 4 ≦ y ≦ 6, and δ is in the range of 0 ≦ x ≦ 0.3.)

前記物質は、前記HSBNO組成物のHイオンをTBAイオンで置換し剥離することで製造される。例えば、本発明に係るHSBNO組成物試片をテトラブチルアンモニウム(TBAOH)溶液で数日間撹拌すると、Sr2(1−x)Bi(y/3)xNb10+δ層の間に存在しているHイオンをTBAイオンが安定化させ、バルク試片がコロイド化し、Sr2(1−x)Bi(y/3)xNb10+δ単結晶シートに1枚ずつ剥離されるようになる。このようにして得られたナノシートから、ラングミュア・ブロジェット(Langmuir−Blodgett、以下、LB法)法を用いてナノ単層薄膜またはナノシートが積層されてなる多層薄膜を形成することができる。 The substance is manufactured by replacing the H + ions of the HSBNO composition with TBA + ions and stripping them. For example, when an HSBNO composition specimen according to the present invention is stirred for several days with a tetrabutylammonium (TBAOH) solution, it exists between Sr 2 (1-x) Bi (y / 3) x Nb 3 O 10 + δ layers. So that the H + ions are stabilized by the TBA + ions, the bulk specimen is colloided, and is peeled one by one on the Sr 2 (1-x) Bi (y / 3) x Nb 3 O 10 + δ single crystal sheet. Become. From the nanosheet thus obtained, a nanosingle-layer thin film or a multilayer thin film in which nanosheets are laminated can be formed using a Langmuir-Blodgett (hereinafter referred to as LB method) method.

ナノシート単層を形成するための方法について簡略に述べると、LBトラフ(trough)の水面上に剥離されたナノシートを分散して規則的なナノ構造の単層膜を形成するようにバリアーを利用して圧縮し、Au、Pt、ITO、SROなどの金属または酸化物電極が蒸着された適切な基板を水平または垂直下降させて単層膜を転移させる過程を含む。   Briefly describing a method for forming a nanosheet monolayer, a barrier is used to form a regular nanostructure monolayer film by dispersing the exfoliated nanosheet on the water surface of an LB trough. And transferring a single layer film by horizontally or vertically lowering a suitable substrate on which a metal or oxide electrode such as Au, Pt, ITO, or SRO is deposited.

前記本発明の一具現例に係るKSBNO及びHSBNO誘電体組成物は、高い誘電定数を保持しながらも極めて低い誘電損失を示す。特に、Biが過量添加されたHSBNO組成物の場合、高誘電率材料として、10Hz〜10Hzの間の周波数範囲でer=460と一定の誘電定数値と0<x<0.25の間の誘電損失を有する。さらには、前記HSBNO組成物は、線形誘電特性を示すので、積層セラミックコンデンサ、マイクロ波誘電体、次世代TFTの誘電膜などに使用できる。 The KSBNO and HSBNO dielectric composition according to an embodiment of the present invention exhibits a very low dielectric loss while maintaining a high dielectric constant. In particular, in the case of an HSBNO composition to which Bi is excessively added, as a high dielectric constant material, er = 460, a constant dielectric constant value, and 0 <x <0.25 in a frequency range between 10 2 Hz to 10 7 Hz. With a dielectric loss of between. Furthermore, since the HSBNO composition exhibits linear dielectric characteristics, it can be used for multilayer ceramic capacitors, microwave dielectrics, dielectric films for next-generation TFTs, and the like.

また、前記HSBNO組成物のHイオンをTBAイオンで陽イオン置換してSBNO組成物を得ることができ、またこれを含むナノシートを得ることができ、これに電気泳動法及びLB法を用いて単層膜あるいは多層膜を製作することができる。このようにして製作されるSBNO薄膜は、ナノレベルで優れた誘電特性を持ち、今後、次世代デバイスに適用可能なナノレベルのMLCCに機能性誘電薄膜として応用することが期待される。 Further, SBNO composition can be obtained by cation substitution of H + ions of the HSBNO composition with TBA + ions, and a nanosheet containing the SBNO composition can be obtained using electrophoresis and LB methods. Thus, a single layer film or a multilayer film can be manufactured. The SBNO thin film thus manufactured has excellent dielectric properties at the nano level, and is expected to be applied as a functional dielectric thin film to a nano level MLCC applicable to next-generation devices in the future.

実施例
以下、実施例を通じて本発明をより詳しく説明することにする。これらの実施例は、専ら本発明を例示するためのものに過ぎず、本発明の範囲がこれらの実施例によって制限されるものではないことは当業界における通常の知識を有する者には自明なことである。
EXAMPLES Hereinafter, the present invention will be described in more detail through examples. These examples are only intended to illustrate the present invention and it is obvious to those skilled in the art that the scope of the present invention is not limited by these examples. That is.

実施例1:KSBNOとHSBNOセラミック物質の合成及び特性
次いで、本発明の実施形態について詳述する。本発明における誘電体セラミックは、KSrNb10で示される主成分のSrサイトをBiに置換して、KSr2(1−x)Bi(y/3)xNb10+δ(KSBNO)で示される(ここで、モル分率xは0<x≦0.3、yは4≦y≦6の範囲)組成式を満足する物質、Sr2(1−x)Bi(y/3)xNb10+δ層の間に一層ずつ存在しているKイオン層を酸溶液にてHイオン置換して、HSr2(1−x)Bi(y/3)xNb10+δ(HSBNO)で示される(ここで、モル分率xは0<x≦0.3、yは4≦y≦6、δは0≦x≦0.3の範囲)組成式を満足する物質である。
Example 1 Synthesis and Properties of KSBNO and HSBNO Ceramic Materials Next, embodiments of the present invention will be described in detail. In the dielectric ceramic according to the present invention, the Sr site of the main component represented by KSr 2 Nb 3 O 10 is replaced with Bi, so that KSr 2 (1-x) Bi (y / 3) xNb 3 O 10 + δ (KSBNO) (Wherein the molar fraction x is in the range of 0 <x ≦ 0.3 and y is in the range of 4 ≦ y ≦ 6), Sr 2 (1-x) Bi (y / 3) satisfying the composition formula The K + ion layers existing one by one between the x Nb 3 O 10 + δ layers are replaced with H + ions with an acid solution, and HSr 2 (1-x) Bi (y / 3) x Nb 3 O 10 + δ ( (Wherein the molar fraction x is in the range of 0 <x ≦ 0.3, y is in the range of 4 ≦ y ≦ 6, and δ is in the range of 0 ≦ x ≦ 0.3). .

このうちでもモル分率y=6の場合のBiが過量置換された誘電体セラミック物質を合成するために、純度99%以上のKCO、SrCO、Bi、及びNbを用意する。次いで、一般式KSr2(1−x)Bi2xNb10+δを満足する組成比によって各物質を秤量したのち、エタノールを溶媒としジルコニアボールを用いたボールミル工程にて24時間湿式混合を行う。その後、100℃オーブンでエタノールを全て乾燥してから乾式粉砕を行い、粉砕された物質を1200℃で10時間仮焼してKSr2(1−x)Bi2xNb10+δを得る。 Among these, in order to synthesize a dielectric ceramic material in which Bi is excessively substituted when the molar fraction y = 6, K 2 CO 3 , SrCO 3 , Bi 2 O 3 , and Nb 2 O having a purity of 99% or more are synthesized. 5 is prepared. Next, each substance is weighed according to a composition ratio satisfying the general formula KSr 2 (1-x) Bi 2x Nb 3 O 10 + δ, and then wet-mixed for 24 hours in a ball mill process using ethanol as a solvent and zirconia balls. Thereafter, all ethanol is dried in an oven at 100 ° C. and then dry pulverization is performed. The pulverized material is calcined at 1200 ° C. for 10 hours to obtain KSr 2 (1-x) Bi 2x Nb 3 O 10 + δ .

このようにして合成されたKSr2(1−x)Bi2xNb10+δ(x=0〜0.3)粉末を5Mまたは7MのHNO溶液に4日間マグネチック撹拌機にて撹拌し、KイオンをHイオンに置換させる。ここで、KイオンはHNO溶液の他にも、HCl、HSOなどの多様な酸を用いて置換を行うことができる。置換済みの溶液は、遠心分離機を利用して脱イオン水(DI Water)で数回洗浄する。洗浄する間、PHメータを利用して溶液のPH濃度が中性に近づいたか否かを確認する。その後、50℃で24時間乾燥すればHSr2(1−x)Bi2xNb10+δを得ることができる。 The KSr 2 (1-x) Bi 2x Nb 3 O 10 + δ (x = 0 to 0.3) powder synthesized in this way was stirred in a 5M or 7M HNO 3 solution with a magnetic stirrer for 4 days, Replace K + ions with H + ions. Here, K + ions can be replaced by using various acids such as HCl and H 2 SO 4 in addition to the HNO 3 solution. The substituted solution is washed several times with deionized water (DI Water) using a centrifuge. During cleaning, a PH meter is used to check whether the PH concentration of the solution is close to neutrality. Thereafter, HSr 2 (1-x) Bi 2x Nb 3 O 10 + δ can be obtained by drying at 50 ° C. for 24 hours.

前記得られたKSr2(1−x)Bi2xNb10+δとHSr2(1−x)Bi2xNb10+δ組成物は、100kgf/cmの圧力で直径12mm、高さ0.5〜1mmのペレットに成形され、1250℃の空気雰囲気の下で焼結(sintering)された。焼結されたペレット形態のセラミック誘電体を測定するために、両端面に導電性ペーストを塗布しベーキング処理を施した。このようにして用意された焼結試片はアジレント・テクノロジー(Agilent Technologies)社製のインピーダンス・アナライザ(Impedance Analyzer)で測定した。 The obtained KSr 2 (1-x) Bi 2x Nb 3 O 10 + δ and HSr 2 (1-x) Bi 2x Nb 3 O 10 + δ compositions have a diameter of 12 mm and a height of 0.5 at a pressure of 100 kgf / cm 2. It was formed into ˜1 mm pellets and sintered under 1250 ° C. air atmosphere. In order to measure the sintered ceramic dielectric in the form of pellets, a conductive paste was applied to both end faces and subjected to a baking treatment. The sintered specimens thus prepared were measured with an impedance analyzer manufactured by Agilent Technologies.

図1は、X線回折スペクトルを模式的に示した図であって、横軸は2θ(theta)、縦軸は回折ピークの強度を示している。Biの置換量が0.1の場合は、既存に報告されていたKSrNb10の回折ピークを満足し、BiがSrを適切に置換しているのに対し、置換量が次第に増加していき、0.3に達した場合は、層状構造を形成するのではなく、過量のBiがSrとのイオン半径の差のため、Srサイトに何れも置換できず二次相を形成することを確認することができた。 FIG. 1 is a diagram schematically showing an X-ray diffraction spectrum, in which the horizontal axis represents 2θ (theta) and the vertical axis represents the intensity of a diffraction peak. When the substitution amount of Bi is 0.1, the previously reported diffraction peak of KSr 2 Nb 3 O 10 is satisfied, and the substitution amount gradually increases while Bi appropriately substitutes Sr. However, when 0.3 is reached, a layered structure is not formed, but an excessive amount of Bi cannot be substituted at the Sr site due to the difference in ionic radius from Sr, and a secondary phase is formed. I was able to confirm that.

また、誘電体セラミック物質の合成においてBiイオンの場合、+2、+3、+5−価イオンとして存在することができ、SrサイトをBiが置換する場合、Biイオンが+3価のときにその大きさがSrイオンと最も近いため、Srサイトに置換できる。Biの酸化数を確認するために、X−線光電子分光法を用いてBiの酸化数を分析し、Biが3価イオンとして存在することを確認した(図2)。
図3は本発明に係る誘電体セラミック物質の走査電子顕微鏡による写真であって、同写真から層状構造を有していることが確認でき且つ板状の粒子を形成したことが示されている。
Further, in the synthesis of dielectric ceramic materials, Bi ions can exist as +2, +3, + 5-valent ions, and when Bi is substituted at the Sr site, the size of Bi ions is +3. Since it is closest to the Sr ion, it can be replaced with an Sr site. In order to confirm the oxidation number of Bi, the oxidation number of Bi was analyzed using X-ray photoelectron spectroscopy, and it was confirmed that Bi was present as a trivalent ion (FIG. 2).
FIG. 3 is a scanning electron microscope photograph of the dielectric ceramic material according to the present invention, which shows that it has a layered structure and has formed plate-like particles.

図4は、本発明に係る誘電体セラミック物質の誘電定数と誘電損失を示す図である。同図に示す結果によれば、試片の誘電特性を測定した結果、Bi添加量が増加してSrイオンサイトを置換するほど(xの値が大きくなるほど)、優れた誘電定数値を示すが、周波数が増加するにつれて誘電定数値が類似するか(at x=0.2)減少する(at x=0.3)様相を示した(表1)。   FIG. 4 shows the dielectric constant and dielectric loss of the dielectric ceramic material according to the present invention. According to the results shown in the figure, as a result of measuring the dielectric properties of the specimen, the more Bi is added and the Sr ion site is replaced (the larger the value of x), the better the dielectric constant value is. As the frequency increased, the dielectric constant values were similar (at x = 0.2) or decreased (at x = 0.3) (Table 1).

しかし、KイオンをHイオンに置換して焼結された層状構造(図5)の[H]Sr2(1−x)Bi2xNb10+δ試片の場合(ここで、[H]と表記した理由は、HSr2(1−x)Bi2xNb10+δ粉末の誘電特性を測定するために成形後に熱処理すると、Hが蒸発するためである。)、xが0.1のときに、周波数10〜10Hz範囲においてk=460〜420の比較的周波数に影響を受けない高い誘電定数値を示すことを確認することができた。また、この組成では、誘電損失が1〜2%程度と極めて低い値を示した(図6及び表1)。 However, in the case of the [H] Sr 2 (1-x) Bi 2x Nb 3 O 10 + δ specimen having a layered structure (FIG. 5) sintered by replacing K + ions with H + ions (where [H The reason for the notation is that when heat treatment is performed after molding to measure the dielectric properties of the HSr 2 (1-x) Bi 2x Nb 3 O 10 + δ powder, H evaporates.), X is 0.1. In some cases, it was confirmed that a high dielectric constant value of k = 460 to 420 that is relatively unaffected by the frequency in the frequency range of 10 2 to 10 7 Hz was exhibited. Also, with this composition, the dielectric loss was as low as about 1 to 2% (FIG. 6 and Table 1).

[H]Sr2(1−x)Bi2xNb10+δ(x=0.1)においてBiの添加量を増やしてx=0.2、0.3と増加させた場合は、誘電定数値が10Hzでk=1160、1290と増加するが大きな減少幅を示し、107Hzでk=779、988の値を示し、誘電損失もまた8〜10%まで増加したことを確認することができた。したがって、全ての周波数の範囲で類似した誘電率を示し且つ低い誘電損失値を有するHSr1.8Bi0.2Nb10+δ誘電物質が、最も安定して積層セラミックコンデンサ、マイクロ波誘電体、次世代DRAMキャパシターなどのような機能性誘電物質として使用され得るものと考えられる。 [H] Sr 2 (1−x) Bi 2x Nb 3 O 10 + δ (x = 0.1) When the additive amount of Bi is increased and x is increased to 0.2 and 0.3, the dielectric constant value It can be confirmed that k = 1160, 1290 increases at 10 2 Hz but shows a large decrease, k = 779, 988 at 107 Hz, and the dielectric loss also increases to 8-10%. It was. Therefore, the HSr 1.8 Bi 0.2 Nb 3 O 10 + δ dielectric material that exhibits a similar dielectric constant in all frequency ranges and has a low dielectric loss value is the most stable multilayer ceramic capacitor, microwave dielectric, It is considered that it can be used as a functional dielectric material such as a next generation DRAM capacitor.

実施例2:Sr2(1−x)Bi2xNb10+δの製作と薄膜LBを利用した薄膜蒸着
次いで、実施例1で得られたHSr2(1−x)Bi2xNb10+δセラミック物質を利用し、H:TBA=1:1の比でテトラブチルアンモニウム水酸化物を添加して室温で7日間撹拌反応させ、組成式Ca2(1−x)Sr2xNb10+δで示されるペロブスカイトナノシートが分散された不透明のコロイド溶液を製作した。
Example 2: Fabrication of Sr 2 (1-x) Bi 2x Nb 3 O 10 + δ and Thin Film Deposition Using Thin Film LB Next, HSr 2 (1-x) Bi 2x Nb 3 O 10 + δ ceramic obtained in Example 1 Using a substance, tetrabutylammonium hydroxide was added at a ratio of H + : TBA + = 1: 1 and stirred at room temperature for 7 days, and the composition formula Ca 2 (1-x) Sr 2x Nb 3 O 10 + δ An opaque colloidal solution in which perovskite nanosheets shown in FIG.

次いで、前記得られたナノシートコロイド溶液をLBトラフ(trough)に満たされた超純水に分散させた。前記分散溶液を展開後、水面の安定及び下層液の温度が一定になることを目的として30分間安定化時間を持ってから、Au、Pt、ITO、SROなどの用意した基板を利用して垂直または水平下降させ、バリアーは両側から表面圧力を保持させるほどの0.5mm/secの速度で圧縮して基板の表面に単層膜を転移させた。このような方法を数回繰り返すことで所望の層数を有するペロブスカイトナノシート薄膜を製作し、製作された薄膜からUV処理にて有機ポリマーを除去した。   Next, the obtained nanosheet colloidal solution was dispersed in ultrapure water filled with LB trough. After the dispersion solution is developed, it has a stabilization time of 30 minutes for the purpose of stabilizing the water surface and the temperature of the lower layer solution, and then using a prepared substrate such as Au, Pt, ITO, SRO and so on. Alternatively, it was lowered horizontally, and the barrier was compressed at a rate of 0.5 mm / sec to maintain the surface pressure from both sides to transfer the monolayer film to the surface of the substrate. By repeating such a method several times, a perovskite nanosheet thin film having a desired number of layers was produced, and the organic polymer was removed from the produced thin film by UV treatment.

実施例3:KSr2(1−x)Bi4/3xNb10とHSr2(1−x)Bi4/3xNb10セラミック物質の合成及び特性
次いで、合成が実施されたセラミックス組成物は、KSr2(1−x)Bi(4/3)xNb10で示される(ここで、モル分率xは0<x≦0.3の範囲である。)化学量論的組成式を満足する物質、Sr2(1−x)Bi(4/3)xNb10層の間に一層ずつ存在しているKイオン層を酸溶液にてHイオン置換することでHSr2(1−x)Bi(4/3)xNb10で示される(ここで、モル分率xは0<x≦0.3の範囲である。)組成式を満足する物質である。
Example 3: KSr 2 (1-x ) Bi 4 / 3x Nb 3 O 10 and HSr 2 (1-x) Bi 4 / 3x Nb 3 Synthesis and Characterization of O 10 ceramic materials then ceramic composition synthesis was carried out The product is represented by KSr 2 (1-x) Bi (4/3) x Nb 3 O 10 (where the molar fraction x is in the range 0 <x ≦ 0.3). A substance satisfying the composition formula, Sr 2 (1-x) Bi (4/3) x Nb 3 O 10 K + ion layer existing one layer at a time, H + ion substitution with an acid solution A substance satisfying the composition formula represented by HSr 2 (1-x) Bi (4/3) xNb 3 O 10 (where the molar fraction x is in the range of 0 <x ≦ 0.3). It is.

純度99%以上のKCO、SrCO、Bi、及びNbを用意する。次いで、前記実施例と同様に、一般式KSr2(1−x)Bi(4/3)xNb10を満足する組成比によって各物質を秤量したのち、エタノールを溶媒としジルコニアボールを用いたボールミル工程にて24時間湿式混合を行う。その後、100℃オーブンでエタノールを全て乾燥してから乾式粉砕を行い、粉砕された物質を1200℃で10時間仮焼してKSr2(1−x)Bi(4/3)xNb10を得る。このようにして合成されたKSr2(1−x)Bi(4/3)xNb10(x=0〜0.3)粉末を5Mまたは7MのHNO溶液に4日間マグネチック撹拌機にて撹拌し、KイオンをHイオンに置換させる。ここで、KイオンはHNO溶液の他にも、HCl、HSOなどの多様な酸を用いて置換を行うことができる。置換済みの溶液は、遠心分離機を利用して脱イオン水(DI Waterで)数回洗浄する。洗浄する間、PHメータを利用して溶液のPH濃度が中性に近づいたか否かを確認する。その後、50℃で24時間乾燥すればHSr2(1−x)Bi(4/3)xNb10を得ることができる。前記得られたKSr2(1−x)Bi(4/3)xNb10とHSr2(1−x)Bi(4/3)xNb10組成物は100kgf/cmの圧力で直径12mm、高さ0.5〜1mmのペレットに成形され、1250℃の空気雰囲気の下で焼結(sintering)された。焼結されたペレット形態のセラミック誘電体を測定するために、両端面に導電性ペーストを塗布しベーキング処理を施した。このようにして用意された焼結試片は、アジレント・テクノロジー(Agilent Technologies)社製のインピーダンス・アナライザ(Impedance Analyzer)で測定した。 K 2 CO 3 , SrCO 3 , Bi 2 O 3 , and Nb 2 O 5 with a purity of 99% or more are prepared. Use then, as in the example, the general formula KSr 2 (1-x) Bi (4/3) After weighing the material by the composition ratio satisfying x Nb 3 O 10, the zirconia balls were ethanol as a solvent Wet mixing is performed for 24 hours in a conventional ball mill process. Thereafter, all ethanol is dried in an oven at 100 ° C., and then dry pulverization is performed. The pulverized material is calcined at 1200 ° C. for 10 hours, and KSr 2 (1-x) Bi (4/3) x Nb 3 O 10 Get. Thus synthesized were KSr 2 (1-x) Bi (4/3) x Nb 3 O 10 (x = 0~0.3) powder in HNO 3 solution of 5M or 7M 4 days magnetic stirrer And K + ions are replaced with H + ions. Here, K + ions can be replaced by using various acids such as HCl and H 2 SO 4 in addition to the HNO 3 solution. The substituted solution is washed several times with deionized water (with DI Water) using a centrifuge. During cleaning, a PH meter is used to check whether the PH concentration of the solution is close to neutrality. Thereafter, HSr 2 (1-x) Bi (4/3) x Nb 3 O 10 can be obtained by drying at 50 ° C. for 24 hours. KSr 2 (1-x) Bi (4/3) x Nb 3 O 10 and HSr 2 (1-x) Bi (4/3) x Nb 3 O 10 composition the resulting, of 100 kgf / cm 2 It was formed into pellets having a diameter of 12 mm and a height of 0.5 to 1 mm under pressure, and sintered under an air atmosphere at 1250 ° C. In order to measure the sintered ceramic dielectric in the form of pellets, a conductive paste was applied to both end faces and subjected to a baking treatment. The sintered specimens thus prepared were measured with an impedance analyzer manufactured by Agilent Technologies.

図9は、本発明に係る誘電体セラミック物質の誘電定数と誘電損失を示す図である。図9に示す結果によれば、試片の誘電特性を測定した結果、Bi添加量が増加してSrイオンサイトを置換するほど(xの値が大きくなるほど)、優れた誘電定数値を示すが、周波数の変化に敏感に反応するという点や誘電損失値が低周波領域で相当に大きな値を示すという点を確認することができた。   FIG. 9 shows the dielectric constant and dielectric loss of the dielectric ceramic material according to the present invention. According to the results shown in FIG. 9, as a result of measuring the dielectric properties of the specimen, the more the Bi addition amount is replaced with the Sr ion site (the larger the value of x), the better the dielectric constant value is. It was confirmed that it responds sensitively to changes in frequency and that the dielectric loss value is considerably large in the low frequency region.

しかし、KイオンをHイオンに置換して焼結された層状構造の[H]Sr2(1−x)Bi(4/3)xNb10試片の場合(ここで、[H]と表記した理由は、HSr2(1−x)Bi(4/3)xNb10粉末の誘電特性を測定するために成形後に熱処理すると、Hが蒸発するためである。)、周波数10〜10Hz範囲において比較的周波数に影響を受けない高い誘電定数値を示すことを確認することができた。また、この組成では、xが0.1あるいは0.2の場合、誘電損失が1〜2%程度と極めて低い値を示した(図10)。 However, in the case of the [H] Sr 2 (1-x) Bi (4/3) x Nb 3 O 10 specimen having a layered structure obtained by replacing K + ions with H + ions (where [ H] is because HS evaporates when heat-treated after molding to measure the dielectric properties of the HSr 2 (1-x) Bi (4/3) x Nb 3 O 10 powder). It was confirmed that a high dielectric constant value that was relatively unaffected by the frequency was exhibited in the frequency range of 10 2 to 10 7 Hz. In this composition, when x was 0.1 or 0.2, the dielectric loss was as low as about 1 to 2% (FIG. 10).

Claims (7)

下記の化学式1で示される組成を有する高誘電率と低誘電損失特性を持つニオブ酸ビスマス誘電体組成物。
KSr2(1−x)Bi(y/3)xNb10+δ ・・・(化学式1)
(前記化学式1中、モル分率xは0<x≦0.3、yは4≦y≦6、δは0≦x≦0.3の範囲である。)
A bismuth niobate dielectric composition having a high dielectric constant and low dielectric loss characteristics having a composition represented by the following chemical formula 1.
KSr 2 (1-x) Bi (y / 3) x Nb 3 O 10 + δ ··· ( Formula 1)
(In the chemical formula 1, the molar fraction x is in the range of 0 <x ≦ 0.3, y is in the range of 4 ≦ y ≦ 6, and δ is in the range of 0 ≦ x ≦ 0.3.)
下記の化学式2で示される組成を有する高誘電率と低誘電損失特性を持つニオブ酸ビスマス誘電体組成物。
HSr2(1−x)Bi(y/3)xNb10+δ ・・・(化学式2)
(前記化学式2中、モル分率xは0<x≦0.3、yは4≦y≦6、δは0≦x≦0.3の範囲である。)
A bismuth niobate dielectric composition having a high dielectric constant and low dielectric loss characteristics having a composition represented by the following chemical formula 2.
HSr 2 (1-x) Bi (y / 3) x Nb 3 O 10 + δ ··· ( Formula 2)
(In the chemical formula 2, the molar fraction x is in the range of 0 <x ≦ 0.3, y is in the range of 4 ≦ y ≦ 6, and δ is in the range of 0 ≦ x ≦ 0.3.)
下記の化学式3で示される組成を有する高誘電率と低誘電損失特性を持つニオブ酸ビスマス誘電体組成物。
Sr2(1−x)Bi(y/3)xNb10+δ ・・・(化学式3)
(前記化学式3中、モル分率xは0<x≦0.3、yは4≦y≦6、δは0≦x≦0.3の範囲である。)
A bismuth niobate dielectric composition having a high dielectric constant and low dielectric loss characteristics having a composition represented by the following chemical formula 3.
Sr 2 (1-x) Bi (y / 3) x Nb 3 O 10 + δ (Chemical formula 3)
(In the chemical formula 3, the molar fraction x is in the range of 0 <x ≦ 0.3, y is in the range of 4 ≦ y ≦ 6, and δ is in the range of 0 ≦ x ≦ 0.3.)
請求項1〜3のいずれか一項に記載のニオブ酸ビスマス誘電体組成物を含むナノシート薄膜。   The nanosheet thin film containing the bismuth niobate dielectric composition as described in any one of Claims 1-3. 請求項1〜3のいずれか一項に記載のニオブ酸ビスマス誘電体組成物を含む積層セラミックコンデンサ。   A multilayer ceramic capacitor comprising the bismuth niobate dielectric composition according to any one of claims 1 to 3. 請求項1〜3のいずれか一項に記載のニオブ酸ビスマス誘電体組成物を含むマイクロ波誘電体。   A microwave dielectric comprising the bismuth niobate dielectric composition according to any one of claims 1 to 3. 請求項1〜3のいずれか一項に記載のニオブ酸ビスマス誘電体組成物を含むコンピュータ用DRAMメモリ。   A computer DRAM memory comprising the bismuth niobate dielectric composition according to claim 1.
JP2014092562A 2013-05-27 2014-04-28 Bismuth niobate dielectric composition with high dielectric constant and low dielectric loss characteristics Active JP5855159B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0059870 2013-05-27
KR1020130059870A KR101495093B1 (en) 2013-05-27 2013-05-27 Bithmuth niobate dielectric composition having high dielectric permittivity and low dielectric loss

Publications (2)

Publication Number Publication Date
JP2014227335A true JP2014227335A (en) 2014-12-08
JP5855159B2 JP5855159B2 (en) 2016-02-09

Family

ID=52127527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014092562A Active JP5855159B2 (en) 2013-05-27 2014-04-28 Bismuth niobate dielectric composition with high dielectric constant and low dielectric loss characteristics

Country Status (2)

Country Link
JP (1) JP5855159B2 (en)
KR (1) KR101495093B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017088480A (en) * 2015-10-19 2017-05-25 コリア・インスティテュート・オブ・サイエンス・アンド・テクノロジー Silver-substituted strontium niobate dielectric composition and manufacturing method therefor
JP2022088333A (en) * 2020-12-02 2022-06-14 コリア・インスティテュート・オブ・サイエンス・アンド・テクノロジー Nanosheet containing niobate dielectric and dielectric thin film containing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002530888A (en) * 1998-11-23 2002-09-17 インフィネオン テクノロジース アクチエンゲゼルシャフト Oxidized ceramic membrane based on textured Bi
WO2012050007A1 (en) * 2010-10-13 2012-04-19 独立行政法人物質・材料研究機構 Ferroelectric thin film having superlattice structure, manufacturing method thereof, ferroelectric element, and manufacturing method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100381498B1 (en) * 1995-05-22 2005-02-05 미쓰비시 마테리알 가부시키가이샤 Bismuth-based total oil thin film, method for forming the same, and composition for the thin film type

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002530888A (en) * 1998-11-23 2002-09-17 インフィネオン テクノロジース アクチエンゲゼルシャフト Oxidized ceramic membrane based on textured Bi
WO2012050007A1 (en) * 2010-10-13 2012-04-19 独立行政法人物質・材料研究機構 Ferroelectric thin film having superlattice structure, manufacturing method thereof, ferroelectric element, and manufacturing method thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6015019802; SAKAMOTO,W. et al: '"Chemical Processing of Potassium-Substituted Strontium Barium Niobate Thin Films through Metallo-or' Journal of the American Ceramic Society Vol.81, No.10, 199810, pp.2692-2698 *
JPN6015019804; LANFREDI,S. et al: '"Crystallographic properties of KSr2Nb5O15"' Materials Science and Engineering: B Vol.112, 2004, pp.139-143 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017088480A (en) * 2015-10-19 2017-05-25 コリア・インスティテュート・オブ・サイエンス・アンド・テクノロジー Silver-substituted strontium niobate dielectric composition and manufacturing method therefor
JP2022088333A (en) * 2020-12-02 2022-06-14 コリア・インスティテュート・オブ・サイエンス・アンド・テクノロジー Nanosheet containing niobate dielectric and dielectric thin film containing the same

Also Published As

Publication number Publication date
KR20140139341A (en) 2014-12-05
KR101495093B1 (en) 2015-03-09
JP5855159B2 (en) 2016-02-09

Similar Documents

Publication Publication Date Title
Hu et al. Optimization the energy density and efficiency of BaTiO3-based ceramics for capacitor applications
Guo et al. High insulation resistivity and ultralow dielectric loss in La-doped SrTiO3 colossal permittivity ceramics through defect chemistry optimization
Qin et al. High energy storage and thermal stability under low electric field in Bi0. 5Na0. 5TiO3-modified BaTiO3-Bi (Zn0. 25Ta0. 5) O3 ceramics
KR101398553B1 (en) Niobate dielectric composition and nano sheet thin film using the same
Diao et al. Enhanced energy storage properties of BaTiO3 thin films by Ba0. 4Sr0. 6TiO3 layers modulation
He et al. Dielectric stability and energy-storage performance of BNT-based relaxor ferroelectrics through Nb5+ and its excess modification
Qian et al. Reduced leakage current, enhanced energy storage and dielectric properties in (Ce, Mn)-codoped Ba0. 6Sr0. 4TiO3 thin film
Muhammad et al. Structure and dielectric characteristics of Ba1-xCaxTi1-xCaxO3-δ ceramics
Yan et al. Design and energy storage performance of (Bi0. 4K0. 2Na0. 2Ba0. 2) TiO3-Sr (Mg1/3Ta2/3) O3 high-entropy Relaxor ceramics
Zhang et al. Excellent energy storage performance of paraelectric Ba0. 4Sr0. 6TiO3 based ceramics through induction of polar nano-regions
Shi et al. Enhanced energy storage performance achieved in Na0. 5Bi0. 5TiO3–Sr0. 7Bi0. 2TiO3 ceramics via domain structure and bandgap width tuning
Luo et al. Wide temperature range of stable dielectric properties in relaxor BaTiO3-based ceramics by co-doping synergistic engineering
JP5855159B2 (en) Bismuth niobate dielectric composition with high dielectric constant and low dielectric loss characteristics
Li et al. Enhanced breakdown strength and excellent energy storage stability by B site hetero-valent doping in Sr0. 7Bi0. 2TiO3-based lead-free ceramic
CN114388693A (en) Dielectric material, and device and memory device including the same
JP6368751B2 (en) Silver-substituted strontium niobate dielectric composition and method for producing the same
Dewi et al. The effect of heating rate on BaZrxTi1-xO3 thin film for x= 0.4 and x= 0.6 as capacitors
Lv et al. Microstructure and dielectric properties of Na and Ni co-substituted CaCu3Ti4O12 ceramics with high dielectric constant and low loss
JP2020152630A (en) Method for preparing dielectric having low dielectric loss and dielectric prepared thereby
Lee et al. Structural and dielectric properties of B2O3/Li2O-added Ba0. 6Sr0. 4TiO3 multilayer ceramics for tunable devices
Yao et al. Double pentavalent (Sb5+, Nb5+) and trivalent (Sm3+, Y3+) co-doped Ti0. 9Zr0. 1O2 colossal dielectric permittivity multilayer ceramics for the miniaturization of the next-generation electronics
Cheng et al. Enhanced energy storage properties of (Ba0. 4Sr0. 6) TiO3 ceramics with ultrahigh energy efficiency through doping of Bi0. 2Sr0. 7 (Mg1/3Nb2/3) O3
Yim et al. Advances in dielectric performance of atomically engineered Sr1. 8Bi0. 2Nb3O10 perovskite nanosheet thin films
JP7392015B2 (en) Calcium lithium niobate dielectric composition without dielectric dispersion and method for producing the same
KR102274761B1 (en) Silver substituted strontium niobate dielectric composition and manufacturing method thereof

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150813

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151208

R150 Certificate of patent or registration of utility model

Ref document number: 5855159

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250