JP2022084042A - Electric power conversion system and control method therefor - Google Patents

Electric power conversion system and control method therefor Download PDF

Info

Publication number
JP2022084042A
JP2022084042A JP2020195612A JP2020195612A JP2022084042A JP 2022084042 A JP2022084042 A JP 2022084042A JP 2020195612 A JP2020195612 A JP 2020195612A JP 2020195612 A JP2020195612 A JP 2020195612A JP 2022084042 A JP2022084042 A JP 2022084042A
Authority
JP
Japan
Prior art keywords
carrier signal
internal phase
frequency
output
multiplier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020195612A
Other languages
Japanese (ja)
Inventor
和 東海林
Kazu Shoji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2020195612A priority Critical patent/JP2022084042A/en
Publication of JP2022084042A publication Critical patent/JP2022084042A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Inverter Devices (AREA)

Abstract

To provide an electric power conversion system capable of achieving high output voltage distortion rate and high system efficiency.SOLUTION: An electric power conversion system includes: a three-level power converter for outputting a three-level voltage; and a control section for generating a gate signal of the three-level power converter on the basis of synchronous PWM control by comparison between an upper carrier signal carry 1, a lower carrier signal carry 2 and a phase voltage command. The control section generates the upper carrier signal carry 1 and the lower carrier signal carry 2 on the basis of a correction internal phase θm with a sine wave component of six-time frequency of an internal phase θ added.SELECTED DRAWING: Figure 3

Description

本発明は、電力変換装置の制御方法に関する。 The present invention relates to a control method for a power conversion device.

DC/三相AC変換器には、2レベル電力変換器、3レベル電力変換器などが一般的に用いられている。3レベル電力変換器は2分圧した電圧Eの電圧源を備え、+E,0,-Eの3レベルの交流電圧を出力する装置である。 As the DC / three-phase AC converter, a two-level power converter, a three-level power converter, or the like is generally used. The three-level power converter is a device that includes a voltage source of voltage E divided by two and outputs three levels of AC voltage of + E, 0, and −E.

この3レベル電力変換器に与える相電圧指令のゼロクロス付近では、PWMによって変調されたパルス電圧の幅が狭くなり、デッドタイムによってパルス電圧が出力されないことがある。 In the vicinity of the zero cross of the phase voltage command given to the three-level power converter, the width of the pulse voltage modulated by PWM becomes narrow, and the pulse voltage may not be output due to the dead time.

これによって出力パルス電圧の歪みが増加するため、スイッチング周波数(キャリア周波数)を高くして、電圧歪みを低減するなどの対策が取られる。しかしながら、スイッチング周波数が増加すると一般的にはスイッチング損失が増加するため、装置の効率が低減する。 As a result, the distortion of the output pulse voltage increases, so measures such as increasing the switching frequency (carrier frequency) to reduce the voltage distortion are taken. However, as the switching frequency increases, the switching loss generally increases, which reduces the efficiency of the device.

特許文献3では、相電圧指令のゼロクロスでパルス電圧が発生しないように二相変調を改良している。キャリア周波数を高くすることにより、ゼロクロス周辺での不要な細いパルス電圧を発生させないようにしつつスイッチング周波数を高くすることができる。 In Patent Document 3, the two-phase modulation is improved so that the pulse voltage is not generated at the zero cross of the phase voltage command. By increasing the carrier frequency, it is possible to increase the switching frequency while preventing the generation of an unnecessary thin pulse voltage around the zero cross.

他にも、特許文献2では、キャリア周波数を局所的に高くするために回転数に応じてキャリア周波数を可変にする一種のモード切り換え方法などが開示されている。相電圧指令のゼロクロス付近で同様にキャリア周波数を切り替えて可変にすることなどの手段にも応用可能であると考えられる。 In addition, Patent Document 2 discloses a kind of mode switching method in which the carrier frequency is made variable according to the rotation speed in order to raise the carrier frequency locally. It is considered that it can also be applied to means such as switching the carrier frequency to make it variable near the zero cross of the phase voltage command.

特開2020-25378号公報Japanese Unexamined Patent Publication No. 2020-25378 特開2019-146380号公報Japanese Unexamined Patent Publication No. 2019-146380 WO2014/141398A1WO2014 / 141398A1

特許文献1の図1に示すような3レベル電力変換器において、図2に示す相電圧指令値のゼロクロス付近では、PWMによって変調されたパルス電圧の幅が狭くなり、デッドタイムによってパルス電圧が出力されないことがある。これにより、出力電圧の歪みが増加するため、この領域ではPWMを行うためのキャリア周波数を高くして可変にするなどの改良が必要となる。 In the three-level power converter as shown in FIG. 1 of Patent Document 1, the width of the pulse voltage modulated by PWM becomes narrow near the zero cross of the phase voltage command value shown in FIG. 2, and the pulse voltage is output due to the dead time. It may not be done. As a result, the distortion of the output voltage increases, so in this region, improvements such as increasing the carrier frequency for performing PWM and making it variable are required.

以上示したようなことから、出力電圧歪み率を向上させ、かつ、装置の効率を改善した電力変換装置を提供することが課題となる。 From the above, it is an issue to provide a power conversion device having an improved output voltage distortion rate and improved device efficiency.

本発明は、前記従来の問題に鑑み、案出されたもので、その一態様は、3レベルの電圧を出力する3レベル電力変換器と、内部位相に前記内部位相の6倍周波数の正弦波成分を加算した補正内部位相に基づいて上側キャリア信号と下側キャリア信号を生成し、前記上側キャリア信号,前記下側キャリア信号と相電圧指令との比較による同期PWM制御に基づいて前記3レベル電力変換器のゲート信号を生成する制御部と、を備えたことを特徴とする。 The present invention has been devised in view of the above-mentioned conventional problems, and one aspect thereof is a three-level power converter that outputs a three-level voltage and a sinusoidal wave having an internal phase having a frequency six times that of the internal phase. The upper carrier signal and the lower carrier signal are generated based on the corrected internal phase to which the components are added, and the three-level power is based on the synchronous PWM control by comparing the upper carrier signal, the lower carrier signal and the phase voltage command. It is characterized by having a control unit for generating a gate signal of a converter.

また、その一態様として、前記制御部は、以下の(4)式により前記補正内部位相を算出する第1加算器と、前記第1加算器の出力に1/2πを乗算する第3乗算器と、前記第3乗算器の出力に1周期当たりのキャリア数を乗算する第4乗算器と、前記第4乗算器の出力に2を乗算する第5乗算器と、前記第5乗算器の出力から1を減算する第1減算器と、前記第1減算器の出力の絶対値を算出する絶対値演算部と、前記絶対値演算部の出力から1を減算する第2減算器と、を備え、前記絶対値演算部の出力を前記上側キャリア信号とし、前記第2減算器の出力を前記下側キャリア信号とすることを特徴とする。 Further, as one aspect thereof, the control unit has a first adder that calculates the correction internal phase by the following equation (4), and a third adder that multiplies the output of the first adder by 1 / 2π. A fourth adder that multiplies the output of the third adder by the number of carriers per cycle, a fifth adder that multiplies the output of the fourth adder by 2, and the output of the fifth adder. A first subtractor for subtracting 1 from the first subtractor, an absolute value calculation unit for calculating the absolute value of the output of the first subtractor, and a second subtractor for subtracting 1 from the output of the absolute value calculation unit. The output of the absolute value calculation unit is used as the upper carrier signal, and the output of the second subtractor is used as the lower carrier signal.

Figure 2022084042000002
Figure 2022084042000002

θm:補正内部位相
ωrat:内部位相の周波数
Ncarry:1周期当たりのキャリア数
Δωcarrymax:変調後(上側キャリア信号,下側キャリア信号)のキャリア周波数の最大偏差の大きさ
t:時間。
θm: Corrected internal phase ωrat: Frequency of internal phase Ncarry: Number of carriers per cycle Δωcarrymax: Magnitude of maximum deviation of carrier frequency after modulation (upper carrier signal, lower carrier signal) t: Time.

また、その一態様として、前記上側キャリア信号,前記下側キャリア信号のキャリア周波数を以下の(5)式とすることを特徴とする。 Further, as one aspect thereof, the carrier frequencies of the upper carrier signal and the lower carrier signal are set to the following equation (5).

Figure 2022084042000003
Figure 2022084042000003

ωcarry_m:変調後(上側キャリア信号,下側キャリア信号)のキャリア周波数
Ncarry:1周期当たりのキャリア数
θm:補正内部位相
ωrat:内部位相の周波数
t:時間
Δωcarrymax:変調後(上側キャリア信号,下側キャリア信号)のキャリア周波数の最大偏差の大きさ
ωcarry:変調前のキャリア信号のキャリア周波数。
ωcarry_m: Carrier frequency after modulation (upper carrier signal, lower carrier signal) Ncarry: Number of carriers per cycle θm: Corrected internal phase ωrat: Internal phase frequency t: Time Δωcarrymax: After modulation (upper carrier signal, lower side) The magnitude of the maximum deviation of the carrier frequency of the carrier signal) ωcarry: The carrier frequency of the carrier signal before modulation.

本発明によれば、出力電圧歪み率を向上させ、かつ、装置の効率を改善した電力変換装置を提供することが可能となる。 According to the present invention, it is possible to provide a power conversion device having an improved output voltage distortion rate and improved device efficiency.

内部位相θを用いた三相の相電圧指令と6θ成分の正弦波の関係を示す図。The figure which shows the relationship between a three-phase phase voltage command using an internal phase θ, and a sine wave of a 6θ component. 従来の内部位相と同期キャリア周波数の関係および従来の同期キャリア信号生成部を示すブロック図。The block diagram which shows the relationship between the conventional internal phase and the synchronous carrier frequency, and the conventional synchronous carrier signal generation part. 実施形態の内部位相と同期キャリア周波数の関係および実施形態の同期キャリア信号生成部を示すブロック図。The block diagram which shows the relationship between the internal phase of an embodiment and a synchronous carrier frequency, and the synchronous carrier signal generation part of an embodiment.

以下、本願発明における電力変換装置の実施形態を図1~図3に基づいて詳述する。 Hereinafter, embodiments of the power conversion device according to the present invention will be described in detail with reference to FIGS. 1 to 3.

[実施形態1]
本実施形態の電力変換装置は、3レベル電力変換器と、制御部と、を備える。3レベル電力変換器は、3レベルの電圧を出力する。制御部は、上側キャリア信号,下側キャリア信号と相電圧指令との比較による同期PWM制御に基づいて3レベル電力変換器のゲート信号を生成する。ここでは、電源周期に周期した同期PWM制御とする。
[Embodiment 1]
The power converter of this embodiment includes a three-level power converter and a control unit. The 3-level power converter outputs a 3-level voltage. The control unit generates a gate signal of the three-level power converter based on the synchronous PWM control by comparing the upper carrier signal, the lower carrier signal and the phase voltage command. Here, the synchronous PWM control is performed in a cycle of the power supply cycle.

3レベル電力変換器の主回路構成、上側キャリア信号,下側キャリア信号に基づいたゲート信号の生成方法は、例えば、特許文献1の図1,図2と同様の構成が考えられる。 As a method for generating a gate signal based on the main circuit configuration of the three-level power converter, the upper carrier signal, and the lower carrier signal, for example, the same configuration as in FIGS. 1 and 2 of Patent Document 1 can be considered.

ここで、3レベル電力変換器の主回路構成の一例を簡単に説明する。3レベル電力変換器は、直列接続された正側コンデンサ(特許文献1では符号1a)と負側コンデンサ(特許文献1では符号1b)とを備える。 Here, an example of the main circuit configuration of the three-level power converter will be briefly described. The three-level power converter includes a positive-side capacitor (reference numeral 1a in Patent Document 1) and a negative-side capacitor (reference numeral 1b in Patent Document 1) connected in series.

正側コンデンサの一端と負側コンデンサの他端との間には上アームスイッチング素子(特許文献1では符号2a)と下アームスイッチング素子(特許文献1では符号2b)が直列接続される。上アームスイッチング素子と下アームスイッチング素子にはそれぞれダイオード素子が逆並列接続される。 An upper arm switching element (reference numeral 2a in Patent Document 1) and a lower arm switching element (reference numeral 2b in Patent Document 1) are connected in series between one end of the positive side capacitor and the other end of the negative side capacitor. Diode elements are connected in anti-parallel to the upper arm switching element and the lower arm switching element, respectively.

正側コンデンサと負側コンデンサの接続点と、上アームスイッチング素子と下アームスイッチング素子の接続点との間には、双方向スイッチ(特許文献1では符号3)が接続される。この双方向スイッチは2つの半導体スイッチング素子が逆並列接続されて構成される。上アームスイッチング素子と下アームスイッチング素子と双方向スイッチの接続点はリアクトル等を介して負荷に接続される。 A bidirectional switch (reference numeral 3 in Patent Document 1) is connected between the connection point between the positive side capacitor and the negative side capacitor and the connection point between the upper arm switching element and the lower arm switching element. This bidirectional switch is configured by connecting two semiconductor switching elements in antiparallel. The connection point between the upper arm switching element, the lower arm switching element, and the bidirectional switch is connected to the load via a reactor or the like.

制御部は、上アームスイッチング素子と下アームスイッチング素子と双方向スイッチの2つの半導体スイッチング素子のゲートに入力されるゲート信号を生成する。 The control unit generates a gate signal input to the gates of two semiconductor switching elements, an upper arm switching element, a lower arm switching element, and a bidirectional switch.

具体的に、制御部は、相電圧指令と上側キャリア信号とを比較し、相電圧指令が上側キャリア信号よりも大きい期間は上アームスイッチング素子のゲート信号をhighとし、双方向スイッチの一方の半導体スイッチング素子(特許文献1では符号3a)をlowとする。また、相電圧指令が上側キャリア信号よりも小さい期間は上アームスイッチング素子のゲート信号をlowとし、双方向スイッチの一方の半導体スイッチング素子をhighとする。 Specifically, the control unit compares the phase voltage command with the upper carrier signal, sets the gate signal of the upper arm switching element to high during the period when the phase voltage command is larger than the upper carrier signal, and sets one semiconductor of the bidirectional switch. The switching element (reference numeral 3a in Patent Document 1) is defined as low. Further, during the period when the phase voltage command is smaller than the upper carrier signal, the gate signal of the upper arm switching element is set to low, and one of the semiconductor switching elements of the bidirectional switch is set to high.

なお、上アームスイッチング素子と双方向スイッチの一方の半導体スイッチング素子がスイッチングしている期間(相電圧指令の第1半周期)は、下アームスイッチング素子はlowに固定すると共に、双方向スイッチの他方の半導体スイッチング素子(特許文献1では符号3b)はhighに固定する。 During the period during which one of the semiconductor switching elements of the upper arm switching element and the bidirectional switch is switching (the first half cycle of the phase voltage command), the lower arm switching element is fixed to low and the other of the bidirectional switches. The semiconductor switching element (reference numeral 3b in Patent Document 1) is fixed to high.

また、制御部は、相電圧指令と下側キャリア信号とを比較し、相電圧指令が下側キャリア信号よりも小さい期間は下アームスイッチング素子のゲート信号をhighとし、双方向スイッチの他方の半導体スイッチング素子をlowとする。また、相電圧指令が下側キャリア信号よりも小さい期間は下アームスイッチング素子のゲート信号をlowとし、双方向スイッチの他方の半導体スイッチング素子をhighとする。 Further, the control unit compares the phase voltage command with the lower carrier signal, sets the gate signal of the lower arm switching element to high during the period when the phase voltage command is smaller than the lower carrier signal, and sets the other semiconductor of the bidirectional switch to high. The switching element is low. Further, during the period when the phase voltage command is smaller than the lower carrier signal, the gate signal of the lower arm switching element is set to low, and the other semiconductor switching element of the bidirectional switch is set to high.

なお、下アームスイッチング素子と双方向スイッチの他方の半導体スイッチング素子がスイッチングしている期間(相電圧指令の第2半周期)は、上アームスイッチング素子はlowに固定すると共に、双方向スイッチの一方の半導体スイッチング素子はhighに固定する。 During the period during which the lower arm switching element and the other semiconductor switching element of the bidirectional switch are switching (the second half cycle of the phase voltage command), the upper arm switching element is fixed to low and one of the bidirectional switches is used. The semiconductor switching element of is fixed to high.

以上、3レベル電力変換器の主回路構成の一例とそのゲート信号の生成方法の一例について説明したが、3レベル電力変換器の主回路は他の構成でもよく、ゲート信号の生成方法は2つの上側キャリア信号,下側キャリア信号に基づいてゲート信号を生成する方法であれば他の方法でもよい。 Although an example of the main circuit configuration of the 3-level power converter and an example of the method of generating the gate signal thereof have been described above, the main circuit of the 3-level power converter may have another configuration, and there are two methods of generating the gate signal. Any other method may be used as long as it is a method of generating a gate signal based on the upper carrier signal and the lower carrier signal.

図1にDC/三相AC変換器における内部位相θと三相の相電圧指令sinθ,sin(θ+3π/2),sin(θ-3π/2)、および6倍の周波数成分の正弦波形sin6θを示す。この関係を利用して、相電圧指令がピークとなる6fのタイミングでキャリア周波数を下げ、逆に、ゼロクロス付近ではキャリア周波数を上昇させ、平均キャリア周波数が一定となるようにキャリア周波数を変調させる。 FIG. 1 shows the internal phase θ in a DC / three-phase AC converter, the three-phase voltage commands sinθ, sin (θ + 3π / 2), sin (θ-3π / 2), and the sine waveform sin6θ with a frequency component of 6 times. show. Utilizing this relationship, the carrier frequency is lowered at the timing of 6f when the phase voltage command peaks, and conversely, the carrier frequency is raised near zero cross and the carrier frequency is modulated so that the average carrier frequency becomes constant.

図2(a)は、従来の内部位相θとこれに同期したキャリア周波数ωcarryの関係を示す。内部位相の周波数(傾き)が一定の場合、キャリア周波数ωcarryは一定となる。キャリア周波数ωcarryは、内部位相θの周波数のNcarry(1周期当たりのキャリア周波数)倍とする。 FIG. 2A shows the relationship between the conventional internal phase θ and the carrier frequency ωcarry synchronized with the internal phase θ. When the frequency (slope) of the internal phase is constant, the carrier frequency ωcarry is constant. The carrier frequency ωcarry is Ncarry (carrier frequency per cycle) times the frequency of the internal phase θ.

図2(b)は、従来の同期PWMキャリア生成部1のブロック図の例であり、キャリア信号は3レベル電力変換器で一般に使用される1p.u.から0の振幅範囲の上側キャリア信号carry1と-1p.u.から0の振幅範囲の下側キャリア信号carry2である。 FIG. 2B is an example of a block diagram of a conventional synchronous PWM carrier generation unit 1, and the carrier signal is 1p., Which is generally used in a three-level power converter. u. Upper carrier signals in the amplitude range from 0 to 0 carry1 and -1p. u. The lower carrier signal carry2 in the amplitude range from 0 to 0.

図3(a)は、内部位相θとこれに同期した6倍周波数の正弦波成分を加算した補正内部位相に基づいて生成したキャリア信号の説明図である。図3(a)の左側1段目は三相の相電圧指令を示し、図3(a)の左側2段目は内部位相θの6倍周波数の正弦波成分である位相変調波を示す。図3(a)の左側3段目は内部位相に位相変調波を加算した補正内部位相である。 FIG. 3A is an explanatory diagram of a carrier signal generated based on a corrected internal phase obtained by adding an internal phase θ and a sine wave component having a frequency 6 times synchronized with the internal phase θ. The first stage on the left side of FIG. 3A shows a three-phase phase voltage command, and the second stage on the left side of FIG. 3A shows a phase modulation wave which is a sinusoidal component having a frequency 6 times the internal phase θ. The third stage on the left side of FIG. 3A is the corrected internal phase obtained by adding the phase modulation wave to the internal phase.

この内部位相θに位相変調波を加算した補正内部位相を使用して上側キャリア信号carry1,下側キャリア信号carry2を生成する。その結果、図3(a)右側に示すように、正弦波成分の傾き(dθ/dt)に応じてキャリア周波数が増減する効果が得られる。キャリア周波数は、最大値ωcarry+Δωcarrymax,中間値ωcarry,最小値ωcarry-Δωcarrymaxとする。 The upper carrier signal carry1 and the lower carrier signal carry2 are generated by using the corrected internal phase obtained by adding the phase modulation wave to the internal phase θ. As a result, as shown on the right side of FIG. 3A, the effect of increasing or decreasing the carrier frequency according to the slope (dθ / dt) of the sine wave component can be obtained. The carrier frequency has a maximum value of ωcarry + Δωcarrymax, an intermediate value of ωcarry, and a minimum value of ωcarry−Δωcarrymax.

図3(b)に基づいて、本実施形態の制御部を説明する。第1乗算器8は、内部位相θに6を乗算し、6θを算出する。SIN部は6θに基づいてsin6θを算出する。第2乗算器10は、sin6θにΔωcarrymax/Ncarry6ωratを乗算し、Δωcarrymax/Ncarry6ωratsin(6θ)を算出する。加算器11は、内部位相θに第2乗算器10の出力を加算する。 The control unit of the present embodiment will be described with reference to FIG. 3 (b). The first multiplier 8 multiplies the internal phase θ by 6 to calculate 6θ. The SIN unit calculates sin6θ based on 6θ. The second multiplier 10 multiplies sin6θ by Δωcarrymax / Ncarry6ωrat to calculate Δωcarrymax / Ncarry6ωlatsin (6θ). The adder 11 adds the output of the second multiplier 10 to the internal phase θ.

第3乗算器2は、加算器11の出力に1/2πを乗算する。第4乗算器3は、第3乗算器2の出力に1周期当たりのキャリア数Ncarryを乗算する。第5乗算器4は、第4乗算器3の出力に2を乗算する。第1減算器5は、第5乗算器4の出力から1を減算する。絶対値演算部6は、第1減算器5の出力の絶対値を算出する。第2減算器7は、絶対値演算部6の出力から1を減算する。 The third multiplier 2 multiplies the output of the adder 11 by 1 / 2π. The fourth multiplier 3 multiplies the output of the third multiplier 2 by the number of carriers Ncarry per cycle. The fifth multiplier 4 multiplies the output of the fourth multiplier 3 by 2. The first subtractor 5 subtracts 1 from the output of the fifth multiplier 4. The absolute value calculation unit 6 calculates the absolute value of the output of the first subtractor 5. The second subtractor 7 subtracts 1 from the output of the absolute value calculation unit 6.

絶対値演算部6の出力が上側キャリア信号carry1となり、第2減算器7の出力が下側キャリア信号carry2となる。 The output of the absolute value calculation unit 6 becomes the upper carrier signal carry1, and the output of the second subtractor 7 becomes the lower carrier signal carry2.

正弦波成分は内部位相に同期しているため、一周期あたりのキャリア数は必ず一定(Ncarry)となる。また、内部位相の周期が系統電圧のPLL等によって変動する装置においても、周期あたりのキャリア数を一定に保つことができる。 Since the sine wave component is synchronized with the internal phase, the number of carriers per cycle is always constant (Ncurry). Further, even in a device in which the cycle of the internal phase fluctuates depending on the PLL of the system voltage or the like, the number of carriers per cycle can be kept constant.

正弦波成分加算前の内部位相θと内部位相の周波数ωratの関係を以下の(1)に示す。tは時間である。 The relationship between the internal phase θ before the addition of the sinusoidal component and the frequency ω rat of the internal phase is shown in (1) below. t is time.

Figure 2022084042000004
Figure 2022084042000004

同期PWMでは内部位相θのNcarry倍の周波数のキャリアを生成するため、正弦波成分を加算しない場合のキャリア周波数ωcarryは以下の(2)式で求められる。 Since the synchronous PWM generates carriers having a frequency Ncarry times the internal phase θ, the carrier frequency ωcarry when the sine wave component is not added can be obtained by the following equation (2).

Figure 2022084042000005
Figure 2022084042000005

変調前のキャリア周波数ωcarry(一定)と、変調後(上側キャリア信号,下側キャリア信号)のキャリア周波数ωcarry_m(6fで変化)の最大偏差の大きさをΔωcarrymaxとすると、本実施形態で内部位相に加算する正弦波は次の(3)式で表せる。 Assuming that the magnitude of the maximum deviation between the carrier frequency ωcarry (constant) before modulation and the carrier frequency ωcarry_m (changed at 6f) after modulation (upper carrier signal, lower carrier signal) is Δωcarrymax, the internal phase is set in the present embodiment. The sine wave to be added can be expressed by the following equation (3).

Figure 2022084042000006
Figure 2022084042000006

正弦波を加算した補正内部位相θmは以下の(4)式となる。 The corrected internal phase θm to which the sine wave is added is given by the following equation (4).

Figure 2022084042000007
Figure 2022084042000007

変調後(上側キャリア信号,下側キャリア信号)のキャリア周波数ωcarry_mは、以下の(5)式となる。 The carrier frequency ωcarry_m after modulation (upper carrier signal, lower carrier signal) is given by the following equation (5).

Figure 2022084042000008
Figure 2022084042000008

以上より、内部位相の6倍周波数で±Δωcarrymaxだけキャリア周波数が変化する。 From the above, the carrier frequency changes by ± Δωcarrymax at a frequency 6 times the internal phase.

以上示したように、本実施形態によれば、内部位相から6倍周波数の正弦波波形を生成しているため、内部位相の周期あたりのキャリア数は必ず一定となる。また、内部位相の周波数が電力系統のPLL等によって変動する装置においても、キャリア周波数を変動させながら、周期あたりのキャリア数を一定に保つことができる。 As shown above, according to the present embodiment, since the sinusoidal waveform having a frequency of 6 times is generated from the internal phase, the number of carriers per period of the internal phase is always constant. Further, even in a device in which the frequency of the internal phase fluctuates depending on the PLL of the power system or the like, the number of carriers per cycle can be kept constant while fluctuating the carrier frequency.

このようにして生成した上側,下側キャリア信号carry1,carry2を用いることで、通常ゼロクロス付近ではパルス欠けにより電圧リプルが上昇しTHD(total harmonic distortion)が悪化するが、ゼロクロス付近のキャリア周波数を増加させることで、線間電圧として見たときの等価スイッチング回数を増加させ、出力電圧歪みを改善する。 By using the upper and lower carrier signals carry1 and carry2 generated in this way, the voltage ripple usually rises due to pulse chipping in the vicinity of zero cross, and the THD (total harmonic distortion) deteriorates, but the carrier frequency near zero cross increases. By doing so, the number of equivalent switchings when viewed as a line voltage is increased, and the output voltage distortion is improved.

さらには副次的に、DC/三相AC変換器の出力電流力率が1のときには、相電圧指令値がピークになるときの出力電流の振幅もピークになることから、出力電流振幅がピーク時にキャリア周波数が低下し、出力電流振幅がゼロ時にキャリア周波数が増加することにより、スイッチング損失が低減される。この効果は出力電流力率が1に近いほど高くなる。 Furthermore, as a side effect, when the output current power factor of the DC / three-phase AC converter is 1, the amplitude of the output current when the phase voltage command value peaks also peaks, so that the output current amplitude peaks. Sometimes the carrier frequency drops and the carrier frequency increases when the output current amplitude is zero, thus reducing switching loss. This effect increases as the output current power factor approaches 1.

よって、電力変換装置の出力電圧歪み率を向上させ、かつ、装置の効率を改善させることが可能となる。 Therefore, it is possible to improve the output voltage distortion rate of the power conversion device and improve the efficiency of the device.

以上、本発明において、記載された具体例に対してのみ詳細に説明したが、本発明の技術思想の範囲で多彩な変形および修正が可能であることは、当業者にとって明白なことであり、このような変形および修正が特許請求の範囲に属することは当然のことである。 Although the above description has been made in detail only for the specific examples described in the present invention, it is obvious to those skilled in the art that various modifications and modifications are possible within the scope of the technical idea of the present invention. It goes without saying that such modifications and modifications fall within the scope of the claims.

1…同期キャリア生成部
2…第3乗算器
3…第4乗算器
4…第5乗算器
5…第1減算器
6…絶対値演算部
7…第2減算器
8…第1乗算器
9…SIN部
10…第2乗算器
11…加算器
θ…内部位相
θm…補正内部位相
carry1,carry2…上側キャリア信号,下側キャリア信号
ωcarry…変調前のキャリア周波数
ωcarry_m…変調後(上側キャリア信号,下側キャリア信号)のキャリア周波数
Ncarry…1周期当たりのキャリア数
ωrat…内部位相の周波数
Δωcarrymax…変調後(上側キャリア信号,下側キャリア信号)のキャリア周波数の最大偏差の大きさ
1 ... Synchronous carrier generator 2 ... 3rd multiplier 3 ... 4th multiplier 4 ... 5th multiplier 5 ... 1st multiplier 6 ... Absolute value calculation unit 7 ... 2nd multiplier 8 ... 1st multiplier 9 ... SIN part 10 ... Second multiplier 11 ... Adder θ ... Internal phase θm ... Corrected internal phase carry1, carry2 ... Upper carrier signal, lower carrier signal ωcarry ... Carrier frequency before modulation ωcarry_m ... After modulation (upper carrier signal, lower) Carrier frequency of side carrier signal Ncarry… Number of carriers per cycle ωrat… Frequency of internal phase Δωcarrymax… magnitude of maximum deviation of carrier frequency after modulation (upper carrier signal, lower carrier signal)

Claims (4)

3レベルの電圧を出力する3レベル電力変換器と、
内部位相に前記内部位相の6倍周波数の正弦波成分を加算した補正内部位相に基づいて上側キャリア信号と下側キャリア信号を生成し、前記上側キャリア信号,前記下側キャリア信号と相電圧指令との比較による同期PWM制御に基づいて前記3レベル電力変換器のゲート信号を生成する制御部と、
を備えたことを特徴とする電力変換装置。
A 3-level power converter that outputs a 3-level voltage,
An upper carrier signal and a lower carrier signal are generated based on the corrected internal phase obtained by adding a sinusoidal component having a frequency 6 times the internal phase to the internal phase, and the upper carrier signal, the lower carrier signal, and the phase voltage command are used. The control unit that generates the gate signal of the three-level power converter based on the synchronous PWM control by comparison of
A power conversion device characterized by being equipped with.
前記制御部は、
以下の(4)式により前記補正内部位相を算出する第1加算器と、
前記第1加算器の出力に1/2πを乗算する第3乗算器と、
前記第3乗算器の出力に1周期当たりのキャリア数を乗算する第4乗算器と、
前記第4乗算器の出力に2を乗算する第5乗算器と、
前記第5乗算器の出力から1を減算する第1減算器と、
前記第1減算器の出力の絶対値を算出する絶対値演算部と、
前記絶対値演算部の出力から1を減算する第2減算器と、
を備え、前記絶対値演算部の出力を前記上側キャリア信号とし、前記第2減算器の出力を前記下側キャリア信号とすることを特徴とする請求項1記載の電力変換装置。
Figure 2022084042000009
θm:補正内部位相
ωrat:内部位相の周波数
Ncarry:1周期当たりのキャリア数
Δωcarrymax:変調後(上側キャリア信号,下側キャリア信号)のキャリア周波数の最大偏差の大きさ
t:時間
The control unit
The first adder that calculates the corrected internal phase by the following equation (4),
A third multiplier that multiplies the output of the first adder by 1 / 2π,
A fourth multiplier that multiplies the output of the third multiplier by the number of carriers per cycle,
A fifth multiplier that multiplies the output of the fourth multiplier by 2.
A first subtractor that subtracts 1 from the output of the fifth multiplier,
An absolute value calculation unit that calculates the absolute value of the output of the first subtractor,
A second subtractor that subtracts 1 from the output of the absolute value calculation unit,
The power conversion device according to claim 1, wherein the output of the absolute value calculation unit is used as the upper carrier signal, and the output of the second subtractor is used as the lower carrier signal.
Figure 2022084042000009
θm: Corrected internal phase ωrat: Frequency of internal phase Ncarry: Number of carriers per cycle Δωcarrymax: Size of maximum deviation of carrier frequency after modulation (upper carrier signal, lower carrier signal) t: Time
前記上側キャリア信号,前記下側キャリア信号のキャリア周波数を以下の(5)式とすることを特徴とする請求項1または2記載の電力変換装置。
Figure 2022084042000010
ωcarry_m:変調後(上側キャリア信号,下側キャリア信号)のキャリア周波数
Ncarry:1周期当たりのキャリア数
θm:補正内部位相
ωrat:内部位相の周波数
t:時間
Δωcarrymax:変調後(上側キャリア信号,下側キャリア信号)のキャリア周波数の最大偏差の大きさ
ωcarry:変調前のキャリア信号のキャリア周波数
The power conversion device according to claim 1 or 2, wherein the carrier frequencies of the upper carrier signal and the lower carrier signal are set to the following equation (5).
Figure 2022084042000010
ωcarry_m: Carrier frequency after modulation (upper carrier signal, lower carrier signal) Ncarry: Number of carriers per cycle θm: Corrected internal phase ωrat: Internal phase frequency t: Time Δωcarrymax: After modulation (upper carrier signal, lower side) The magnitude of the maximum deviation of the carrier frequency of the carrier signal) ωcarry: Carrier frequency of the carrier signal before modulation
3レベルの電圧を出力する3レベル電力変換器と、
上側キャリア信号,下側キャリア信号と相電圧指令との比較による同期PWM制御に基づいて前記3レベル電力変換器のゲート信号を生成する制御部と、
を備えた電力変換装置の制御方法であって、
前記制御部は、
内部位相に前記内部位相の6倍周波数の正弦波成分を加算した補正内部位相に基づいて、前記上側キャリア信号と前記下側キャリア信号を生成することを特徴とする電力変換装置の制御方法。
A 3-level power converter that outputs a 3-level voltage,
A control unit that generates a gate signal of the three-level power converter based on synchronous PWM control by comparing the upper carrier signal, the lower carrier signal and the phase voltage command, and
It is a control method of a power conversion device equipped with
The control unit
A control method for a power conversion device, characterized in that an upper carrier signal and a lower carrier signal are generated based on a corrected internal phase in which a sine wave component having a frequency six times the internal phase is added to the internal phase.
JP2020195612A 2020-11-26 2020-11-26 Electric power conversion system and control method therefor Pending JP2022084042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020195612A JP2022084042A (en) 2020-11-26 2020-11-26 Electric power conversion system and control method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020195612A JP2022084042A (en) 2020-11-26 2020-11-26 Electric power conversion system and control method therefor

Publications (1)

Publication Number Publication Date
JP2022084042A true JP2022084042A (en) 2022-06-07

Family

ID=81868302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020195612A Pending JP2022084042A (en) 2020-11-26 2020-11-26 Electric power conversion system and control method therefor

Country Status (1)

Country Link
JP (1) JP2022084042A (en)

Similar Documents

Publication Publication Date Title
JP5734609B2 (en) Inverter device and grid-connected inverter system provided with this inverter device
US6023417A (en) Generalized discontinuous pulse width modulator
Zeng et al. Study of advanced current control strategies for three-phase grid-connected pwm inverters for distributed generation
US20070194627A1 (en) Power converting device
WO2007129456A1 (en) Power converter
JP2011211818A (en) Power conversion equipment, method of converting power, and motor drive system
JP2018088750A (en) Power conversion device
Rivera et al. Predictive control of a current source converter operating with low switching frequency
Welchko et al. Effects and compensation of dead-time and minimum pulse-width limitations in two-level PWM voltage source inverters
JP7367662B2 (en) Power converter and power converter control method
JP3796881B2 (en) 3-level inverter control method and apparatus
JP6305363B2 (en) Inverter device and vehicle
CN108023493B (en) Method and device for reducing common-mode voltage amplitude of silicon carbide inverter
WO2019097835A1 (en) Power conversion device
JP2022084042A (en) Electric power conversion system and control method therefor
JP7316259B2 (en) Controller for three-level power converter
Gulyaev et al. PWM algorithms synthesis
JP2014007854A (en) Power conversion system
JP2019054569A (en) Three-level power converter
Tran et al. An effective carrier-based modulation strategy to reduce the switching losses for indirect matrix converters
Haghi et al. A quasi-Z-source four-switch three-phase inverter with null vector capability
Makhubele et al. Analysis on basics of modulation techniques for AC drive on efficiency improvements
JP2017153277A (en) Self-excited reactive power compensation apparatus
JP4277360B2 (en) 3-level inverter controller
JP6754022B1 (en) Power converter