JP2022083583A - Steel desulfurization agent and method for manufacturing the same - Google Patents

Steel desulfurization agent and method for manufacturing the same Download PDF

Info

Publication number
JP2022083583A
JP2022083583A JP2020194983A JP2020194983A JP2022083583A JP 2022083583 A JP2022083583 A JP 2022083583A JP 2020194983 A JP2020194983 A JP 2020194983A JP 2020194983 A JP2020194983 A JP 2020194983A JP 2022083583 A JP2022083583 A JP 2022083583A
Authority
JP
Japan
Prior art keywords
steel
calcium
desulfurizing agent
magnesium
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020194983A
Other languages
Japanese (ja)
Inventor
知尋 木藤
Tomohiro Kito
貴之 古田
Takayuki Furuta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UEDA SEKKAI SEIZO KK
Original Assignee
UEDA SEKKAI SEIZO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UEDA SEKKAI SEIZO KK filed Critical UEDA SEKKAI SEIZO KK
Priority to JP2020194983A priority Critical patent/JP2022083583A/en
Publication of JP2022083583A publication Critical patent/JP2022083583A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

To provide a steel desulfurization agent capable of accelerating a melting rate to molten metal to improve a desulfurization rate, and a method for manufacturing the same.SOLUTION: A steel desulfurization agent capable of avoiding fluorite by providing a material having calcium oxide (CaO), magnesium oxide (MgO) and chlorination calcium hydroxide [CaCl (OH)] constituted as an essential component. In the content of the essential component, the content of magnesium oxide is 40-80 pts.mass to 100 pts.mass of calcium oxide, and the content of chlorination calcium hydroxide is 2-20 pts.mass. A method for manufacturing the steel desulfurization agent has a method capable of press-molding a mixture including calcium oxide, magnesium oxide and chlorination calcium hydroxide to prepare a granulated material and a method capable of granulating a mixture including a calcium source, a magnesium source and a chlorine source to mold a granulated material and sintering the granulated material.SELECTED DRAWING: None

Description

この発明は、製鉄所の高炉又は電炉から取り出される溶湯(溶銑)中に含まれる硫黄成分等の不純物を溶湯中から取り除いて鉄鋼の品質を向上させるための鉄鋼用脱硫剤及びその製造方法に関する。 The present invention relates to a desulfurizing agent for steel and a method for producing the same, for removing impurities such as sulfur components contained in a molten metal (hot metal) taken out from a blast furnace or an electric furnace of a steel mill from the molten metal to improve the quality of steel.

一般に鉄鋼用脱硫剤として石灰(CaO)を主成分とするものが多く用いられている。この場合、石灰が硫黄(S)と反応する脱硫反応が起き、硫黄は硫化カルシウムとなって取り除かれる。この脱硫反応は、塩基度が高いほど進行しやすいことから、蛍石(CaF)等の成分が配合される。 Generally, as a desulfurizing agent for steel, a desulfurizing agent containing lime (CaO) as a main component is often used. In this case, a desulfurization reaction occurs in which lime reacts with sulfur (S), and sulfur becomes calcium sulfide and is removed. Since this desulfurization reaction is more likely to proceed as the basicity is higher, a component such as fluorite (CaF 2 ) is blended.

この種の鉄鋼用脱硫剤が例えば特許文献1に開示されている。この従来構成の鉄鋼用脱硫剤は、CaO/MgOが1.0~2.1の比率でCaO及びMgOを含むドロマイトを主成分とするものである。この脱硫剤では、ドロマイト中にCaOが極めて微細に存在しているため、蛍石等を配合しなくても良好な脱硫性能を発揮することができる。 This type of desulfurizing agent for steel is disclosed in, for example, Patent Document 1. This conventional desulfurization agent for steel contains dolomite containing CaO and MgO in a ratio of CaO / MgO of 1.0 to 2.1 as a main component. In this desulfurization agent, CaO is present in extremely fine amounts in the dolomite, so that good desulfurization performance can be exhibited without adding fluorite or the like.

特開2003-268429号公報Japanese Patent Application Laid-Open No. 2003-268429

前記特許文献1に記載されている従来構成の脱硫剤においては、ドロマイトを主成分とし、そのドロマイトのCaO/MgOの比率が1.0~2.1であるとともに、その他の成分として石灰等のCaO源やアルミニウム等の脱酸成分が配合されるに過ぎない。このため、溶湯に対する脱硫剤の溶融速度が遅く、溶湯の粘度低下に時間を要し、流動性の向上を図ることが難しい。従って、脱硫反応の進行が遅くなり、その結果同一時間内では脱硫率の低下を招くという欠点があった。 The desulfurizing agent having the conventional structure described in Patent Document 1 contains dolomite as a main component, and the CaO / MgO ratio of the dolomite is 1.0 to 2.1, and other components include lime and the like. It only contains a CaO source and a deoxidizing component such as aluminum. Therefore, the melting rate of the desulfurizing agent with respect to the molten metal is slow, it takes time to reduce the viscosity of the molten metal, and it is difficult to improve the fluidity. Therefore, there is a drawback that the progress of the desulfurization reaction is slowed down, and as a result, the desulfurization rate is lowered within the same time.

そこで、この発明の目的とするところは、溶湯に対する溶融速度を速くできて、脱硫率の向上を図ることができる鉄鋼用脱硫剤及びその製造方法を提供することにある。 Therefore, an object of the present invention is to provide a desulfurizing agent for steel and a method for producing the same, which can increase the melting rate for molten metal and improve the desulfurization rate.

上記の目的を達成するために、この発明の鉄鋼用脱硫剤は、鉄鋼製錬炉内の溶湯に含まれる硫黄分と反応し、その硫黄分の除去を促進する脱硫剤であって、酸化カルシウム(CaO)、酸化マグネシウム(MgO)及び塩化水酸化カルシウム〔CaCl(OH)〕を含有することを特徴とする。 In order to achieve the above object, the desulfurizing agent for steel of the present invention is a desulfurizing agent that reacts with the sulfur content contained in the molten metal in the steel smelting furnace and promotes the removal of the sulfur content, and is calcium oxide. It is characterized by containing (CaO), magnesium oxide (MgO) and calcium chloride [CaCl (OH)].

前記酸化カルシウム100質量部に対して酸化マグネシウムの含有量が40~80質量部であり、塩化水酸化カルシウムの含有量が2~20質量部であることが好ましい。
塩化水酸化マグネシウム〔MgCl(OH)〕を含有することがより好ましい。
It is preferable that the content of magnesium oxide is 40 to 80 parts by mass and the content of calcium chloride is 2 to 20 parts by mass with respect to 100 parts by mass of the calcium oxide.
It is more preferable to contain magnesium chloride [MgCl (OH)].

前記鉄鋼用脱硫剤の第1の製造方法は、酸化カルシウム、酸化マグネシウム及び塩化水酸化カルシウムを含有する混合物を加圧成形して造粒物を調製することを特徴とする。
前記鉄鋼用脱硫剤の第2の製造方法は、カルシウム源、マグネシウム源及び塩素源を含有する混合物を造粒して造粒物を成形し、その造粒物を焼成することを特徴とする。
The first method for producing a desulfurizing agent for steel is characterized in that a mixture containing calcium oxide, magnesium oxide and calcium chloride is pressure-molded to prepare a granulated product.
The second method for producing a desulfurizing agent for steel is characterized in that a mixture containing a calcium source, a magnesium source and a chlorine source is granulated to form a granulated product, and the granulated product is calcined.

前記カルシウム源は炭酸カルシウムであり、前記マグネシウム源は炭酸マグネシウム、水酸化マグネシウム又はドロマイトであり、前記塩素源は塩化カルシウムであることが好ましい。 It is preferable that the calcium source is calcium carbonate, the magnesium source is magnesium carbonate, magnesium hydroxide or dolomite, and the chlorine source is calcium chloride.

前記造粒物を焼成した後、破砕又は粉砕して細粒物とすることが好ましい。 It is preferable that the granulated product is fired and then crushed or crushed to obtain fine granules.

この発明の鉄鋼用脱硫剤によれば、溶湯に対する溶融速度を速くできて、脱硫率の向上を図ることができるという効果を奏する。 According to the desulfurization agent for steel of the present invention, there is an effect that the melting rate with respect to the molten metal can be increased and the desulfurization rate can be improved.

実施例7において、焼成温度と塩素揮発量との関係を示すグラフ。In Example 7, the graph which shows the relationship between the firing temperature and the amount of chlorine volatilization.

以下に、この発明を具体化した実施形態について詳細に説明する。
本実施形態における鉄鋼用脱硫剤は、鉄鋼製錬炉内の溶湯に含まれる硫黄(S)分と反応し、その硫黄分の除去を促進するものである。この鉄鋼用脱硫剤は、酸化カルシウム(CaO)、酸化マグネシウム(MgO)及び塩化水酸化カルシウム〔CaCl(OH)〕を必須成分として含有する。酸化カルシウムと酸化マグネシウムに塩素化合物である塩化水酸化カルシウムを配合することにより、溶湯に対する脱硫剤の溶融性を高めることができるとともに、スラグ(鉱滓)の流動性(粘性)を向上させ、脱硫反応の効率を高めることができる。
Hereinafter, embodiments embodying the present invention will be described in detail.
The desulfurizing agent for steel in the present embodiment reacts with the sulfur (S) component contained in the molten metal in the steel smelting furnace to promote the removal of the sulfur component. This desulfurizing agent for steel contains calcium oxide (CaO), magnesium oxide (MgO) and calcium chloride [CaCl (OH)] as essential components. By blending calcium chloride and calcium chloride, which is a chlorine compound, with calcium oxide and magnesium oxide, the meltability of the desulfurization agent to the molten metal can be increased, and the fluidity (viscosity) of the slag (mineral slag) can be improved, resulting in a desulfurization reaction. Efficiency can be increased.

前記酸化カルシウム及び酸化マグネシウムは、溶湯中の硫黄と直接反応(脱硫反応)し、溶湯から不純物の硫黄を除去することができる。このとき、酸化カルシウム及び酸化マグネシウムは、溶湯中の燐(P)分とも同様に反応することから、燐も除去することができる。塩化水酸化カルシウムは、溶湯に対する酸化カルシウムや酸化マグネシウムの溶融性を高めるとともに、スラグを低粘度化して流動性を改善し、脱硫性能を向上させる。 The calcium oxide and magnesium oxide can directly react with sulfur in the molten metal (desulfurization reaction) to remove the sulfur impurities from the molten metal. At this time, since calcium oxide and magnesium oxide react with the phosphorus (P) component in the molten metal in the same manner, phosphorus can also be removed. Calcium chloride hydroxide enhances the meltability of calcium oxide and magnesium oxide in molten metal, lowers the viscosity of slag, improves fluidity, and improves desulfurization performance.

前記鉄鋼用脱硫剤には塩化水酸化マグネシウム〔MgCl(OH)〕が含まれていることがより好ましい。この塩化水酸化マグネシウムは、溶湯中への酸化カルシウムや酸化マグネシウムの溶融性を高め、スラグの低粘度化により流動性を改善し、脱硫性能を向上させる。このため、塩化水酸化マグネシウムは塩化水酸化カルシウムと相乗的に作用し、脱硫率を向上させることができる。 It is more preferable that the desulfurizing agent for steel contains magnesium chloride [MgCl (OH)]. This magnesium hydroxide enhances the meltability of calcium oxide and magnesium oxide in the molten metal, improves the fluidity by lowering the viscosity of the slag, and improves the desulfurization performance. Therefore, magnesium hydroxide can act synergistically with calcium hydroxide to improve the desulfurization rate.

前記鉄鋼用脱硫剤中の各成分の配合量は、酸化カルシウム100質量部に対して酸化マグネシウムの含有量が40~80質量部であり、塩化水酸化カルシウムの含有量が2~20質量部であることが好ましい。また、塩化水酸化マグネシウムは、酸化カルシウム100質量部に対して1~5質量部であることが好ましい。 The blending amount of each component in the desulfurizing agent for steel is 40 to 80 parts by mass of magnesium oxide and 2 to 20 parts by mass of calcium hydroxide with respect to 100 parts by mass of calcium oxide. It is preferable to have. The magnesium hydroxide hydroxide is preferably 1 to 5 parts by mass with respect to 100 parts by mass of calcium oxide.

前記酸化マグネシウムの含有量が40質量部を下回る場合には、スラグの粘度が高く、流動性の改善が難しくなるとともに、溶湯中での脱硫剤の溶融速度を高めることも難しくなる。その一方、酸化マグネシウムの含有量が80質量部を上回る場合には、スラグが低粘度化し過ぎたり、他の成分の含有量が相対的に減少したりして好ましくない。 When the content of magnesium oxide is less than 40 parts by mass, the viscosity of the slag is high, it is difficult to improve the fluidity, and it is also difficult to increase the melting rate of the desulfurizing agent in the molten metal. On the other hand, when the content of magnesium oxide exceeds 80 parts by mass, the viscosity of the slag becomes too low and the content of other components is relatively reduced, which is not preferable.

前記塩化水酸化カルシウムの含有量が2質量部より少ない場合、酸化カルシウムや酸化マグネシウムとの相乗的な機能を十分に発現することが難しくなって好ましくない。その一方、塩化水酸化カルシウムの含有量が20質量部より多い場合、酸化カルシウムや酸化マグネシウムの含有量が相対的に減少して脱硫剤の本来の機能を発揮することが困難になる。 When the content of the calcium hydroxide hydroxide is less than 2 parts by mass, it is difficult to sufficiently exhibit the synergistic function with calcium oxide and magnesium oxide, which is not preferable. On the other hand, when the content of calcium hydroxide hydroxide is more than 20 parts by mass, the content of calcium oxide and magnesium oxide is relatively reduced, and it becomes difficult to exert the original function of the desulfurizing agent.

前記塩化水酸化マグネシウムの含有量が1質量部未満の場合、塩化水酸化マグネシウムの機能発現が不足するとともに、塩化水酸化カルシウムとの相乗作用も得られず好ましくない。一方、塩化水酸化マグネシウムの含有量が5質量部を超える場合、他の必須成分とのバランスが悪くなるとともに、他成分の含有量が相対的に減少して好ましくない。 When the content of magnesium hydroxide is less than 1 part by mass, the functional expression of magnesium hydroxide is insufficient and synergistic action with calcium chloride cannot be obtained, which is not preferable. On the other hand, when the content of magnesium hydroxide exceeds 5 parts by mass, the balance with other essential components becomes poor and the content of other components is relatively reduced, which is not preferable.

前記鉄鋼用脱硫剤にはカーボン(C)を含有することが好ましい。このカーボンを含有することにより、溶湯に対する脱硫剤の溶融速度を高めることができる。このカーボンの含有量は常法に従って設定されるが、例えば酸化カルシウム100質量部に対して5~15質量部であることが好ましい。 The desulfurizing agent for steel preferably contains carbon (C). By containing this carbon, the melting rate of the desulfurizing agent for the molten metal can be increased. The carbon content is set according to a conventional method, and is preferably 5 to 15 parts by mass with respect to 100 parts by mass of calcium oxide, for example.

また、鉄鋼用脱硫剤にはカルシウムアルミネート(CaO・Al)を含有することが好ましい。このカルシウムアルミネートは融点が低いことから、溶湯に対する脱硫剤の溶融速度を向上させることができる。カルシウムアルミネートの含有量も常法に従って設定されるが、例えば酸化カルシウム100質量部に対して40~60質量部であることが好ましい。 Further, it is preferable that the desulfurizing agent for steel contains calcium aluminate (CaO · Al 2 O 3 ). Since this calcium aluminate has a low melting point, the melting rate of the desulfurizing agent for the molten metal can be improved. The content of calcium aluminate is also set according to a conventional method, but is preferably 40 to 60 parts by mass with respect to 100 parts by mass of calcium oxide, for example.

次に、前述した鉄鋼用脱硫剤の製造方法について説明する。
この鉄鋼用脱硫剤の製造方法としては、2つの製造方法が挙げられる。
鉄鋼用脱硫剤の第1の製造方法は、酸化カルシウム、酸化マグネシウム及び塩化水酸化カルシウムを含有する混合物を加圧成形して造粒物を調製するものである。この製造方法では、必須成分を含有する混合物を加圧成形するだけで鉄鋼用脱硫剤を簡易に製造することができる。
Next, the method for producing the above-mentioned desulfurizing agent for steel will be described.
As a method for producing this desulfurizing agent for steel, there are two production methods.
The first method for producing a desulfurizing agent for steel is to prepare a granulated product by pressure-molding a mixture containing calcium oxide, magnesium oxide and calcium chloride. In this production method, a desulfurizing agent for steel can be easily produced only by pressure-molding a mixture containing essential components.

この場合、混合物中の各成分の配合量は、前記鉄鋼用脱硫剤における各成分の含有量が適用される。加圧成形は常法に従って行われ、得られる造粒物の平均粒子径は例えば5~40mmである。 In this case, the content of each component in the desulfurizing agent for steel is applied to the blending amount of each component in the mixture. The pressure molding is performed according to a conventional method, and the average particle size of the obtained granulated product is, for example, 5 to 40 mm.

鉄鋼用脱硫剤の第2の製造方法は、カルシウム源、マグネシウム源及び塩素源を含有する混合物を造粒して造粒物を成形し、その造粒物を焼成するものである。前記カルシウム源としては炭酸カルシウムであり、マグネシウム源としては炭酸マグネシウム、水酸化マグネシウム又はドロマイトであり、塩素源としては塩化カルシウムが好ましい。焼成温度は900~1200℃の範囲が好ましく、900~1100℃の範囲がより好ましい。 The second method for producing a desulfurizing agent for steel is to granulate a mixture containing a calcium source, a magnesium source and a chlorine source to form a granulated product, and then calcin the granulated product. The calcium source is calcium carbonate, the magnesium source is magnesium carbonate, magnesium hydroxide or dolomite, and the chlorine source is preferably calcium chloride. The firing temperature is preferably in the range of 900 to 1200 ° C, more preferably in the range of 900 to 1100 ° C.

焼成温度が900℃未満ではカルシウム源から酸化カルシウムを生成することが難しく、1200℃を超えると塩素揮発量が増大して塩化水酸化カルシウムの生成量が低下して好ましくない。この製造方法では、焼成後に必須成分として酸化カルシウム、酸化マグネシウム及び塩化水酸化カルシウムが生成するほか、所望成分として塩化水酸化マグネシウム等が生成する。 If the firing temperature is less than 900 ° C, it is difficult to generate calcium oxide from the calcium source, and if it exceeds 1200 ° C, the amount of chlorine volatilized increases and the amount of calcium chloride produced decreases, which is not preferable. In this production method, calcium oxide, magnesium oxide and calcium chloride are produced as essential components after firing, and magnesium chloride and the like are produced as desired components.

前記造粒物を焼成した後には、破砕又は粉砕して細粒物を形成することが好ましい。このようにして得られる鉄鋼用脱硫剤の細粒物は、溶湯に対する鉄鋼用脱硫剤の溶融を促し、溶湯の流動性を改善し、脱硫率を高めることができる。該細粒物の平均粒子径は1mm未満であることが望ましい。 After firing the granulated product, it is preferable to crush or pulverize the granulated product to form fine granules. The fine granules of the desulfurization agent for steel obtained in this manner can promote the melting of the desulfurization agent for steel with respect to the molten metal, improve the fluidity of the molten metal, and increase the desulfurization rate. The average particle size of the fine particles is preferably less than 1 mm.

次に、前記のように構成された鉄鋼用脱硫剤について作用を説明する。
さて、鉄鋼製錬炉内の溶湯に含まれる硫黄分を取り除く場合には、溶湯に対して所定量の鉄鋼用脱硫剤を添加して撹拌する。このとき、鉄鋼用脱硫剤中には必須成分として酸化カルシウム、酸化マグネシウム及び塩化水酸化カルシウムが含まれている。
Next, the action of the desulfurizing agent for steel configured as described above will be described.
When removing the sulfur content in the molten metal in the steel smelting furnace, a predetermined amount of desulfurizing agent for steel is added to the molten metal and stirred. At this time, the desulfurizing agent for steel contains calcium oxide, magnesium oxide and calcium chloride as essential components.

このため、酸化カルシウム及び酸化マグネシウムが溶湯中の硫黄と反応する脱硫反応が起き、硫黄は硫化カルシウムや硫化マグネシウムとなって取り除かれる。このとき、鉄鋼用脱硫剤には塩化水酸化カルシウムが含まれていることから、溶湯に対する酸化カルシウムや酸化マグネシウムの溶融性が高められ、酸化カルシウム及び酸化マグネシウムの機能が迅速かつ有効に発現される。加えて、塩化水酸化カルシウムはスラグを低粘度化してその流動性を改善することができる。その結果、鉄鋼用脱硫剤の脱硫性能は一段と向上する。 Therefore, a desulfurization reaction occurs in which calcium oxide and magnesium oxide react with sulfur in the molten metal, and sulfur is removed as calcium sulfide and magnesium sulfide. At this time, since the desulfurizing agent for steel contains calcium chloride, the meltability of calcium oxide and magnesium oxide in the molten metal is enhanced, and the functions of calcium oxide and magnesium oxide are rapidly and effectively exhibited. .. In addition, calcium chloride can reduce the viscosity of slag and improve its fluidity. As a result, the desulfurization performance of the desulfurization agent for steel is further improved.

従って、この実施形態によれば、以下のような効果を得ることができる。
(1)この実施形態の鉄鋼用脱硫剤は、酸化カルシウム、酸化マグネシウム及び塩化水酸化カルシウムを必須成分(有効成分)として含有する。このため、酸化カルシウム及び酸化マグネシウムが溶湯中の硫黄等と反応する脱硫反応が進行するとともに、塩化水酸化カルシウムによりその脱硫反応の進行が促進される。
Therefore, according to this embodiment, the following effects can be obtained.
(1) The desulfurizing agent for steel of this embodiment contains calcium oxide, magnesium oxide and calcium chloride as essential components (active ingredients). Therefore, the desulfurization reaction in which calcium oxide and magnesium oxide react with sulfur and the like in the molten metal proceeds, and the progress of the desulfurization reaction is promoted by calcium chloride.

従って、実施形態の鉄鋼用脱硫剤によれば、溶湯に対する溶融速度を早くできて、脱硫率の向上を図ることができる。加えて、この鉄鋼用脱硫剤はフッ素を含有しないことにより、脱硫又は脱リン後のスラグからフッ素を溶出することがなく、環境汚染を回避することができる。 Therefore, according to the desulfurization agent for steel of the embodiment, the melting rate with respect to the molten metal can be increased, and the desulfurization rate can be improved. In addition, since this desulfurizing agent for steel does not contain fluorine, fluorine is not eluted from the slag after desulfurization or dephosphorization, and environmental pollution can be avoided.

(2)前記酸化カルシウム100質量部に対して酸化マグネシウムの含有量が40~80質量部であり、塩化水酸化カルシウムの含有量が2~20質量部である。このため、各必須成分の機能をバランス良く発揮することができ、脱硫率を高めることができる。 (2) The content of magnesium oxide is 40 to 80 parts by mass and the content of calcium chloride is 2 to 20 parts by mass with respect to 100 parts by mass of the calcium oxide. Therefore, the functions of each essential component can be exhibited in a well-balanced manner, and the desulfurization rate can be increased.

(3)前記鉄鋼用脱硫剤は、塩化水酸化マグネシウム〔MgCl(OH)〕を含有する。この場合、塩化水酸化マグネシウムが塩化水酸化カルシウムと相乗的に働いて、溶湯中への酸化カルシウムや酸化マグネシウムの溶融性を一層高め、スラグを低粘度化して流動性をさらに改善でき、脱硫性能の一層の向上を図ることができる。 (3) The desulfurizing agent for steel contains magnesium chloride [MgCl (OH)]. In this case, magnesium hydroxide works synergistically with calcium hydroxide, further increasing the meltability of calcium oxide and magnesium oxide in the molten metal, lowering the viscosity of the slag and further improving the fluidity, and desulfurization performance. Can be further improved.

(4)前記鉄鋼用脱硫剤の第1の製造方法は、酸化カルシウム、酸化マグネシウム及び塩化水酸化カルシウムを含有する混合物を加圧成形して造粒物を調製するものである。この製造方法によれば、焼成を行うことなく、加圧成形のみにより鉄鋼用脱硫剤を簡易に製造することができる。 (4) The first method for producing a desulfurizing agent for steel is to prepare a granulated product by pressure-molding a mixture containing calcium oxide, magnesium oxide and calcium chloride. According to this manufacturing method, a desulfurizing agent for steel can be easily manufactured only by pressure forming without firing.

(5)また、鉄鋼用脱硫剤の第2の製造方法は、カルシウム源、マグネシウム源及び塩素源を含有する混合物を造粒して造粒物を成形し、その造粒物を焼成するものである。この製造方法によれば、焼成により鉄鋼用脱硫剤の必須成分を生成させることができ、その必須成分を含む造粒物を得ることができる。 (5) The second method for producing a desulfurizing agent for steel is to granulate a mixture containing a calcium source, a magnesium source and a chlorine source to form a granulated product, and then calcin the granulated product. be. According to this production method, an essential component of a desulfurizing agent for steel can be produced by firing, and a granulated product containing the essential component can be obtained.

(6)前記カルシウム源は炭酸カルシウムであり、前記マグネシウム源は炭酸マグネシウム、水酸化マグネシウム又はドロマイトであり、前記塩素源は塩化カルシウムである。この場合には、焼成後に鉄鋼用脱硫剤の必須成分である酸化カルシウム、酸化マグネシウム及び塩化水酸化カルシウムの生成率を高めることができる。 (6) The calcium source is calcium carbonate, the magnesium source is magnesium carbonate, magnesium hydroxide or dolomite, and the chlorine source is calcium chloride. In this case, it is possible to increase the production rates of calcium oxide, magnesium oxide and calcium chloride, which are essential components of the desulfurizing agent for steel after firing.

(7)前記後者の製造方法において、前記造粒物を焼成した後、破砕又は粉砕して細粒物とした。この場合、鉄鋼用脱硫剤の細粒物により、脱硫性能の向上を図ることができる。 (7) In the latter production method, the granulated product was fired and then crushed or crushed to obtain fine granules. In this case, the desulfurization performance can be improved by using fine particles of the desulfurization agent for steel.

以下、実施例、比較例及び対照例を挙げて前記実施形態をさらに具体的に説明する。なお、以下の各例において、部は質量部を表す。
(実施例1)
炭酸カルシウム71部に対して炭酸マグネシウム26部及び塩化カルシウム3部を混合し、常法によりプレス成形して、平均粒子径が5~40mmの造粒物を得た。この造粒物を1050℃で焼成して、平均粒子径が5~40mmの造粒物として鉄鋼用脱硫剤を調製した。得られた鉄鋼用脱硫剤の組成をX線回折によって分析し、その結果を表1に示した。
Hereinafter, the embodiment will be described in more detail with reference to Examples, Comparative Examples, and Control Examples. In each of the following examples, the part represents a mass part.
(Example 1)
26 parts of magnesium carbonate and 3 parts of calcium chloride were mixed with 71 parts of calcium carbonate and press-molded by a conventional method to obtain granulated products having an average particle size of 5 to 40 mm. This granulated product was calcined at 1050 ° C. to prepare a desulfurizing agent for steel as a granulated product having an average particle size of 5 to 40 mm. The composition of the obtained desulfurization agent for steel was analyzed by X-ray diffraction, and the results are shown in Table 1.

(実施例2)
炭酸カルシウム53部に対して炭酸マグネシウム40部及び塩化カルシウム7部を混合し、常法によりプレス成形して、平均粒子径が5~40mmの造粒物を得た。この造粒物を1050℃で焼成して、平均粒子径が5~40mmの造粒物として鉄鋼用脱硫剤を調製した。得られた鉄鋼用脱硫剤の組成をX線回折によって分析し、その結果を表1に示した。
(Example 2)
40 parts of magnesium carbonate and 7 parts of calcium chloride were mixed with 53 parts of calcium carbonate and press-molded by a conventional method to obtain granulated products having an average particle size of 5 to 40 mm. This granulated product was fired at 1050 ° C. to prepare a desulfurizing agent for steel as a granulated product having an average particle size of 5 to 40 mm. The composition of the obtained desulfurization agent for steel was analyzed by X-ray diffraction, and the results are shown in Table 1.

(実施例3)
酸化カルシウム65部に対して酸化マグネシウム30部及び塩化水酸化カルシウム5部を混合した後、常法によりプレス成形して、平均粒子径が5~40mmの造粒物として鉄鋼用脱硫剤を調製した。
(Example 3)
After mixing 30 parts of magnesium oxide and 5 parts of calcium chloride with 65 parts of calcium oxide, press molding was performed by a conventional method to prepare a desulfurizing agent for steel as a granulated product having an average particle size of 5 to 40 mm. ..

(実施例4)
実施例1で得られた鉄鋼用脱硫剤を粉砕し、細粒化して平均粒子径が1mm未満となる細粒物として実施例4の鉄鋼用脱硫剤を調整した。
(Example 4)
The desulfurizing agent for steel obtained in Example 1 was pulverized and finely divided to prepare the desulfurizing agent for steel of Example 4 as fine particles having an average particle size of less than 1 mm.

(実施例5)
実施例1で得られた鉄鋼用脱硫剤に、平均粒子径が5mm未満となるカーボン粒状品を5部混合して実施例5の鉄鋼用脱硫剤を調整した。
(Example 5)
The steel desulfurizing agent of Example 5 was prepared by mixing 5 parts of a carbon granular product having an average particle size of less than 5 mm with the steel desulfurizing agent obtained in Example 1.

(実施例6)
実施例1で得られた鉄鋼用脱硫剤に、平均粒子径が5mm未満となるカルシウムアルミネート粒状品を30部混合して実施例6の鉄鋼用脱硫剤を調整した。
(Example 6)
30 parts of calcium aluminate granular product having an average particle size of less than 5 mm was mixed with the desulfurizing agent for steel obtained in Example 1 to prepare the desulfurizing agent for steel of Example 6.

(比較例1)
炭酸カルシウム90部に対して塩化カルシウム10部を混合し、常法によりプレス成形して造粒物を得た。この造粒物を1050℃で焼成して比較例1の鉄鋼用脱硫剤を調整した。この鉄鋼用脱硫剤の組成をX線回折により分析し、結果を表2に示した。
(Comparative Example 1)
10 parts of calcium chloride was mixed with 90 parts of calcium carbonate and press-molded by a conventional method to obtain granulated products. This granulated product was calcined at 1050 ° C. to prepare a desulfurizing agent for steel of Comparative Example 1. The composition of this desulfurizing agent for steel was analyzed by X-ray diffraction, and the results are shown in Table 2.

(比較例2)
酸化カルシウム95部に対してカーボン5部を混合した後、常法によりプレス成形して比較例2の鉄鋼用脱硫剤を調整した。
(Comparative Example 2)
After mixing 5 parts of carbon with 95 parts of calcium oxide, the desulfurizing agent for steel of Comparative Example 2 was prepared by press molding by a conventional method.

(比較例3)
酸化カルシウム70部に対してカルシウムアルミネート粒状品30部を混合し、常法によりプレス成形して比較例3の鉄鋼用脱硫剤を調整した。
(Comparative Example 3)
30 parts of calcium aluminate granular product was mixed with 70 parts of calcium oxide and press-molded by a conventional method to prepare a desulfurizing agent for steel of Comparative Example 3.

(比較例4)
酸化カルシウム65部に対して酸化マグネシウム35部を混合し、常法によりプレス成形して比較例4の鉄鋼用脱硫剤を調整した。
(Comparative Example 4)
35 parts of magnesium oxide was mixed with 65 parts of calcium oxide and press-molded by a conventional method to prepare a desulfurizing agent for steel of Comparative Example 4.

(対照例1)
酸化カルシウム85部に対してフッ化カルシウム粉を15部混合し、常法によりプレス成形して対照例1の鉄鋼用脱硫剤を調製した。
(Control Example 1)
15 parts of calcium fluoride powder was mixed with 85 parts of calcium oxide and press-molded by a conventional method to prepare a desulfurizing agent for steel of Control Example 1.

Figure 2022083583000001
Figure 2022083583000001

Figure 2022083583000002
次に、前記実施例1~6、比較例1~4及び対照例1の鉄鋼用脱硫剤をルツボ(ルテニウム20質量%を含む白金製)に入れ、その中にアルミナ及びシリカよりなるスラグ成分を加え、1600℃に加熱した。この加熱によりスラグ成分と鉄鋼用脱硫剤とが溶融して液状になった後、粘度測定用のロッド(ルテニウム20質量%を含む白金製)を挿入して高温スラグの粘度(mPa・s)を測定した。その結果を表3に示した。
Figure 2022083583000002
Next, the desulfurizing agents for steel of Examples 1 to 6, Comparative Examples 1 to 4 and Control Example 1 were placed in a crucible (made of platinum containing 20% by mass of ruthenium), and a slag component composed of alumina and silica was contained therein. In addition, it was heated to 1600 ° C. After the slug component and the desulfurizing agent for steel are melted and liquefied by this heating, a rod for measuring viscosity (made of platinum containing 20% by mass of ruthenium) is inserted to determine the viscosity (mPa · s) of the high-temperature slug. It was measured. The results are shown in Table 3.

Figure 2022083583000003
表3の結果より、実施例1~4の鉄鋼用脱硫剤では高温スラグの粘度がいずれも60mPa・sであり、鉄鋼メーカーで使用されている対照例1の鉄鋼用脱硫剤を用いた高温スラグの粘度と同じであって同等の流動性を示した。実施例5及び6では高温スラグの粘度が実施例1~4よりも上昇したが、従来の鉄鋼用脱硫剤を用いた比較例1~4に比べれば明らかに低粘度であった。
Figure 2022083583000003
From the results in Table 3, the high-temperature slags of the desulfurizing agents for steel of Examples 1 to 4 all had a viscosity of 60 mPa · s, and the high-temperature slag using the desulfurizing agent for steel of Control Example 1 used by steel makers. The viscosity was the same as that of the above, and the fluidity was equivalent. In Examples 5 and 6, the viscosity of the high-temperature slag was higher than in Examples 1 to 4, but the viscosity was clearly lower than that in Comparative Examples 1 to 4 using the conventional desulfurization agent for steel.

次に、前記実施例1~6、比較例1~4及び対照例1の鉄鋼用脱硫剤について、高周波誘導炉を使用して脱硫率(%)を測定した。
すなわち、高周波誘導炉内に鉄源50kgと、硫黄含有率が0.1質量%となるように硫化鉄とを混合して溶解させ、溶湯を得た。この溶湯に前記鉄鋼用脱硫剤1kgとスラグ成分とを投入し、15分間撹拌した。その後に溶湯の一部を採取し、硫黄含有率を分析した。そして、下記の計算式に基づいて脱硫率(%)を算出した。その結果を表4に示した。
Next, the desulfurization rate (%) of the steel desulfurization agents of Examples 1 to 6, Comparative Examples 1 to 4 and Control Example 1 was measured using a high-frequency induction furnace.
That is, 50 kg of an iron source and iron sulfide were mixed and dissolved in a high-frequency induction furnace so that the sulfur content was 0.1% by mass to obtain a molten metal. 1 kg of the desulfurizing agent for steel and a slag component were added to this molten metal, and the mixture was stirred for 15 minutes. After that, a part of the molten metal was collected and the sulfur content was analyzed. Then, the desulfurization rate (%) was calculated based on the following formula. The results are shown in Table 4.

脱硫率(%)=〔(試験前の硫黄含有率-試験後の硫黄含有率)/試験前の硫黄含有率〕×100 Desulfurization rate (%) = [(Sulfur content before test-Sulfur content after test) / Sulfur content before test] x 100

Figure 2022083583000004
表4の結果より、実施例1~4の鉄鋼用脱硫剤の場合には脱硫率が70%前後の高い値を示し、対照例1の鉄鋼用脱硫剤の場合における脱硫率に近い値を示した。すなわち、フッ素を含まない構成でもフッ素含有脱硫剤と同等の脱硫性能を有することが示された。実施例5及び6の鉄鋼用脱硫剤の場合には、脱硫率が実施例1~4の脱硫率に比べて若干低い値を示したが、従来の鉄鋼用脱硫剤を用いた比較例1~4の脱硫率に比べれば十分に高い値であった。
Figure 2022083583000004
From the results in Table 4, in the case of the desulfurization agents for steel of Examples 1 to 4, the desulfurization rate showed a high value of about 70%, and the value close to the desulfurization rate in the case of the desulfurization agent for steel of Control Example 1 was shown. rice field. That is, it was shown that even in the configuration containing no fluorine, it has the same desulfurization performance as the fluorine-containing desulfurization agent. In the case of the desulfurization agents for steel of Examples 5 and 6, the desulfurization rate was slightly lower than the desulfurization rates of Examples 1 to 4, but Comparative Examples 1 to 1 using the conventional desulfurization agents for steel. It was a sufficiently high value as compared with the desulfurization rate of 4.

次に、前記実施例1~6、比較例1~4及び対照例1の鉄鋼用脱硫剤について脱硫速度を測定した。
すなわち、前記脱硫率(%)の測定において、溶湯に鉄鋼用脱硫剤を投入し、その5分後、10分後及び15分後における硫黄含有率を測定し、前記計算式に基づいて脱硫率(%)を算出した。その結果を表5に示した。
Next, the desulfurization rates of the steel desulfurization agents of Examples 1 to 6, Comparative Examples 1 to 4 and Control Example 1 were measured.
That is, in the measurement of the desulfurization rate (%), the desulfurization agent for steel was added to the molten metal, the sulfur content was measured 5 minutes, 10 minutes and 15 minutes after that, and the desulfurization rate was measured based on the above formula. (%) Was calculated. The results are shown in Table 5.

Figure 2022083583000005
表5の結果より、実施例1、2及び4における鉄鋼用脱硫剤の溶融速度が速く、初期段階から高い脱硫率を示し、脱硫速度が速く、対照例1における初期段階の脱硫率及び脱硫速度に近い値を示した。実施例3、5及び6における鉄鋼用脱硫剤の脱硫速度は、実施例1、2及び4の場合に比べれば遅いが、比較例1~4に比べれば十分に速い脱硫速度を示した。
Figure 2022083583000005
From the results in Table 5, the melting rate of the desulfurization agent for steel in Examples 1, 2 and 4 was high, the desulfurization rate was high from the initial stage, the desulfurization rate was high, and the desulfurization rate and desulfurization rate in the initial stage in Control Example 1 were high. It showed a value close to. The desulfurization rate of the desulfurization agent for steel in Examples 3, 5 and 6 was slower than that of Examples 1, 2 and 4, but showed a sufficiently high desulfurization rate as compared with Comparative Examples 1 to 4.

前記特許文献1に記載されているような酸化カルシウムと酸化マグネシウムを含む鉄鋼用脱硫剤(ドロマイトに相当)である比較例4では、高温スラグの粘度が高くなり、よって脱硫率が低くなり、脱硫速度も遅い結果が示された。従って、本発明の鉄鋼用脱硫剤は、特許文献1に記載された従来構成の鉄鋼用脱硫剤に比べて極めて良好な脱硫性能を発揮できることが明らかになった。 In Comparative Example 4, which is a desulfurization agent for steel containing calcium oxide and magnesium oxide (corresponding to dolomite) as described in Patent Document 1, the viscosity of the high-temperature slag is high, and thus the desulfurization rate is low, resulting in desulfurization. The results showed that the speed was also slow. Therefore, it has been clarified that the desulfurization agent for steel of the present invention can exhibit extremely good desulfurization performance as compared with the desulfurization agent for steel having the conventional structure described in Patent Document 1.

(実施例7)
前記実施例1の鉄鋼用脱硫剤について、焼成温度950℃、1050℃、1150℃、1450℃と、各焼成温度における焼成後の鉄鋼用脱硫剤中の塩素(Cl)含有率(質量%)を測定することにより、各焼成温度における塩素揮発量(質量%)を算出した。そして、焼成温度(℃)と塩素揮発量(質量%)との関係を図1に示した。
(Example 7)
Regarding the steel desulfurizing agent of Example 1, the calcination temperature is 950 ° C., 1050 ° C., 1150 ° C., 1450 ° C., and the chlorine (Cl) content (mass%) in the calcination agent for steel after calcination at each firing temperature is determined. By measuring, the amount of chlorine volatilization (mass%) at each firing temperature was calculated. Then, the relationship between the firing temperature (° C.) and the amount of chlorine volatilization (mass%) is shown in FIG.

図1に示したように、焼成温度が1100℃以上では塩素揮発量が急激に増大した。これは、塩化水酸化カルシウムが分解して塩素が揮発していると考えられることから、有効成分である塩化水酸化カルシウムを含有させるためには、焼成温度は1100℃以下であることが望ましい。また、炭酸カルシウムが酸化カルシウムに化学変化するための温度は900℃以上であることが好ましい。従って、焼成温度は900~1100℃の範囲であることが好ましい。 As shown in FIG. 1, when the firing temperature was 1100 ° C. or higher, the amount of chlorine volatilized increased sharply. This is because it is considered that calcium chloride is decomposed and chlorine is volatilized. Therefore, it is desirable that the firing temperature is 1100 ° C. or lower in order to contain calcium chloride, which is an active ingredient. Further, the temperature for chemically changing calcium carbonate to calcium oxide is preferably 900 ° C. or higher. Therefore, the firing temperature is preferably in the range of 900 to 1100 ° C.

なお、前記実施形態は、次のように変更して具体化することも可能である。
・前記鉄鋼用脱硫剤の第1の製造方法において、原料として塩化水酸化マグネシウムを用い、その塩化水酸化マグネシウムを酸化カルシウム、酸化マグネシウム及び塩化水酸化カルシウムに混合するように構成してもよい。
The embodiment can be modified and embodied as follows.
-In the first method for producing a desulfurizing agent for steel, magnesium chloride may be used as a raw material, and the magnesium hydroxide may be mixed with calcium oxide, magnesium oxide and calcium chloride.

・前記鉄鋼用脱硫剤の各必須成分の含有量を、溶湯中の硫黄成分との反応に加えて燐成分との反応をも考慮して総合的に設定してもよい。
・前記鉄鋼用脱硫剤の第2の製造方法において、カルシウム源、マグネシウム源又は塩素源は、前記製造方法に示された単一物質に限定されるものではなく、カルシウム、マグネシウム又は塩素を含む物質を複数混合して製造してもよい。
-The content of each essential component of the desulfurization agent for steel may be comprehensively set in consideration of the reaction with the phosphorus component in addition to the reaction with the sulfur component in the molten metal.
-In the second method for producing a desulfurizing agent for steel, the calcium source, magnesium source or chlorine source is not limited to the single substance shown in the production method, but is a substance containing calcium, magnesium or chlorine. May be mixed and manufactured.

・前記実施例6では、実施例1で得られた鉄鋼用脱硫剤に、カルシウムアルミネート粒状品を混合したが、他のアルミニウム系化合物粒状品を混合するようにしてもよい。 -In Example 6, the desulfurizing agent for steel obtained in Example 1 is mixed with a calcium aluminate granular product, but other aluminum-based compound granular products may be mixed.

Claims (7)

鉄鋼製錬炉内の溶湯に含まれる硫黄分と反応し、その硫黄分の除去を促進する脱硫剤であって、
酸化カルシウム(CaO)、酸化マグネシウム(MgO)及び塩化水酸化カルシウム〔CaCl(OH)〕を含有することを特徴とする鉄鋼用脱硫剤。
A desulfurizing agent that reacts with sulfur contained in the molten metal in a steel smelting furnace and promotes the removal of the sulfur.
A desulfurizing agent for steel, which contains calcium oxide (CaO), magnesium oxide (MgO) and calcium chloride [CaCl (OH)].
前記酸化カルシウム100質量部に対して酸化マグネシウムの含有量が40~80質量部であり、塩化水酸化カルシウムの含有量が2~20質量部である請求項1に記載の鉄鋼用脱硫剤。 The desulfurizing agent for steel according to claim 1, wherein the content of magnesium oxide is 40 to 80 parts by mass and the content of calcium chloride is 2 to 20 parts by mass with respect to 100 parts by mass of the calcium oxide. 塩化水酸化マグネシウム〔MgCl(OH)〕を含有する請求項1又は請求項2に記載の鉄鋼用脱硫剤。 The desulfurizing agent for steel according to claim 1 or 2, which contains magnesium chloride [MgCl (OH)]. 請求項1から請求項3のいずれか一項に記載の鉄鋼用脱硫剤の製造方法であって、
酸化カルシウム、酸化マグネシウム及び塩化水酸化カルシウムを含有する混合物を加圧成形して造粒物を調製することを特徴とする鉄鋼用脱硫剤の製造方法。
The method for producing a desulfurizing agent for steel according to any one of claims 1 to 3.
A method for producing a desulfurizing agent for steel, which comprises preparing a granulated product by pressure-molding a mixture containing calcium oxide, magnesium oxide and calcium chloride.
請求項1から請求項3のいずれか一項に記載の鉄鋼用脱硫剤の製造方法であって、
カルシウム源、マグネシウム源及び塩素源を含有する混合物を造粒して造粒物を成形し、その造粒物を焼成することを特徴とする鉄鋼用脱硫剤の製造方法。
The method for producing a desulfurizing agent for steel according to any one of claims 1 to 3.
A method for producing a desulfurizing agent for steel, which comprises granulating a mixture containing a calcium source, a magnesium source and a chlorine source to form a granulated product, and firing the granulated product.
前記カルシウム源は炭酸カルシウムであり、前記マグネシウム源は炭酸マグネシウム、水酸化マグネシウム又はドロマイトであり、前記塩素源は塩化カルシウムである請求項5に記載の鉄鋼用脱硫剤の製造方法。 The method for producing a desulfurizing agent for steel according to claim 5, wherein the calcium source is calcium carbonate, the magnesium source is magnesium carbonate, magnesium hydroxide or dolomite, and the chlorine source is calcium chloride. 前記造粒物を焼成した後、破砕又は粉砕して細粒物とした請求項5又は請求項6に記載の鉄鋼用脱硫剤の製造方法。 The method for producing a desulfurizing agent for steel according to claim 5 or 6, wherein the granulated product is fired and then crushed or crushed into fine particles.
JP2020194983A 2020-11-25 2020-11-25 Steel desulfurization agent and method for manufacturing the same Pending JP2022083583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020194983A JP2022083583A (en) 2020-11-25 2020-11-25 Steel desulfurization agent and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020194983A JP2022083583A (en) 2020-11-25 2020-11-25 Steel desulfurization agent and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2022083583A true JP2022083583A (en) 2022-06-06

Family

ID=81855550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020194983A Pending JP2022083583A (en) 2020-11-25 2020-11-25 Steel desulfurization agent and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2022083583A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115445411A (en) * 2022-07-07 2022-12-09 南京永能新材料有限公司 Solid waste powder desulfurizer for cement kiln and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115445411A (en) * 2022-07-07 2022-12-09 南京永能新材料有限公司 Solid waste powder desulfurizer for cement kiln and preparation method thereof

Similar Documents

Publication Publication Date Title
BR0205667B1 (en) method for manufacturing metal nuggets.
CN101736131B (en) Pre-melted desulfurizing agent for refining molten steel and preparation method thereof
CN101665737A (en) Efficient composite fluxing agent for improving melting characteristic of gasified pulverized coal slag
CN1827794B (en) Refining slag for ultra-pure steel and preparation method thereof
KR100604549B1 (en) Steel refinery flux
KR100759862B1 (en) Steel refinery flux composition of low temperature form
JP2022083583A (en) Steel desulfurization agent and method for manufacturing the same
CN104328278A (en) Slagging agent produced by high-purity vanadium-aluminium alloy and production method
CN103509940B (en) Carbon containing pellet for producing low-sulfur grained iron
CN105779695A (en) Environment-friendly smokeless molten steel refining slag modifier
CN1789444A (en) Method for manufacturing high-alkalinity vanadium titano-sintered ore
KR100732539B1 (en) Steel refinery flux composition containing aluminum and fluorite
KR101465753B1 (en) Calcium Aluminate Based Clinker Composition using Ladle Furnace Slag and Manufacturing Method Thereof
JP2022083582A (en) Steel desulfurization agent and method for manufacturing the same
CN103509910A (en) Molten steel refining fluxing agent and its making method
JP7135770B2 (en) Method for producing sintered ore
JP2711758B2 (en) Manganese sintered ore for steelmaking and refining and its production method
JP2001348610A (en) Slag formation promoter
KR101153887B1 (en) Preparation method for alkaline calciumferrite flux for steelmaking
CN111893248A (en) Refining slagging agent and preparation method and use method thereof
JP2000239057A (en) Production of artificial dolomite
JP2003328022A (en) Desulfurizing agent for molten steel and manufacturing method therefor
WO2002075005A2 (en) Method for the use of electric steel plant slag for self-reducing agglomerates
KR100732540B1 (en) Preparation of steel refinery flux containing aluminum and fluorite
CN102787197A (en) High-efficiency slagging and dephosphorization agent and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240528