JP2022083582A - Steel desulfurization agent and method for manufacturing the same - Google Patents

Steel desulfurization agent and method for manufacturing the same Download PDF

Info

Publication number
JP2022083582A
JP2022083582A JP2020194982A JP2020194982A JP2022083582A JP 2022083582 A JP2022083582 A JP 2022083582A JP 2020194982 A JP2020194982 A JP 2020194982A JP 2020194982 A JP2020194982 A JP 2020194982A JP 2022083582 A JP2022083582 A JP 2022083582A
Authority
JP
Japan
Prior art keywords
steel
desulfurization
aid
slag
magnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020194982A
Other languages
Japanese (ja)
Inventor
知尋 木藤
Tomohiro Kito
貴之 古田
Takayuki Furuta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UEDA SEKKAI SEIZO KK
Original Assignee
UEDA SEKKAI SEIZO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UEDA SEKKAI SEIZO KK filed Critical UEDA SEKKAI SEIZO KK
Priority to JP2020194982A priority Critical patent/JP2022083582A/en
Publication of JP2022083582A publication Critical patent/JP2022083582A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

To provide a steel desulfurization agent capable of reducing the viscosity of slag without using a fluorine compound and improving a desulfurization rate, and a method for manufacturing the same.SOLUTION: A steel desulfurization agent reacting with a sulfur content included in molten metal in a steel refining furnace and used with a calcium oxide in order to promote the removal of the sulfur content includes: magnesium oxide (MgO) as an essential component; and a chlorine based compound melted into slag existing on the surface of molten metal and reducing the viscosity of the slag. The chlorine based compound is a chlorination calcium hydroxide [CaCl(OH)] or a chlorination magnesium hydroxide [MgCl(OH)]; the content of the chlorine based compound is preferably 5-50 pts.mass to 100 pts.mass of magnesium oxide; and silica dioxide is preferably blended in the steel desulfurization agent.SELECTED DRAWING: None

Description

この発明は、製鉄所の高炉又は電炉から取り出される溶湯(溶銑)中に含まれる硫黄成分等の不純物を溶湯中から取り除いて鉄鋼の品質を向上させるために酸化カルシウムとともに使用される鉄鋼用脱硫助剤及びその製造方法に関する。 The present invention is a desulfurization aid for steel used together with calcium oxide to remove impurities such as sulfur components contained in molten metal (hot metal) taken out from a blast furnace or electric furnace of a steel mill from the molten metal to improve the quality of steel. The agent and its manufacturing method.

一般に鉄鋼用脱硫剤として生石灰(CaO)を主成分とするものが多く用いられている。この場合、生石灰が硫黄(S)と反応する脱硫反応が起き、硫黄は硫化カルシウムとなって取り除かれる。この脱硫反応は、塩基度が高いほど進行しやすいことから、蛍石(CaF)等の成分が配合される。 Generally, as a desulfurizing agent for steel, a desulfurizing agent containing quicklime (CaO) as a main component is often used. In this case, a desulfurization reaction occurs in which quicklime reacts with sulfur (S), and sulfur is removed as calcium sulfide. Since this desulfurization reaction is more likely to proceed as the basicity is higher, a component such as fluorite (CaF 2 ) is blended.

この種の鉄鋼用の脱硫剤が例えば特許文献1に開示されている。この従来構成の脱硫剤は、転炉滓10~40質量%に対し、酸化カルシウム(生石灰)が55~85質量%及び蛍石が10質量%以下配合されている。この脱硫剤によれば、スラグの滓化性が高められ、脱硫率が向上する。 A desulfurizing agent for this type of steel is disclosed in, for example, Patent Document 1. This conventional desulfurization agent contains 55 to 85% by mass of calcium oxide (quick lime) and 10% by mass or less of fluorite with respect to 10 to 40% by mass of the converter slag. According to this desulfurization agent, the slag slagging property is enhanced and the desulfurization rate is improved.

特開平10-30115号公報Japanese Unexamined Patent Publication No. 10-30115

前記特許文献1に記載されている従来構成の脱硫剤には蛍石が含まれていることによって脱硫剤の塩基度が高められ、溶融スラグの流動性が良好になって脱硫反応の促進が図られる。その結果、溶湯の脱硫率が実用上有用な程度まで高められる。しかしながら、蛍石はフッ素化合物であり、フッ素原子を有していることから、脱硫後にはスラグ中にフッ素が残存し、スラグの廃棄時や利用時にスラグからフッ素が溶出し、そのフッ素が環境を汚染するという問題があった。このため、蛍石等のフッ素化合物を使用することなく、フッ素化合物を使用したときと同等の脱硫性能が得られる脱硫剤の代替品が求められている。 Since the desulfurizing agent having the conventional structure described in Patent Document 1 contains fluorite, the basicity of the desulfurizing agent is enhanced, the fluidity of the molten slag is improved, and the desulfurization reaction is promoted. Will be. As a result, the desulfurization rate of the molten metal is increased to a practically useful level. However, since fluorite is a fluorine compound and has a fluorine atom, fluorine remains in the slag after desulfurization, and fluorine elutes from the slag when the slag is discarded or used, and the fluorine affects the environment. There was the problem of contamination. Therefore, there is a demand for a substitute for a desulfurizing agent that can obtain the same desulfurization performance as when a fluorine compound is used without using a fluorine compound such as fluorite.

そこで、この発明の目的とするところは、フッ素化合物を用いることなく、スラグの粘度を下げることができて、脱硫率の向上を図ることができる鉄鋼用脱硫助剤及びその製造方法を提供することにある。 Therefore, an object of the present invention is to provide a desulfurization aid for steel and a method for producing the same, which can reduce the viscosity of slag and improve the desulfurization rate without using a fluorine compound. It is in.

上記の目的を達成するために、この発明の鉄鋼用脱硫助剤は、鉄鋼製錬炉内の溶湯に含まれる硫黄分と反応し、その硫黄分の除去を促進するために酸化カルシウムとともに用いられる鉄鋼用脱硫助剤であって、酸化マグネシウム(MgO)及び溶湯の表面に存在するスラグに溶融し、スラグを低粘度化する塩素系化合物を含有することを特徴とする。 In order to achieve the above object, the desulfurization aid for steel of the present invention is used together with calcium oxide to react with sulfur contained in the molten metal in the steel smelting furnace and promote the removal of the sulfur. It is a desulfurization aid for steel, and is characterized by containing magnesium oxide (MgO) and a chlorine-based compound that melts in slag existing on the surface of the molten metal to reduce the viscosity of the slag.

前記塩素系化合物は、塩化水酸化カルシウム〔CaCl(OH)〕又は塩化水酸化マグネシウム〔MgCl(OH)〕であることが好ましい。
前記酸化マグネシウム100質量部に対して塩素系化合物の含有量が5~50質量部であることが好ましい。
The chlorine-based compound is preferably calcium chloride [CaCl (OH)] or magnesium chloride [MgCl (OH)].
The content of the chlorine-based compound is preferably 5 to 50 parts by mass with respect to 100 parts by mass of the magnesium oxide.

二酸化珪素を、酸化マグネシウム100質量部に対して5~20質量部含有することが好ましい。
前記鉄鋼用脱硫助剤の製造方法は、酸化マグネシウム及び溶湯の表面に存在するスラグに溶融し、スラグを低粘度化する塩素系化合物を含有する混合物を加圧成形して造粒物を調製することを特徴とする。
It is preferable that silicon dioxide is contained in an amount of 5 to 20 parts by mass with respect to 100 parts by mass of magnesium oxide.
The method for producing a desulfurization aid for steel is to prepare a granule by press-molding a mixture containing magnesium oxide and a chlorine-based compound that melts into slag existing on the surface of the molten metal to reduce the viscosity of the slag. It is characterized by that.

前記鉄鋼用脱硫助剤の製造方法は、マグネシウム源及び塩素源を含有する混合物を造粒して造粒物を成形し、その造粒物を焼成することを特徴とする。
前記マグネシウム源は炭酸マグネシウム、水酸化マグネシウム又はドロマイトであり、塩素源は塩化カルシウム又は塩化マグネシウムであることが好ましい。
The method for producing a desulfurization aid for steel is characterized in that a mixture containing a magnesium source and a chlorine source is granulated to form a granulated product, and the granulated product is calcined.
The magnesium source is preferably magnesium carbonate, magnesium hydroxide or dolomite, and the chlorine source is preferably calcium chloride or magnesium chloride.

前記造粒物を焼成した後、破砕又は粉砕して平均粒子径が1mm未満の細粒物とすることが好ましい。 It is preferable that the granulated product is fired and then crushed or crushed to obtain fine particles having an average particle size of less than 1 mm.

この発明の鉄鋼用脱硫助剤によれば、フッ素化合物を用いることなく、スラグの粘度を下げることができて、脱硫率の向上を図ることができるという効果を奏する。 According to the desulfurization aid for steel of the present invention, there is an effect that the viscosity of slag can be lowered and the desulfurization rate can be improved without using a fluorine compound.

実施例9について、焼成温度(℃)と脱硫率(%)との関係を示すグラフ。A graph showing the relationship between the firing temperature (° C.) and the desulfurization rate (%) for Example 9. 実施例9について、焼成温度(℃)と塩素揮発量(質量%)との関係を示すグラフ。A graph showing the relationship between the firing temperature (° C.) and the amount of chlorine volatilization (mass%) for Example 9.

以下に、この発明を具体化した実施形態について詳細に説明する。
本実施形態における鉄鋼用脱硫助剤(以下、単に脱硫助剤ともいう)は、鉄鋼製錬炉内の溶湯に含まれる硫黄(S)分と反応し、その硫黄分の除去を促進するために、酸化カルシウム(生石灰、CaO)に配合され、鉄鋼用脱硫剤として使用されるものである。すなわち、この鉄鋼用脱硫助剤は、酸化カルシウムに蛍石が配合された従来構成の鉄鋼用脱硫剤における蛍石の代替品となるものである。
Hereinafter, embodiments embodying the present invention will be described in detail.
The desulfurization aid for steel in the present embodiment (hereinafter, also simply referred to as a desulfurization aid) reacts with the sulfur (S) contained in the molten metal in the steel smelting furnace to promote the removal of the sulfur content. , Calcium oxide (quicklime, CaO), and is used as a desulfurizing agent for steel. That is, this desulfurization aid for steel is a substitute for fluorite in the conventional desulfurization agent for steel in which fluorite is mixed with calcium oxide.

この鉄鋼用脱硫助剤は、酸化マグネシウム(MgO)及び溶湯の表面に存在するスラグ(鉱滓)に溶融し、スラグを低粘度化する塩素系化合物を必須成分として含有する。酸化マグネシウムに塩素系化合物を配合することにより、スラグに対する鉄鋼用脱硫助剤の溶融性を高めることができるとともに、スラグの流動性(粘性)を向上させ、脱硫反応の効率を高めることができる。 This desulfurization aid for steel contains magnesium oxide (MgO) and a chlorine-based compound that melts in slag (mineral slag) existing on the surface of the molten metal to reduce the viscosity of the slag as essential components. By blending a chlorine-based compound with magnesium oxide, the meltability of the desulfurization aid for steel with respect to slag can be enhanced, the fluidity (viscosity) of the slag can be improved, and the efficiency of the desulfurization reaction can be enhanced.

前記酸化マグネシウムは、酸化カルシウムと同様に溶湯中の硫黄と直接反応(脱硫反応)し、溶湯から不純物の硫黄を除去することができる。このとき、酸化マグネシウム及び酸化カルシウムは、溶湯中の燐(P)分とも同様に反応することから、燐も除去することができる。 Similar to calcium oxide, the magnesium oxide directly reacts with sulfur in the molten metal (desulfurization reaction), and the sulfur impurities can be removed from the molten metal. At this time, since magnesium oxide and calcium oxide react with the phosphorus (P) component in the molten metal in the same manner, phosphorus can also be removed.

前記塩素系化合物は、溶湯に対する酸化マグネシウムや酸化カルシウムの溶融性を高めるとともに、スラグを低粘度化してその流動性(粘性)を向上させ、脱硫反応の効率を高めることができる。この塩素系化合物として具体的には、塩化水酸化カルシウム〔CaCl(OH)〕、塩化水酸化マグネシウム〔MgCl(OH)〕等が挙げられる。塩化水酸化カルシウムは、スラグに対する酸化マグネシウムや酸化カルシウムの溶融性を高めるとともに、スラグを低粘度化して流動性を改善し、脱硫性能を向上させる。 The chlorine-based compound can increase the meltability of magnesium oxide and calcium oxide in the molten metal, reduce the viscosity of the slag, improve its fluidity (viscosity), and increase the efficiency of the desulfurization reaction. Specific examples of the chlorine-based compound include calcium chloride [CaCl (OH)] and magnesium chloride [MgCl (OH)]. Calcium chloride increases the meltability of magnesium oxide and calcium oxide with respect to slag, and lowers the viscosity of slag to improve fluidity and improve desulfurization performance.

また、塩化水酸化マグネシウムも、スラグ中への酸化マグネシウムや酸化カルシウムの溶融性を高め、スラグの低粘度化により流動性を改善し、脱硫性能を向上させる。このため、塩化水酸化マグネシウムは塩化水酸化カルシウムと相乗的に作用し、脱硫率を向上させることができる。 Further, magnesium hydroxide hydroxide also enhances the meltability of magnesium oxide and calcium oxide in slag, improves the fluidity by lowering the viscosity of the slag, and improves the desulfurization performance. Therefore, magnesium hydroxide can act synergistically with calcium hydroxide to improve the desulfurization rate.

前記鉄鋼用脱硫剤助中の塩素系化合物の配合量は、酸化マグネシウム100質量部に対して塩素系化合物の含有量が5~50質量部であることが好ましい。前記塩素系溶融物の含有量が5質量部を下回る場合には、スラグの粘度が高く、流動性の改善が難しくなるとともに、スラグ中での脱硫助剤の溶融速度を高めることも難しくなる。その一方、塩素系化合物の含有量が50質量部を上回る場合には、スラグが高粘度化したり、酸化マグネシウムの含有量が相対的に減少したりして好ましくない。 The blending amount of the chlorine-based compound in the desulfurizing agent for steel is preferably 5 to 50 parts by mass with respect to 100 parts by mass of magnesium oxide. When the content of the chlorine-based melt is less than 5 parts by mass, the viscosity of the slag is high, it is difficult to improve the fluidity, and it is also difficult to increase the melting rate of the desulfurization aid in the slag. On the other hand, when the content of the chlorine-based compound exceeds 50 parts by mass, the slag becomes highly viscous and the content of magnesium oxide is relatively reduced, which is not preferable.

前記塩素系化合物のうち塩化水酸化カルシウムの含有量は、酸化マグネシウム100質量部に対して5~45質量部であることが好ましい。塩化水酸化カルシウムの含有量が5質量部より少ない場合、酸化カルシウムや酸化マグネシウムとの相乗的な機能を十分に発現することが難しくなって好ましくない。その一方、塩化水酸化カルシウムの含有量が45質量部より多い場合、酸化カルシウムや酸化マグネシウムの含有量が相対的に減少して脱硫助剤の本来の機能を発揮することが困難になる。 The content of calcium chloride in the chlorine-based compound is preferably 5 to 45 parts by mass with respect to 100 parts by mass of magnesium oxide. When the content of calcium hydroxide hydroxide is less than 5 parts by mass, it is difficult to sufficiently exhibit the synergistic function with calcium oxide and magnesium oxide, which is not preferable. On the other hand, when the content of calcium hydroxide hydroxide is more than 45 parts by mass, the content of calcium oxide and magnesium oxide is relatively reduced, and it becomes difficult to exert the original function of the desulfurization aid.

前記塩素系化合物のうち塩化水酸化マグネシウムの含有量は、酸化マグネシウム100質量部に対して2~10質量部であることが好ましい。塩化水酸化マグネシウムの含有量が2質量部未満の場合、塩化水酸化マグネシウムの機能発現が不足するとともに、塩化水酸化カルシウムとの相乗作用も得られず好ましくない。一方、塩化水酸化マグネシウムの含有量が10質量部を超える場合、他の必須成分とのバランスが悪くなるとともに、他成分の含有量が相対的に減少して好ましくない。 The content of magnesium hydroxide chloride among the chlorine-based compounds is preferably 2 to 10 parts by mass with respect to 100 parts by mass of magnesium oxide. When the content of magnesium hydroxide is less than 2 parts by mass, the functional expression of magnesium hydroxide is insufficient and synergistic action with calcium hydroxide cannot be obtained, which is not preferable. On the other hand, when the content of magnesium hydroxide exceeds 10 parts by mass, the balance with other essential components becomes poor and the content of other components is relatively reduced, which is not preferable.

前記鉄鋼用脱硫助剤には、二酸化珪素(シリカ、SiO)を配合することが望ましい。この二酸化珪素を配合することにより、スラグ中における酸化カルシウム、酸化マグネシウム及び塩素系化合物の溶解性を一層高めることができるとともに、スラグの粘度低下を図ることができる。 It is desirable to add silicon dioxide (silica, SiO 2 ) to the desulfurization aid for steel. By blending this silicon dioxide, the solubility of calcium oxide, magnesium oxide and chlorine-based compounds in slag can be further enhanced, and the viscosity of slag can be lowered.

この二酸化珪素の配合量は、酸化マグネシウム100質量部に対して5~20質量部であることが好ましい。二酸化珪素の配合量が5質量部より少ない場合、スラグ中における脱硫助剤の各成分の溶解性を高めることが難しく、スラグの低粘度化を図ることが困難である。一方、二酸化珪素の配合量が20質量部より多い場合、脱硫助剤の他成分の配合量が低下して成分間のバランスが悪くなり、スラグ中への各成分の溶解を妨げ、スラグの低粘度化が難しくなる。 The blending amount of this silicon dioxide is preferably 5 to 20 parts by mass with respect to 100 parts by mass of magnesium oxide. When the blending amount of silicon dioxide is less than 5 parts by mass, it is difficult to increase the solubility of each component of the desulfurization aid in the slag, and it is difficult to reduce the viscosity of the slag. On the other hand, when the blending amount of silicon dioxide is more than 20 parts by mass, the blending amount of other components of the desulfurization aid decreases, the balance between the components becomes poor, the dissolution of each component in the slag is hindered, and the slag is low. Viscosity becomes difficult.

前記鉄鋼用脱硫助剤にはカーボン(C)、カルシウムアルミネート(CaO・Al)等のその他の添加成分を含有することができる。カーボンを含有することにより、スラグに対する脱硫助剤の溶融速度を高めることができる。また、カルシウムアルミネートは融点が低いことから、スラグに対する脱硫助剤の溶融速度を向上させることができる。 The desulfurization aid for steel can contain other additive components such as carbon (C) and calcium aluminate (CaO · Al 2 O 3 ). By containing carbon, the melting rate of the desulfurization aid for slag can be increased. Further, since calcium aluminate has a low melting point, the melting rate of the desulfurization aid for slag can be improved.

前述のように、鉄鋼用脱硫助剤は酸化カルシウムに配合されて使用される。この場合、鉄鋼用脱硫助剤と酸化カルシウムとの配合量は、鉄鋼用脱硫助剤が10~50質量%、酸化カルシウムが50~90質量%であることが好ましい。鉄鋼用脱硫助剤が10質量%未満の場合又は酸化カルシウムが90質量%を超える場合には、スラグの粘性が高く、流動性が低下して脱硫反応の進行が妨げられるおそれがある。一方、鉄鋼用脱硫助剤が50質量%を超える場合又は酸化カルシウムが50質量%未満の場合には、酸化カルシウムと硫黄との脱硫反応や酸化カルシウムと燐との反応が低下する傾向を示して好ましくない。 As described above, the desulfurization aid for steel is used by being mixed with calcium oxide. In this case, the blending amount of the desulfurization aid for steel and calcium oxide is preferably 10 to 50% by mass for the desulfurization aid for steel and 50 to 90% by mass for calcium oxide. When the desulfurization aid for steel is less than 10% by mass or the calcium oxide is more than 90% by mass, the viscosity of the slag is high, the fluidity is lowered, and the progress of the desulfurization reaction may be hindered. On the other hand, when the desulfurization aid for steel exceeds 50% by mass or the calcium oxide is less than 50% by mass, the desulfurization reaction between calcium oxide and sulfur and the reaction between calcium oxide and phosphorus tend to decrease. Not preferred.

本実施形態の鉄鋼用脱硫助剤は、酸化カルシウムとは別体で調整して使用される。そして、鉄鋼用脱硫助剤を鉄鋼用脱硫剤として使用する場合には、鉄鋼用脱硫助剤を酸化カルシウムに添加した混合物として溶湯に投入し、或いは鉄鋼用脱硫助剤と酸化カルシウムをそれぞれ溶湯に投入して使用される。 The desulfurization aid for steel of the present embodiment is prepared and used separately from calcium oxide. When the desulfurization aid for steel is used as the desulfurization agent for steel, the desulfurization aid for steel is added to the molten metal as a mixture of calcium oxide, or the desulfurization aid for steel and calcium oxide are added to the molten metal, respectively. It is thrown in and used.

次に、前述した鉄鋼用脱硫助剤の製造方法について説明する。
この鉄鋼用脱硫助剤の製造方法としては、2つの製造方法が挙げられる。
鉄鋼用脱硫助剤の第1の製造方法は、酸化マグネシウム、塩素系化合物及び所望により二酸化珪素等のその他の添加成分を含有する混合物を加圧成形して造粒物を調製するものである。この製造方法では、必須成分を含有する混合物を加圧成形するだけで鉄鋼用脱硫助剤を簡易に製造することができる。
Next, a method for producing the above-mentioned desulfurization aid for steel will be described.
As a method for producing this desulfurization aid for steel, there are two production methods.
The first method for producing a desulfurization aid for steel is to prepare a granulated product by pressure-molding a mixture containing magnesium oxide, a chlorine-based compound and, if desired, other additive components such as silicon dioxide. In this production method, a desulfurization aid for steel can be easily produced only by pressure forming a mixture containing essential components.

この場合、前記混合物中の各成分の配合量は、鉄鋼用脱硫助剤における各成分の含有量が適用される。加圧成形(プレス成形)は常法に従って行われ、得られる造粒物の平均粒子径は、例えば5~40mmである。 In this case, the content of each component in the desulfurization aid for steel is applied to the blending amount of each component in the mixture. Pressure molding (press molding) is performed according to a conventional method, and the average particle size of the obtained granulated product is, for example, 5 to 40 mm.

鉄鋼用脱硫助剤の第2の製造方法は、マグネシウム源、塩素源及び所望により二酸化珪素等のその他の添加成分を含有する混合物を加圧成形(プレス成形)して造粒物を成形し、その造粒物を焼成するものである。加圧成形は常法に従って行われ、得られる造粒物の平均粒子径は例えば5~40mmである。 The second method for producing a desulfurization aid for steel is to press-mold (press-mold) a mixture containing a magnesium source, a chlorine source and, if desired, other additive components such as silicon dioxide to form granules. The granulated product is fired. The pressure molding is performed according to a conventional method, and the average particle size of the obtained granulated product is, for example, 5 to 40 mm.

前記マグネシウム源としては酸化マグネシウム、炭酸マグネシウム、水酸化マグネシウム、マグネサイト又はドロマイト及び塩素源としては塩化カルシウム又は塩化マグネシウムが好ましい。焼成温度は900~1200℃の範囲が好ましく、950~1100℃の範囲がより好ましい。 The magnesium source is preferably magnesium oxide, magnesium carbonate, magnesium hydroxide, magnetite or dolomite, and the chlorine source is preferably calcium chloride or magnesium chloride. The firing temperature is preferably in the range of 900 to 1200 ° C, more preferably in the range of 950 to 1100 ° C.

焼成温度が900℃未満ではマグネシウム源から酸化マグネシウムを生成することが難しく、1200℃を超えると塩素揮発量が増大して塩化水酸化マグネシウムの生成量が低下して好ましくない。この製造方法では、焼成後に必須成分として酸化マグネシウム及び塩素系化合物が生成する。 If the firing temperature is less than 900 ° C, it is difficult to produce magnesium oxide from the magnesium source, and if it exceeds 1200 ° C, the amount of chlorine volatilized increases and the amount of magnesium hydroxide produced decreases, which is not preferable. In this production method, magnesium oxide and a chlorine-based compound are produced as essential components after firing.

前記造粒物を焼成した後には、破砕又は粉砕して細粒物を形成することが好ましい。このようにして得られる鉄鋼用脱硫助剤の細粒物は、スラグに対する鉄鋼用脱硫助剤の溶融を促し、スラグの流動性を改善し、脱硫率を高めることができる。該細粒物の平均粒子径は1mm未満であることが望ましい。なお、この細粒物の平均粒子径の下限は、1μm程度である。 After firing the granulated product, it is preferable to crush or pulverize the granulated product to form fine granules. The fine granules of the desulfurization aid for steel obtained in this manner can promote the melting of the desulfurization aid for steel with respect to the slag, improve the fluidity of the slag, and increase the desulfurization rate. The average particle size of the fine particles is preferably less than 1 mm. The lower limit of the average particle size of the fine particles is about 1 μm.

次に、前記のように構成された鉄鋼用脱硫助剤について作用を説明する。
さて、鉄鋼製錬炉内の溶湯に含まれる硫黄分等の不純物を取り除く場合には、溶湯に対して所定量の鉄鋼用脱硫助剤を酸化カルシウムとともに添加して撹拌する。このとき、鉄鋼用脱硫助剤中には必須成分として酸化マグネシウム及びスラグに溶融し、スラグを低粘度化する塩素系化合物が含まれている。
Next, the action of the desulfurization aid for steel configured as described above will be described.
When removing impurities such as sulfur contained in the molten metal in the steel smelting furnace, a predetermined amount of desulfurization aid for steel is added to the molten metal together with calcium oxide and stirred. At this time, the desulfurization aid for steel contains magnesium oxide and a chlorine-based compound that melts into slag to reduce the viscosity of the slag as essential components.

このため、酸化マグネシウムが酸化カルシウムとともに溶湯とスラグとの界面で硫黄と反応する脱硫反応が起き、硫黄は硫化マグネシウムや硫化カルシウムとなって取り除かれる。このとき、鉄鋼用脱硫助剤には塩素系化合物としての塩化水酸化カルシウム、塩化水酸化マグネシウムが含まれていることから、スラグに対して酸化マグネシウムや酸化カルシウムが速やかに溶融し、酸化マグネシウム及び酸化カルシウムの機能が迅速かつ有効に発現される。 Therefore, a desulfurization reaction occurs in which magnesium oxide reacts with calcium at the interface between the molten metal and slag together with calcium oxide, and sulfur is removed as magnesium sulfide or calcium sulfide. At this time, since the desulfurization aid for steel contains calcium chloride and magnesium chloride as chlorine-based compounds, magnesium oxide and calcium oxide are rapidly melted with respect to the slag, and magnesium oxide and magnesium oxide and magnesium oxide are rapidly melted. The function of calcium oxide is rapidly and effectively expressed.

加えて、塩素系化合物としての塩化水酸化カルシウム、塩化水酸化マグネシウムはスラグを低粘度化してその流動性を改善することができる。その結果、鉄鋼用脱硫助剤の脱硫性能は一層向上し、脱硫反応が促進されて脱硫率の向上が図られる。 In addition, calcium chloride and magnesium hydroxide as chlorine compounds can reduce the viscosity of slag and improve its fluidity. As a result, the desulfurization performance of the desulfurization aid for steel is further improved, the desulfurization reaction is promoted, and the desulfurization rate is improved.

従って、この実施形態によれば、以下のような効果を得ることができる。
(1)この実施形態の鉄鋼用脱硫助剤は、必須成分として酸化マグネシウム及び塩素系化合物を含有する。塩素系化合物は、スラグに溶融するとともに、スラグを低粘度化し、脱硫反応を促すことができる。
Therefore, according to this embodiment, the following effects can be obtained.
(1) The desulfurization aid for steel of this embodiment contains magnesium oxide and a chlorine-based compound as essential components. The chlorine-based compound melts into slag, lowers the viscosity of the slag, and promotes a desulfurization reaction.

従って、実施形態の鉄鋼用脱硫助剤によれば、フッ素化合物を用いることなく、スラグの粘度を下げることができて、脱硫率の向上を図ることができる。加えて、この鉄鋼用脱硫助剤はフッ素化合物を含まないように構成することができ、脱硫後のスラグからフッ素を溶出するおそれがなく、環境汚染を回避することができる。 Therefore, according to the desulfurization aid for steel of the embodiment, the viscosity of the slag can be lowered and the desulfurization rate can be improved without using a fluorine compound. In addition, this desulfurization aid for steel can be configured so as not to contain a fluorine compound, there is no possibility of elution of fluorine from the slag after desulfurization, and environmental pollution can be avoided.

(2)前記塩素系化合物は、塩化水酸化カルシウム又は塩化水酸化マグネシウムである。この場合、鉄鋼用脱硫助剤は、スラグの低粘度化を促してスラグの流動性を良好にでき、脱硫反応を促進することができる。 (2) The chlorine-based compound is calcium chloride hydroxide or magnesium hydroxide. In this case, the desulfurization aid for steel can promote the low viscosity of the slag, improve the fluidity of the slag, and promote the desulfurization reaction.

(3)前記酸化マグネシウム100質量部に対して塩素系化合物の含有量は5~50質量部である。このため、各必須成分の機能をバランス良く発揮することができ、脱硫率を高めることができる。 (3) The content of the chlorine-based compound is 5 to 50 parts by mass with respect to 100 parts by mass of the magnesium oxide. Therefore, the functions of each essential component can be exhibited in a well-balanced manner, and the desulfurization rate can be increased.

(4)前記鉄鋼用脱硫助剤には、二酸化珪素が酸化マグネシウム100質量部に対して5~20質量部含まれる。この場合には、スラグ中における酸化カルシウム、酸化マグネシウム及び塩素系化合物の溶融性を一層高めることができるとともに、スラグの粘度低下を図ることができる。 (4) The desulfurization aid for steel contains 5 to 20 parts by mass of silicon dioxide with respect to 100 parts by mass of magnesium oxide. In this case, the meltability of calcium oxide, magnesium oxide and the chlorine-based compound in the slag can be further enhanced, and the viscosity of the slag can be lowered.

(5)鉄鋼用脱硫助剤の第1の製造方法は、酸化マグネシウム及び塩素系化合物を含有する混合物を加圧成形して造粒物を調製する。この製造方法によれば、焼成を行うことなく、加圧成形のみにより鉄鋼用脱硫助剤を簡易に製造することができる。 (5) The first method for producing a desulfurization aid for steel is to prepare a granulated product by pressure molding a mixture containing magnesium oxide and a chlorine-based compound. According to this manufacturing method, a desulfurization aid for steel can be easily manufactured only by pressure forming without firing.

(6)鉄鋼用脱硫助剤の第2の製造方法は、マグネシウム源及び塩素源を含有する混合物を造粒して造粒物を成形し、その造粒物を焼成するものである。この製造方法によれば、焼成により鉄鋼用脱硫助剤の必須成分を生成させることができ、その必須成分を含む造粒物を得ることができる。 (6) The second method for producing a desulfurization aid for steel is to granulate a mixture containing a magnesium source and a chlorine source to form a granulated product, and then calcin the granulated product. According to this production method, an essential component of a desulfurization aid for steel can be produced by firing, and a granulated product containing the essential component can be obtained.

(7)前記マグネシウム源は炭酸マグネシウム、水酸化マグネシウム又はドロマイトであり、塩素源は塩化カルシウム又は塩化マグネシウムである。この場合、焼成後に鉄鋼用脱硫助剤中における必須成分の生成率を高めることができる。 (7) The magnesium source is magnesium carbonate, magnesium hydroxide or dolomite, and the chlorine source is calcium chloride or magnesium chloride. In this case, it is possible to increase the production rate of essential components in the desulfurization aid for steel after firing.

(8)前記造粒物を焼成した後、破砕又は粉砕して平均粒子径が1mm未満の細粒物とする。この場合には、鉄鋼用脱硫助剤の細粒物により、脱硫性能の向上を図ることができる。 (8) After firing the granulated product, it is crushed or crushed to obtain fine particles having an average particle size of less than 1 mm. In this case, the desulfurization performance can be improved by using fine particles of the desulfurization aid for steel.

以下、実施例、比較例及び対照例を挙げて前記実施形態をさらに具体的に説明する。なお、以下の各例において、部は質量部を表す。表1~表3中の数値も質量部を表す。
(実施例1)
炭酸マグネシウム80部に対して塩化カルシウム20部を混合し、常法によりプレス成形して造粒物を得た。この造粒物を1050℃で焼成して、平均粒子径が5~40mmの造粒物として鉄鋼用脱硫助剤を調製した。この鉄鋼用脱硫助剤の原料組成を表1に示した。また、鉄鋼用脱硫助剤の組成をX線回折及び蛍光X線分析によって分析し、その結果を表3に示した。
Hereinafter, the embodiment will be described in more detail with reference to Examples, Comparative Examples, and Control Examples. In each of the following examples, the part represents a mass part. The numerical values in Tables 1 to 3 also represent parts by mass.
(Example 1)
20 parts of calcium chloride was mixed with 80 parts of magnesium carbonate and press-molded by a conventional method to obtain granulated products. This granulated product was calcined at 1050 ° C. to prepare a desulfurization aid for steel as a granulated product having an average particle size of 5 to 40 mm. The raw material composition of this desulfurization aid for steel is shown in Table 1. The composition of the desulfurization aid for steel was analyzed by X-ray diffraction and fluorescent X-ray analysis, and the results are shown in Table 3.

(実施例2)
炭酸マグネシウム90部に対して塩化カルシウム10部を混合し、常法によりプレス成形して造粒物を得た。この造粒物を1050℃で焼成して、平均粒子径が5~40mmの造粒物として鉄鋼用脱硫助剤を調製した。この鉄鋼用脱硫助剤の原料組成を表1に示した。また、鉄鋼用脱硫助剤の組成をX線回折及び蛍光X線分析によって分析し、その結果を表3に示した。
(Example 2)
10 parts of calcium chloride was mixed with 90 parts of magnesium carbonate and press-molded by a conventional method to obtain granulated products. This granulated product was calcined at 1050 ° C. to prepare a desulfurization aid for steel as a granulated product having an average particle size of 5 to 40 mm. The raw material composition of this desulfurization aid for steel is shown in Table 1. The composition of the desulfurization aid for steel was analyzed by X-ray diffraction and fluorescent X-ray analysis, and the results are shown in Table 3.

(実施例3)
実施例1で得られた鉄鋼用脱硫助剤を粉砕し、細粒化して平均粒子径が1mm未満(1μm以上)となる細粒物として実施例3の鉄鋼用脱硫助剤を調製した。この鉄鋼用脱硫助剤の原料組成を表1に示し、X線回折及び蛍光X線分析により分析した鉄鋼用脱硫助剤の組成を表3に示した。
(Example 3)
The desulfurization aid for steel obtained in Example 1 was pulverized and granulated to prepare a desulfurization aid for steel of Example 3 as fine particles having an average particle size of less than 1 mm (1 μm or more). The raw material composition of this desulfurization aid for steel is shown in Table 1, and the composition of the desulfurization aid for steel analyzed by X-ray diffraction and fluorescent X-ray analysis is shown in Table 3.

(実施例4)
酸化マグネシウム65部に対して、塩化水酸化カルシウム25部及び塩化水酸化マグネシウム10部を混合し、常法によりプレス成形した後、粉砕して平均粒子径が5~40mmの造粒物として鉄鋼用脱硫助剤を調製した。この鉄鋼用脱硫助剤の組成を表1に示した。
(Example 4)
25 parts of calcium hydroxide and 10 parts of magnesium hydroxide are mixed with 65 parts of magnesium oxide, press-molded by a conventional method, and then pulverized to form a granulated product having an average particle size of 5 to 40 mm for steel. A desulfurization aid was prepared. The composition of this desulfurization aid for steel is shown in Table 1.

(実施例5)
炭酸マグネシウム82部に対して塩化カルシウム16部及び二酸化珪素2部を混合し、常法によりプレス成形して造粒物を得た。この造粒物を1050℃で焼成して、平均粒子径が5~40mmの造粒物として鉄鋼用脱硫助剤を調製した。この鉄鋼用脱硫助剤の原料組成を表1に示した。また、鉄鋼用脱硫助剤の組成をX線回折及び蛍光X線分析によって分析し、その結果を表3に示した。
(Example 5)
16 parts of calcium chloride and 2 parts of silicon dioxide were mixed with 82 parts of magnesium carbonate and press-molded by a conventional method to obtain granulated products. This granulated product was calcined at 1050 ° C. to prepare a desulfurization aid for steel as a granulated product having an average particle size of 5 to 40 mm. The raw material composition of this desulfurization aid for steel is shown in Table 1. The composition of the desulfurization aid for steel was analyzed by X-ray diffraction and fluorescent X-ray analysis, and the results are shown in Table 3.

(実施例6)
炭酸マグネシウム82部に対して塩化カルシウム12部及び二酸化珪素6部を混合し、常法によりプレス成形して造粒物を得た。この造粒物を1050℃で焼成して、平均粒子径が5~40mmの造粒物として鉄鋼用脱硫助剤を調製した。この鉄鋼用脱硫助剤の原料組成を表1に示した。また、鉄鋼用脱硫助剤の組成をX線回折及び蛍光X線分析によって分析し、その結果を表3に示した。
(Example 6)
12 parts of calcium chloride and 6 parts of silicon dioxide were mixed with 82 parts of magnesium carbonate and press-molded by a conventional method to obtain granulated products. This granulated product was calcined at 1050 ° C. to prepare a desulfurization aid for steel as a granulated product having an average particle size of 5 to 40 mm. The raw material composition of this desulfurization aid for steel is shown in Table 1. The composition of the desulfurization aid for steel was analyzed by X-ray diffraction and fluorescent X-ray analysis, and the results are shown in Table 3.

(実施例7)
炭酸マグネシウム81部に対して塩化カルシウム11部及び二酸化珪素8部を混合し、常法によりプレス成形して造粒物を得た。この造粒物を1050℃で焼成して、平均粒子径が5~40mmの造粒物として鉄鋼用脱硫助剤を調製した。この鉄鋼用脱硫助剤の原料組成を表1に示した。また、鉄鋼用脱硫助剤の組成をX線回折及び蛍光X線分析によって分析し、その結果を表3に示した。
(Example 7)
11 parts of calcium chloride and 8 parts of silicon dioxide were mixed with 81 parts of magnesium carbonate and press-molded by a conventional method to obtain granulated products. This granulated product was calcined at 1050 ° C. to prepare a desulfurization aid for steel as a granulated product having an average particle size of 5 to 40 mm. The raw material composition of this desulfurization aid for steel is shown in Table 1. The composition of the desulfurization aid for steel was analyzed by X-ray diffraction and fluorescent X-ray analysis, and the results are shown in Table 3.

(実施例8)
酸化マグネシウム65部に対して、塩化水酸化カルシウム25部、塩化水酸化マグネシウム5部及び二酸化珪素10部を混合し、常法によりプレス成形した後、粗砕して平均粒子径が5~40mmの造粒物として鉄鋼用脱硫助剤を調製した。この鉄鋼用脱硫助剤の組成を表1に示した。
(Example 8)
25 parts of calcium hydroxide, 5 parts of magnesium hydroxide and 10 parts of silicon dioxide are mixed with 65 parts of magnesium oxide, press-molded by a conventional method, and then coarsely crushed to have an average particle size of 5 to 40 mm. A desulfurization aid for steel was prepared as a granulated product. The composition of this desulfurization aid for steel is shown in Table 1.

(比較例1)
酸化マグネシウム単体を常法によりプレス成形して造粒物を調整し、比較例1の鉄鋼用脱硫剤とした。この鉄鋼用脱硫剤の組成を表2に示した。
(Comparative Example 1)
A simple substance of magnesium oxide was press-molded by a conventional method to prepare a granulated product, which was used as a desulfurizing agent for steel in Comparative Example 1. The composition of this desulfurizing agent for steel is shown in Table 2.

(比較例2)
酸化カルシウム単体を常法によりプレス成形して造粒物を調整し、比較例2の鉄鋼用脱硫剤とした。この鉄鋼用脱硫剤の組成を表2に示した。
(Comparative Example 2)
A simple substance of calcium oxide was press-molded by a conventional method to prepare a granulated product, which was used as a desulfurizing agent for steel in Comparative Example 2. The composition of this desulfurizing agent for steel is shown in Table 2.

(比較例3)
塩化カルシウム単体を常法によりプレス成形して造粒物を調整し、比較例3の鉄鋼用脱硫剤とした。この鉄鋼用脱硫剤の組成を表2に示した。
(Comparative Example 3)
A simple substance of calcium chloride was press-molded by a conventional method to prepare a granulated product, which was used as a desulfurizing agent for steel in Comparative Example 3. The composition of this desulfurizing agent for steel is shown in Table 2.

(対照例1)
酸化カルシウム67部に対してフッ化カルシウム粉を33部混合し、常法によりプレス成形して対照例1の鉄鋼用脱硫剤を調製した。
(Control Example 1)
33 parts of calcium fluoride powder was mixed with 67 parts of calcium oxide and press-molded by a conventional method to prepare a desulfurizing agent for steel of Control Example 1.

Figure 2022083582000001
Figure 2022083582000001

Figure 2022083582000002
Figure 2022083582000002

Figure 2022083582000003
次に、前記実施例1~8の鉄鋼用脱硫助剤を酸化カルシウムとともにそれぞれルツボ(ルテニウム20質量%を含む白金製)に入れるとともに、比較例1~3及び対照例1の鉄鋼用脱硫剤をそれぞれルツボに入れ、その中にアルミナ及びシリカよりなるスラグ成分を加え、1600℃に加熱した。実施例1~8の鉄鋼用脱硫助剤と酸化カルシウムとの配合比は、いずれも酸化カルシウムが67質量%で鉄鋼用脱硫助剤が33質量%である。また、比較例1、3及び対照例1の鉄鋼用脱硫剤における酸化カルシウムとその他の成分との配合比は、酸化カルシウムが67質量%で鉄鋼用脱硫助剤が33質量%である。なお、比較例2の鉄鋼用脱硫剤は、酸化カルシウムのみである。
Figure 2022083582000003
Next, the desulfurization aids for steel of Examples 1 to 8 are put into a crucible (made of platinum containing 20% by mass of ruthenium) together with calcium oxide, and the desulfurization agents for steel of Comparative Examples 1 to 3 and Control Example 1 are added. Each was placed in a crucible, a slag component composed of alumina and silica was added thereto, and the mixture was heated to 1600 ° C. The compounding ratio of the desulfurization aid for steel and calcium oxide of Examples 1 to 8 is 67% by mass of calcium oxide and 33% by mass of the desulfurization aid for steel. The blending ratio of calcium oxide and other components in the desulfurization agents for steel of Comparative Examples 1 and 3 and Control Example 1 was 67% by mass of calcium oxide and 33% by mass of the desulfurization aid for steel. The desulfurizing agent for steel in Comparative Example 2 is only calcium oxide.

前記加熱によりスラグ成分と鉄鋼用脱硫剤とが溶融して液状になった後、粘度測定用のロッド(ルテニウム20質量%を含む白金製)を挿入して高温スラグの粘度(mPa・s)を測定した。その結果を表4に示した。 After the slug component and the desulfurizing agent for steel are melted and liquefied by the heating, a rod for measuring viscosity (made of platinum containing 20% by mass of ruthenium) is inserted to determine the viscosity (mPa · s) of the high temperature slug. It was measured. The results are shown in Table 4.

Figure 2022083582000004
表4の結果より、実施例1~8の鉄鋼用脱硫助剤では高温スラグの粘度がいずれも60mPa・sであり、鉄鋼メーカーで使用されている対照例1の鉄鋼用脱硫剤を用いた高温スラグの粘度と同じであって同等の流動性を示した。また、実施例5~8においては鉄鋼用脱硫助剤に二酸化珪素が配合されており、高温スラグの粘度は実施例1~4と同等の粘度を示し、良好な流動性が発揮された。
Figure 2022083582000004
From the results in Table 4, the high-temperature slag viscosities of the desulfurization aids for steel of Examples 1 to 8 were all 60 mPa · s, and the high temperature using the desulfurization agent for steel of Control Example 1 used by steel makers. It had the same viscosity as the slag and showed the same fluidity. Further, in Examples 5 to 8, silicon dioxide was blended in the desulfurization aid for steel, and the viscosity of the high-temperature slag was equivalent to that of Examples 1 to 4, and good fluidity was exhibited.

次に、前記実施例1~8、比較例1~3及び対照例1の鉄鋼用脱硫剤について、高周波誘導炉を使用して脱硫率(%)を測定した。
すなわち、高周波誘導炉内に鉄源50kgと、硫黄含有率が0.05質量%となるように硫化鉄とを混合して溶解させ、溶湯を得た。この溶湯に前記鉄鋼用脱硫剤1kgとスラグ成分とを投入し、15分間撹拌した。その後に溶湯の一部を採取し、硫黄含有率を分析した。そして、下記の計算式に基づいて脱硫率(%)を算出した。その結果を表5に示した。
Next, the desulfurization rate (%) of the steel desulfurization agents of Examples 1 to 8, Comparative Examples 1 to 3 and Control Example 1 was measured using a high-frequency induction furnace.
That is, 50 kg of an iron source and iron sulfide were mixed and dissolved in a high-frequency induction furnace so that the sulfur content was 0.05% by mass to obtain a molten metal. 1 kg of the desulfurizing agent for steel and a slag component were added to this molten metal, and the mixture was stirred for 15 minutes. After that, a part of the molten metal was collected and the sulfur content was analyzed. Then, the desulfurization rate (%) was calculated based on the following formula. The results are shown in Table 5.

脱硫率(%)=〔(試験前の硫黄含有率-試験後の硫黄含有率)/試験前の硫黄含有率〕×100 Desulfurization rate (%) = [(Sulfur content before test-Sulfur content after test) / Sulfur content before test] x 100

Figure 2022083582000005
表5の結果より、実施例1~8の鉄鋼用脱硫助剤の場合には脱硫率が67%以上の高い値を示し、対照例1の鉄鋼用脱硫剤の場合における脱硫率に近い値を示した。すなわち、フッ素を含まない構成でもフッ素含有脱硫剤と同等の脱硫性能を有することが示された。また、実施例5~8に示したように、鉄鋼用脱硫助剤に二酸化珪素を配合した場合には脱硫率が70%以上を示し、二酸化珪素が配合されていない実施例1~4より高い値が得られ、二酸化珪素の配合により脱硫性能の向上を図ることができた。
Figure 2022083582000005
From the results in Table 5, in the case of the desulfurization aids for steel of Examples 1 to 8, the desulfurization rate showed a high value of 67% or more, and the value close to the desulfurization rate in the case of the desulfurization agent for steel of Control Example 1. Indicated. That is, it was shown that even in the configuration containing no fluorine, it has the same desulfurization performance as the fluorine-containing desulfurization agent. Further, as shown in Examples 5 to 8, when silicon dioxide is blended in the desulfurization aid for steel, the desulfurization rate is 70% or more, which is higher than in Examples 1 to 4 in which silicon dioxide is not blended. The value was obtained, and the desulfurization performance could be improved by blending silicon dioxide.

次に、前記実施例1~8、比較例1~3及び対照例1の鉄鋼用脱硫剤について脱硫速度を測定した。
すなわち、前記脱硫率(%)の測定において、溶湯に鉄鋼用脱硫剤を投入し、その5分後、10分後及び15分後における硫黄含有率を測定し、前記計算式に基づいて脱硫率(%)を算出した。その結果を表6に示した。
Next, the desulfurization rates of the steel desulfurization agents of Examples 1 to 8, Comparative Examples 1 to 3 and Control Example 1 were measured.
That is, in the measurement of the desulfurization rate (%), the desulfurization agent for steel was added to the molten metal, the sulfur content was measured 5 minutes, 10 minutes and 15 minutes after that, and the desulfurization rate was measured based on the above formula. (%) Was calculated. The results are shown in Table 6.

Figure 2022083582000006
表6の結果より、実施例1~8における鉄鋼用脱硫助剤の溶融速度は、比較例1~3の鉄鋼用脱硫剤に比べて速く、初期段階から高い脱硫率を示し、対照例1における初期段階の脱硫率及び脱硫速度に近い値を示した。また、実施例3では、実施例1及び2に比べて初期の脱硫速度が速くなり、鉄鋼用脱硫助剤の細粒化による効果が認められた。さらに、二酸化珪素を配合した実施例5~8の鉄鋼用脱硫助剤では、二酸化珪素が配合されていない実施例1~4に比べて初期段階から脱硫速度が速い傾向が示された。
Figure 2022083582000006
From the results in Table 6, the melting rate of the desulfurization aid for steel in Examples 1 to 8 was faster than that of the desulfurization agent for steel in Comparative Examples 1 to 3, and the desulfurization rate was high from the initial stage. The values close to the desulfurization rate and desulfurization rate in the initial stage were shown. Further, in Example 3, the initial desulfurization rate was faster than in Examples 1 and 2, and the effect of atomizing the desulfurization aid for steel was recognized. Further, the desulfurization aids for steel of Examples 5 to 8 containing silicon dioxide tended to have a higher desulfurization rate from the initial stage than those of Examples 1 to 4 containing no silicon dioxide.

(実施例9)
前記実施例1の鉄鋼用脱硫助剤について、焼成温度を1050℃、1100℃、1200℃及び1300℃に変化させたときの脱硫率(%)を前述した方法で測定した。そして、焼成温度(℃)と脱硫率(%)との関係を図1に示した。
(Example 9)
For the desulfurization aid for steel of Example 1, the desulfurization rate (%) when the firing temperature was changed to 1050 ° C, 1100 ° C, 1200 ° C and 1300 ° C was measured by the above-mentioned method. The relationship between the firing temperature (° C.) and the desulfurization rate (%) is shown in FIG.

図1に示したように、焼成温度が1100℃を超えると脱硫率が次第に低下し始める傾向が示された。
さらに、実施例1の鉄鋼用脱硫助剤について、焼成温度950℃、1050℃、1150℃、1450℃と、各焼成温度における焼成後の鉄鋼用脱硫剤中の塩素(Cl)含有率(質量%)を測定することにより、各焼成温度における塩素揮発量(質量%)を算出した。そして、焼成温度(℃)と塩素揮発量(質量%)との関係を図2に示した。
As shown in FIG. 1, when the firing temperature exceeds 1100 ° C., the desulfurization rate tends to gradually decrease.
Further, regarding the desulfurization aid for steel of Example 1, the calcination temperature was 950 ° C., 1050 ° C., 1150 ° C., and 1450 ° C., and the chlorine (Cl) content (mass%) in the calcination agent for steel after calcination at each firing temperature. ) Was measured to calculate the amount of chlorine volatilization (mass%) at each firing temperature. Then, the relationship between the firing temperature (° C.) and the amount of chlorine volatilization (mass%) is shown in FIG.

図2に示したように、焼成温度が1100℃を超えると塩素揮発量が増大する傾向が見られた。これは、塩化水酸化カルシウムが分解して塩素が揮発しているものと考えられることから、有効成分である塩化水酸化カルシウムを含有させるためには、焼成温度は1100℃以下であることが望ましい。また、炭酸カルシウムが酸化カルシウムに化学変化するための温度は950℃以上であることが好ましい。従って、焼成温度は950~1100℃の範囲であることが好ましい。 As shown in FIG. 2, when the firing temperature exceeds 1100 ° C., the amount of chlorine volatilized tends to increase. It is considered that this is because calcium chloride is decomposed and chlorine is volatilized. Therefore, in order to contain calcium chloride which is an active ingredient, it is desirable that the firing temperature is 1100 ° C. or lower. .. Further, the temperature for chemically changing calcium carbonate to calcium oxide is preferably 950 ° C. or higher. Therefore, the firing temperature is preferably in the range of 950 to 1100 ° C.

なお、前記実施形態は、次のように変更して具体化することも可能である。
・前記鉄鋼用脱硫助剤の必須成分の含有量を、溶湯中の硫黄成分との反応に加えて燐成分との反応をも考慮して総合的に設定してもよい。
The embodiment can be modified and embodied as follows.
-The content of the essential component of the desulfurization aid for steel may be comprehensively set in consideration of the reaction with the phosphorus component in addition to the reaction with the sulfur component in the molten metal.

・前記鉄鋼用脱硫助剤の第1の製造方法において、塩化水酸化カルシウムと塩化水酸化マグネシウムのいずれか一方のみを使用してもよい。
・前記鉄鋼用脱硫助剤の第2の製造方法において、マグネシウム源又は塩素源は、前記製造方法に示された単一物質に限定されるものではなく、マグネシウム又は塩素を含む物質を複数混合して製造してもよい。
-In the first method for producing the desulfurization aid for steel, only one of calcium chloride and magnesium hydroxide may be used.
-In the second method for producing a desulfurization aid for steel, the magnesium source or chlorine source is not limited to the single substance shown in the production method, and a plurality of substances containing magnesium or chlorine are mixed. May be manufactured.

Claims (8)

鉄鋼製錬炉内の溶湯に含まれる硫黄分と反応し、その硫黄分の除去を促進するために酸化カルシウムとともに用いられる鉄鋼用脱硫助剤であって、
酸化マグネシウム及び溶湯の表面に存在するスラグに溶融し、スラグを低粘度化する塩素系化合物を含有することを特徴とする鉄鋼用脱硫助剤。
A desulfurization aid for steel used together with calcium oxide to react with sulfur contained in the molten metal in a steel smelting furnace and promote the removal of the sulfur.
A desulfurization aid for steel, which contains magnesium oxide and a chlorine-based compound that melts into slag existing on the surface of the molten metal to reduce the viscosity of the slag.
前記塩素系化合物は、塩化水酸化カルシウム〔CaCl(OH)〕又は塩化水酸化マグネシウム〔MgCl(OH)〕である請求項1に記載の鉄鋼用脱硫助剤。 The desulfurization aid for steel according to claim 1, wherein the chlorine-based compound is calcium chloride [CaCl (OH)] or magnesium chloride [MgCl (OH)]. 酸化マグネシウム100質量部に対して塩素系化合物の含有量が5~50質量部である請求項1又は請求項2に記載の鉄鋼用脱硫助剤。 The desulfurization aid for steel according to claim 1 or 2, wherein the content of the chlorine-based compound is 5 to 50 parts by mass with respect to 100 parts by mass of magnesium oxide. 二酸化珪素を、酸化マグネシウム100質量部に対して5~20質量部含有する請求項1から請求項3のいずれか1項に記載の鉄鋼用脱硫助剤。 The desulfurization aid for steel according to any one of claims 1 to 3, which contains 5 to 20 parts by mass of silicon dioxide with respect to 100 parts by mass of magnesium oxide. 請求項1から請求項4のいずれか一項に記載の鉄鋼用脱硫助剤の製造方法であって、
酸化マグネシウム及び溶湯の表面に存在するスラグに溶融し、スラグを低粘度化する塩素系化合物を含有する混合物を加圧成形して造粒物を調製することを特徴とする鉄鋼用脱硫助剤の製造方法。
The method for producing a desulfurization aid for steel according to any one of claims 1 to 4.
A desulfurization aid for steel, which is characterized in that a mixture containing magnesium oxide and a chlorine-based compound that melts into slag existing on the surface of molten metal to reduce the viscosity of the slag is pressure-molded to prepare a granulated product. Production method.
請求項1から請求項4のいずれか一項に記載の鉄鋼用脱硫助剤の製造方法であって、
マグネシウム源及び塩素源を含有する混合物を造粒して造粒物を成形し、その造粒物を焼成することを特徴とする鉄鋼用脱硫助剤の製造方法。
The method for producing a desulfurization aid for steel according to any one of claims 1 to 4.
A method for producing a desulfurization aid for steel, which comprises granulating a mixture containing a magnesium source and a chlorine source to form a granulated product, and firing the granulated product.
前記マグネシウム源は炭酸マグネシウム、水酸化マグネシウム又はドロマイトであり、前記塩素源は塩化カルシウム又は塩化マグネシウムである請求項6に記載の鉄鋼用脱硫助剤の製造方法。 The method for producing a desulfurization aid for steel according to claim 6, wherein the magnesium source is magnesium carbonate, magnesium hydroxide or dolomite, and the chlorine source is calcium chloride or magnesium chloride. 前記造粒物を焼成した後、破砕又は粉砕して平均粒子径が1mm未満の細粒物とした請求項6又は請求項7に記載の鉄鋼用脱硫助剤の製造方法。 The method for producing a desulfurization aid for steel according to claim 6 or 7, wherein the granulated product is fired and then crushed or pulverized to form fine particles having an average particle size of less than 1 mm.
JP2020194982A 2020-11-25 2020-11-25 Steel desulfurization agent and method for manufacturing the same Pending JP2022083582A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020194982A JP2022083582A (en) 2020-11-25 2020-11-25 Steel desulfurization agent and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020194982A JP2022083582A (en) 2020-11-25 2020-11-25 Steel desulfurization agent and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2022083582A true JP2022083582A (en) 2022-06-06

Family

ID=81855556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020194982A Pending JP2022083582A (en) 2020-11-25 2020-11-25 Steel desulfurization agent and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2022083582A (en)

Similar Documents

Publication Publication Date Title
CN101736131B (en) Pre-melted desulfurizing agent for refining molten steel and preparation method thereof
CN1827794B (en) Refining slag for ultra-pure steel and preparation method thereof
KR100604549B1 (en) Steel refinery flux
JP2000169136A (en) Synthetic calcium silicate and mold powder for continuous casting of steel using the same
KR100759862B1 (en) Steel refinery flux composition of low temperature form
JP2022083583A (en) Steel desulfurization agent and method for manufacturing the same
CN103509940B (en) Carbon containing pellet for producing low-sulfur grained iron
CN104328278A (en) Slagging agent produced by high-purity vanadium-aluminium alloy and production method
JP2005132721A (en) Method for manufacturing stabilizer for steelmaking slag containing fluorine
KR100732539B1 (en) Steel refinery flux composition containing aluminum and fluorite
JP2022083582A (en) Steel desulfurization agent and method for manufacturing the same
JP3985471B2 (en) Method for producing slag after refining treatment
JP4150194B2 (en) Desulfurization method by mechanical stirring of hot metal
KR101465753B1 (en) Calcium Aluminate Based Clinker Composition using Ladle Furnace Slag and Manufacturing Method Thereof
KR101153887B1 (en) Preparation method for alkaline calciumferrite flux for steelmaking
JP2003328022A (en) Desulfurizing agent for molten steel and manufacturing method therefor
KR101084579B1 (en) Steel refinery flux using ferro vanadium slag
RU2737837C1 (en) Slag-forming mixture for refining steel and briquettes from slag-forming mixture
KR100732540B1 (en) Preparation of steel refinery flux containing aluminum and fluorite
WO2002075005A2 (en) Method for the use of electric steel plant slag for self-reducing agglomerates
RU2354707C2 (en) Method of receiving for complex synthetic flux material for ferrous material
JPH11323424A (en) Slag component conditioner for slag-coating converter lining refractory, its production and protection method of converter lining refractory by the same
JP2673077B2 (en) Mold additive for continuous casting of steel and continuous casting method
KR100189297B1 (en) Method of making melting composite slag
JP3750928B2 (en) Carburized material and steel making method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240612