JP2022082009A - Manufacturing method of conductive member, conductive member, electromagnetic coil, motor, generator, and actuator - Google Patents

Manufacturing method of conductive member, conductive member, electromagnetic coil, motor, generator, and actuator Download PDF

Info

Publication number
JP2022082009A
JP2022082009A JP2020193292A JP2020193292A JP2022082009A JP 2022082009 A JP2022082009 A JP 2022082009A JP 2020193292 A JP2020193292 A JP 2020193292A JP 2020193292 A JP2020193292 A JP 2020193292A JP 2022082009 A JP2022082009 A JP 2022082009A
Authority
JP
Japan
Prior art keywords
conductive
conductive member
wire
conductive wire
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020193292A
Other languages
Japanese (ja)
Inventor
啓佐敏 竹内
Kesatoshi Takeuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyawaki Kobo KK
Original Assignee
Miyawaki Kobo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyawaki Kobo KK filed Critical Miyawaki Kobo KK
Priority to JP2020193292A priority Critical patent/JP2022082009A/en
Publication of JP2022082009A publication Critical patent/JP2022082009A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Windings For Motors And Generators (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

To provide a manufacturing method of a conductive member, the method capable of forming a conductive member having a complicated shape relatively easily, and the conductive member having high reliability, and capable of maintaining a high withstand voltage even when the conductive member is used for an electromagnetic coil.SOLUTION: A manufacturing method of a conductive member includes, in this order, a preparatory step of preparing a conductive wire in which a plurality of linear conductive base materials are bundled, a penetration step of impregnating the conductive wire with a water-soluble paint, an insertion step of inserting the conductive wire impregnated with the water-soluble paint into an insulating heat-shrinkable tube, a first heating step of forming a coated conductive wire by heating the heat-shrinkable tube at a predetermined temperature for a predetermined time and shrinking the heat-shrinkable tube until the conductive wire is covered, a forming step of forming the coated conductive wire into a predetermined shape, and a second heating step of curing the coated conductive wire in the predetermined shape by heating the coated conductive wire.SELECTED DRAWING: Figure 3

Description

本発明は、導電部材の製造方法、導電部材、電磁コイル、モータ、発電機、及び、アクチュエータに関する。 The present invention relates to a method for manufacturing a conductive member, a conductive member, an electromagnetic coil, a motor, a generator, and an actuator.

自動車、航空機、船舶などの主駆動モータや、電源、電力変換機等のように大電流を必要とする電気機械装置などの分野においては、大電流を導通可能な導電部材が用いられている。このような導電部材としては、様々な導電部材が用いられているが、従来、線状の導電性基材が複数束ねられた導電線(例えば、編組線)を用いた導電部材が知られている。 Conductive members capable of conducting a large current are used in fields such as main drive motors for automobiles, aircraft, and ships, and electromechanical devices that require a large current, such as power supplies and power converters. Various conductive members are used as such conductive members, but conventionally, conductive members using conductive wires (for example, braided wires) in which a plurality of linear conductive substrates are bundled are known. There is.

図15は、従来の導電部材900を説明するために示す図である。図15に示すように、従来の導電部材900は、線状の導電性基材912が複数束ねられた(編まれた)導電線910(編組線)を備える。なお、導電部材900の端部には端子950が形成されている。 FIG. 15 is a diagram shown for explaining the conventional conductive member 900. As shown in FIG. 15, the conventional conductive member 900 includes a conductive wire 910 (braided wire) in which a plurality of linear conductive base materials 912 are bundled (woven). A terminal 950 is formed at the end of the conductive member 900.

従来の導電部材900によれば、線状の導電性基材912が複数束ねられた導電線910を用いるため、導電性基材912同士の間に形成される空隙や編み目が伸縮することにより、柔軟に折り曲げることができ、立体的に曲げられた形状やねじれた形状等の複雑な形状の導電部材を比較的容易に形成することができる。 According to the conventional conductive member 900, since the conductive wire 910 in which a plurality of linear conductive base materials 912 are bundled is used, the voids and stitches formed between the conductive base materials 912 expand and contract, thereby causing expansion and contraction. It can be flexibly bent, and it is relatively easy to form a conductive member having a complicated shape such as a three-dimensionally bent shape or a twisted shape.

特開2017-91862号公報Japanese Unexamined Patent Publication No. 2017-91862

しかしながら、従来の導電部材900においては、導電性基材912同士の間の空隙や編み目が伸縮するため、フォーミングされた導電部材の形状を長期間にわたって維持することが難しく、外部の振動に共振することにより導電部材に伸縮が生じて導電部材の接続が外れる等の不具合を生じるおそれがあることから、信頼性を高くすることが難しい、という問題がある。 However, in the conventional conductive member 900, since the gaps and stitches between the conductive base materials 912 expand and contract, it is difficult to maintain the shape of the formed conductive member for a long period of time, and it resonates with external vibration. As a result, the conductive member may expand and contract, causing problems such as disconnection of the conductive member, and thus there is a problem that it is difficult to improve reliability.

また、このような導電部材は、柔軟に折り曲げて配線することができることから、導電部材の使用例として、少なくとも一巻きのインダクタンスを有するコイル形状に巻回して、電磁機械変換機器(例えば、モータ、発電機、アクチュエータ等)の電磁コイルに用いることが考えられる。このような場合には、導電部材を周囲から絶縁する必要があり、例えば、表面を絶縁材であらかじめ被覆した導電性基材を備える導電部材を用いることが考えられる。しかしながら、このような導電部材においては、柔軟に折り曲げて配線することから、導電線を被覆している絶縁材に局所的に大きな機械的応力がかかることがあり、絶縁材が損傷したり薄くなったりし易くなるため、耐圧を高い状態で維持することが難しい、という問題がある。 Further, since such a conductive member can be flexibly bent and wired, as an example of use of the conductive member, it is wound into a coil shape having at least one winding inductance, and an electromagnetic machine conversion device (for example, a motor, etc.). It can be used for electromagnetic coils of generators, actuators, etc.). In such a case, it is necessary to insulate the conductive member from the surroundings. For example, it is conceivable to use a conductive member having a conductive substrate whose surface is previously coated with an insulating material. However, in such a conductive member, since it is flexibly bent and wired, a large mechanical stress may be locally applied to the insulating material covering the conductive wire, and the insulating material may be damaged or thinned. There is a problem that it is difficult to maintain a high withstand voltage because it is easy to loosen.

そこで、本発明は、上記した問題を解決するためになされたものであり、複雑な形状の導電部材を比較的容易に形成することができ、かつ、信頼性を高くすることができ、電磁コイルに用いた場合でも耐圧を高い状態で維持することが可能な導電部材を製造する導電部材の製造方法、そのような導電部材、並びに、そのような導電部材を用いた電磁コイル、モータ、発電機及びアクチュエータを提供することを目的とする。 Therefore, the present invention has been made to solve the above-mentioned problems, and it is possible to form a conductive member having a complicated shape relatively easily, and it is possible to increase the reliability, and the electromagnetic coil. A method for manufacturing a conductive member that can maintain a high withstand voltage even when used in the above, such a conductive member, and an electromagnetic coil, a motor, and a generator using such a conductive member. And an actuator.

本発明の一態様によれば、複雑な形状の導電部材を比較的容易に形成することができ、かつ、信頼性が高く、導電部材を電磁コイルに用いた場合でも耐圧を高い状態で維持することが可能な導電部材を製造する導電部材の製造方法が提供される。この導電部材の製造方法は、線状の導電性基材が複数束ねられた導電線を準備する準備工程と、前記導電線に水溶性塗料を浸透させる浸透工程と、前記水溶性塗料を浸透させた前記導電線を絶縁性の熱収縮チューブ内に挿入する挿入工程と、前記熱収縮チューブを所定温度で所定時間加熱して前記導電線を覆うまで前記熱収縮チューブを収縮させることにより被覆導電線を形成する第1加熱工程と、前記被覆導電線を所定の形状にフォーミングするフォーミング工程と、前記被覆導電線を加熱することによって前記被覆導電線を前記所定の形状で硬化する第2加熱工程とをこの順序で有する。 According to one aspect of the present invention, a conductive member having a complicated shape can be formed relatively easily, and the reliability is high, and even when the conductive member is used for an electromagnetic coil, the withstand voltage is maintained in a high state. A method for manufacturing a conductive member for manufacturing a conductive member capable of manufacturing the conductive member is provided. The method for manufacturing the conductive member includes a preparation step of preparing a conductive wire in which a plurality of linear conductive base materials are bundled, a permeation step of permeating the water-soluble paint into the conductive wire, and a permeation step of permeating the water-soluble paint. The coated conductive wire is formed by inserting the conductive wire into an insulating heat-shrinkable tube and heating the heat-shrinkable tube at a predetermined temperature for a predetermined time to shrink the heat-shrinkable tube until it covers the conductive wire. A first heating step for forming the coated conductive wire, a forming step for forming the coated conductive wire into a predetermined shape, and a second heating step for curing the coated conductive wire in the predetermined shape by heating the coated conductive wire. In this order.

なお、本明細書中、「硬化」とは、導電線を構成する導電性基材を容易に動かすことができず、導電線が所定の形状から別の形状に折り曲げることが難しい程度に硬く固められた状態をいう。また、「フォーミング」とは、板材や線材を折り曲げる、ねじる、丸める等の加工をして所定の形状に成形することをいう。また、「導電線を覆う」とは、導電線の側面において導電線と密着した状態となるように覆った状態とすることをいう。また、「被覆導電線」とは、熱収縮チューブで導電線を覆った状態のものをいう。さらにまた、「インダクタンス」とは、自己インダクタンスを有するコイル等の回路・構造のことをいう。 In the present specification, "curing" means that the conductive base material constituting the conductive wire cannot be easily moved, and the conductive wire is hardened to such an extent that it is difficult to bend it from a predetermined shape to another shape. It means the state of being struck. Further, "forming" refers to forming a plate or wire into a predetermined shape by bending, twisting, rolling, or the like. Further, "covering the conductive wire" means to cover the side surface of the conductive wire so as to be in close contact with the conductive wire. Further, the "coated conductive wire" refers to a state in which the conductive wire is covered with a heat-shrinkable tube. Furthermore, "inductance" refers to a circuit / structure such as a coil having self-inductance.

本発明の一態様によれば、複雑な形状の導電部材を比較的容易に形成することができ、かつ、信頼性が高く、導電部材を電磁コイルに用いた場合でも耐圧を高い状態で維持することが可能な導電部材、及び、そのような導電部材を用いた電磁コイル、モータ、発電機及びアクチュエータが提供される。この導電部材は、線状の導電性基材が複数束ねられ、少なくも一巻きのインダクタンスを有する所定の形状でフォーミングされた導電線(編組線、撚り線)と、前記導電性基材の表面に形成された水溶性塗布膜と、前記導電線を覆っている絶縁性の熱収縮チューブとを備える導電部材であって、前記導電部材は、前記所定の形状で硬化されている。 According to one aspect of the present invention, a conductive member having a complicated shape can be formed relatively easily, and the reliability is high, and even when the conductive member is used for an electromagnetic coil, the withstand voltage is maintained in a high state. Conductive members capable of this, and electromagnetic coils, motors, generators and actuators using such conductive members are provided. This conductive member includes a conductive wire (braided wire, stranded wire) formed in a predetermined shape in which a plurality of linear conductive base materials are bundled and has at least one winding inductance, and the surface of the conductive base material. A conductive member including a water-soluble coating film formed in the above and an insulating heat-shrinkable tube covering the conductive wire, and the conductive member is cured in the predetermined shape.

本発明の導電部材の製造方法及び導電部材によれば、線状の導電性基材が複数束ねられた導電線を準備する準備工程を含むため、従来の導電部材と同様に、導電性基材同士の間に形成される空隙や編み目が伸縮することにより、柔軟に折り曲げることができ、立体的に曲げられた形状やねじれた形状等の複雑な形状の導電部材を比較的容易に形成することができる。 According to the method for manufacturing a conductive member and the conductive member of the present invention, since the preparatory step of preparing a conductive wire in which a plurality of linear conductive substrates are bundled is included, the conductive substrate is similarly the same as the conventional conductive member. By expanding and contracting the gaps and stitches formed between each other, it can be flexibly bent, and it is relatively easy to form conductive members with complicated shapes such as three-dimensionally bent shapes and twisted shapes. Can be done.

また、本発明の導電部材の製造方法及び導電部材によれば、導電線に水溶性塗料を浸透させる浸透工程を有するため、導電性基材同士の間の隙間や空隙にも水溶性塗料を浸み込ませて導電性基材同士の間の隙間や空隙を水溶性塗料で埋めることができ、後の第2加熱工程において、被覆導電線を加熱することによって導電性部材の隙間まで浸み込んだ水溶性塗料を硬化させることができ、被覆導電線を少なくも一巻きのインダクタンスを有する所定の形状で硬化することができる。このことから、製造後は導電性基材同士の間の空隙や編み目が伸縮することを防ぐことができ、フォーミングされた導電部材の形状を長期間にわたって維持することができる。従って、外部の振動に共振することにより導電部材に伸縮が生じて導電部材の位置がずれる等の不具合が生じ難くなり、信頼性を高くすることが可能となる。 Further, according to the method for manufacturing a conductive member and the conductive member of the present invention, since the water-soluble paint is infiltrated into the conductive wire, the water-soluble paint is also immersed in the gaps and voids between the conductive base materials. The gaps and voids between the conductive base materials can be filled with the water-soluble paint by allowing them to penetrate, and in the second heating step later, the coated conductive wire is heated to penetrate into the gaps of the conductive member. However, the water-soluble paint can be cured, and the coated conductive wire can be cured in a predetermined shape having at least one winding of inductance. From this, it is possible to prevent the gaps and stitches between the conductive base materials from expanding and contracting after production, and it is possible to maintain the shape of the formed conductive member for a long period of time. Therefore, by resonating with external vibration, the conductive member expands and contracts, and problems such as the position of the conductive member being displaced are less likely to occur, and reliability can be improved.

また、本発明の導電部材の製造方法及び導電部材によれば、水溶性塗料を浸透させた導電線を絶縁性の熱収縮チューブ内に挿入する挿入工程を含むため、簡便な方法で導電線を周囲から絶縁することができる。また、導電部材を柔軟に折り曲げて配線した場合や巻回した場合であっても、導電性基材が複数束ねられた導電線を覆うように熱収縮チューブを配置するため、導電性基材それぞれの表面を絶縁材で被覆した場合と比較して局所的に大きな機械的応力がかかることを防ぐことができる。その結果、絶縁材としての熱収縮チューブが損傷することや薄くなることを防ぐことができ、耐圧を高い状態で維持することができる。さらにまた、熱収縮チューブは、全体の肉厚を一定にしやすく、導電線を覆った場合でも熱収縮チューブの厚み、すなわち、絶縁材の厚みにばらつきが生じ難くなる。よって、この観点においても耐圧を高い状態で維持することができる。 Further, according to the method for manufacturing a conductive member and the conductive member of the present invention, the conductive wire is inserted by a simple method because it includes an insertion step of inserting the conductive wire impregnated with the water-soluble paint into an insulating heat-shrinkable tube. Can be insulated from the surroundings. Further, even when the conductive member is flexibly bent and wired or wound, the heat-shrinkable tube is arranged so as to cover the conductive wire in which a plurality of conductive substrates are bundled, so that each of the conductive substrates is used. It is possible to prevent a large mechanical stress from being applied locally as compared with the case where the surface of the surface is covered with an insulating material. As a result, it is possible to prevent the heat-shrinkable tube as an insulating material from being damaged or thinned, and it is possible to maintain a high pressure resistance. Furthermore, the heat-shrinkable tube tends to have a constant overall wall thickness, and even when the conductive wire is covered, the thickness of the heat-shrinkable tube, that is, the thickness of the insulating material is less likely to vary. Therefore, even from this viewpoint, the withstand voltage can be maintained in a high state.

また、本発明の導電部材の製造方法及び導電部材によれば、導電線に水溶性塗料を浸透させる浸透工程を有するため、導電性基材同士の間の隙間や空隙にも水溶性塗料を浸み込ませて導電性基材同士の間の隙間を水溶性塗料で埋めることができ、後の第2加熱工程において、被覆導電線を加熱することによって導電性部材の隙間まで浸み込んだ水溶性塗料を硬化させることで被覆導電線を所定の形状で硬化することができるため、熱収縮チューブに大きな機械的圧力が直接かかることを防ぐことができる。従って、絶縁材としての熱収縮チューブが損傷したり薄くなったりし難くなり、耐圧を高い状態で確実に維持することができる。 Further, according to the method for manufacturing a conductive member and the conductive member of the present invention, since the water-soluble paint is infiltrated into the conductive wire, the water-soluble paint is also immersed in the gaps and voids between the conductive base materials. The gaps between the conductive base materials can be filled with the water-soluble paint, and in the second heating step later, the coated conductive wire is heated to penetrate into the gaps of the conductive member. By curing the sex paint, the coated conductive wire can be cured in a predetermined shape, so that it is possible to prevent a large mechanical pressure from being directly applied to the heat-shrinkable tube. Therefore, the heat-shrinkable tube as an insulating material is less likely to be damaged or thinned, and the pressure resistance can be reliably maintained in a high state.

また、本発明の導電部材の製造方法によれば、被覆導電線を形成する第1加熱工程と、被覆導電線を少なくも一巻きのインダクタンスを有する所定の形状にフォーミングするフォーミング工程と、被覆導電線を当該所定の形状で硬化する第2加熱工程とをこの順序で実施するため、絶縁性の熱収縮チューブで導電線を覆った状態で複雑な形状の導電部材を形成し、その形状で硬化することができる。その結果、複雑な形状の導電部材を比較的容易に形成すること、硬化することで高い信頼性を得ることができること、及び、耐圧を高い状態で維持することができる導電性部材を製造することの全てを実現することができる。 Further, according to the method for manufacturing a conductive member of the present invention, a first heating step of forming a coated conductive wire, a forming step of forming the coated conductive wire into a predetermined shape having at least one winding inductance, and a coated conductive wire. In order to carry out the second heating step of curing the wire in the predetermined shape in this order, a conductive member having a complicated shape is formed while the conductive wire is covered with an insulating heat-shrinkable tube, and the wire is cured in that shape. can do. As a result, it is possible to relatively easily form a conductive member having a complicated shape, obtain high reliability by curing, and manufacture a conductive member capable of maintaining a high pressure resistance. All of can be realized.

本発明の電磁コイル、モータ、発電機及びアクチュエータによれば、本発明の導電部材を用いるため、表面を絶縁材であらかじめ被覆した導電性基材を備える導電部材を用いた電磁コイルと比較して、抵抗が小さくて済む。従って、熱損失が小さくて済み、トルク劣化や出力劣化がし難い電磁コイル、モータ、発電機及びアクチュエータとなる。 According to the electromagnetic coil, motor, generator and actuator of the present invention, since the conductive member of the present invention is used, compared with an electromagnetic coil using a conductive member having a conductive substrate whose surface is pre-coated with an insulating material. , The resistance is small. Therefore, the electromagnetic coil, the motor, the generator, and the actuator can have a small heat loss and are less likely to have torque deterioration or output deterioration.

実施形態1に係る導電部材1を示す図である。It is a figure which shows the conductive member 1 which concerns on Embodiment 1. FIG. 実施形態1における導電線10及び水溶性塗布膜20の様子を示す図である。It is a figure which shows the state of the conductive wire 10 and the water-soluble coating film 20 in Embodiment 1. FIG. 実施形態1に係る導電部材の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the conductive member which concerns on Embodiment 1. 浸透工程を説明するために示す図である。It is a figure which shows for demonstrating the permeation process. 挿入工程を説明するために示す図である。It is a figure which shows for demonstrating the insertion process. 第1加熱工程を説明するために示す図である。It is a figure which shows for demonstrating the 1st heating process. フォーミング工程において被覆導電線10’をコイル形状にフォーミングする様子を示す図である。It is a figure which shows the state which the coated conductive wire 10' is formed into a coil shape in a forming process. フォーミング工程において被覆導電線10’を段差形状をフォーミングする様子を示す図である導電性接合材浸透工程を説明するために示す図である。It is a figure which shows the state of forming the step shape of the coated conductive wire 10'in the forming process, and is the figure which shows in order to explain the conductive bonding material permeation process. 第2加熱工程を説明するために示す図である。It is a figure which shows for demonstrating the 2nd heating process. 導電線10の端部に半田を浸透させる様子を示す図である。It is a figure which shows the state which the solder is permeated into the end portion of a conductive wire 10. 端子形成工程を説明するために示す図である。It is a figure which shows for demonstrating the terminal formation process. 実施形態1に係るコイルアセンブリー100を説明するために示す図である。It is a figure which shows for demonstrating the coil assembly 100 which concerns on Embodiment 1. FIG. 実施形態2に係る導電部材2を説明するために示す図である。It is a figure which shows for demonstrating the conductive member 2 which concerns on Embodiment 2. 実施形態3に係る導電部材3を説明するために示す図である。It is a figure which shows for demonstrating the conductive member 3 which concerns on Embodiment 3. 従来の導電部材900を説明するために示す図である。It is a figure which shows for demonstrating the conventional conductive member 900.

以下、本発明に係る導電部材の製造方法、導電部材、電磁コイル、モータ、発電機、アクチュエータの実施形態について図面を参照して説明する。各図面は一例を示した模式図であり、必ずしも実際の寸法、比率等を厳密に反映したものではない。また、各実施形態において、基本的な構成及び特徴が実施形態1と同じ構成については、実施形態1と同じ符号を使用し、又は、符号を付すことを省略し、それらの構成要素の説明を省略する。なお、以下、電磁コイルのことを単にコイルということもある。 Hereinafter, a method for manufacturing a conductive member, an embodiment of a conductive member, an electromagnetic coil, a motor, a generator, and an actuator according to the present invention will be described with reference to the drawings. Each drawing is a schematic diagram showing an example, and does not necessarily accurately reflect actual dimensions, ratios, and the like. Further, in each embodiment, for the configuration having the same basic configuration and features as those of the first embodiment, the same reference numerals as those of the first embodiment are used, or the reference numerals are omitted, and the description of those components will be described. Omit. Hereinafter, the electromagnetic coil may be simply referred to as a coil.

[実施形態1]
1.実施形態1に係る導電部材1(実施形態1に係るコイル101A)の構成
(1)実施形態1に係る導電部材1の外観
実施形態1に係る導電部材1の外観は、線状の導電性基材が複数束ねられた導電線(後述する被覆導電線10’)が、少なくも一巻きのインダクタンスを有する所定の形状として空芯領域を取り囲むコイル形状にフォーミングされ、当該形状で硬化されたものである(以下、コイル形状にフォーミングされ、当該形状で硬化された実施形態1に係る導電部材1を実施形態1に係るコイル101Aということもある)。
[Embodiment 1]
1. 1. Configuration of conductive member 1 according to embodiment 1 (coil 101A according to embodiment 1)
(1) Appearance of Conductive Member 1 According to Embodiment 1 The appearance of the conductive member 1 according to the first embodiment is that a conductive wire (coated conductive wire 10'described later) in which a plurality of linear conductive base materials are bundled is. The first embodiment is formed into a coil shape surrounding the air core region as a predetermined shape having at least one winding inductance and cured in the shape (hereinafter, formed into a coil shape and cured in the shape). The conductive member 1 according to the above may be referred to as a coil 101A according to the first embodiment).

図1(a)は、コイル101A(電磁コイル)の外形を示すものである。実施形態1に係るコイル101Aは、平面的に見て導電線10(後述する被覆導電線10’)が略長方形の空芯領域90Aの周りを約2周(厳密には、約1.75周)巻回してなる。コイル101Aは、対向する2つの長辺部分X1、X2(有効コイル部)と、対向する2つの短辺部分X3,X4(コイルエンド部)とで構成される矩形のコイル形状を有する。コイル101Aは、短辺部分X3、X4の側面から見ると円弧状に曲げられており、後述する図12(b)に示すように、長辺部分X1,X2の外側面同士が互いに接した状態で複数個(実施形態1においては8つ)のコイル101Aをリング状に並べることができる。 FIG. 1A shows the outer shape of the coil 101A (electromagnetic coil). In the coil 101A according to the first embodiment, the conductive wire 10 (coated conductive wire 10'described later) is about two times (strictly, about 1.75 times) around the air core region 90A having a substantially rectangular shape when viewed in a plane. ) It is wound. The coil 101A has a rectangular coil shape composed of two facing long side portions X1 and X2 (effective coil portion) and two facing short side portions X3 and X4 (coil end portion). The coil 101A is bent in an arc shape when viewed from the side surfaces of the short side portions X3 and X4, and as shown in FIG. 12 (b) described later, the outer surfaces of the long side portions X1 and X2 are in contact with each other. A plurality of coils 101A (eight in the first embodiment) can be arranged in a ring shape.

コイル101Aにおいて、対向する2つの短辺部分X3,X4のうちの一方の短辺部分X3には、並行して突出した端子部86A,86Bが形成されている。コイル101Aの対向する2つの長辺部分X1,X2は、対向する2つの短辺部分X3,X4のうちの他方の短辺部分X4側で径方向の内側(図12(b)で示すようにコイルが配列されたときの回転軸AX1の側)にオフセットした段差形状を有する。 In the coil 101A, terminal portions 86A and 86B projecting in parallel are formed on one of the two short side portions X3 and X4 facing each other on the short side portion X3. The two opposing long side portions X1 and X2 of the coil 101A are radially inside (as shown in FIG. 12B) on the other short side portion X4 side of the two opposing short side portions X3 and X4. It has a stepped shape offset to the rotation axis AX1 side when the coils are arranged.

(2)実施形態1に係る導電部材1(コイル101A)の構成
図1(b)は、実施形態1に係る導電部材1(実施形態1に係るコイル101A)の側断面図である。図1(b)に示すように、実施形態1に係る導電部材1は、導電線10と、導電線10を覆うように形成された水溶性塗布膜20と、導電線10及び水溶性塗布膜20を覆う絶縁性の熱収縮チューブ30とを備える。
(2) Configuration of Conductive Member 1 (Coil 101A) According to Embodiment 1. FIG. 1 (b) is a side sectional view of Conductive Member 1 (Coil 101A according to Embodiment 1) according to Embodiment 1. As shown in FIG. 1 (b), the conductive member 1 according to the first embodiment includes a conductive wire 10, a water-soluble coating film 20 formed so as to cover the conductive wire 10, a conductive wire 10 and a water-soluble coating film. It is provided with an insulating heat-shrinkable tube 30 that covers 20.

図1(c)は、実施形態1に係る導電部材1(実施形態1に係るコイル101A)を図1(a)の仮想線Aで囲む領域で切断したときの断面図である。ただし、図1(c)においては、空芯領域90Aの周りを約2周巻回している導電部材1のうちの1周分を示している。図1(c)に示すように、導電線10は、複数の線状の導電性基材12が複数束ねられている。また、水溶性塗布膜20は、導電性基材12の表面に形成されており、導電性基材12同士の間の隙間16にも水溶性塗布膜20が埋められた状態となっている。導電線10の周囲は、導電性基材12の表面に形成された水溶性塗布膜20が層状となっている。 FIG. 1 (c) is a cross-sectional view when the conductive member 1 according to the first embodiment (coil 101A according to the first embodiment) is cut in a region surrounded by the virtual line A of FIG. 1 (a). However, FIG. 1C shows one round of the conductive member 1 that is wound around the air core region 90A about two times. As shown in FIG. 1 (c), a plurality of linear conductive base materials 12 are bundled in the conductive wire 10. Further, the water-soluble coating film 20 is formed on the surface of the conductive base material 12, and the water-soluble coating film 20 is also filled in the gap 16 between the conductive base materials 12. Around the conductive wire 10, a water-soluble coating film 20 formed on the surface of the conductive base material 12 is layered.

導電性基材12は、適宜のものを用いることができ、例えば、銅を主原料とした銅線、ニッケルを主原料としたニッケル線、炭素を用いたカーボン線、銅線等にニッケルめっき、錫めっき等が施されためっき線、ニッケル合金線、銅合金線、炭素含有線のいずれか、又はこれらのうちの2以上を含む複合線を用いることができる。実施形態1において、導電性基材12は、複数の導体線(例えば、裸銅線。)を撚った撚糸を編んだものを用いるが、1本の導体線でもよい。導電性基材12の太さは、適宜のものを用いることができるが、表皮効果の影響を低減するために、実施形態1においては、平均半径が100μm以下のものが好ましく、平均半径が50μm以下のものがより好ましい。 As the conductive base material 12, an appropriate one can be used, for example, a copper wire made of copper as a main raw material, a nickel wire made of nickel as a main raw material, a carbon wire made of carbon, a copper wire or the like plated with nickel. Any one of tin-plated plated wire, nickel alloy wire, copper alloy wire, carbon-containing wire, or a composite wire containing two or more of these can be used. In the first embodiment, as the conductive base material 12, a twisted yarn obtained by twisting a plurality of conductor wires (for example, bare copper wire) is used, but one conductor wire may be used. An appropriate thickness of the conductive base material 12 can be used, but in order to reduce the influence of the skin effect, in the first embodiment, the thickness of the conductive base material 12 is preferably 100 μm or less, and the average radius is 50 μm. The following are more preferred.

図2(a)は、導電線10及び水溶性塗布膜20の様子を示す平断面図である。図2(a)に示すように、導電線10は、複数の線状の導電性基材12を平編みの編組線であり、導電性基材12の本数、断面積等を調整することにより、導電部材1を数百Aの電流を流す電流導通路とすることができる。導電線10の導電性基材12同士の間には空隙14が存在し、当該空隙14は水溶性塗布膜20で埋められている。導電線10は、水溶性塗布膜20が形成(硬化)される前は、導電性基材12が移動する余地があり可とう性に優れているものの、水溶性塗布膜20が形成(硬化)された後は、導電性基材12が移動する余地がなくなり、可とう性が失われている。なお、実施形態1において、導電線10は、複数段重ねられた編組線を用いたが、導電性基材12を1段平編みされたものを用いてもよいし、リッツ線群であってもよい。 FIG. 2A is a plan sectional view showing the state of the conductive wire 10 and the water-soluble coating film 20. As shown in FIG. 2A, the conductive wire 10 is a braided wire in which a plurality of linear conductive base materials 12 are flat-knitted, and the number, cross-sectional area, etc. of the conductive base materials 12 are adjusted. The conductive member 1 can be used as a current conduction path through which a current of several hundred A is passed. Voids 14 exist between the conductive base materials 12 of the conductive wires 10, and the voids 14 are filled with the water-soluble coating film 20. Before the water-soluble coating film 20 is formed (cured), the conductive wire 10 has room for movement of the conductive base material 12 and is excellent in flexibility, but the water-soluble coating film 20 is formed (cured). After that, there is no room for the conductive base material 12 to move, and the flexibility is lost. In the first embodiment, the conductive wire 10 is a braided wire in which a plurality of stages are stacked, but a conductive base material 12 which is flat-knitted in one stage may be used, or may be a litz wire group. good.

水溶性塗布膜20は、硬化されており、導電線10をフォーミングした所定の形状を維持した状態とすることができる。水溶性塗布膜20は、水溶性塗料20’を導電性基材12同士の間に浸透させて導電性基材12の表面に塗布したものである。水溶性塗布膜20に用いられる樹脂液としては、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、ポリエステル樹脂、ポリアミン樹脂等を挙げることができる。水溶性塗布膜20は、絶縁性、接着性及び熱硬化性を有する。 The water-soluble coating film 20 is cured and can maintain a predetermined shape formed by forming the conductive wire 10. The water-soluble coating film 20 is obtained by infiltrating the water-soluble coating film 20'between the conductive base materials 12 and applying the water-soluble coating film 20 to the surface of the conductive base material 12. Examples of the resin liquid used for the water-soluble coating film 20 include acrylic resin, epoxy resin, urethane resin, polyester resin, polyamine resin and the like. The water-soluble coating film 20 has insulating properties, adhesiveness, and thermosetting properties.

図2(b)は、図2(a)のB-B断面を示す断面図である。図2(b)に示すように、導電線10は、一方向に延びる導電性基材12と、他方向に伸びる導電性基材12とが互い違いに編まれており、一方向に延びる導電性基材12と、他方向に伸びる導電性基材12との間に隙間18(例えば、断面で見て、一方の導電性基材12が交差する他方の導電性基材12の下方に潜り込むときに、一方の導電性基材12上に形成される隙間)が生じている。導電部材1においては、当該隙間18にも水溶性塗布膜20が形成されており、形状安定性が高くなっている。 FIG. 2B is a cross-sectional view showing a cross section taken along the line BB of FIG. 2A. As shown in FIG. 2B, in the conductive wire 10, the conductive base material 12 extending in one direction and the conductive base material 12 extending in the other direction are woven alternately, and the conductive wire 10 extends in one direction. A gap 18 between the base material 12 and the conductive base material 12 extending in the other direction (for example, when one of the conductive base materials 12 crosses under the other conductive base material 12 when viewed in cross section). There is a gap) formed on one of the conductive base materials 12. In the conductive member 1, the water-soluble coating film 20 is also formed in the gap 18 to improve the shape stability.

熱収縮チューブ30は、絶縁性を有する樹脂からなり、断面でみると中央部に空間が形成された管状の部材である。熱収縮チューブ30は、内表面が滑らかに形成されている。このため、導電線10を熱収縮チューブ30に挿入する際にスムーズに挿入することができる。また、熱収縮チューブ30は、外表面も滑らかに形成されている。このため、製造された導電部材は、引っ掛かりが少なく、コイル形状に巻回する際や実装する際にスムーズに配置することができる。 The heat-shrinkable tube 30 is a tubular member made of an insulating resin and having a space formed in the central portion when viewed in cross section. The inner surface of the heat-shrinkable tube 30 is smoothly formed. Therefore, the conductive wire 10 can be smoothly inserted when it is inserted into the heat-shrinkable tube 30. The outer surface of the heat-shrinkable tube 30 is also smoothly formed. Therefore, the manufactured conductive member has less catching and can be smoothly arranged when winding into a coil shape or when mounting.

熱収縮チューブ30は、導電線10を熱収縮チューブ30の中央部の空間に配置し、熱収縮させることにより、導電線10の周囲に密着した状態で配置される。熱収縮チューブ30の厚み(熱収縮後)は、例えば、20μm~100μmの範囲内にあり、例えば50μmである。熱収縮チューブ30は、熱収縮性を有し、例えば、300℃以上になると収縮を開始し、350℃で60秒間の耐熱性を有する。また、連続使用温度は260℃である。また、熱収縮チューブ30は接着性及び熱硬化性を有する。熱収縮チューブ30の材料となる樹脂は、熱収縮性及び絶縁性を有する素材であれば適宜のものを用いることができるが、耐薬品性や機械的摩擦係数が小さいPTFE(ポリテトラフルオロエチレン)を好適に用いることができる。 The heat-shrinkable tube 30 is arranged in close contact with the periphery of the conductive wire 10 by arranging the conductive wire 10 in the space at the center of the heat-shrinkable tube 30 and heat-shrinking the conductive wire 10. The thickness of the heat shrink tube 30 (after heat shrink) is, for example, in the range of 20 μm to 100 μm, for example, 50 μm. The heat-shrinkable tube 30 has heat-shrinkability, and starts shrinking at, for example, 300 ° C. or higher, and has heat resistance at 350 ° C. for 60 seconds. The continuous use temperature is 260 ° C. Further, the heat-shrinkable tube 30 has adhesiveness and thermosetting property. As the resin used as the material of the heat-shrinkable tube 30, any resin having heat-shrinkability and insulating properties can be used, but PTFE (polytetrafluoroethylene) having a small chemical resistance and a small mechanical friction coefficient. Can be preferably used.

2.実施形態1に係る導電部材1(実施形態1に係るコイル101)の製造方法
次に、実施形態1に係る導電部材1(実施形態1に係るコイル101)の製造方法を説明する。
図3は、実施形態1に係る導電部材1の製造方法を示すフローチャートである。図3に示すように、実施形態1に係る導電部材1の製造方法は、準備工程と、浸透工程と、挿入工程と、第1加熱工程と、フォーミング工程と、第2加熱工程と、端子形成工程(導電性接合材浸透工程)とをこの順序で含む。
2. 2. Method for Manufacturing Conductive Member 1 (Coil 101 According to Embodiment 1 ) According to the first embodiment Next, a method for manufacturing the conductive member 1 (coil 101 according to the first embodiment) according to the first embodiment will be described.
FIG. 3 is a flowchart showing a method of manufacturing the conductive member 1 according to the first embodiment. As shown in FIG. 3, the manufacturing method of the conductive member 1 according to the first embodiment includes a preparation step, a permeation step, an insertion step, a first heating step, a forming step, a second heating step, and terminal formation. The steps (conductive bonding material permeation step) are included in this order.

(1)準備工程
準備工程は、線状の導電性基材12が複数束ねられた導電線10を準備する工程である(図示せず)。具体的には、複数の導体線(例えば、裸銅線)を撚った撚糸を編んだ導電性基材12を平編みし、所定の長さ寸法でカットして平板状にし、編組線である導電線10を形成する。
(1) Preparation Step The preparation step is a step of preparing a conductive wire 10 in which a plurality of linear conductive base materials 12 are bundled (not shown). Specifically, a conductive base material 12 knitted with twisted yarn obtained by twisting a plurality of conductor wires (for example, bare copper wire) is flat-knitted, cut to a predetermined length to form a flat plate, and then braided. A certain conductive wire 10 is formed.

(2)浸透工程
図4(a)は、浸透工程を説明するために示す図である。図4(a)に示すように、浸透工程においては、導電線10に水溶性塗料を浸透させる。例えば、液槽・容器等(以下、単に液槽Tとする)の内側に水溶性塗料20’の水溶液を満たす。そして、導電線10を液槽T内に投入し、導電線10を移動させながら導電線10を水溶性塗料20’の水溶液に浸していく。これにより、水溶性塗料20’が導電線10を構成する導電性基材12の間に浸透(侵入)する。
(2) Permeation process FIG. 4A is a diagram shown for explaining the permeation process. As shown in FIG. 4A, in the permeation step, the water-soluble paint is permeated into the conductive wire 10. For example, the inside of a liquid tank, a container, or the like (hereinafter, simply referred to as a liquid tank T) is filled with an aqueous solution of the water-soluble paint 20'. Then, the conductive wire 10 is put into the liquid tank T, and the conductive wire 10 is immersed in the aqueous solution of the water-soluble paint 20'while moving the conductive wire 10. As a result, the water-soluble paint 20'penetrates (penetrates) between the conductive base materials 12 constituting the conductive wire 10.

図4(b)は、浸透工程において、導電線10に水溶性塗料20’が浸透する様子を示す図である。図4(b)に示すように、浸透工程において、水溶性塗料20’が導電線10を構成する導電性基材12の間に浸透(侵入)し、導電線10(微視的に言うと導電線10を構成する導電性基材12)の周囲に、水溶性塗料20’を配置する。このとき、導電性基材12同士の間の空隙14を水溶性塗料20’で埋めるとともに導電線10の周囲を層状に覆うように水溶性塗料20’が配置される。水溶性塗料20’は、絶縁性塗料であり、かつ、接着性塗料であり、かつ、熱硬化性塗料でもある。なお、導電線10に直接水溶性塗料を塗布してもよい。 FIG. 4B is a diagram showing how the water-soluble paint 20'penetrates into the conductive wire 10 in the permeation step. As shown in FIG. 4B, in the permeation step, the water-soluble paint 20'penetrates (penetrates) between the conductive base materials 12 constituting the conductive wire 10, and the conductive wire 10 (microscopically speaking). A water-soluble paint 20'is arranged around the conductive base material 12) constituting the conductive wire 10. At this time, the water-soluble paint 20'is arranged so as to fill the voids 14 between the conductive base materials 12 with the water-soluble paint 20'and to cover the periphery of the conductive wire 10 in a layered manner. The water-soluble paint 20'is an insulating paint, an adhesive paint, and a thermosetting paint. The water-soluble paint may be applied directly to the conductive wire 10.

(3)挿入工程
図5(a)及び図5(b)は、挿入工程を説明するために示す側面図及び断面図である。図5(a)及び図5(b)に示すように、挿入工程においては、水溶性塗料20’を浸透させた導電線10を絶縁性の熱収縮チューブ30内に挿入する。熱収縮チューブ30は、導電線10を挿入できるように内側に空間が形成されており、挿入したときに導電線10(周囲に形成された水溶性塗料20’)との間に隙間32が形成されている。
(3) Insertion Process FIGS. 5 (a) and 5 (b) are side views and cross-sectional views shown for explaining the insertion process. As shown in FIGS. 5 (a) and 5 (b), in the insertion step, the conductive wire 10 impregnated with the water-soluble paint 20'is inserted into the insulating heat-shrinkable tube 30. The heat-shrinkable tube 30 has a space formed inside so that the conductive wire 10 can be inserted, and when inserted, a gap 32 is formed between the heat-shrinkable tube 30 and the conductive wire 10 (water-soluble paint 20'formed around it). Has been done.

(4)第1加熱工程
図6(a)及び図6(b)は、第1加熱工程を説明するために示す側面図及び断面図である。図6(a)及び図6(b)に示すように、第1加熱工程においては、熱収縮チューブ30を所定温度で所定時間加熱することによって熱収縮チューブ30を収縮させて導電線10を熱収縮チューブ30で覆う。具体的には、導電線10が挿入された熱収縮チューブ30に300℃~450℃の高温熱風を短時間(例えば、1秒~2秒)吹きかけて熱収縮チューブ30を収縮させて導電線10に密着された状態とし(隙間32が小さい、又はなくなった状態とし)、導電線10を覆った状態とする。このとき、熱収縮チューブ30を両側から引っ張り、引っ張り応力をかけながら熱収縮チューブ30の肉厚(内側面と外側面との間の厚み)を制御する。熱収縮の速度は、例えば0.1~2(cm/sec)の速度である。このとき、高温熱風を吹きかける時間が短時間であるため、水溶性塗料20’の水分は多く残存しており硬化されていない。従って、熱収縮チューブ30で覆われた導電線10(以下、被覆導電線10’という)は可とう性を有している。
(4) First Heating Step FIGS. 6 (a) and 6 (b) are side views and cross-sectional views shown for explaining the first heating step. As shown in FIGS. 6A and 6B, in the first heating step, the heat-shrinkable tube 30 is heated at a predetermined temperature for a predetermined time to shrink the heat-shrinkable tube 30 and heat the conductive wire 10. Cover with shrink tubing 30. Specifically, the heat-shrinkable tube 30 into which the conductive wire 10 is inserted is blown with high-temperature hot air at 300 ° C. to 450 ° C. for a short time (for example, 1 to 2 seconds) to shrink the heat-shrinkable tube 30 to shrink the conductive wire 10. (The gap 32 is small or disappears), and the conductive wire 10 is covered. At this time, the heat-shrinkable tube 30 is pulled from both sides, and the wall thickness (thickness between the inner side surface and the outer side surface) of the heat-shrinkable tube 30 is controlled while applying tensile stress. The rate of heat shrinkage is, for example, 0.1 to 2 (cm / sec). At this time, since the time for blowing the high-temperature hot air is short, a large amount of water remains in the water-soluble paint 20'and it is not cured. Therefore, the conductive wire 10 covered with the heat-shrinkable tube 30 (hereinafter referred to as the coated conductive wire 10') has flexibility.

(5)フォーミング工程
フォーミング工程においては、被覆導電線10’を少なくも一巻きのインダクタンスを有する所定の形状にフォーミングする。
図7(a)及び図7(b)は、フォーミング工程において被覆導電線10’をコイル形状にフォーミングする様子を示す平面図及び側面図である。まず、空芯領域90Aに対応する形状の凸部を有する巻線金型(図示せず)を準備し、離型剤を作業領域全域に塗布する。次に、被覆導電線10’を巻き込み巻線として、巻線金型の凸部の周りを約2周(厳密には約1.75周)巻回して押さえ込む。これにより、図7(a)及び図7(b)に示すように、短辺部分X3に並行して突出した端部86A’,86B’を形成した状態で、被覆導電線10’をコイル形状にフォーミングする。
(5) Forming Step In the forming step, the coated conductive wire 10'is formed into a predetermined shape having at least one winding of inductance.
7 (a) and 7 (b) are a plan view and a side view showing how the coated conductive wire 10'is formed into a coil shape in the forming step. First, a winding die (not shown) having a convex portion having a shape corresponding to the air core region 90A is prepared, and a mold release agent is applied to the entire working region. Next, the coated conductive wire 10'is used as a winding winding, and is wound around the convex portion of the winding die by about 2 turns (strictly, about 1.75 turns) and pressed down. As a result, as shown in FIGS. 7 (a) and 7 (b), the coated conductive wire 10'is coiled in a state where the end portions 86A'and 86B' projecting in parallel with the short side portion X3 are formed. Forming to.

図8(a)及び図8(b)は、フォーミング工程において段差形状をフォーミングする様子を示す平面図及び断面図である。次に、図8(a)及び図8(b)に示すように、コイル形状にフォーミングされた被覆導電線10’をフォーミング治具(図示せず)に入れて加圧することにより、短辺部分X3の側面から見ると円弧状に曲げられ、かつ、2つの長辺部分が他方の短辺部分X4側でオフセットした段差形状に被覆導電線10’を成形する。なお、この工程で、短辺部分X3の側面から見ると円弧状に曲げられているが、図示をわかりやすくするために、図8(b)及び図9(b)は直線状の状態で図示している。 8 (a) and 8 (b) are a plan view and a cross-sectional view showing how the step shape is formed in the forming step. Next, as shown in FIGS. 8 (a) and 8 (b), the coated conductive wire 10 ′ formed into a coil shape is placed in a forming jig (not shown) and pressed to pressurize the short side portion. The coated conductive wire 10'is formed into a stepped shape that is bent in an arc shape when viewed from the side surface of X3 and whose two long side portions are offset on the other short side portion X4 side. In this step, the short side portion X3 is bent in an arc shape when viewed from the side surface, but in order to make the illustration easier to understand, FIGS. 8 (b) and 9 (b) are shown in a linear state. Shows.

(6)第2加熱工程
図9(a)及び図9(b)は、第2加熱工程を説明するために示す平面図及び断面図である。図9(a)及び図9(b)に示すように、被覆導電線10’を加熱することによって被覆導電線10’を上記したような所定の形状で硬化する。具体的には、第2加熱工程においては、フォーミング治具(図示せず)で被覆導電線10’をフォーミングした状態で200℃の炉に入れ、20~30分加熱する。この加熱により、被覆導電線10’の水溶性塗料20’は、水分が失われて硬化し、水溶性塗布膜20となる。これにより、導電線10の空隙14が埋まった状態で硬化されることから被覆導電線10’の可とう性が失われ、被覆導電線10’を少なくも一巻きのインダクタンスを有する所定の形状で硬化することができる。そして、フォーミング治具から被覆導電線10’を外して取り出し、端子部分を所定の形状でカットする。
(6) Second Heating Step FIGS. 9 (a) and 9 (b) are plan views and cross-sectional views shown for explaining the second heating step. As shown in FIGS. 9A and 9B, the coated conductive wire 10'is cured by heating the coated conductive wire 10'in a predetermined shape as described above. Specifically, in the second heating step, the coated conductive wire 10'is placed in a furnace at 200 ° C. in a formed state with a forming jig (not shown) and heated for 20 to 30 minutes. By this heating, the water-soluble paint 20'of the coated conductive wire 10'is cured by losing water, and becomes a water-soluble coating film 20. As a result, since the void 14 of the conductive wire 10 is cured in a filled state, the flexibility of the coated conductive wire 10'is lost, and the coated conductive wire 10'has a predetermined shape having at least one winding of inductance. Can be cured. Then, the coated conductive wire 10'is removed from the forming jig, taken out, and the terminal portion is cut into a predetermined shape.

(7)端子形成工程(導電性接合材浸透工程)
次に、被覆導電線10’の端部86A’,86B’を導電性接合材(半田)の溶液を浸漬させて端部86A’,86B’に半田を浸透させる。
図10(a)及び図10(b)は、導電線の端部に半田を浸透させる様子を示す図である。図10(a)に示すように、端子形成工程(導電性接合材浸透工程)においては、まず、端部86A’,86B’にフラックス剤を塗布し、当該端部86A’,86B’を、半田槽内で300℃以上に熱せられた半田溶液Sに投入する。これにより、熱収縮チューブ30内の、編組線である導電線10に半田溶液Sが浸透し、半田付けされた状態となる。次に、図10(b)に示すように、半田槽T2から端部86A’,86B’を引き上げる。
図11は、端子形成工程を説明するために示す図である。次に、端部86A’,86B’の熱収縮チューブ30を除去する。これにより端部86A’,86B’が、端子部86A,86Bとなる(図11参照)。
このようにして、実施形態1に係るコイル101Aを製造することができる。
(7) Terminal forming process (conductive bonding material permeation process)
Next, the ends 86A'and 86B' of the coated conductive wire 10'are immersed in a solution of the conductive bonding material (solder) to allow the solder to penetrate into the ends 86A' and 86B'.
10 (a) and 10 (b) are views showing how solder is infiltrated into the end of the conductive wire. As shown in FIG. 10A, in the terminal forming step (conductive bonding material infiltration step), first, a flux agent is applied to the end portions 86A'and 86B', and the end portions 86A'and 86B' are coated with the end portions 86A'and 86B'. It is put into the solder solution S heated to 300 ° C. or higher in the solder bath. As a result, the solder solution S permeates the conductive wire 10 which is a braided wire in the heat-shrinkable tube 30, and is in a soldered state. Next, as shown in FIG. 10B, the ends 86A'and 86B' are pulled up from the solder tank T2.
FIG. 11 is a diagram shown for explaining the terminal forming process. Next, the heat shrink tubing 30 at the ends 86A'and 86B' is removed. As a result, the end portions 86A'and 86B' become terminal portions 86A and 86B (see FIG. 11).
In this way, the coil 101A according to the first embodiment can be manufactured.

3.実施形態1におけるコイルアセンブリー100の構成
実施形態1に係るコイル101Aは、似た構成のコイル101Bと組み合わせてコアレスモータに用いられるコイルアセンブリー100を構成する。なお、コイル101A,101Bが適用される電気機械装置は、空芯形のコイルを用いる電気機械装置であれば如何なるものであってもよい。いわゆるコアレスモータは好適な適用対象の1つである。
3. 3. Configuration of Coil Assembly 100 in Embodiment 1. The coil 101A according to the first embodiment constitutes a coil assembly 100 used in a coreless motor in combination with a coil 101B having a similar configuration. The electromechanical device to which the coils 101A and 101B are applied may be any electromechanical device that uses an air-core coil. So-called coreless motors are one of the preferred applications.

図12(e)はコイル101B(第2形状コイル)の外観を示す斜視図である。第2形状コイルとしてのコイル101Bは、図12(e)に示すように、コイル101Aの対向する2つの長辺部分Y1,Y2における端子部86A,86Bが形成されている側が径方向の外側にオフセットした段差形状を有する点で、コイル101A(第1形状コイル)とは異なる。それ以外の点においては、基本的にコイル101A(第1形状コイル)と同様の構成を有する。 FIG. 12 (e) is a perspective view showing the appearance of the coil 101B (second shape coil). As shown in FIG. 12 (e), in the coil 101B as the second shape coil, the side of the two opposing long side portions Y1 and Y2 of the coil 101A on which the terminal portions 86A and 86B are formed is radially outside. It differs from the coil 101A (first shape coil) in that it has an offset step shape. Other than that, it basically has the same configuration as the coil 101A (first shape coil).

図12(a)は、コアレスモータに用いられるコイルアセンブリー100の一例を示す斜視図である。ここでは複数のコイル101A,101B(下付き文字による数字はIndex番号)が、ローターが有する永久磁石(図示を省略)の移動方向ROTに沿って配置されて、コイルアセンブリー100を構成している。別の言い方(別言)をすると、コイルアセンブリー100は、それぞれのコイル101A,101Bの長辺部分X1,X2,Y1,Y2(有効コイル部)が磁石の移動方向ROTと直交するようにして複数のコイル101A,101Bが配置されて構成されている。
「空芯形のコイル」とは、導電性の部材が巻回されてなるコイルであって、当該巻回の内側に突極となる鉄心が配置されていないタイプのコイルと言うこともできる。ここでの「巻回」とは空芯領域を完全に360°に渡って取り囲むように巻く場合の他、空芯領域の周りを1周するまでには至らない(360°には至らない)ものの空芯領域を囲むような巻き方も含むものとする。
FIG. 12A is a perspective view showing an example of a coil assembly 100 used in a coreless motor. Here, a plurality of coils 101A and 101B (numbers in subscripts are index numbers) are arranged along the moving direction ROT of the permanent magnets (not shown) of the rotor to form the coil assembly 100. .. In other words, in the coil assembly 100, the long side portions X1, X2, Y1, Y2 (effective coil portions) of the respective coils 101A and 101B are orthogonal to the moving direction ROT of the magnet. A plurality of coils 101A and 101B are arranged and configured.
The "air-core coil" is a coil in which a conductive member is wound, and can be said to be a type of coil in which an iron core as a salient pole is not arranged inside the winding. The term "winding" here means winding so as to completely surround the air core region over 360 °, and it does not reach one round around the air core region (it does not reach 360 °). It shall also include a winding method that surrounds the air core area of the object.

図12(b)は、第1コイル・サブアセンブリー101ASの斜視図である。第1コイル・サブアセンブリー101ASは、隣接するコイル101A(第1形状コイル、図1(a)及び図12(d)参照)の長辺部分X1,X2の外側面同士が互いに接した状態でN個(Nは自然数。ここでは8個)のコイル101A(第1形状コイル)をリング状に並べ、互いに接着することで構成できる。
また、図12(c)は、第2コイル・サブアセンブリー101BSの斜視図である。第2コイル・サブアセンブリー101BSは、隣接するコイル101B(第2形状コイル、図12(e)参照)の長辺部分X1,X2の外側面同士が互いに接した状態でN個(ここでは8個)のコイル101B(第2形状コイル)をリング状に並べ、互いに接着することで構成できる。
FIG. 12B is a perspective view of the first coil subassembly 101AS. In the first coil subassembly 101AS, the outer surfaces of the long side portions X1 and X2 of the adjacent coils 101A (first shape coil, see FIGS. 1A and 12D) are in contact with each other. It can be configured by arranging N coils (N is a natural number, 8 in this case) coils 101A (first shape coils) in a ring shape and adhering them to each other.
Further, FIG. 12 (c) is a perspective view of the second coil subassembly 101BS. The second coil subassembly 101BS has N pieces (here, 8) in a state where the outer surfaces of the long side portions X1 and X2 of the adjacent coils 101B (second shape coil, see FIG. 12 (e)) are in contact with each other. It can be configured by arranging the coils 101B (second shape coils) in a ring shape and adhering them to each other.

上記のように第1コイル・サブアセンブリー101AS及び第2コイル・サブアセンブリー101BSを準備したうえで、第1コイル・サブアセンブリー101AS(図12(b)参照)の右側から左側に向けて、第2コイル・サブアセンブリー101BS(図12(c)参照)をスライドさせて組み合わせることによりコイルアセンブリー100(図13(a)参照)を構成することができる。 After preparing the first coil subassembly 101AS and the second coil subassembly 101BS as described above, the first coil subassembly 101AS (see FIG. 12B) is directed from the right side to the left side. , The second coil subassembly 101BS (see FIG. 12 (c)) can be slid and combined to form the coil assembly 100 (see FIG. 13 (a)).

4.実施形態1に係る導電部材1及び導電部材の製造方法の効果
実施形態1に係る導電部材の製造方法、導電部材1及びコイル101Aによれば、線状の導電性基材12が複数束ねられた導電線10を準備する準備工程を含むため、従来の導電部材900と同様に、導電性基材12同士の間に形成される空隙14や編み目が伸縮することにより、柔軟に折り曲げることができ、立体的に曲げられた形状やねじれた形状等の複雑な形状の導電部材を比較的容易に形成することができる。
4. Effect of the conductive member 1 and the method for manufacturing the conductive member according to the first embodiment According to the method for manufacturing the conductive member according to the first embodiment, the conductive member 1 and the coil 101A, a plurality of linear conductive base materials 12 are bundled. Since the preparatory step for preparing the conductive wire 10 is included, the voids 14 and stitches formed between the conductive base materials 12 can be flexibly bent by expanding and contracting, as in the conventional conductive member 900. It is relatively easy to form a conductive member having a complicated shape such as a three-dimensionally bent shape or a twisted shape.

また、実施形態1に係る導電部材の製造方法、導電部材1及びコイル101Aによれば、導電線10に水溶性塗料20’を浸透させる浸透工程を有するため、導電性基材12同士の間の空隙14や隙間16,18にも水溶性塗料20’を浸み込ませて導電性基材12同士の間の隙間を水溶性塗料20’で埋めることができ、後の第2加熱工程において、被覆導電線10’を加熱することによって導電性基材12の隙間まで浸み込んだ水溶性塗料20’を硬化させることができ、被覆導電線10’を少なくも一巻きのインダクタンスを有する所定の形状で硬化することができる。このことから、製造後は導電性基材12同士の間の空隙や編み目が伸縮することを防ぐことができ、フォーミングされた導電部材1の形状を長期間にわたって維持することができる。従って、外部の振動に共振することにより導電部材に伸縮が生じて導電部材1の位置がずれる等の不具合が生じ難くなり、信頼性を高くすることが可能となる。 Further, according to the method for manufacturing a conductive member according to the first embodiment, the conductive member 1 and the coil 101A, there is a permeation step of permeating the water-soluble paint 20'into the conductive wire 10, so that there is a permeation step between the conductive base materials 12. The water-soluble paint 20'can be impregnated into the voids 14 and the gaps 16 and 18 to fill the gaps between the conductive base materials 12 with the water-soluble paint 20'. By heating the coated conductive wire 10', the water-soluble paint 20'that has penetrated into the gaps of the conductive base material 12 can be cured, and the coated conductive wire 10'has a predetermined one-turn inductance. Can be cured in shape. From this, it is possible to prevent the gaps and stitches between the conductive base materials 12 from expanding and contracting after production, and it is possible to maintain the shape of the formed conductive member 1 for a long period of time. Therefore, by resonating with external vibration, the conductive member expands and contracts, and problems such as the position of the conductive member 1 are less likely to shift, and the reliability can be improved.

また、実施形態1に係る導電部材の製造方法、導電部材1及びコイル101Aによれば、水溶性塗料20’を浸透させた導電線10を絶縁性の熱収縮チューブ30内に挿入する挿入工程を含むため、簡便な方法で導電線10を周囲から絶縁することができる。また、導電部材1を柔軟に折り曲げて配線した場合や巻回した場合であっても、導電性基材12が複数束ねられた導電線10を覆うように熱収縮チューブ30を配置するため、導電性基材12それぞれの表面を絶縁材で被覆した場合と比較して局所的に大きな機械的応力がかかることを防ぐことができる。その結果、絶縁材としての熱収縮チューブ30が損傷することや薄くなることを防ぐことができ、耐圧を高い状態で維持することができる。さらにまた、熱収縮チューブ30は、全体の肉厚を一定にしやすく、導電線を覆った場合でも熱収縮チューブ30の厚みにばらつきが生じ難く、絶縁材の厚みにばらつきが生じ難くなる。よって、この観点においても耐圧を高い状態で維持することができる。 Further, according to the method for manufacturing a conductive member according to the first embodiment, the conductive member 1 and the coil 101A, an insertion step of inserting a conductive wire 10 impregnated with a water-soluble paint 20'into an insulating heat-shrinkable tube 30 is performed. Therefore, the conductive wire 10 can be insulated from the surroundings by a simple method. Further, even when the conductive member 1 is flexibly bent and wired or wound, the heat-shrinkable tube 30 is arranged so as to cover the conductive wire 10 in which a plurality of the conductive base materials 12 are bundled, so that the heat-shrinkable tube 30 is conductive. It is possible to prevent a large mechanical stress from being locally applied as compared with the case where the surface of each of the sex substrates 12 is coated with an insulating material. As a result, the heat-shrinkable tube 30 as an insulating material can be prevented from being damaged or thinned, and the pressure resistance can be maintained in a high state. Furthermore, the heat-shrinkable tube 30 tends to have a constant overall wall thickness, and even when the conductive wire is covered, the thickness of the heat-shrinkable tube 30 is unlikely to vary, and the thickness of the insulating material is unlikely to vary. Therefore, even from this viewpoint, the withstand voltage can be maintained in a high state.

また、実施形態1に係る導電部材の製造方法、導電部材1及びコイル101Aによれば、導電線10に水溶性塗料20’を浸透させる浸透工程を有するため、導電性基材12同士の間の空隙14や隙間16,18にも水溶性塗料20’を浸み込ませて導電性基材12同士の間の隙間を水溶性塗料20’で埋めることができ、後の第2加熱工程において、被覆導電線10’を加熱することによって導電性基材12の空隙14や隙間16,18まで浸み込んだ水溶性塗料20’を硬化させることができるため、熱収縮チューブ30に大きな機械的応力が直接かかることをより確実に防ぐことができる。従って、絶縁材としての熱収縮チューブが損傷したり薄くなったりし難くなり、耐圧を高い状態で確実に維持することができる。 Further, according to the method for manufacturing a conductive member according to the first embodiment, the conductive member 1 and the coil 101A, there is a permeation step of permeating the water-soluble paint 20'into the conductive wire 10, so that there is a permeation step between the conductive base materials 12. The water-soluble paint 20'can be impregnated into the voids 14 and the gaps 16 and 18 to fill the gaps between the conductive base materials 12 with the water-soluble paint 20'. By heating the coated conductive wire 10', the water-soluble paint 20'that has penetrated into the voids 14 and the gaps 16 and 18 of the conductive base material 12 can be cured, so that a large mechanical stress is applied to the heat-shrinkable tube 30. Can be more reliably prevented from being directly applied. Therefore, the heat-shrinkable tube as an insulating material is less likely to be damaged or thinned, and the pressure resistance can be reliably maintained in a high state.

また、実施形態1に係る導電部材の製造方法によれば、被覆導電線10’を形成する第1加熱工程と、被覆導電線10’を少なくも一巻きのインダクタンスを有する所定の形状にフォーミングするフォーミング工程と、被覆導電線10’を所定の形状で硬化する第2加熱工程とをこの順序で実施するため、絶縁性の熱収縮チューブ30で導電線10を覆った状態で複雑な形状の導電部材を形成し、その形状で硬化することができる。その結果、複雑な形状の導電部材を比較的容易に形成すること、及び、硬化することで高い信頼性を得ることができること、及び、耐圧を高い状態で維持することができる導電性部材を製造することの全てを実現することができる。 Further, according to the method for manufacturing a conductive member according to the first embodiment, the first heating step of forming the coated conductive wire 10'and the forming of the coated conductive wire 10'to a predetermined shape having at least one winding of inductance. In order to carry out the forming step and the second heating step of curing the coated conductive wire 10'in a predetermined shape in this order, the conductive wire 10 has a complicated shape while being covered with the insulating heat-shrinkable tube 30. A member can be formed and cured in that shape. As a result, a conductive member having a complicated shape can be formed relatively easily, high reliability can be obtained by curing, and a conductive member capable of maintaining a high pressure resistance can be manufactured. Everything you do can be achieved.

また、実施形態1に係る導電部材の製造方法によれば、導電線に水溶性塗料を浸透させる浸透工程を含むため、浸透による効果で、水溶性塗布膜20の材料である水溶性塗料20’を導電線10の内部の導電性基材12同士の間にまでも行き渡って導電性基材12同士の間の空隙14や隙間16、18を埋めることができる。従って、導電線10に直接塗布した場合と比較して液垂れや水溶性塗布膜の偏りを生じ難く、均一な水溶性塗布膜を形成することができる。その結果、安定して高品質の導電部材とすることができる。 Further, according to the method for manufacturing a conductive member according to the first embodiment, since the permeation step of permeating the water-soluble paint into the conductive wire is included, the water-soluble paint 20'which is the material of the water-soluble coating film 20 due to the effect of the permeation. Can be spread even between the conductive base materials 12 inside the conductive wire 10 to fill the gaps 14 and the gaps 16 and 18 between the conductive base materials 12. Therefore, it is possible to form a uniform water-soluble coating film with less dripping and bias of the water-soluble coating film as compared with the case of direct coating on the conductive wire 10. As a result, a stable and high-quality conductive member can be obtained.

また、実施形態1に係る導電部材の製造方法、導電部材1及びコイル101Aによれば、導電線10に水溶性塗料20’を浸透させる浸透工程を含むため、導電性基材12を水溶性塗料20’の水溶液に浸すだけで、水溶性塗料20’を導電性基材12の周囲に行き渡らせることができる。従って、塗布による塗布膜形成に比べて少ない工程で水溶性塗料20’を形成することができる。このため、高品質な導電部材を製造することができるだけでなく、作業効率を高めることができ、量産性の高い導電部材となる。 Further, according to the method for manufacturing a conductive member according to the first embodiment, the conductive member 1 and the coil 101A, since the permeation step of infiltrating the water-soluble paint 20'into the conductive wire 10 is included, the conductive base material 12 is made of the water-soluble paint. The water-soluble paint 20'can be spread around the conductive base material 12 simply by immersing it in the aqueous solution of 20'. Therefore, the water-soluble paint 20'can be formed in a smaller number of steps than the coating film formation by coating. Therefore, not only can a high-quality conductive member be manufactured, but also work efficiency can be improved, resulting in a highly mass-producible conductive member.

また、実施形態1に係る導電部材の製造方法、導電部材1及びコイル101Aによれば、導電線10は、編組線であるため、銅の板材を切削加工・プレス加工・折り曲げ加工等することによって製造しなくてもよくなり、所望の形状に形成し易くなる。また、編組線を折り曲げるだけで所望の形状とすることができるため、工程数が増加し難く、生産性を高くすることができる。さらには、編組線を用いるため、切削加工による端材が少なく、製造コストを低減し易くなる。 Further, according to the method for manufacturing a conductive member according to the first embodiment, the conductive member 1 and the coil 101A, since the conductive wire 10 is a braided wire, the copper plate material is cut, pressed, bent, or the like. It does not have to be manufactured, and it becomes easy to form a desired shape. Further, since the desired shape can be obtained only by bending the braided wire, the number of steps is unlikely to increase and the productivity can be increased. Furthermore, since the braided wire is used, there are few scraps due to cutting, and it becomes easy to reduce the manufacturing cost.

また、実施形態1に係る導電部材の製造方法によれば、導電線10は、編組線であるため、導電線10を柔軟に折り曲げることができ、少なくも一巻きのインダクタンスを有する所定の形状にフォーミングし易くなる。従って、立体的に曲げられた形状やねじれた形状等の複雑な形状の導電経路を比較的容易に形成することができる。 Further, according to the method for manufacturing a conductive member according to the first embodiment, since the conductive wire 10 is a braided wire, the conductive wire 10 can be flexibly bent into a predetermined shape having at least one winding of inductance. It becomes easier to form. Therefore, it is relatively easy to form a conductive path having a complicated shape such as a three-dimensionally bent shape or a twisted shape.

ところで、一般に、交流電流が導体を流れる場合には、表皮効果によって導体の表面で電流密度が高くなり、表面から離れると低くなる。特に、電流が高周波成分を含む場合(例えば、PWM(Pulse Width Modulation)制御による高速スイッチングによる電力制御で、大容量の高トルクモータや電力源間での急速充電(回生制御)、急速放電(駆動制御)の場合等)には、電流が表面に集中するので、導体の交流抵抗は高くなる傾向にある。実施形態1に係る導電部材の製造方法、導電部材1及びコイル101Aによれば、導電線10は、編組線であるため、同じ断面積の板状の導電部材の場合と比較して、表面の面積が大きく、電流が所定の領域に集中することを防ぐことができ、その結果、導体抵抗を低くすることができる。さらにまた、導電線10が編組線であるため、1つの板材等で形成した場合と比較して渦電流が発生し難くなり、コイル101Aの渦電流の発生を低減することが期待できる。 By the way, in general, when an alternating current flows through a conductor, the current density increases on the surface of the conductor due to the skin effect, and decreases as the distance from the surface increases. In particular, when the current contains high-frequency components (for example, power control by high-speed switching by PWM (Pulse Width Modulation) control), rapid charging (regeneration control) and fast discharge (drive) between large-capacity high-torque motors and power sources. In the case of control), etc.), the AC resistance of the conductor tends to be high because the current is concentrated on the surface. According to the method for manufacturing a conductive member according to the first embodiment, the conductive member 1 and the coil 101A, since the conductive wire 10 is a braided wire, the surface of the conductive wire 10 is higher than that of a plate-shaped conductive member having the same cross-sectional area. The area is large and it is possible to prevent the current from concentrating in a predetermined region, and as a result, the conductor resistance can be lowered. Furthermore, since the conductive wire 10 is a braided wire, it is less likely that an eddy current is generated as compared with the case where the conductive wire 10 is formed of a single plate or the like, and it can be expected that the generation of an eddy current of the coil 101A will be reduced.

また、実施形態1に係る導電部材の製造方法、導電部材1及びコイル101Aによれば、水溶性塗料20’は、絶縁性塗料であるため、浸透による効果で、水溶性塗布膜20の材料である水溶性塗料20’を導電線10の内部の導電性基材12間にまでも行き渡って導電性基材12間の空隙14を埋めることができることから、導電線10に塗布した場合と比較して液垂れや水溶性塗布膜20の偏りを生じ難く、均一な水溶性塗布膜20を形成することができる。その結果、均一な絶縁体静特性を有し、絶縁特性が安定した導電部材となる。これにより、導電線10の導電性基材12の表面を確実に絶縁することができ、塵漏電、電食、大気放電、感電等の不具合が起こり難く、異物金属が接触して短絡することを防ぐこともできる。また、絶縁性の熱収縮チューブ30と併せて2重に絶縁膜を形成していることになるため、より耐圧が高い導電部材及びコイルとなる。 Further, according to the method for manufacturing a conductive member according to the first embodiment, the conductive member 1 and the coil 101A, since the water-soluble paint 20'is an insulating paint, it is an effect of permeation and is a material of the water-soluble coating film 20. Since a certain water-soluble paint 20'can spread even between the conductive base materials 12 inside the conductive wire 10 and fill the voids 14 between the conductive base materials 12, it is compared with the case where it is applied to the conductive wire 10. It is possible to form a uniform water-soluble coating film 20 without causing dripping or bias of the water-soluble coating film 20. As a result, the conductive member has uniform static characteristics of the insulator and stable insulation characteristics. As a result, the surface of the conductive base material 12 of the conductive wire 10 can be reliably insulated, and problems such as dust leakage, electrolytic corrosion, atmospheric discharge, and electric shock are unlikely to occur, and foreign metal does not come into contact with each other to cause a short circuit. It can also be prevented. Further, since the insulating film is doubly formed together with the insulating heat-shrinkable tube 30, the conductive member and the coil have higher withstand voltage.

また、実施形態1に係る導電部材の製造方法、導電部材1及びコイル101Aによれば、水溶性塗料は、接着性塗料であるため、導電線10内の導電性基材12の位置が確実に固定され、安定した形状の導電部材及びコイルとなる。その結果、信頼性がより高い導電部材及びコイルとなる。また、浸透工程後も水溶性塗料20’が導電性基材12の周囲に留まりやすくなる。 Further, according to the method for manufacturing a conductive member according to the first embodiment, the conductive member 1 and the coil 101A, since the water-soluble paint is an adhesive paint, the position of the conductive base material 12 in the conductive wire 10 is surely. It becomes a fixed and stable conductive member and coil. The result is a more reliable conductive member and coil. Further, even after the permeation step, the water-soluble paint 20'is likely to stay around the conductive base material 12.

また、実施形態1に係る導電部材の製造方法、導電部材1及びコイル101Aによれば、水溶性塗料は、熱硬化性塗料であるため、加熱(第2加熱工程の加熱)によって導電線10内の導電性基材12の位置が固定され、安定した形状の導電部材となる。その結果、信頼性がより高い導電部材となる。 Further, according to the method for manufacturing a conductive member according to the first embodiment, the conductive member 1 and the coil 101A, since the water-soluble paint is a thermosetting paint, the inside of the conductive wire 10 is heated (heating in the second heating step). The position of the conductive base material 12 is fixed, and the conductive member has a stable shape. The result is a more reliable conductive member.

また、実施形態1に係る導電部材の製造方法、導電部材1及びコイル101Aによれば、第2加熱工程の後段に、熱収縮チューブ30で覆われた導電線10の端部86A’,86B’を導電性接合材(半田溶液S)の溶液に浸漬させて導電線10の端部に導電性接合材(半田溶液S)を浸透させることにより端子部86A,86Bを形成する端子形成工程を含むため、新たに金属性の端子を取り付ける必要がなく、導電性接合材Sの溶液に浸すだけの簡便な方法で端子部86A,86Bを形成することができる。 Further, according to the method for manufacturing a conductive member according to the first embodiment, the conductive member 1 and the coil 101A, the ends 86A'and 86B' of the conductive wire 10 covered with the heat-shrinkable tube 30 are performed after the second heating step. Is immersed in a solution of the conductive bonding material (solder solution S), and the terminal portions 86A and 86B are formed by infiltrating the conductive bonding material (solder solution S) into the end portion of the conductive wire 10. Therefore, it is not necessary to newly attach a metallic terminal, and the terminal portions 86A and 86B can be formed by a simple method of simply immersing the conductive bonding material S in a solution.

また、実施形態1に係る導電部材の製造方法、導電部材1及びコイル101Aによれば、導電性基材12は、銅、ニッケル、銅合金、ニッケル含有メッキ銅、錫含有メッキ銅、及び炭素含有線のうちのいずれか、又は、これらのうちの2以上を含む複合線であるため、高い伝導率を維持しながらも、様々な特性を有する導電線とすることができ、様々な特性を有する導電部材となる。 Further, according to the method for manufacturing a conductive member according to the first embodiment, the conductive member 1 and the coil 101A, the conductive base material 12 contains copper, nickel, a copper alloy, nickel-containing plated copper, tin-containing plated copper, and carbon. Since it is a composite wire containing any one of the wires or two or more of them, it can be a conductive wire having various characteristics while maintaining high conductivity, and has various characteristics. It becomes a conductive member.

実施形態1に係るモータ、発電機及びアクチュエータによれば、上記した実施形態1に係るコイル101A,101Bを用いるため、上記した効果を有するモータ、発電機及びアクチュエータとなる。 According to the motor, generator and actuator according to the first embodiment, since the coils 101A and 101B according to the above-mentioned first embodiment are used, the motor, the generator and the actuator have the above-mentioned effects.

また、実施形態1に係るコイル101A、101B、モータ、発電機及びアクチュエータによれば、線状の導電性基材が複数束ねられた導電線を備える導電部材を用いるため、導電性基材の表面を絶縁材で被覆した導電線を備える導電部材を用いたコイルと比較して、抵抗が小さくて済む。従って、熱損失が小さくて済み、トルク劣化や出力劣化がし難いコイル101A、101B、モータ、発電機及びアクチュエータとなる。 Further, according to the coils 101A and 101B, the motor, the generator, and the actuator according to the first embodiment, since a conductive member having a conductive wire in which a plurality of linear conductive base materials are bundled is used, the surface of the conductive base material is used. The resistance can be smaller than that of a coil using a conductive member having a conductive wire coated with an insulating material. Therefore, the coils 101A, 101B, the motor, the generator, and the actuator are small in heat loss and are unlikely to deteriorate in torque or output.

[実施形態2]
図13は、実施形態2に係る導電部材2を示す図である。実施形態2に係る導電部材の製造方法及び実施形態2に係る導電部材2(以下、実施形態2に係る導電部材の製造方法等という)は、基本的には実施形態1に係る導電部材の製造方法及び実施形態1に係る導電部材1(以下、実施形態1に係る導電部材の製造方法等という)と同様の構成を有するが、水溶性塗布膜の構成が実施形態1に係る導電部材の製造方法等の場合と異なる。すなわち、実施形態2に係る導電部材の製造方法において、水溶性塗布膜20aは、図13に示すように、導電性基材12の周囲にのみ形成されており、層状になっていない。なお、導電性基材12を撚って又は編んで導電線10を形成し、当該導電線に水溶性塗料を浸透させるため、導電性基材同士が接触している箇所は水溶性塗料が浸透しておらず、水溶性塗布膜20aが形成されていない。
[Embodiment 2]
FIG. 13 is a diagram showing a conductive member 2 according to the second embodiment. The method for manufacturing a conductive member according to the second embodiment and the conductive member 2 according to the second embodiment (hereinafter referred to as a method for manufacturing a conductive member according to the second embodiment) are basically the manufacture of the conductive member according to the first embodiment. It has the same configuration as the method and the conductive member 1 according to the first embodiment (hereinafter, referred to as a method for manufacturing the conductive member according to the first embodiment), but the structure of the water-soluble coating film is the manufacture of the conductive member according to the first embodiment. It is different from the case of the method etc. That is, in the method for manufacturing a conductive member according to the second embodiment, as shown in FIG. 13, the water-soluble coating film 20a is formed only around the conductive base material 12, and is not layered. Since the conductive base material 12 is twisted or knitted to form the conductive wire 10 and the water-soluble paint permeates the conductive wire, the water-soluble paint permeates the portion where the conductive base materials are in contact with each other. The water-soluble coating film 20a is not formed.

このように、実施形態2に係る導電部材の製造方法等は、水溶性塗布膜の構成が実施形態1に係る導電部材の製造方法等の場合と異なるが、実施形態1に係る導電部材の製造方法等の場合と同様に、線状の導電性基材12が複数束ねられた導電線10を準備する準備工程及び導電部材1によれば、導電線に水溶性塗料を浸透させる浸透工程、水溶性塗料を浸透させた導電線を絶縁性の熱収縮チューブ内に挿入する挿入工程及び被覆導電線を加熱することによって被覆導電線を所定の形状で硬化する第2加熱工程を含むため、複雑な形状の導電部材を比較的容易に形成することができ、かつ、信頼性が高く、導電部材を電磁コイルに用いた場合でも耐圧を高い状態で維持することが可能な導電部材となる。 As described above, the method for manufacturing the conductive member according to the second embodiment is different from the case where the structure of the water-soluble coating film is different from the method for manufacturing the conductive member according to the first embodiment, but the manufacturing of the conductive member according to the first embodiment. Similar to the case of the method and the like, the preparation step of preparing the conductive wire 10 in which a plurality of linear conductive base materials 12 are bundled, and the permeation step of infiltrating the water-soluble paint into the conductive wire according to the conductive member 1, the water-soluble step. It is complicated because it includes an insertion step of inserting a conductive wire impregnated with a sex paint into an insulating heat-shrinkable tube and a second heating step of curing the coated conductive wire in a predetermined shape by heating the coated conductive wire. It is a conductive member that can form a conductive member having a shape relatively easily, has high reliability, and can maintain a high withstand voltage even when the conductive member is used for an electromagnetic coil.

なお、実施形態2に係る導電部材の製造方法等は、水溶性塗布膜の構成以外の点においては実施形態1に係る導電部材の製造方法等と同様の構成を有するため、実施形態1に係る導電部材の製造方法等が有する効果のうち該当する効果を有する。 Since the method for manufacturing the conductive member according to the second embodiment has the same configuration as the method for manufacturing the conductive member according to the first embodiment except for the configuration of the water-soluble coating film, the method according to the first embodiment is related to the first embodiment. It has the corresponding effect among the effects of the method for manufacturing the conductive member.

[実施形態3]
図14は、実施形態3に係る導電部材3を示す図である。実施形態3に係る導電部材の製造方法及び実施形態3に係る導電部材3(以下、実施形態3に係る導電部材の製造方法等という)は、基本的には実施形態2に係る導電部材の製造方法及び実施形態2に係る導電部材2(以下、実施形態2に係る導電部材の製造方法等という)と同様の構成を有するが、水溶性塗布膜の材料が実施形態2に係る導電部材の製造方法等の場合と異なる。すなわち、実施形態3に係る導電部材の製造方法において、水溶性塗料は、導電性塗料であり、導電部材3の水溶性塗布膜20bは、導電性塗布膜である(図14参照)。
[Embodiment 3]
FIG. 14 is a diagram showing a conductive member 3 according to the third embodiment. The method for manufacturing a conductive member according to the third embodiment and the conductive member 3 according to the third embodiment (hereinafter referred to as a method for manufacturing the conductive member according to the third embodiment) are basically the manufacture of the conductive member according to the second embodiment. It has the same configuration as the method and the conductive member 2 according to the second embodiment (hereinafter, referred to as a method for manufacturing the conductive member according to the second embodiment), but the material of the water-soluble coating film is the manufacture of the conductive member according to the second embodiment. It is different from the case of the method etc. That is, in the method for manufacturing a conductive member according to the third embodiment, the water-soluble paint is a conductive paint, and the water-soluble coating film 20b of the conductive member 3 is a conductive coating film (see FIG. 14).

このように、実施形態3に係る導電部材の製造方法等は、水溶性塗布膜の材料が実施形態2に係る導電部材の製造方法等の場合と異なるが、実施形態2に係る導電部材の製造方法等の場合と同様に、線状の導電性基材12が複数束ねられた導電線10を準備する準備工程、導電部材1及びコイル101Aによれば、導電線に水溶性塗料を浸透させる浸透工程、水溶性塗料を浸透させた導電線を絶縁性の熱収縮チューブ内に挿入する挿入工程及び被覆導電線を加熱することによって被覆導電線を所定の形状で硬化する第2加熱工程を含むため、複雑な形状の導電部材を比較的容易に形成することができ、かつ、信頼性が高く、導電部材を電磁コイルに用いた場合でも耐圧を高い状態で維持することが可能な導電部材となる。 As described above, the method for manufacturing the conductive member according to the third embodiment is different from the case where the material of the water-soluble coating film is the method for manufacturing the conductive member according to the second embodiment, but the manufacturing of the conductive member according to the second embodiment. As in the case of the method and the like, according to the preparatory step of preparing the conductive wire 10 in which a plurality of linear conductive base materials 12 are bundled, the conductive member 1 and the coil 101A, the water-soluble paint is permeated into the conductive wire. To include a step, an insertion step of inserting a conductive wire impregnated with a water-soluble paint into an insulating heat-shrinkable tube, and a second heating step of curing the coated conductive wire in a predetermined shape by heating the coated conductive wire. It is a conductive member that can form a conductive member having a complicated shape relatively easily, has high reliability, and can maintain a high withstand voltage even when the conductive member is used for an electromagnetic coil. ..

また、実施形態3に係る導電部材の製造方法等によれば、水溶性塗料は、導電性塗料であるため、電流導通路である導電性基材12の表面の面積が疑似的に大きくなり、電流が所定の領域に集中することをより一層緩和することができ、その結果、導体抵抗をより一層低くすることができる。 Further, according to the method for manufacturing a conductive member according to the third embodiment, since the water-soluble paint is a conductive paint, the area of the surface of the conductive base material 12 which is a current conduction path becomes pseudo-large. It is possible to further alleviate the concentration of the current in a predetermined region, and as a result, the conductor resistance can be further reduced.

また、実施形態3に係る導電部材の製造方法等によれば、水溶性塗料は、導電性塗料であるため、製造過程において、浸透による効果で、水溶性塗布膜20bの材料である水溶性塗料が導電線10の内部の導電性基材12間にまでも行き渡って導電性基材12間の隙間を埋めることができることから、導電線10に塗布した場合と比較して液垂れや水溶性塗布膜の偏りを生じ難く、均一な導電性塗布膜を形成することができる。その結果、均一なメッキ特性を有する導電部材となる。 Further, according to the method for manufacturing a conductive member according to the third embodiment, since the water-soluble paint is a conductive paint, the water-soluble paint which is a material of the water-soluble coating film 20b due to the effect of permeation in the manufacturing process. Can spread even between the conductive substrates 12 inside the conductive wire 10 to fill the gaps between the conductive substrates 12, so that dripping or water-soluble coating is performed as compared with the case where the coating is applied to the conductive wire 10. It is possible to form a uniform conductive coating film without causing bias of the film. The result is a conductive member with uniform plating characteristics.

なお、実施形態3に係る導電部材の製造方法等は、水溶性塗布膜の材料以外の点においては実施形態2に係る導電部材の製造方法等と同様の構成を有するため、実施形態2に係る導電部材の製造方法等が有する効果のうち該当する効果を有する。 The method for manufacturing the conductive member according to the third embodiment has the same configuration as the method for manufacturing the conductive member according to the second embodiment except for the material of the water-soluble coating film. It has the corresponding effect among the effects of the method for manufacturing the conductive member.

以上、本発明を上記の実施形態に基づいて説明したが、本発明は上記の実施形態に限定されるものではない。その趣旨を逸脱しない範囲において種々の態様において実施することが可能であり、例えば、次のような変形も可能である。 Although the present invention has been described above based on the above embodiment, the present invention is not limited to the above embodiment. It can be carried out in various embodiments within a range that does not deviate from the purpose, and for example, the following modifications are also possible.

(1)上記実施形態において記載した構成要素の数、材質、形状、位置、大きさ等は例示であり、本発明の効果を損なわない範囲において変更することが可能である。 (1) The number, material, shape, position, size, etc. of the constituent elements described in the above embodiment are examples, and can be changed as long as the effects of the present invention are not impaired.

(2)上記各実施形態においては、水溶性塗料の水溶液に導電線を浸漬することにより、水溶性塗布膜を形成したが、本発明はこれに限定するものではない。例えば、電着塗料を含む溶液が入った液槽に導電線10を全没させて所定の電圧を印加して水溶性塗布膜20を形成してもよい。この場合、水溶性塗料20’が導電線10の内部の狭い箇所や空隙にまで浸透し、かつ、編組線にあらゆる方向から電着塗料が浸透することになる。このことから、水溶性塗料20’が導電線10の内部の狭い箇所や空隙に水溶性塗布膜20を形成することができるとともに、導電線10のあらゆる方向に均一な水溶性塗布膜20を形成することができる。従って、品質が高い導電部材となる。
特に、水溶性塗布膜20が電着絶縁塗布膜であるため、導電線10の内部の狭い箇所や空隙に電着絶縁塗布膜を形成することができるとともに、編組線のあらゆる方向に均一な電着絶縁塗布膜を形成することができる。従って、絶縁耐性がより一層高い導電部材となる。
また、水溶性塗布膜20は、電着塗布膜であるため、電着塗料の濃度や印加する電圧を制御することで、容易に水溶性塗布膜20の膜厚を制御することができる。従って、導電部材の使用用途に合わせて絶縁耐性を制御することができ、様々な電気機器に対応可能な導電部材となる。
なお、直流電圧を印加する際に、液槽内の水溶液に対し超音波を印加してもよい。これにより超音波を印加することで導電性基材12の周囲から気泡や不純物を除去することができ、絶縁品質を向上させることができる。
(2) In each of the above embodiments, a water-soluble coating film is formed by immersing a conductive wire in an aqueous solution of a water-soluble paint, but the present invention is not limited thereto. For example, the conductive wire 10 may be completely submerged in a liquid tank containing a solution containing an electrodeposition paint and a predetermined voltage may be applied to form a water-soluble coating film 20. In this case, the water-soluble paint 20'penetrates into narrow portions and voids inside the conductive wire 10, and the electrodeposition paint permeates the braided wire from all directions. From this, the water-soluble paint 20'can form the water-soluble coating film 20 in narrow places and voids inside the conductive wire 10, and also forms a uniform water-soluble coating film 20 in all directions of the conductive wire 10. can do. Therefore, it is a high quality conductive member.
In particular, since the water-soluble coating film 20 is an electrodeposition insulating coating film, it is possible to form an electrodeposited insulating coating film in a narrow space or void inside the conductive wire 10, and uniform electricity is applied in all directions of the braided wire. A wear-insulating coating film can be formed. Therefore, the conductive member has a higher dielectric strength.
Further, since the water-soluble coating film 20 is an electrodeposition coating film, the film thickness of the water-soluble coating film 20 can be easily controlled by controlling the concentration of the electrodeposition coating film and the applied voltage. Therefore, the dielectric strength can be controlled according to the intended use of the conductive member, and the conductive member can be used for various electric devices.
When applying the DC voltage, ultrasonic waves may be applied to the aqueous solution in the liquid tank. As a result, bubbles and impurities can be removed from the periphery of the conductive base material 12 by applying ultrasonic waves, and the insulation quality can be improved.

(3)上記各実施形態においては、水溶性塗料の水溶液に導電線を浸漬することにより、水溶性塗布膜を形成したが、本発明はこれに限定するものではない。例えば、水溶性塗布膜が熱硬化性塗布膜であり、以下の方法によって水溶性塗布膜20を形成してもよい。例えば、液槽・容器等(以下、単に液槽Tとする)の内側に熱硬化性樹脂溶液を満たしたうえで、液槽の内側にフォーミングされた導電線10を投入する。これにより、水溶性の材料が編組線を構成する導電性基材12の間に浸透(侵入)する。導電性基材12の周囲に水溶性の材料が付着した状態で導電線10を液槽から引き上げる。この後、導電線10に対して加熱をすることによって導電性基材12の周囲に付着した水溶性の材料に由来する材料を固化する。このような工程としてもよい。このような構成(方法)とすることにより、水溶性塗布膜は、熱硬化性塗布膜であるため、加熱することにより、導電部材をより一層硬化することができる。その結果、形状安定性が高い導電部材となる。 (3) In each of the above embodiments, a water-soluble coating film is formed by immersing a conductive wire in an aqueous solution of a water-soluble paint, but the present invention is not limited thereto. For example, the water-soluble coating film is a thermosetting coating film, and the water-soluble coating film 20 may be formed by the following method. For example, after filling the inside of a liquid tank, a container, or the like (hereinafter, simply referred to as a liquid tank T) with a thermosetting resin solution, the formed conductive wire 10 is put into the inside of the liquid tank. As a result, the water-soluble material permeates (penetrates) between the conductive base materials 12 constituting the braided wire. The conductive wire 10 is pulled up from the liquid tank in a state where the water-soluble material is attached around the conductive base material 12. After that, the conductive wire 10 is heated to solidify the material derived from the water-soluble material adhering to the periphery of the conductive base material 12. Such a process may be used. With such a configuration (method), since the water-soluble coating film is a thermosetting coating film, the conductive member can be further cured by heating. As a result, the conductive member has high shape stability.

(4)上記各実施形態においては、導電性基材として導線を撚った撚線を用いたが、本発明はこれに限定するものではない。導電性基材として、少なくとも一部にカーボン材を有する導電性基材を用いてもよい。この場合、小型で軽量、かつ、耐腐食性に優れた編組線となり、小型で軽量、かつ、耐腐食性に優れた導電部材となる、という効果もある。 (4) In each of the above embodiments, a twisted wire obtained by twisting a conducting wire is used as the conductive base material, but the present invention is not limited thereto. As the conductive base material, a conductive base material having at least a part of carbon material may be used. In this case, there is also an effect that the braided wire is small and lightweight and has excellent corrosion resistance, and the conductive member is small and lightweight and has excellent corrosion resistance.

(5)上記各実施形態においては、所定の形状としてコイル形状とし、導電部材1をコイルとしたが、本発明はこれに限定されるものではない。所定の形状として、電極同士や電極と端子を接続する接続部材、ハーネス、クリップリード、その他適宜の物に用いてもよい。 (5) In each of the above embodiments, the coil shape is used as the predetermined shape, and the conductive member 1 is used as the coil, but the present invention is not limited thereto. As a predetermined shape, it may be used for a connecting member connecting electrodes to each other or a terminal to each other, a harness, a clip lead, or any other appropriate object.

(6)上記各実施形態においては、導電部材1をコイルとし、モータに用いたが、本発明はこれに限定されるものではない。導電部材1をコイルとし、発電機やアクチュエータに用いてもよい。 (6) In each of the above embodiments, the conductive member 1 is used as a coil and used for the motor, but the present invention is not limited thereto. The conductive member 1 may be used as a coil and used in a generator or an actuator.

1,2,3…導電部材、10…導電線(編組線)、10'…被覆導電線、12…導電性基材14…空隙、16,18…隙間、20、20a、20b…水溶性塗布膜、20'水溶性塗料、30…熱収縮チューブ、86A,86B…端子部、86A',86B'…端部、90A…空芯領域、100…コイルアセンブリー、101A,101B…コイル、101AS、101BS…サブアセンブリー 1, 2, 3 ... Conductive member, 10 ... Conductive wire (braided wire), 10'... Coated conductive wire, 12 ... Conductive substrate 14 ... Void, 16, 18 ... Gap, 20, 20a, 20b ... Water-soluble coating Membrane, 20'water-soluble paint, 30 ... heat-shrinkable tube, 86A, 86B ... terminal, 86A', 86B' ... end, 90A ... air core region, 100 ... coil assembly, 101A, 101B ... coil, 101AS, 101BS ... Subassembly

Claims (13)

線状の導電性基材が複数束ねられた導電線を準備する準備工程と、
前記導電線に水溶性塗料を浸透させる浸透工程と、
前記水溶性塗料を浸透させた前記導電線を絶縁性の熱収縮チューブ内に挿入する挿入工程と、
前記熱収縮チューブを所定温度で所定時間加熱して前記導電線を覆うまで前記熱収縮チューブを収縮させることにより被覆導電線を形成する第1加熱工程と、
前記被覆導電線を所定の形状にフォーミングするフォーミング工程と、
前記被覆導電線を加熱することによって前記被覆導電線を前記所定の形状で硬化する第2加熱工程とをこの順序で有することを特徴とする導電部材の製造方法。
A preparatory process for preparing a conductive wire in which a plurality of linear conductive base materials are bundled, and
The permeation step of permeating the water-soluble paint into the conductive wire,
An insertion step of inserting the conductive wire impregnated with the water-soluble paint into an insulating heat-shrinkable tube, and
The first heating step of forming a coated conductive wire by heating the heat-shrinkable tube at a predetermined temperature for a predetermined time and shrinking the heat-shrinkable tube until it covers the conductive wire.
A forming step of forming the coated conductive wire into a predetermined shape, and
A method for manufacturing a conductive member, which comprises, in this order, a second heating step of curing the coated conductive wire in the predetermined shape by heating the coated conductive wire.
前記導電線は、編組線であることを特徴とする請求項1に記載の導電部材の製造方法。 The method for manufacturing a conductive member according to claim 1, wherein the conductive wire is a braided wire. 前記水溶性塗料は、絶縁性塗料であることを特徴とする請求項1又は2に記載の導電部材の製造方法。 The method for manufacturing a conductive member according to claim 1 or 2, wherein the water-soluble paint is an insulating paint. 前記水溶性塗料は、導電性塗料であることを特徴とする請求項1又は2に記載の導電部材の製造方法。 The method for manufacturing a conductive member according to claim 1 or 2, wherein the water-soluble paint is a conductive paint. 前記水溶性塗料は、接着性塗料であることを特徴とする請求項1~4のいずれかに記載の導電部材の製造方法。 The method for manufacturing a conductive member according to any one of claims 1 to 4, wherein the water-soluble paint is an adhesive paint. 前記水溶性塗料は、熱硬化性塗料であることを特徴とする請求項1~5のいずれかに記載の導電部材の製造方法。 The method for manufacturing a conductive member according to any one of claims 1 to 5, wherein the water-soluble paint is a thermosetting paint. 前記第2加熱工程の後段に、前記熱収縮チューブで覆われた前記導電線の端部を導電性接合材の溶液に浸漬させて前記導電線の端部に前記導電性接合材を浸透させることにより端子を形成する端子形成工程をさらに含むことを特徴とする請求項1~6のいずれかに記載の導電部材の製造方法。 In the subsequent stage of the second heating step, the end portion of the conductive wire covered with the heat-shrinkable tube is immersed in a solution of the conductive bonding material to allow the conductive bonding material to permeate the end portion of the conductive bonding material. The method for manufacturing a conductive member according to any one of claims 1 to 6, further comprising a terminal forming step of forming the terminal. 前記導電性基材は、銅、ニッケル、銅合金、ニッケル含有メッキ銅、錫含有メッキ銅、及び炭素含有線のうちのいずれか、又は、これらのうちの2以上を含む複合線であることを特徴とする請求項1~7のいずれかに記載の導電部材の製造方法。 The conductive substrate is one of copper, nickel, copper alloy, nickel-containing plated copper, tin-containing plated copper, and carbon-containing wire, or a composite wire containing two or more of these. The method for manufacturing a conductive member according to any one of claims 1 to 7. 線状の導電性基材が複数束ねられ、少なくも一巻きのインダクタンスを有する所定の形状でフォーミングされた導電線と、
前記導電性基材の表面に形成された水溶性塗布膜と、
前記導電線を覆っている絶縁性の熱収縮チューブとを備える導電部材であって、
前記導電部材は、前記所定の形状で硬化されていることを特徴とする導電部材。
A conductive wire in which a plurality of linear conductive base materials are bundled and formed in a predetermined shape having at least one winding of inductance.
A water-soluble coating film formed on the surface of the conductive substrate and
A conductive member including an insulating heat-shrinkable tube covering the conductive wire.
The conductive member is a conductive member characterized in that it is cured in the predetermined shape.
請求項9に記載の導電部材を用いて形成されることを特徴とする電磁コイル。 An electromagnetic coil characterized by being formed by using the conductive member according to claim 9. 請求項10に記載の電磁コイルを用いて形成されることを特徴とするモータ。 A motor characterized by being formed by using the electromagnetic coil according to claim 10. 請求項10に記載の電磁コイルを用いて形成されることを特徴とする発電機。 A generator characterized by being formed by using the electromagnetic coil according to claim 10. 請求項10に記載の電磁コイルを用いて形成されることを特徴とするアクチュエータ。 An actuator characterized by being formed by using the electromagnetic coil according to claim 10.
JP2020193292A 2020-11-20 2020-11-20 Manufacturing method of conductive member, conductive member, electromagnetic coil, motor, generator, and actuator Pending JP2022082009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020193292A JP2022082009A (en) 2020-11-20 2020-11-20 Manufacturing method of conductive member, conductive member, electromagnetic coil, motor, generator, and actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020193292A JP2022082009A (en) 2020-11-20 2020-11-20 Manufacturing method of conductive member, conductive member, electromagnetic coil, motor, generator, and actuator

Publications (1)

Publication Number Publication Date
JP2022082009A true JP2022082009A (en) 2022-06-01

Family

ID=81801268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020193292A Pending JP2022082009A (en) 2020-11-20 2020-11-20 Manufacturing method of conductive member, conductive member, electromagnetic coil, motor, generator, and actuator

Country Status (1)

Country Link
JP (1) JP2022082009A (en)

Similar Documents

Publication Publication Date Title
US10574110B2 (en) Lightweight and efficient electrical machine and method of manufacture
WO2018190124A1 (en) Coil and motor using same
US9003643B2 (en) Systems for stator bar shape tooling
CN108206612A (en) For producing the method for stator and associated stator
US11139703B2 (en) Coil winding arrangement
KR20200006975A (en) Assembly lead, manufacturing method of assembly lead and segment coil
JP2008186724A (en) Collective conductor and its manufacturing method
US20150123760A1 (en) Method and design for stabilizing conductors in a coil winding
US8653712B2 (en) Superconducting coil and superconducting rotating machine using the same
JP2016225051A (en) Terminal connection structure for wire end, and manufacturing method thereof
JP2018011078A (en) High temperature superconducting coil and method of manufacturing high temperature superconducting coil
JP2022082009A (en) Manufacturing method of conductive member, conductive member, electromagnetic coil, motor, generator, and actuator
WO2011040982A1 (en) "brushless motor-generator"
JP4993919B2 (en) Aggregated conductor and method of manufacturing the same
JP6355914B2 (en) Superconducting coil and method of manufacturing the superconducting coil
US20190280550A1 (en) Laminated stack motor
JP2005502295A (en) Traveling magnetic field machine
JP7430940B2 (en) electromagnetic coil
JP2009021127A (en) Cluster conductor
JP5432087B2 (en) Linear motor coil assembly structure
CN114175184B (en) Weather-resistant electromagnetic coil
JP2021129372A (en) Coil and coil manufacturing method
JP2007227243A (en) Manufacturing method for assembled conductor
JP2020036457A (en) Armature manufacturing method
JP7479589B2 (en) Rotating electric machine winding and rotating electric machine stator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240325

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240521