JP2022079889A - Fluorine-containing silane compound, method for producing the same and surface-modifying composition comprising the same - Google Patents

Fluorine-containing silane compound, method for producing the same and surface-modifying composition comprising the same Download PDF

Info

Publication number
JP2022079889A
JP2022079889A JP2020190751A JP2020190751A JP2022079889A JP 2022079889 A JP2022079889 A JP 2022079889A JP 2020190751 A JP2020190751 A JP 2020190751A JP 2020190751 A JP2020190751 A JP 2020190751A JP 2022079889 A JP2022079889 A JP 2022079889A
Authority
JP
Japan
Prior art keywords
group
carbon atoms
fluorine
silane compound
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020190751A
Other languages
Japanese (ja)
Inventor
陵二 田中
Ryoji Tanaka
真理奈 布川
Marina Fukawa
智大 白井
Tomohiro Shirai
真一 曽我
Shinichi Soga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Finechem Corp
Sagami Chemical Research Institute
Original Assignee
Tosoh Finechem Corp
Sagami Chemical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Finechem Corp, Sagami Chemical Research Institute filed Critical Tosoh Finechem Corp
Priority to JP2020190751A priority Critical patent/JP2022079889A/en
Publication of JP2022079889A publication Critical patent/JP2022079889A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

To provide a surface modifier that demonstrates statically and kinetically excellent, water- and oil-repellency in surface modification, can easily dissolve in general organic solvents, and has its molecular structure composed of a perfluoroalkyl group having carbon atoms of 6 or less.SOLUTION: A fluorine-containing silane compound is produced that has a plurality of perfluoroalkyl groups and has a binding silyl group at its end. A surface-modifying composition including the fluorine-containing silane compound is used to modify a substrate surface. The fluorine-containing silane compound is produced by, for example, the following formula.SELECTED DRAWING: None

Description

本発明は、表面改質剤として有用な新規含フッ素シラン化合物、その製造方法及びそれを含んでなる表面改質組成物に関する。 The present invention relates to a novel fluorine-containing silane compound useful as a surface modifier, a method for producing the same, and a surface modification composition containing the same.

フルオロアルキル系材料は耐熱性、耐薬品性、撥水撥油性、低摩擦性、低屈折率などの性質が発現し、これを利用した機能性材料として産業応用されている。特に、固体表面に撥水性や撥油性を付与する表面改質機能製品においては、固体表面上にパーフルオロアルキル基を強固に導入するために、パーフルオロアルキル基及び固体表面への共有結合性基を併せ持つ表面改質剤が用いられる。このような剤の表面改質機能は、表面改質剤分子中のパーフルオロアルキル鎖長が長いほどその効果が顕著になるが、炭素数が8以上のパーフルオロアルキル基を有する表面改質剤は、環境及び生体内の残留・蓄積に基づく有害性に問題を有し、その産業的使用は強く制限される。そのため、炭素数が6以下のパーフルオロアルキル基を分子内に有する化合物を用い表面改質に関し良機能を発現させる検討が行われている。 Fluoroalkyl-based materials exhibit properties such as heat resistance, chemical resistance, water and oil repellency, low friction, and low refractive index, and are industrially applied as functional materials utilizing these properties. In particular, in surface modification functional products that impart water repellency and oil repellency to a solid surface, a perfluoroalkyl group and a covalent bond group to the solid surface are used in order to strongly introduce a perfluoroalkyl group onto the solid surface. A surface modifier having both of these is used. The effect of the surface modification function of such an agent becomes more remarkable as the perfluoroalkyl chain length in the surface modifier molecule is longer, but the surface modifier having a perfluoroalkyl group having 8 or more carbon atoms Has problems with toxicity due to residue and accumulation in the environment and in vivo, and its industrial use is strongly restricted. Therefore, studies have been conducted to develop good functions for surface modification by using a compound having a perfluoroalkyl group having 6 or less carbon atoms in the molecule.

炭素数6以下のパーフルオロアルキル基を分子内に有する材料を用い撥水性・撥油性を向上させる方法として、長鎖パーフルオロアルキル基のフッ素原子の一部を水素原子に置き換えることで、生体蓄積性が低いといわれている炭素数6以下のパーフルオロアルキル基ユニットの複数構成体とし、改質剤に使用する方法が知られている(例えば、特許文献1、特許文献2参照)。
特許文献3では、パーフルオロアルキル基及びパーフルオロアルキレン基を分子内に有するジエン化合物とヒドロシラン化合物との反応により、炭素数6以下のパーフルオロアルキル基複数構成体で構成されつつも良好な特性を有するフルオロアルキル置換シラン化合物についての合成が開示されている。
As a method of improving water repellency and oil repellency by using a material having a perfluoroalkyl group having 6 or less carbon atoms in the molecule, a part of the fluorine atom of the long-chain perfluoroalkyl group is replaced with a hydrogen atom to accumulate in the living body. A method is known in which a plurality of components of a perfluoroalkyl group unit having 6 or less carbon atoms, which are said to have low properties, are used as a modifier (see, for example, Patent Document 1 and Patent Document 2).
In Patent Document 3, a reaction between a diene compound having a perfluoroalkyl group and a perfluoroalkylene group in the molecule and a hydrosilane compound provides good characteristics while being composed of a plurality of perfluoroalkyl group constituents having 6 or less carbon atoms. The synthesis of having a fluoroalkyl substituted silane compound is disclosed.

撥液性は固体表面のフルオロアルキル基の存在密度に強く依存するため、分子内に複数のパーフルオロアルキル基を有する表面改質剤の使用は、分子内に単数のパーフルオロアルキル基を有する表面改質剤に比べ、より高速に高撥液性の表面処理を達成できる可能性が高い。 Since liquid repellency strongly depends on the presence density of fluoroalkyl groups on the solid surface, the use of surface modifiers with multiple perfluoroalkyl groups in the molecule is a surface with a single perfluoroalkyl group in the molecule. It is highly possible that a highly liquid-repellent surface treatment can be achieved at a higher speed than that of a modifier.

特許文献4では、テトラビニルシランを原料とし、複数のパーフルオロアルキル基を有するシラン系表面処理剤を製造しているが、原料として高価なテトラビニルシランを用い、かつ原料の都合上、リンカー構造はエチレン基に限られていた。 In Patent Document 4, a silane-based surface treatment agent having a plurality of perfluoroalkyl groups is produced using tetravinylsilane as a raw material. However, expensive tetravinylsilane is used as a raw material, and the linker structure is ethylene due to the convenience of the raw material. It was limited to the base.

また、液滴の基板に対する接触角で評価可能な静的な撥液性とは別に、基材表面に付着した液滴のすべりやすさ、すなわち動的な撥液性も、固体の表面改質上で重要である。これは、固体表面における液滴や固体粉末の自己清浄能や汚染の脱落しやすさと相関があり、水滴の滑落臨界角で評価できる。ところが、パーフルオロアルキル基で表面改質された固体表面の場合、水滴が滑落しづらいことが問題になることがある。これは、フッ素原子と水分子の水素との静電相互作用と考えられている。そこで、易滑落性の固体表面改質剤が求められているが、安価な汎用溶剤に可溶で、かつ耐摩耗性等の耐久性に富む、動的撥液性に優れた表面状態を付与可能なパーフルオロアルキル系表面改質剤は、現行材料には乏しい。
In addition to the static liquid repellency that can be evaluated by the contact angle of the droplets with the substrate, the slipperiness of the droplets adhering to the substrate surface, that is, the dynamic liquid repellency, is also the surface modification of the solid. Important above. This correlates with the self-cleaning ability of droplets and solid powders on the solid surface and the ease with which contamination can be removed, and can be evaluated by the critical angle of water droplets. However, in the case of a solid surface surface-modified with a perfluoroalkyl group, it may be a problem that water droplets are difficult to slide off. This is considered to be the electrostatic interaction between the fluorine atom and the hydrogen of the water molecule. Therefore, there is a demand for a solid surface modifier that easily slips off, but it imparts a surface condition that is soluble in inexpensive general-purpose solvents, has high durability such as wear resistance, and has excellent dynamic liquid repellency. Possible perfluoroalkyl-based surface modifiers are scarce in current materials.

特許第5146455号Patent No. 5146455 特開2014-040373号公報Japanese Unexamined Patent Publication No. 2014-040373 国際公開第2017/119371号International Publication No. 2017/119371 国際公開第2007/135315号International Publication No. 2007/135315

本発明の課題は、炭素数6までのパーフルオロアルキル基により撥液性部分分子構造が構成され、従来よりも優れた高い静的及び動的な撥液効果を固体表面に付与可能な新規含フッ素シラン化合物、その製造方法、及びこれを含んでなる表面改質組成物を提供することにある。 The subject of the present invention is a novel inclusion in which a liquid-repellent partial molecular structure is composed of a perfluoroalkyl group having up to 6 carbon atoms, and a high static and dynamic liquid-repellent effect superior to the conventional one can be imparted to a solid surface. It is an object of the present invention to provide a fluorosilane compound, a method for producing the same, and a surface modification composition containing the same.

発明者らは、上記の課題を解決すべく鋭意検討した結果、炭素数6以下のパーフルオロアルキル鎖を複数有し、かつ固体表面に化学結合可能な官能性シリル基を末端に有し、両基をリンカーで結合した含フッ素シラン化合物を製造し、これを含んでなる表面改質組成物を用いて固体表面を改質することにより、高い撥水および撥油性能を固体表面に付与可能であることを見出し、本発明を完成させるに至った。 As a result of diligent studies to solve the above problems, the inventors have found that they have a plurality of perfluoroalkyl chains having 6 or less carbon atoms and have a functional silyl group at the end that can be chemically bonded to the solid surface. By producing a fluorine-containing silane compound in which a group is bonded with a linker and modifying the solid surface using a surface modification composition containing the compound, high water repellency and oil repellency can be imparted to the solid surface. We found that there was something, and came to complete the present invention.

すなわち本発明は、以下の構成よりなる。
[1]
一般式(1)
That is, the present invention has the following configuration.
[1]
General formula (1)

Figure 2022079889000001
Figure 2022079889000001

[式中、nは2から6の整数である。mは2又は3である。Rは炭素数1から4のアルキル基を表す。Aは炭素数2から6のアルキレン基、又は一般式(2) [In the formula, n is an integer from 2 to 6. m is 2 or 3. R 1 represents an alkyl group having 1 to 4 carbon atoms. A is an alkylene group having 2 to 6 carbon atoms, or the general formula (2).

Figure 2022079889000002
Figure 2022079889000002

(式中、R及びRは、それぞれ独立に、フッ素原子で置換されていてもよい炭素数1から4のアルキル基を表す。pは1から9の整数である。)
で示されるシロキサニレン基を表す。Xはハロゲン原子、炭素数1から3のアルコキシ基又は炭素数2から6のジアルキルアミノ基を表し、複数のXは同一又は相異なってもよい。Rは炭素数1から4のアルキル基を表す。rは0又は1である。ただし、nが6でmが3の時、Aは1,2-エチレン基にはなり得ない。]
で示される含フッ素シラン化合物。
[2]
nが4又は6であり、mが2である、[1]に記載の含フッ素シラン化合物。
[3]
Aが1,2-エチレン基、1,3-プロピレン基又はR及びRがメチル基であるシロキサニレン基である、[1]又は[2]に記載の含フッ素シラン化合物。
[4]
一般式(3)
(In the formula, R 3 and R 4 each independently represent an alkyl group having 1 to 4 carbon atoms which may be substituted with a fluorine atom. P is an integer of 1 to 9.)
Represents the siroxanilen group represented by. X 1 represents a halogen atom, an alkoxy group having 1 to 3 carbon atoms or a dialkylamino group having 2 to 6 carbon atoms, and a plurality of X 1s may be the same or different from each other. R 2 represents an alkyl group having 1 to 4 carbon atoms. r is 0 or 1. However, when n is 6 and m is 3, A cannot be a 1,2-ethylene group. ]
Fluorine-containing silane compound indicated by.
[2]
The fluorine-containing silane compound according to [1], wherein n is 4 or 6 and m is 2.
[3]
The fluorine-containing silane compound according to [1] or [2], wherein A is a 1,2-ethylene group, a 1,3-propylene group or a siloxanilen group in which R3 and R4 are methyl groups.
[4]
General formula (3)

Figure 2022079889000003
Figure 2022079889000003

(式中、nは2から6の整数である。mは2又は3である。Rは炭素数1から4のアルキル基を表す。qは2から6の整数である。)
で示されるオレフィン化合物と、一般式(4)
(In the formula, n is an integer of 2 to 6. m is 2 or 3. R 1 represents an alkyl group having 1 to 4 carbon atoms. Q is an integer of 2 to 6.)
The olefin compound represented by the above and the general formula (4).

Figure 2022079889000004
Figure 2022079889000004

(式中、Xはハロゲン原子、炭素数1から3のアルコキシ基又は炭素数2から6のジアルキルアミノ基を表し、複数のXは同一又は相異なってもよい。Rは炭素数1から4のアルキル基を表す。rは0又は1である。)
で示されるヒドロシラン化合物とを、ヒドロシリル化触媒存在下で反応させることを特徴とする、一般式(1a)
(In the formula, X 1 represents a halogen atom, an alkoxy group having 1 to 3 carbon atoms or a dialkylamino group having 2 to 6 carbon atoms, and a plurality of X 1s may be the same or different from each other. R 2 may have 1 carbon atom. Represents an alkyl group from 4 to 4. r is 0 or 1.)
The general formula (1a) is characterized in that the hydrosilane compound represented by the above is reacted in the presence of a hydrosilylation catalyst.

Figure 2022079889000005
Figure 2022079889000005

(式中、n、m、R、q、X、R及びrは前記と同義である。ただし、nが6でmが3の時、Aは1,2-エチレン基にはなり得ない。)
で示される含フッ素シラン化合物の製造方法。
[5]
一般式(6)
(In the formula, n, m, R 1 , q, X 1 , R 2 and r are synonymous with the above. However, when n is 6 and m is 3, A becomes a 1,2-ethylene group. I don't get it.)
A method for producing a fluorine-containing silane compound shown by.
[5]
General formula (6)

Figure 2022079889000006
Figure 2022079889000006

(式中、R及びRは、それぞれ独立に、フッ素原子で置換されていてもよい炭素数1から4のアルキル基を表す。pは1から9の整数である。)
で示されるシロキサンジオール化合物に、一般式(5)
(In the formula, R 3 and R 4 each independently represent an alkyl group having 1 to 4 carbon atoms which may be substituted with a fluorine atom. P is an integer of 1 to 9.)
The siloxane diol compound represented by the above formula (5)

Figure 2022079889000007
Figure 2022079889000007

(式中、nは2から6の整数である。mは2又は3である。Rは炭素数1から4のアルキル基を表す。Xはハロゲン原子を表す。)
で示される含フッ素ハロゲン化シラン化合物と、一般式(8)
(In the formula, n is an integer of 2 to 6. m is 2 or 3. R 1 represents an alkyl group having 1 to 4 carbon atoms. X 2 represents a halogen atom.)
Fluorine-containing halogenated silane compound represented by and the general formula (8).

Figure 2022079889000008
Figure 2022079889000008

(式中、Xはハロゲン原子、炭素数1から3のアルコキシ基又は炭素数2から6のジアルキルアミノ基を表し、複数のXは同一又は相異なってもよい。Rは炭素数1から4のアルキル基を表す。rは0又は1である。Xはハロゲン原子を表す。)
で示されるハロゲン化シラン化合物とを反応させることを特徴とする、一般式(1b)
(In the formula, X 1 represents a halogen atom, an alkoxy group having 1 to 3 carbon atoms or a dialkylamino group having 2 to 6 carbon atoms, and a plurality of X 1s may be the same or different from each other. R 2 may have 1 carbon atom. Represents an alkyl group from 4 to 4. r is 0 or 1. X 3 represents a halogen atom.)
The general formula (1b) is characterized by reacting with the halogenated silane compound represented by.

Figure 2022079889000009
Figure 2022079889000009

(式中、n、m、R、X、R、R、p、R及びrは前記と同義である。)
で示される含フッ素シラン化合物の製造方法。
[6]
一般式(1c)
(In the formula, n, m, R 1 , X 1 , R 3 , R 4 , p, R 2 and r are synonymous with the above.)
A method for producing a fluorine-containing silane compound shown by.
[6]
General formula (1c)

Figure 2022079889000010
Figure 2022079889000010

[式中、nは2から6の整数である。mは2又は3である。Rは、炭素数1から4のアルキル基を表す。Aは、炭素数2から6のアルキレン基、又は、一般式(2) [In the formula, n is an integer from 2 to 6. m is 2 or 3. R 1 represents an alkyl group having 1 to 4 carbon atoms. A is an alkylene group having 2 to 6 carbon atoms, or the general formula (2).

Figure 2022079889000011
Figure 2022079889000011

(式中、R及びRは、それぞれ独立に、フッ素原子で置換されていてもよい炭素数1から4のアルキル基を表す。pは1から9の整数である。)
で示されるシロキサニレン基を表す。Xはハロゲン原子を表す。Rは炭素数1から4のアルキル基を表す。rは0又は1である。]
で示される含フッ素シラン化合物を、アルコキシ化剤又はアミノ化剤と反応させることを特徴とする、一般式(1d)
(In the formula, R 3 and R 4 each independently represent an alkyl group having 1 to 4 carbon atoms which may be substituted with a fluorine atom. P is an integer of 1 to 9.)
Represents the siroxanilen group represented by. X4 represents a halogen atom. R 2 represents an alkyl group having 1 to 4 carbon atoms. r is 0 or 1. ]
The general formula (1d), which comprises reacting the fluorine-containing silane compound represented by

Figure 2022079889000012
Figure 2022079889000012

(式中、n、m、R、A、R及びrは前記と同義である。Xは炭素数1から4のアルコキシ基又は炭素数2から6のジアルキルアミノ基を表す。)で示される含フッ素シラン化合物の製造方法。
[7]
アルコキシ化剤がアルコール化合物である、[6]に記載の含フッ素シラン化合物の製造方法。
[8]
[1]から[3]のいずれかに記載の含フッ素シラン化合物及び有機溶剤を含んでなる表面改質組成物。
[9]
[1]から[3]のいずれかに記載の含フッ素シラン化合物、有機溶剤及び重合促進触媒を含んでなる[8]に記載の表面改質組成物。
[10]
重合促進触媒が酸触媒である[9]に記載の表面改質組成物。
[11]
[8]、[9]又は[10]のいずれかに記載の表面改質組成物を塗工することを特徴とするガラス基材、金属酸化物基材又は金属基材の表面改質方法。
(In the formula, n, m, R 1 , A, R 2 and r are synonymous with the above. X 5 represents an alkoxy group having 1 to 4 carbon atoms or a dialkylamino group having 2 to 6 carbon atoms). The method for producing a fluorine-containing silane compound shown.
[7]
The method for producing a fluorine-containing silane compound according to [6], wherein the alkoxylating agent is an alcohol compound.
[8]
A surface modification composition comprising the fluorine-containing silane compound according to any one of [1] to [3] and an organic solvent.
[9]
The surface modification composition according to [8], which comprises the fluorine-containing silane compound according to any one of [1] to [3], an organic solvent and a polymerization promoting catalyst.
[10]
The surface modification composition according to [9], wherein the polymerization promoting catalyst is an acid catalyst.
[11]
A method for surface modification of a glass substrate, a metal oxide substrate or a metal substrate, which comprises applying the surface modification composition according to any one of [8], [9] or [10].

本発明の含フッ素シラン化合物(1)、又はそれを含んでなる表面改質組成物を表面改質剤として用いることにより、基材表面に極めて高い撥液性を付与することが出来る。特に、無機ガラス基材の撥水、撥油及び防汚表面改質に好適である。 By using the fluorine-containing silane compound (1) of the present invention or a surface modification composition containing the same as a surface modifier, extremely high liquid repellency can be imparted to the surface of the substrate. In particular, it is suitable for water-repellent, oil-repellent and antifouling surface modification of inorganic glass substrates.

以下、本発明を詳細に説明する。
まず、一般式(1)、(1a)、(1b)、(1c)、(1d)、(2)、(3)、(4)、(5)、(6)、(7)及び(8)式中のR、R、R、R、A、X、X、X、X及びXについて説明する。
は炭素数1から4のアルキル基である。該アルキル基としては、直鎖状、分岐状又は環状のいずれでもよく、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、シクロプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、シクロブチル基等が例示できる。これらのうち、経済性及び表面改質能の点から、メチル基が好ましい。
は炭素数1から4のアルキル基である。該アルキル基としては、直鎖状、分岐状又は環状のいずれでもよく、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、シクロプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、シクロブチル基等が例示できる。これらのうち、経済性及び表面改質能の点から、メチル基が好ましい。
はフッ素原子で置換されていてもよい炭素数1から4のアルキル基である。該アルキル基としては、直鎖状、分岐状又は環状のいずれでもよく、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、シクロプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、トリフルオロメチル基、2,2,2-トリフルオロエチル基、3,3,3-トリフルオロプロピル基、1-トリフルオロメチル-2,2,2-トリフルオロエチル基、3,3,4,4,4-ペンタフルオロブチル基等が例示できる。これらのうち、経済性、精製の容易さ及び表面改質能の点から、メチル基又は3,3,3-トリフルオロプロピル基が好ましく、メチル基が更に好ましい。
はフッ素原子で置換されていてもよい炭素数1から4のアルキル基である。該アルキル基としては、直鎖状、分岐状又は環状のいずれでもよく、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、シクロプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、トリフルオロメチル基、2,2,2-トリフルオロエチル基、3,3,3-トリフルオロプロピル基、1-トリフルオロメチル-2,2,2-トリフルオロエチル基、3,3,4,4,4-ペンタフルオロブチル基等が例示できる。これらのうち、経済性、精製の容易さ及び表面改質能の点から、メチル基又は3,3,3-トリフルオロプロピル基が好ましく、メチル基が更に好ましい。
はハロゲン原子、炭素数1から3のアルコキシ基、又は炭素数2から6のジアルキルアミノ基である。該ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が例示できる。これらのうち、経済性、表面改質能及び保存安定性の点から、塩素原子又は臭素原子が好ましく、塩素原子が更に好ましい。また、該アルコキシ基としては、メトキシ基、エトキシ基、1-プロピルオキシ基又は2-プロピルオキシ基が例示できる。これらのうち、経済性及び表面改質能の点から、メトキシ基又はエトキシ基が好ましく、メトキシ基が更に好ましい。該ジアルキルアミノ基としては、ジメチルアミノ基、ジエチルアミノ基、エチルメチルアミノ基、ジプロピルアミノ基、ジイソプロピルアミノ基、1-ピロリジノ基、1-ピペリジノ基等が例示できる。
で表される基はハロゲン原子であり、該ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が例示できる。これらのうち、経済性、表面改質能及び保存安定性の点から、塩素原子又は臭素原子が好ましく、臭素原子が更に好ましい。
で表される基はハロゲン原子であり、該ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が例示できる。これらのうち、経済性、表面改質能及び保存安定性の点から、塩素原子又は臭素原子が好ましく、塩素原子が更に好ましい。
で表される基はハロゲン原子であり、該ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が例示できる。これらのうち、経済性、表面改質能及び保存安定性の点から、塩素原子又は臭素原子が好ましく、塩素原子が更に好ましい。
で表される基は炭素数1から4のアルコキシ基、炭素数2から6のジアルキルアミノ基である。該アルコキシ基としては、メトキシ基、エトキシ基、1-プロピルオキシ基又は2-プロピルオキシ基が例示できる。これらのうち、経済性及び表面改質能の点から、メトキシ基又はエトキシ基が好ましく、メトキシ基が更に好ましい。該ジアルキルアミノ基としては、ジメチルアミノ基、ジエチルアミノ基、エチルメチルアミノ基、ジプロピルアミノ基、ジイソプロピルアミノ基、1-ピロリジノ基、1-ピペリジノ基等が例示できる。
Aで表される基は、炭素数1から6の二価のアルキレン基、又は、一般式(2)
Hereinafter, the present invention will be described in detail.
First, the general formulas (1), (1a), (1b), (1c), (1d), (2), (3), (4), (5), (6), (7) and (8). ) R 1 , R 2 , R 3 , R 4 , A, X 1 , X 2 , X 3 , X 4 and X 5 in the equation will be described.
R 1 is an alkyl group having 1 to 4 carbon atoms. The alkyl group may be linear, branched or cyclic, and specifically, a methyl group, an ethyl group, a propyl group, an isopropyl group, a cyclopropyl group, a butyl group, an isobutyl group or a sec-butyl group. , Tert-Butyl group, cyclobutyl group and the like can be exemplified. Of these, a methyl group is preferable from the viewpoint of economic efficiency and surface modification ability.
R2 is an alkyl group having 1 to 4 carbon atoms. The alkyl group may be linear, branched or cyclic, and specifically, a methyl group, an ethyl group, a propyl group, an isopropyl group, a cyclopropyl group, a butyl group, an isobutyl group or a sec-butyl group. , Tert-Butyl group, cyclobutyl group and the like can be exemplified. Of these, a methyl group is preferable from the viewpoint of economic efficiency and surface modification ability.
R 3 is an alkyl group having 1 to 4 carbon atoms which may be substituted with a fluorine atom. The alkyl group may be linear, branched or cyclic, and specifically, a methyl group, an ethyl group, a propyl group, an isopropyl group, a cyclopropyl group, a butyl group, an isobutyl group or a sec-butyl group. , Turt-butyl group, trifluoromethyl group, 2,2,2-trifluoroethyl group, 3,3,3-trifluoropropyl group, 1-trifluoromethyl-2,2,2-trifluoroethyl group, Examples thereof include 3,3,4,4,4-pentafluorobutyl groups. Of these, a methyl group or a 3,3,3-trifluoropropyl group is preferable, and a methyl group is more preferable, from the viewpoints of economy, ease of purification, and surface modification ability.
R4 is an alkyl group having 1 to 4 carbon atoms which may be substituted with a fluorine atom. The alkyl group may be linear, branched or cyclic, and specifically, a methyl group, an ethyl group, a propyl group, an isopropyl group, a cyclopropyl group, a butyl group, an isobutyl group or a sec-butyl group. , Turt-butyl group, trifluoromethyl group, 2,2,2-trifluoroethyl group, 3,3,3-trifluoropropyl group, 1-trifluoromethyl-2,2,2-trifluoroethyl group, Examples thereof include 3,3,4,4,4-pentafluorobutyl groups. Of these, a methyl group or a 3,3,3-trifluoropropyl group is preferable, and a methyl group is more preferable, from the viewpoints of economy, ease of purification, and surface modification ability.
X 1 is a halogen atom, an alkoxy group having 1 to 3 carbon atoms, or a dialkylamino group having 2 to 6 carbon atoms. Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Of these, a chlorine atom or a bromine atom is preferable, and a chlorine atom is more preferable, from the viewpoints of economy, surface modification ability and storage stability. Moreover, as the alkoxy group, a methoxy group, an ethoxy group, a 1-propyloxy group or a 2-propyloxy group can be exemplified. Of these, a methoxy group or an ethoxy group is preferable, and a methoxy group is more preferable, from the viewpoint of economic efficiency and surface modification ability. Examples of the dialkylamino group include a dimethylamino group, a diethylamino group, an ethylmethylamino group, a dipropylamino group, a diisopropylamino group, a 1-pyrrolidino group, a 1-piperidino group and the like.
The group represented by X 2 is a halogen atom, and examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Of these, a chlorine atom or a bromine atom is preferable, and a bromine atom is more preferable, from the viewpoints of economy, surface modification ability and storage stability.
The group represented by X 3 is a halogen atom, and examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Of these, a chlorine atom or a bromine atom is preferable, and a chlorine atom is more preferable, from the viewpoints of economy, surface modification ability and storage stability.
The group represented by X4 is a halogen atom, and examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Of these, a chlorine atom or a bromine atom is preferable, and a chlorine atom is more preferable, from the viewpoints of economy, surface modification ability and storage stability.
The group represented by X5 is an alkoxy group having 1 to 4 carbon atoms and a dialkylamino group having 2 to 6 carbon atoms. Examples of the alkoxy group include a methoxy group, an ethoxy group, a 1-propyloxy group and a 2-propyloxy group. Of these, a methoxy group or an ethoxy group is preferable, and a methoxy group is more preferable, from the viewpoint of economic efficiency and surface modification ability. Examples of the dialkylamino group include a dimethylamino group, a diethylamino group, an ethylmethylamino group, a dipropylamino group, a diisopropylamino group, a 1-pyrrolidino group, a 1-piperidino group and the like.
The group represented by A is a divalent alkylene group having 1 to 6 carbon atoms or the general formula (2).

Figure 2022079889000013
Figure 2022079889000013

(式中、R及びRは、それぞれ独立にフッ素原子で置換されていてもよい炭素数1から4のアルキル基を表す。pは1から9の整数である。)
で示される二価のシロキサニレン基である。
該アルキレン基としては、メチレン基、1,2-エチレン基、1,3-プロピレン基、イソプロピレン基、1,4-ブチレン基、イソブチレン基、1,5-ペンチレン基、1-メチル-1,4-ブチレン基、2-メチル-1,4-ブチレン基、3-メチル-1,4-ブチレン基、1,2-ジメチル-1,3-プロピレン基、2,2-ジメチル-1,3-プロピレン基、1-エチル-1,3-プロピレン基、1,6-ヘキシレン基、1-メチル-1,5-ペンチレン基、2-メチル-1,5-ペンチレン基、3-メチル-1,5-ペンチレン基、4-メチル-1,5-ペンチレン基、1,2-ジメチル-1,4-ブチレン基、1,3-ジメチル-1,4-ブチレン基、2,2-ジメチル-1,4-ブチレン基、2,3-ジメチル-1,4-ブチレン基、3,3-ジメチル-1,4-ブチレン基、1-エチル-1,4-ブチレン基、2-エチル-1,4-ブチレン基等が挙げられる。これらのうち、撥液性能の点から、1,3-プロピレン基が好ましい。
該シロキサニレン基としては、以下の部分構造が例示できる。
(In the formula, R 3 and R 4 represent alkyl groups having 1 to 4 carbon atoms, which may be independently substituted with fluorine atoms, respectively. P is an integer of 1 to 9.)
It is a divalent siroxanilene group represented by.
Examples of the alkylene group include a methylene group, a 1,2-ethylene group, a 1,3-propylene group, an isopropylene group, a 1,4-butylene group, an isobutylene group, a 1,5-pentylene group, a 1-methyl-1, 4-butylene group, 2-methyl-1,4-butylene group, 3-methyl-1,4-butylene group, 1,2-dimethyl-1,3-propylene group, 2,2-dimethyl-1,3- Propropylene group, 1-ethyl-1,3-propylene group, 1,6-hexylene group, 1-methyl-1,5-pentylene group, 2-methyl-1,5-pentylene group, 3-methyl-1,5 -Pentylene group, 4-methyl-1,5-pentylene group, 1,2-dimethyl-1,4-butylene group, 1,3-dimethyl-1,4-butylene group, 2,2-dimethyl-1,4 -Butylene group, 2,3-dimethyl-1,4-butylene group, 3,3-dimethyl-1,4-butylene group, 1-ethyl-1,4-butylene group, 2-ethyl-1,4-butylene The group etc. can be mentioned. Of these, 1,3-propylene groups are preferable from the viewpoint of liquid repellency.
The following partial structure can be exemplified as the siroxanilen group.

Figure 2022079889000014
Figure 2022079889000014

これらのシロキサニレン基(2)のうち、経済性及び表面改質能の点から、(2-7)、(2-12)、(2-13)、又は(2-18)が好ましく、(2-13)又は(2-18)が更に好ましい。 Of these siroxanilen groups (2), (2-7), (2-12), (2-13), or (2-18) is preferable, and (2) is preferable from the viewpoint of economic efficiency and surface modification ability. -13) or (2-18) is more preferable.


次に、本発明の含フッ素シラン化合物(1)について説明する。本発明の含フッ素シラン化合物は、下記一般式(1)

Next, the fluorine-containing silane compound (1) of the present invention will be described. The fluorine-containing silane compound of the present invention has the following general formula (1).

Figure 2022079889000015
Figure 2022079889000015

で示される。ここで一般式(1)におけるパーフルオロアルキル基の炭素数nは1から6までの整数であり、パーフルオロアルキル基の個数mは2、又は3である。C2n+1基はパーフルオロアルキル基である。その構造としては、分岐構造を有していてもよいが、直鎖のパーフルオロアルキル基は自己会合構造をとりやすく、基材表面に単分子層を形成しやすくなると考えられるため、直鎖のパーフルオロアルキル基が好ましい。nは、パーフルオロアルキル基の鎖長が大きいほど表面改質能が高い点から、nは4又は6であることが好ましく、6であることが更に好ましい。mは、撥液性能の点から、2又は3であることが好ましく、2が更に好ましい。rは末端結合性シリル基に置換したアルキル基の数であり、0又は1である。表面改質能の点から、0が好ましい。
本発明の含フッ素シラン化合物(1)としては、以下の化合物が例示出来る。なお、本明細書中では、Me、Et、Pr及びPrは、それぞれメチル基、エチル基、プロピル基及びイソプロピル基を表す。
Indicated by. Here, the carbon number n of the perfluoroalkyl group in the general formula (1) is an integer from 1 to 6, and the number m of the perfluoroalkyl groups is 2 or 3. The C n F 2n + 1 group is a perfluoroalkyl group. The structure may have a branched structure, but since it is considered that a linear perfluoroalkyl group easily has a self-association structure and easily forms a monomolecular layer on the surface of the substrate, it is linear. Perfluoroalkyl groups are preferred. As for n, the surface modification ability is higher as the chain length of the perfluoroalkyl group is larger. Therefore, n is preferably 4 or 6, and more preferably 6. From the viewpoint of liquid repellency, m is preferably 2 or 3, and more preferably 2. r is the number of alkyl groups substituted with the terminally bonded silyl group, which is 0 or 1. 0 is preferable from the viewpoint of surface modification ability.
Examples of the fluorine-containing silane compound (1) of the present invention include the following compounds. In addition, in this specification, Me, Et, Pr and i Pr represent a methyl group, an ethyl group, a propyl group and an isopropyl group, respectively.

Figure 2022079889000016
Figure 2022079889000016

Figure 2022079889000017
Figure 2022079889000017

Figure 2022079889000018
Figure 2022079889000018

Figure 2022079889000019
Figure 2022079889000019

Figure 2022079889000020
Figure 2022079889000020

Figure 2022079889000021
Figure 2022079889000021

Figure 2022079889000022
Figure 2022079889000022

Figure 2022079889000023
Figure 2022079889000023

Figure 2022079889000024
Figure 2022079889000024

Figure 2022079889000025
Figure 2022079889000025

Figure 2022079889000026
Figure 2022079889000026

これらのうち、経済性、表面撥液性及び保存安定性の点から、(1-2-1)、(1-2-3)、(1-4-1)、(1-4-3)、(1-9-1)、(1-9-3)、(1-15-1)、(1-15-3)又は(1-25-3)が好ましく、(1-4-1)、(1-4-3)、(1-9-1)、(1-9-3)又は(1-25-3)が更に好ましく、(1-4-3)、(1-9-3)又は(1-25-3)が殊更好ましい。 Of these, (1-2-1), (1-2-3), (1-4-1), (1-4-3) from the viewpoint of economy, surface liquid repellency and storage stability. , (1-9-1), (1-9-3), (1-15-1), (1-15-3) or (1-25-3), preferably (1-4-1). , (1-4-3), (1-9-1), (1-9-3) or (1-25-3) are more preferred, (1-4-3), (1-9-3). ) Or (1-25-3) is particularly preferable.


次に本発明の含フッ素シラン化合物(1)の製造方法について説明する。本発明の含フッ素シラン化合物(1)の製造方法は、リンカー部位であるAの構造、及び末端結合性基の構造によって異なり、下式に示される3種の製造方法で製造出来る。以後、本明細書中では、これらをそれぞれ本発明の製造方法1、本発明の製造方法2、本発明の製造方法3と呼ぶ。

Next, a method for producing the fluorine-containing silane compound (1) of the present invention will be described. The method for producing the fluorine-containing silane compound (1) of the present invention differs depending on the structure of A as a linker moiety and the structure of the terminal-binding group, and can be produced by three types of production methods represented by the following formulas. Hereinafter, in the present specification, these are referred to as the production method 1 of the present invention, the production method 2 of the present invention, and the production method 3 of the present invention, respectively.

Figure 2022079889000027
Figure 2022079889000027

(式中、nは2から6の整数である。mは2又は3である。Rは、炭素数1から4のアルキル基を表す。qは2から6の整数である。Xはハロゲン原子、炭素数1から3のアルコキシ基、又は炭素数2から6のジアルキルアミノ基を表し、複数のXはそれぞれ同一又は相異なってもよい。Rは炭素数1から4のアルキル基を表す。rは0又は1である。pは1から9の整数である。R及びRは、それぞれ独立にフッ素原子で置換されていてもよい炭素数1から4のアルキル基を表す。X、X及びXはハロゲン原子を表す。Xは炭素数1から4のアルコキシ基、炭素数2から6のジアルキルアミノ基、又はハロゲン原子を表す。)

まず、本発明の製造方法1について説明する。本発明の製造方法1はリンカー部位Aがアルキレン基である含フッ素シラン化合物(1a)
(In the formula, n is an integer of 2 to 6. m is 2 or 3. R 1 represents an alkyl group having 1 to 4 carbon atoms. Q is an integer of 2 to 6. X 1 is an integer of 2 to 6. Represents a halogen atom, an alkoxy group having 1 to 3 carbon atoms, or a dialkylamino group having 2 to 6 carbon atoms, and a plurality of X 1s may be the same or different from each other. R 2 is an alkyl group having 1 to 4 carbon atoms. R is 0 or 1. p is an integer from 1 to 9. R 3 and R 4 each represent an alkyl group having 1 to 4 carbon atoms which may be independently substituted with a fluorine atom. X 2 , X 3 and X 4 represent a halogen atom. X 5 represents an alkoxy group having 1 to 4 carbon atoms, a dialkylamino group having 2 to 6 carbon atoms, or a halogen atom).

First, the manufacturing method 1 of the present invention will be described. The production method 1 of the present invention is a fluorine-containing silane compound (1a) in which the linker moiety A is an alkylene group.

Figure 2022079889000028
Figure 2022079889000028

(式中、nは2から6の整数である。mは2又は3である。Rは、炭素数1から4のアルキル基を表す。qは2から6の整数である。Xはハロゲン原子、炭素数1から3のアルコキシ基、又は炭素数2から6のジアルキルアミノ基を表し、複数のXはそれぞれ同一又は相異なってもよい。Rは炭素数1から4のアルキル基を表す。rは0又は1である。)
の製造方法であって、一般式(3)
(In the equation, n is an integer of 2 to 6. m is 2 or 3. R 1 represents an alkyl group having 1 to 4 carbon atoms. Q is an integer of 2 to 6. X 1 is an integer of 2 to 6. Represents a halogen atom, an alkoxy group having 1 to 3 carbon atoms, or a dialkylamino group having 2 to 6 carbon atoms, and a plurality of X 1s may be the same or different from each other. R 2 is an alkyl group having 1 to 4 carbon atoms. Represents r is 0 or 1.)
The general formula (3)

Figure 2022079889000029
Figure 2022079889000029

(式中、n、m、R及びqは上記と同義である。)
で示されるオレフィン化合物(3)と、一般式(4)
(In the formula, n, m, R1 and q are synonymous with the above.)
The olefin compound (3) represented by the above and the general formula (4).

Figure 2022079889000030
Figure 2022079889000030

(式中、X、R及びrは上記と同義である。)
で示されるヒドロシラン化合物(4)とを、ヒドロシリル化触媒存在下で反応させることを特徴とする。
使用できるオレフィン化合物(3)としては、以下が例示できる。
(In the formula, X 1 , R 2 and r are synonymous with the above.)
It is characterized by reacting with the hydrosilane compound (4) represented by (1) in the presence of a hydrosilylation catalyst.
Examples of the olefin compound (3) that can be used include the following.

Figure 2022079889000031
Figure 2022079889000031

Figure 2022079889000032
Figure 2022079889000032

これらのうち、製造収率及び精製が容易な点から、(3-7)、(3-12)、(3-22)又は(3-27)が好ましく、(3-12)又は(3-27)が更に好ましい。
これらのオレフィン化合物(3)は、文献公知の方法を参考に(例えば、Tetrahedron Letters誌、47巻、239-243頁、2006年。)合成することができる。
本発明の製造方法1において使用可能なヒドロシラン化合物(4)としては、以下が例示できる。
Of these, (3-7), (3-12), (3-22) or (3-27) are preferable, and (3-12) or (3-12) or (3-27) are preferable from the viewpoint of production yield and easy purification. 27) is more preferable.
These olefin compounds (3) can be synthesized with reference to methods known in the literature (for example, Tetrahedron Letters, Vol. 47, pp. 239-243, 2006).
Examples of the hydrosilane compound (4) that can be used in the production method 1 of the present invention include the following.

Figure 2022079889000033
Figure 2022079889000033

これらのうち、コスト及び製造収率の点から、(4-1)又は(4-2)が好ましく、(4-1)が更に好ましい。これらは、公知の製造法に従い合成して用いてもよく、また、市販品を用いてもよい。
本発明の製造方法1は、ヒドロシリル化触媒存在下で実施することを特徴とする。該ヒドロシリル化触媒としては、アゾビス(イソブチロニトリル)(AIBN)、過酸化ジ-tert-ブチル(DTBP)、tert-ブチルヒドロペルオキシド、過酸化ベンゾイル(BPO)等のラジカル発生型ヒドロシリル化触媒;塩化アルミニウム、塩化ガリウム、塩化インジウム、三フッ化ホウ素、トリス(ペンタフルオロフェニル)ホウ素等のルイス酸ヒドロシリル化触媒;金属パラジウム、金属白金、パラジウム活性炭、白金活性炭、塩化白金酸、塩化パラジウム、酢酸パラジウム、トリス(トリフェニルホスフィン)ロジウムクロリド、(1,3-ジビニルテトラメチルジシロキサン)白金錯体、2,4,6,8-テトラビニル-2,4,6,8-テトラメチルシクロテトラシロキサン)白金錯体等の白金族遷移金属触媒が例示できる。経済性、製造収率及び触媒活性が高い点で、塩化白金酸等の白金族遷移金属触媒が好ましい。
本発明の製造方法1において、ヒドロシリル化触媒の使用量には制限はなく、当業者がヒドロシリル化反応を実施する際の一般的なモル当量を用いて実施することが出来る。具体例としては、オレフィン化合物(3)のモル当量に対し、ヒドロシリル化触媒のモル当量が0.00001モル当量から0.5モル当量の範囲から適宜選択した当量において実施することが出来る。製造収率及び経済性の点で、0.0001モル当量から0.2モル当量の範囲内から適宜選ばれるモル当量であることが好ましく、0.001モル当量から0.1モル当量の範囲内から適宜選ばれるモル当量であることが更に好ましい。
本発明の製造方法1は、無溶媒条件下で実施してもよいが、必要に応じ有機溶媒中にて実施してもよい。使用可能な有機溶媒は、反応を阻害しなければ特に制限はないが、ベンゼン、トルエン、キシレン等の炭化水素溶媒、ベンゾトリフルオリド(α,α,α-トリフルオロトルエン)、1,3-ビス(トリフルオロメチル)ベンゼン等のフルオロアルキル置換芳香族炭化水素溶媒;ペンタフルオロベンゼン、ヘキサフルオロベンゼン等のフルオロ芳香族炭化水素溶媒;2H,3H-デカフルオロペンタン(バートレル)、テトラデカフルオロヘキサン、オクタデカフルオロオクタン、ドデカフルオロシクロヘキサン、1,3-ビス(トリフルオロメチル)デカフルオロシクロヘキサン、パーフルオロケロセン等のフルオロ脂肪族炭化水素溶媒が例示できる。経済性及び収率が良い点で、トルエン、キシレン、2H,3H-デカフルオロペンタン、ベンゾトリフルオリド、1,3-ビス(トリフルオロメチル)ベンゼン又はヘキサフルオロベンゼンが好ましい。これら有機溶媒は、一種類を単独で用いても、複数の有機溶媒を任意の比率で混合して用いても良い。有機溶媒の使用量は、収率の点からオレフィン化合物(3)の重量に対し1から1000重量%の範囲内から適宜選ばれる重量%であることが好ましく、5から200重量%の範囲内から適宜選ばれる重量%であることが更に好ましい。
本発明の製造方法1を実施する際のオレフィン化合物(3)とヒドロシラン化合物(4)の当量比には特に制限は無いが、例えばオレフィン化合物(3)1モル当量に対しヒドロシラン化合物(4)を0.8から100モル当量の範囲から適宜選ばれた当量で行うことが、収率が良い点で好ましい。
本発明の製造方法1を実施する際のオレフィン化合物(3)、ヒドロシラン化合物(4)及びヒドロシリル化触媒の混合順序には特に制限はないが、例えばヒドロシリル化触媒にオレフィン化合物(3)を混合し、ここにヒドロシラン化合物(4)を添加する方法が、安全性の点から好ましい。
本発明の製造方法1を実施する際は、収率が良い点で、不活性ガス雰囲気下にて実施することが好ましい。該不活性ガスとしては、具体的には、窒素、ヘリウム、ネオン、アルゴン等を例示することが出来る。安価な点で窒素又はアルゴンが好ましい。
本発明の製造方法1では、反応温度及び反応時間には制限はなく、当業者がオレフィンのヒドロシリル化反応を実施するときの一般的な条件を用いることが出来る。具体例としては、-10℃から300℃の温度範囲から適宜選択した反応温度において、1分間から120時間の範囲から適宜選択した反応時間を選択することによって含フッ素シラン化合物(1a)を収率良く製造することが出来る。
本発明の製造方法1において、n、m、R、R、A及びXを適宜選択することにより、含フッ素シラン化合物(1a)を好適に製造することが出来る。本発明の製造方法1で製造可能な含フッ素シラン化合物(1a)としては、以下の化合物が例示出来る。
Of these, (4-1) or (4-2) is preferable, and (4-1) is more preferable, from the viewpoint of cost and production yield. These may be synthesized and used according to a known production method, or commercially available products may be used.
The production method 1 of the present invention is characterized in that it is carried out in the presence of a hydrosilylation catalyst. Examples of the hydrosilylation catalyst include radical-generating hydrosilylation catalysts such as azobis (isobutyronitrile) (AIBN), di-tert-butyl peroxide (DTBP), tert-butylhydroperoxide, and benzoyl peroxide (BPO); Hydrosilylation catalysts of Lewis acid such as aluminum chloride, gallium chloride, indium chloride, boron trifluoride, and tris (pentafluorophenyl) boron; metallic palladium, metallic platinum, palladium activated charcoal, platinum activated charcoal, platinum chloride acid, palladium chloride, palladium acetate. , Tris (triphenylphosphine) rhodium chloride, (1,3-divinyltetramethyldisiloxane) platinum complex, 2,4,6,8-tetravinyl-2,4,6,8-tetramethylcyclotetrasiloxane) platinum An example is a platinum group transition metal catalyst such as a complex. Platinum group transition metal catalysts such as platinum chloride are preferred because of their high economic efficiency, production yield and catalytic activity.
In the production method 1 of the present invention, there is no limitation on the amount of the hydrosilylation catalyst used, and it can be carried out using a general molar equivalent when a person skilled in the art carries out the hydrosilylation reaction. As a specific example, the molar equivalent of the hydrosilylation catalyst can be appropriately selected from the range of 0.00001 molar equivalent to 0.5 molar equivalent with respect to the molar equivalent of the olefin compound (3). From the viewpoint of production yield and economic efficiency, the molar equivalent is preferably selected from the range of 0.0001 molar equivalent to 0.2 molar equivalent, and is within the range of 0.001 molar equivalent to 0.1 molar equivalent. It is more preferable that the molar equivalent is appropriately selected from the above.
The production method 1 of the present invention may be carried out under solvent-free conditions, but may be carried out in an organic solvent if necessary. The organic solvent that can be used is not particularly limited as long as it does not inhibit the reaction, but is limited to hydrocarbon solvents such as benzene, toluene and xylene, benzotrifluoride (α, α, α-trifluorotoluene) and 1,3-bis. Fluoroalkyl-substituted aromatic hydrocarbon solvents such as (trifluoromethyl) benzene; fluoroaromatic hydrocarbon solvents such as pentafluorobenzene and hexafluorobenzene; 2H, 3H-decafluoropentane (Bertrel), tetradecafluorohexane, octa Examples thereof include fluoroaliphatic hydrocarbon solvents such as decafluorooctane, dodecafluorocyclohexane, 1,3-bis (trifluoromethyl) decafluorocyclohexane, and perfluorokerocene. Toluene, xylene, 2H, 3H-decafluoropentane, benzotrifluoride, 1,3-bis (trifluoromethyl) benzene or hexafluorobenzene are preferable in terms of economy and yield. As these organic solvents, one kind may be used alone, or a plurality of organic solvents may be mixed and used at an arbitrary ratio. The amount of the organic solvent used is preferably from 1 to 1000% by weight and preferably from 5 to 200% by weight based on the weight of the olefin compound (3) from the viewpoint of yield. It is more preferably the weight% that is appropriately selected.
The equivalent ratio of the olefin compound (3) to the hydrosilane compound (4) in carrying out the production method 1 of the present invention is not particularly limited, but for example, the hydrosilane compound (4) is used with respect to 1 molar equivalent of the olefin compound (3). Equivalents appropriately selected from the range of 0.8 to 100 molar equivalents are preferable in terms of good yield.
The mixing order of the olefin compound (3), the hydrosilane compound (4) and the hydrosilylation catalyst in carrying out the production method 1 of the present invention is not particularly limited, but for example, the olefin compound (3) is mixed with the hydrosilylation catalyst. , The method of adding the hydrosilane compound (4) here is preferable from the viewpoint of safety.
When the production method 1 of the present invention is carried out, it is preferably carried out in an inert gas atmosphere in terms of good yield. Specific examples of the inert gas include nitrogen, helium, neon, and argon. Nitrogen or argon is preferable because of its low cost.
In the production method 1 of the present invention, the reaction temperature and the reaction time are not limited, and general conditions for a person skilled in the art to carry out a hydrosilylation reaction of an olefin can be used. As a specific example, the yield of the fluorine-containing silane compound (1a) is obtained by selecting a reaction time appropriately selected from the range of 1 minute to 120 hours at a reaction temperature appropriately selected from the temperature range of −10 ° C. to 300 ° C. Can be manufactured well.
In the production method 1 of the present invention, the fluorine-containing silane compound (1a) can be suitably produced by appropriately selecting n, m, R 1 , R 2 , A and X 1 . Examples of the fluorine-containing silane compound (1a) that can be produced by the production method 1 of the present invention include the following compounds.

Figure 2022079889000034
Figure 2022079889000034

Figure 2022079889000035
Figure 2022079889000035

Figure 2022079889000036
Figure 2022079889000036

Figure 2022079889000037
Figure 2022079889000037

Figure 2022079889000038
Figure 2022079889000038

これらのうち、製造収率及び精製が容易な点において(1-2-1)、(1-4-1)、(1-9-1)又は(1-15-1)が好ましく、(1-4-1)又は(1-9-1)が更に好ましい。
本発明の製造方法1で製造した含フッ素シラン化合物(1a)は、当業者が有機シラン化合物を精製するときの一般的な精製方法を適宜選択して用いることによって精製することができる。具体的な精製方法としては、濃縮、ろ過、抽出、遠心分離、デカンテーション、減圧蒸留、昇華、結晶化、カラムクロマトグラフィー等を挙げることができる。
Of these, (1-2-1), (1-4-1), (1-9.1) or (1-15-1) are preferable in terms of production yield and ease of purification, and (1). 4-1) or (1-9-1) is more preferable.
The fluorine-containing silane compound (1a) produced by the production method 1 of the present invention can be purified by appropriately selecting and using a general purification method when a person skilled in the art purifies an organic silane compound. Specific purification methods include concentration, filtration, extraction, centrifugation, decantation, vacuum distillation, sublimation, crystallization, column chromatography and the like.


次に本発明の製造方法2について説明する。本発明の製造方法2は、リンカー部分Aがシロキサニレン基である含フッ素シラン化合物(1b)

Next, the manufacturing method 2 of the present invention will be described. In the production method 2 of the present invention, the fluorine-containing silane compound (1b) in which the linker moiety A is a siloxanilen group.

Figure 2022079889000039
Figure 2022079889000039

(式中、nは2から6の整数である。mは2又は3である。Rは、炭素数1から4のアルキル基を表す。pは1から9の整数である。Xはハロゲン原子、炭素数1から3のアルコキシ基、又は炭素数2から6のジアルキルアミノ基を表し、複数のXはそれぞれ同一又は相異なってもよい。R及びRは、それぞれ独立にフッ素原子で置換されていてもよい炭素数1から4のアルキル基を表す。pは1から9の整数である。Rは炭素数1から4のアルキル基を表す。rは0又は1である。)
の製造方法であって、一般式(6)
(In the formula, n is an integer from 2 to 6. m is 2 or 3. R 1 represents an alkyl group having 1 to 4 carbon atoms. P is an integer from 1 to 9. X 1 is an integer. Representing a halogen atom, an alkoxy group having 1 to 3 carbon atoms, or a dialkylamino group having 2 to 6 carbon atoms, the plurality of X1s may be the same or different from each other. R 3 and R 4 are independently fluorines. Represents an alkyl group having 1 to 4 carbon atoms which may be substituted with an atom. P is an integer of 1 to 9. R 2 represents an alkyl group having 1 to 4 carbon atoms. R is 0 or 1. .)
The general formula (6).

Figure 2022079889000040
Figure 2022079889000040

(式中、R、R及びpは、上記と同義である。)
で示されるシロキサンジオール化合物に、一般式(5)
(In the formula, R 3 , R 4 and p are synonymous with the above.)
The siloxane diol compound represented by the above formula (5)

Figure 2022079889000041
Figure 2022079889000041

(式中、n、m、Rは、上記と同義である。Xはハロゲン原子を表す。)
で示される含フッ素ハロゲン化シラン化合物と、一般式(8)
(In the formula, n, m, and R 1 have the same meaning as above. X 2 represents a halogen atom.)
Fluorine-containing halogenated silane compound represented by and the general formula (8).

Figure 2022079889000042
Figure 2022079889000042

(式中、X、R及びrは、上記と同義である。Xはハロゲン原子を表す。)
で示されるハロゲン化シラン化合物とを反応させることを特徴とする。
一般式(1b)及び(5)中のnで表されるフルオロアルキル基の炭素鎖数は2から6の整数であり、原料コストが低く製造収率が良い点で4又は6であることが好ましく、6であることが更に好ましい。又、一般式(1b)及び(5)中のmで表される分子中のフルオロアルキル基の数は2又は3であり、精製が容易になる点から2であることが好ましい。
本発明の製造方法2で原料として用いることが出来るシロキサンジオール化合物(6)としては、以下が例示できる。
(In the formula, X 1 , R 2 and r are synonymous with the above. X 3 represents a halogen atom.)
It is characterized by reacting with the halogenated silane compound represented by.
The number of carbon chains of the fluoroalkyl group represented by n in the general formulas (1b) and (5) is an integer of 2 to 6, and may be 4 or 6 in terms of low raw material cost and good production yield. It is preferably 6, and even more preferably 6. Further, the number of fluoroalkyl groups in the molecule represented by m in the general formulas (1b) and (5) is 2 or 3, and is preferably 2 from the viewpoint of facilitating purification.
Examples of the siloxane diol compound (6) that can be used as a raw material in the production method 2 of the present invention include the following.

Figure 2022079889000043
Figure 2022079889000043

これらのシロキサンジオール化合物(6)のうち、経済性又は精製の容易さの点から(6-7)、又は(6-9)が好ましく、(6-7)が更に好ましい。これらのシロキサンジオール化合物(6)は、公知の合成法(例えば、特開2016-150906号公報)に従い、適宜合成し用いることが出来る。また、市販品を入手し用いてもよい。 Of these siloxane diol compounds (6), (6-7) or (6-9) is preferable, and (6-7) is more preferable, from the viewpoint of economy or ease of purification. These siloxane diol compounds (6) can be appropriately synthesized and used according to a known synthesis method (for example, JP-A-2016-150906). Further, a commercially available product may be obtained and used.


製造方法2で原料として用いることが出来る含フッ素ハロゲン化シラン化合物(5)としては、以下が例示できる。

Examples of the fluorine-containing halogenated silane compound (5) that can be used as a raw material in the production method 2 include the following.

Figure 2022079889000044
Figure 2022079889000044

これらのうち、経済性及び調製が容易という点で、(5-4)、(5-6)、(5-10)又は(5-12)が好ましく、(5-6)又は(5-12)が更に好ましく、(5-6)が殊更好ましい。これらは、公知の合成法(例えば、Applied Surface Science誌、371巻、453-467頁、2016年。
)に従い、適宜合成し用いることが出来る。
製造方法2で用いることのできるハロゲン化シラン化合物(8)としては、以下が例示できる。
Of these, (5-4), (5-6), (5-10) or (5-12) are preferable, and (5-6) or (5-12) are preferable in terms of economic efficiency and ease of preparation. ) Is more preferable, and (5-6) is particularly preferable. These are known synthetic methods (eg, Applied Surface Science, Vol. 371, pp. 453-467, 2016.
), And can be appropriately synthesized and used.
Examples of the halogenated silane compound (8) that can be used in the production method 2 include the following.

Figure 2022079889000045
Figure 2022079889000045

これらのうち、経済性及び調製が容易という点で、(8-1)、又は(8-6)が好ましく、(8-6)が更に好ましい。これらは、公知の合成法(例えば、Angewandte Chemie、International、Edition、50巻, 10708-10711頁 (2011年))に従い、適宜合成し用いることが出来る。又、市販品を入手し用いてもよい。
本発明の製造方法2は、シロキサンジオール化合物(6)を有機溶剤に溶解し、ここに含フッ素ハロゲン化シラン化合物(5)を加え、中間体(7)を調製する工程1と、中間体(7)に、ハロゲン化シラン化合物(8)を加え、含フッ素シラン化合物(1b)を調製する工程2とよりなる。工程1及び工程2は、連続して同一容器内で実施してもよく、一度中間体(7)を精製して工程2に用いても良い。
本発明の製造方法2での工程1及び工程2における有機溶剤は、反応を阻害しないものでなければ制約は無く、ベンゼン、トルエン、キシレン、メシチレン、ペンタン、ヘキサン、ヘプタン、オクタン等の炭化水素類、ジクロロメタン、クロロホルム、四塩化炭素等のハロゲン化炭化水素類、ジエチルエーテル、シクロペンチルメチルエーテル、tert-ブチルメチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル類が例示できる。経済性及び製造収率の点から、ジエチルエーテル又はテトラヒドロフランが好ましい。
本発明の製造方法2は、反応を加速させ、又はシロキサンジオール化合物(6)や中間体(7)の自己縮合を回避するために、有機塩基を同伴させて実施することが好ましい。該有機塩基としては、トリエチルアミン、ピリジン、キノリン、アニリン等の有機アミンが例示できる。製造収率、経済性及び取り扱いやすさから、トリエチルアミン又はピリジンが好ましい。これらの使用量には特に制限は無いが、例えばシロキサンジオール化合物(6)1モル当量に対し、1.5~100モル当量の範囲から適宜選ばれた当量の有機塩基を同伴させて実施することが、製造収率が良い点で好ましい。
本発明の製造方法2における、3種の原料の当量比には特に制限は無いが、例えばシロキサンジオール化合物(6)1モル当量に対し含フッ素ハロゲン化シラン化合物(5)を0.8から1.5モル当量の範囲から適宜選ばれた当量で、ハロゲン化シラン化合物(8)を0.8から10モル当量の範囲から適宜選ばれた当量で行うことが、収率が良い点で好ましい。
本発明の製造方法2で製造した含フッ素シラン化合物(1b)は、当業者が有機シラン化合物を精製するときの一般的な精製方法を適宜選択して用いることによって精製することができる。具体的な精製方法としては、濃縮、ろ過、抽出、遠心分離、デカンテーション、減圧蒸留、昇華、結晶化、カラムクロマトグラフィー等を挙げることができる。
本発明の製造方法2において、n、m、R、R、A及びXを適宜選択することにより、含フッ素シラン化合物(1b)を好適に製造することが出来る。製造方法2で製造可能な含フッ素シラン化合物(1b)としては、以下の化合物が例示出来る。
Of these, (8-1) or (8-6) is preferable, and (8-6) is more preferable, in terms of economy and ease of preparation. These can be appropriately synthesized and used according to a known synthetic method (for example, Angewandte Chemie, International, Edition, Vol. 50, pp. 10708-10711 (2011)). Alternatively, a commercially available product may be obtained and used.
The production method 2 of the present invention comprises the step 1 of dissolving the siloxane diol compound (6) in an organic solvent and adding the fluorine-containing halogenated silane compound (5) to the intermediate (7) to prepare the intermediate (7). The process 2 comprises the step 2 of adding the halogenated silane compound (8) to 7) to prepare the fluorine-containing silane compound (1b). Steps 1 and 2 may be continuously carried out in the same container, or the intermediate (7) may be purified once and used in step 2.
The organic solvent in steps 1 and 2 in the production method 2 of the present invention is not limited as long as it does not inhibit the reaction, and hydrocarbons such as benzene, toluene, xylene, methylene, pentane, hexane, heptane, and octane. , Benzene, chloroform, halogenated hydrocarbons such as carbon tetrachloride, and ethers such as diethyl ether, cyclopentylmethyl ether, tert-butylmethyl ether, tetrahydrofuran, and dioxane can be exemplified. Diethyl ether or tetrahydrofuran is preferable from the viewpoint of economy and production yield.
The production method 2 of the present invention is preferably carried out with an organic base in order to accelerate the reaction or avoid self-condensation of the siloxane diol compound (6) and the intermediate (7). Examples of the organic base include organic amines such as triethylamine, pyridine, quinoline, and aniline. Triethylamine or pyridine is preferable from the viewpoint of production yield, economy and ease of handling. The amount of these substances to be used is not particularly limited, but for example, 1 molar equivalent of the siloxane diol compound (6) should be accompanied by an equivalent amount of an organic base appropriately selected from the range of 1.5 to 100 molar equivalents. However, it is preferable in that the production yield is good.
The equivalent ratio of the three raw materials in the production method 2 of the present invention is not particularly limited, and for example, the fluorine-containing silane compound (5) is 0.8 to 1 with respect to 1 molar equivalent of the siloxane diol compound (6). It is preferable to carry out the halogenated silane compound (8) at an equivalent amount appropriately selected from the range of .5 molar equivalents and an equivalent amount appropriately selected from the range of 0.8 to 10 molar equivalents in terms of good yield.
The fluorine-containing silane compound (1b) produced by the production method 2 of the present invention can be purified by appropriately selecting and using a general purification method when a person skilled in the art purifies an organic silane compound. Specific purification methods include concentration, filtration, extraction, centrifugation, decantation, vacuum distillation, sublimation, crystallization, column chromatography and the like.
In the production method 2 of the present invention, the fluorine-containing silane compound (1b) can be suitably produced by appropriately selecting n, m, R 1 , R 2 , A and X 1 . Examples of the fluorine-containing silane compound (1b) that can be produced by the production method 2 include the following compounds.

Figure 2022079889000046
Figure 2022079889000046

Figure 2022079889000047
Figure 2022079889000047

Figure 2022079889000048
Figure 2022079889000048

Figure 2022079889000049
Figure 2022079889000049

Figure 2022079889000050
Figure 2022079889000050

これらのうち、製造収率及び精製が容易な点において(1-9-1)、(1-9-3)又は(1-25-3)が好ましく、(1-9-3)又は(1-25-3)が更に好ましい。 Of these, (1-9-1), (1-9-3) or (1-25-3) are preferable in terms of production yield and ease of purification, and (1-9-3) or (1). -25-3) is more preferable.


次に本発明の製造方法3について説明する。本発明の製造方法3では、一般式(1c)

Next, the manufacturing method 3 of the present invention will be described. In the production method 3 of the present invention, the general formula (1c)

Figure 2022079889000051
Figure 2022079889000051

[式中、nは2から6の整数である。mは2又は3である。Rは、炭素数1から4のアルキル基を表す。Aは、炭素数2から6のアルキレン基、又は、一般式(2) [In the formula, n is an integer from 2 to 6. m is 2 or 3. R 1 represents an alkyl group having 1 to 4 carbon atoms. A is an alkylene group having 2 to 6 carbon atoms, or the general formula (2).

Figure 2022079889000052
Figure 2022079889000052

(式中、R及びRは、それぞれ独立にフッ素原子で置換されていてもよい炭素数1から4のアルキル基を表す。pは1から9の整数である。)
で示されるシロキサニレン基を表す。Xはハロゲン原子を表す。Rは炭素数1から4のアルキル基を表す。rは0又は1である。]
で示される含フッ素シラン化合物(1c)から、一般式(1d)
(In the formula, R 3 and R 4 represent alkyl groups having 1 to 4 carbon atoms, which may be independently substituted with fluorine atoms, respectively. P is an integer of 1 to 9.)
Represents the siroxanilen group represented by. X4 represents a halogen atom. R 2 represents an alkyl group having 1 to 4 carbon atoms. r is 0 or 1. ]
From the fluorine-containing silane compound (1c) represented by the above, the general formula (1d).

Figure 2022079889000053
Figure 2022079889000053

(式中、n、m、R、A、R及びrは上記と同義である。Xは炭素数1から4のアルコキシ基、炭素数2から6のジアルキルアミノ基、又はハロゲン原子を表す。)
で示される含フッ素シラン化合物を製造する方法である。これは、含フッ素シラン化合物(1c)とアルコキシ化剤又はアミノ化剤との反応によって行うことができる。該アルコキシ化剤としては、アルコール化合物ROH(式中、Rは炭素数1から4のアルキル基を表す。)、金属アルコキシドROM(式中、Rは炭素数1から4のアルキル基を表す。Mはアルカリ金属又はアルカリ土類金属である。sは1又は0.5である。)、又は、オルトギ酸トリアルキルHC(OR(式中、Rは炭素数1から4のアルキル基を表す。)が使用できる。当該製造方法におけるハロゲン原子Xは、フッ素、塩素、臭素又はヨウ素が例示でき、製造収率の点から塩素又は臭素であることが好ましく、塩素原子であることがより好ましい。アルコール化合物ROHは、炭素数1から4のアルキルアルコールであり、該アルコールとしてはメタノール、エタノール、プロパノール、イソプロピルアルコール、ブタノール、sec-ブタノール、イソブチルアルコール、tert-ブチルアルコール等が例示できる。これらのうち、経済性及び製造収率の点から、メタノール又はエタノールが好ましく、メタノールが更に好ましい。金属アルコキシドとしては、ナトリウムメトキシド、ナトリウムエトキシド、カリウムメトキシド、カリウムエトキシド、マグネシウムメトキシド、マグネシウムエトキシド等が例示できる。該オルトギ酸トリアルキルとしては、オルトギ酸トリメチル又はオルトギ酸トリエチルが例示できる。
本発明の製造法3において、アルコキシ化剤としてアルコール化合物を用いる場合、反応を加速させ製造収率を高めるために、有機塩基を同伴させて実施してもよい。該有機塩基としては、トリエチルアミン、ピリジン、キノリン、アニリン等の有機アミンが例示できる。製造収率、経済性及び取り扱いやすさから、トリエチルアミン又はピリジンが好ましい。これらの使用量には特に制限は無いが、例えば含フッ素シラン化合物(1c)上のハロゲン原子X1モル当量に対し、0.8~20モル当量の範囲から選ばれる量の有機塩基を同伴させて実施することが好ましい。
また、本発明の製造方法3では、一般式(1c)で示される含フッ素シラン化合物と、アミノ化剤との反応により、アミノ末端の含フッ素シラン化合物(1d)を製造することができる。
該アミノ化剤としては、第二級アミンであり、ジメチルアミン、ジエチルアミン、ジプロピルアミン等が例示できる。本発明の製造法3において、アミノ化剤として第二級アミンを用いる場合、反応を加速させ製造収率を高めるために、さらに有機塩基を同伴させて実施してもよい。該有機塩基としては、トリメチルアミン、ジメチルアミン、ジエチルアミン、トリエチルアミン、ピリジン、キノリン、アニリン等の有機アミンが例示できる。製造収率、経済性及び取り扱いやすさから、トリエチルアミン又はピリジンが好ましい。これらの使用量には特に制限は無いが、例えば含フッ素シラン化合物(1c)中のハロゲン原子X1モル当量に対し、0.8~20モル当量の範囲から適宜選ばれる量の有機塩基を同伴させて実施することが好ましい。
本発明の製造方法3において、原料として用いることができる含フッ素シラン化合物(1c)としては、以下の化合物が例示できる。
(In the formula, n, m, R 1 , A, R 2 and r are synonymous with the above. X 5 is an alkoxy group having 1 to 4 carbon atoms, a dialkylamino group having 2 to 6 carbon atoms, or a halogen atom. show.)
It is a method for producing a fluorine-containing silane compound shown by. This can be done by reacting the fluorine-containing silane compound (1c) with an alkoxy agent or an aminating agent. Examples of the alkoxylating agent include an alcohol compound R 5 OH (in the formula, R 5 represents an alkyl group having 1 to 4 carbon atoms) and a metal alkoxide R 5 OM s (in the formula, R 5 represents 1 to 4 carbon atoms). M is an alkali metal or an alkaline earth metal. S is 1 or 0.5.) Or Trialkyl HC orthogeate HC (OR 5 ) 3 (in the formula, R 5 is carbon. (Representing an alkyl group of numbers 1 to 4) can be used. The halogen atom X5 in the production method can be exemplified by fluorine, chlorine, bromine or iodine, and is preferably chlorine or bromine from the viewpoint of production yield, and more preferably chlorine atom. The alcohol compound R 5 OH is an alkyl alcohol having 1 to 4 carbon atoms, and examples of the alcohol include methanol, ethanol, propanol, isopropyl alcohol, butanol, sec-butanol, isobutyl alcohol, and tert-butyl alcohol. Of these, methanol or ethanol is preferable, and methanol is more preferable, from the viewpoint of economy and production yield. Examples of the metal alkoxide include sodium methoxide, sodium ethoxide, potassium methoxide, potassium ethoxide, magnesium methoxide, magnesium ethoxide and the like. Examples of the trialkyl orthoformate include trimethyl orthoformate or triethyl orthoformate.
In the production method 3 of the present invention, when an alcohol compound is used as the alkoxy agent, it may be carried out with an organic base in order to accelerate the reaction and increase the production yield. Examples of the organic base include organic amines such as triethylamine, pyridine, quinoline, and aniline. Triethylamine or pyridine is preferable from the viewpoint of production yield, economy and ease of handling. The amount of these used is not particularly limited, but for example, an amount of an organic base selected from the range of 0.8 to 20 molar equivalents is accompanied by 1 molar equivalent of the halogen atom X4 on the fluorine-containing silane compound (1c). It is preferable to carry out this.
Further, in the production method 3 of the present invention, the amino-terminal fluorine-containing silane compound (1d) can be produced by reacting the fluorine-containing silane compound represented by the general formula (1c) with an aminating agent.
Examples of the aminating agent include secondary amines such as dimethylamine, diethylamine, and dipropylamine. When a secondary amine is used as the aminating agent in the production method 3 of the present invention, it may be further accompanied by an organic base in order to accelerate the reaction and increase the production yield. Examples of the organic base include organic amines such as trimethylamine, dimethylamine, diethylamine, triethylamine, pyridine, quinoline and aniline. Triethylamine or pyridine is preferable from the viewpoint of production yield, economy and ease of handling. The amount of these used is not particularly limited, but for example, an amount of an organic base appropriately selected from the range of 0.8 to 20 mol equivalent with respect to 1 mol equivalent of the halogen atom X 41 in the fluorine-containing silane compound (1c) is used. It is preferable to accompany them.
Examples of the fluorine-containing silane compound (1c) that can be used as a raw material in the production method 3 of the present invention include the following compounds.

Figure 2022079889000054
Figure 2022079889000054

Figure 2022079889000055
Figure 2022079889000055

これらのうち、経済性及び製造収率の点において、(1-2-1)、(1-4-1)、(1-15-1)又は(1-19-1)が好ましく、(1-4-1)又は(1-15-1)が更に好ましい。 Of these, (1-2-1), (1-4-1), (1-15-1) or (1-19-1) are preferable in terms of economy and production yield, and (1). 4-1) or (1-15-1) is more preferable.


製造方法3によって製造することができる含フッ素シラン化合物(1d)としては、以下が例示できる。

Examples of the fluorine-containing silane compound (1d) that can be produced by the production method 3 include the following.

Figure 2022079889000056
Figure 2022079889000056

Figure 2022079889000057
Figure 2022079889000057

Figure 2022079889000058
Figure 2022079889000058

Figure 2022079889000059
Figure 2022079889000059

Figure 2022079889000060
Figure 2022079889000060

Figure 2022079889000061
Figure 2022079889000061

Figure 2022079889000062
Figure 2022079889000062

これらのうち、製造収率及び単離精製が容易である点において、(1-2-3)、(1-4-3)、(1-9-3)、(1-13-3)、(1-15-3)、(1-17-3)、(1-21-3)又は(1-25-3)が好ましく、(1-4-3)、(1-9-3)、(1-15-3)又は(1-17-3)が更に好ましい。
本発明の製造方法3で製造した含フッ素シラン化合物(1d)は、当業者が有機シラン化合物を精製するときの一般的な精製方法を適宜選択して用いることによって精製することができる。具体的な精製方法としては、濃縮、ろ過、抽出、遠心分離、デカンテーション、減圧蒸留、昇華、結晶化、カラムクロマトグラフィー等を挙げることができる。
Of these, (1-2-3), (1-4-3), (1-9-3), (1-13-3), in terms of production yield and ease of isolation and purification. (1-15-3), (1-17-3), (1-21-3) or (1-25-3) are preferable, and (1-4-3), (1-9-3), (1-15-3) or (1-17-3) is more preferable.
The fluorine-containing silane compound (1d) produced by the production method 3 of the present invention can be purified by appropriately selecting and using a general purification method when a person skilled in the art purifies an organic silane compound. Specific purification methods include concentration, filtration, extraction, centrifugation, decantation, vacuum distillation, sublimation, crystallization, column chromatography and the like.


次に、本発明の含フッ素シラン化合物(1)を含んでなる表面改質組成物(以下、本発明の表面改質組成物と呼ぶ。)について説明する。本発明の表面改質組成物は、本発明の含フッ素シラン化合物(1)及び有機溶剤を含んでなる。さらに、表面改質作用を円滑に進行させる酸触媒、水、シラン添加剤、その他助剤等を含んでもよい。本発明の表面改質組成物中の含フッ素シラン化合物(1)は、一般式(1)で示されるものであり、以下の化合物が例示できる。


Next, a surface modification composition containing the fluorine-containing silane compound (1) of the present invention (hereinafter, referred to as the surface modification composition of the present invention) will be described. The surface modification composition of the present invention comprises the fluorine-containing silane compound (1) of the present invention and an organic solvent. Further, it may contain an acid catalyst, water, a silane additive, other auxiliaries and the like that smoothly promote the surface modification action. The fluorine-containing silane compound (1) in the surface modification composition of the present invention is represented by the general formula (1), and the following compounds can be exemplified.

Figure 2022079889000063
Figure 2022079889000063

Figure 2022079889000064
Figure 2022079889000064

Figure 2022079889000065
Figure 2022079889000065

Figure 2022079889000066
Figure 2022079889000066

Figure 2022079889000067
Figure 2022079889000067

Figure 2022079889000068
Figure 2022079889000068

Figure 2022079889000069
Figure 2022079889000069

Figure 2022079889000070
Figure 2022079889000070

Figure 2022079889000071
Figure 2022079889000071

Figure 2022079889000072
Figure 2022079889000072

Figure 2022079889000073
Figure 2022079889000073

これらのうち、表面改質特性、組成物の安定性及び経済性に優れる点で、(1-2-1)、(1-2-3)、(1-4-1)、(1-4-3)、(1-9-1)、(1-9-3)、(1-15-1)又は(1-15-3)が好ましく、(1-4-1)、(1-4-3)、(1-9-1)又は(1-9-3)が更に好ましい。これらの本発明の表面改質組成物中の含フッ素シラン化合物(1)は、一種類を単独で用いても、複数種の含フッ素シラン化合物(1)を任意の比率で混合して用いても良い。
本発明の表面改質組成物中の含フッ素シラン化合物(1)の濃度は、経済性及び膜の均質性の点から、本発明の表面改質組成物の総量に対し、0.0001重量%から50重量%の範囲から適宜選ばれる濃度であることが好ましく、0.01%から20重量%の範囲から適宜選ばれる濃度であることがより好ましい。
本発明の表面改質組成物を構成する成分としては、含フッ素シラン化合物(1)を一部又は全部溶解させる有機溶剤を用いることが特徴である。該有機溶剤としては、含フッ素シラン化合物(1)を溶解させるものであれば特に制限はなく、メタノール、エタノール、イソプロピルアルコール等の低級アルコール溶剤;アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)等のケトン類;酢酸メチル、酢酸エチル、酢酸ブチル等のエステル溶剤類;ヘキサン、ヘプタン、オクタン、ベンゼン、トルエン、キシレン等の炭化水素溶剤類;1,2-ジメトキシエタン、ジグリム、1,4-ジオキサン、ジエチルエーテル、ジブチルエーテル、tert-ブチルメチルエーテル、シクロペンチルメチルエーテル、テトラヒドロフラン、ジイソプロピルエーテル等のエーテル溶剤類を例示できる。また、ハイドロフルオロカーボン類、パーフルオロカーボン類、パーフルオロエーテル類又はハイドロフルオロアルキルエーテル類のフッ素系有機溶剤も使用できる。具体例として、ベンゾトリフルオリド(α,α,α-トリフルオロトルエン)、1,3-ビス(トリフルオロメチル)ベンゼン、ペンタフルオロベンゼン、ヘキサフルオロベンゼン、2H,3H-デカフルオロペンタン(バートレル)、テトラデカフルオロヘキサン、オクタデカフルオロオクタン、ドデカフルオロシクロヘキサン、1,3-ビス(トリフルオロメチル)デカフルオロシクロヘキサン、メチルノナフルオロブチルエーテル(異性体混合物)、エチルノナフルオロブチルエーテル(異性体混合物)等が例示できる。これらのうち、エタノール、イソプロピルアルコール等の低級アルコール溶剤、ヘプタン、オクタン、トルエン等の炭化水素溶媒、1,3-ビス(トリフルオロメチル)ベンゼン、エチルノナフルオロブチルエーテル(異性体混合物)等のフッ素系有機溶剤は、含フッ素シラン化合物(1)及び酸触媒の溶解性が高く、さらに、撥水液の塗工性(塗り伸ばしやすさ)や乾燥時間(作業時間)が適度になるので好ましい。これらの有機溶剤は、一種類を単独で用いても、複数の有機溶剤を任意の比率で混合して用いても良い。
該有機溶剤の添加量は、本発明の表面改質組成物の総量に対し、50から99.999重量%の範囲から選ばれることが好ましく、80から99.99重量%の範囲から選ばれることがより好ましい。80重量%未満では、基材への含フッ素シラン化合物(1)の付着量が多くなりすぎることで、組成物の塗工性(塗り伸ばし易さ)が低下する。また、99.999重量%を超えると基材への含フッ素シラン化合物(1)の付着量が少なくなり、撥水性を十分に発現させづらくなる。
本発明の表面改質組成物中には、水を含んでもよい。本発明の表面改質組成物に用いる水は、該含フッ素シラン化合物(1)を部分的に加水分解し、円滑に固体表面に化学結合させるための成分である。前記水の添加量は、前記含フッ素シラン化合物(1)のモル数の0.1から200倍の範囲から適宜選ばれるモル数とすることが好ましく、1から50倍の範囲から適宜選ばれるモル数がより好ましい。また、本発明の表面改質組成物中の含有水分量を調整するために、撥水液に脱水剤を添加し、所定時間脱水処理を行ってもよい。脱水剤としては、シリカゲル、合成ゼオライト、活性アルミナ等を用いることが出来る。
本発明の表面改質組成物中には、表面処理を円滑に進める酸触媒を添加してもよい。該酸触媒は、無機酸、有機酸のいずれも用いることができる。該無機酸としては、塩酸、臭化水素酸、ヨウ化水素酸等のハロゲン化水素酸;硫酸、硝酸、過塩素酸等の無機オキソ酸;ギ酸、酢酸、プロピオン酸、シュウ酸等の有機カルボン酸;メタンスルホン酸、エタンスルホン酸、プロパンスルホン酸、2-プロパンスルホン酸、ブタンスルホン酸、2-ブタンスルホン酸、ペンタンスルホン酸、トリフルオロメタンスルホン酸、2-ヒドロキシエタン-1-スルホン酸(イセチオン酸)、アリルスルホン酸、1,3-プロパンジスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、m-キシレン-4-スルホン酸、p-キシレン-2-スルホン酸、2-スルホ安息香酸、5-スルホサリチル酸、p-フェノールスルホン酸等の有機スルホン酸が例示できる。これらのうち、経済性、安全性、取り扱い性及び良質な表面改質が可能である点から酢酸、メタンスルホン酸、エタンスルホン酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸又はp-トルエンスルホン酸が好ましく、メタンスルホン酸、ベンゼンスルホン酸又はp-トルエンスルホン酸が更に好ましい。
本発明の表面改質組成物中の酸触媒の濃度は、経済性、組成物の安定性(ポットライフ)及び膜の均質性の点から、表面改質組成物の総量に対し0.0001重量%から50重量%の範囲から選ばれる濃度であることが好ましく、0.01%から20重量%の範囲から選ばれる濃度であることがより好ましい。
本発明の表面改質組成物中には、別の表面改質作用を及ぼすシラン添加剤を含んでもよい。該シラン添加剤としては、固体表面及び本発明の含フッ素シラン化合物(1)に結合作用のある官能性シランである。該シラン添加剤としては、具体的には、トリメトキシメチルシラン、トリエトキシメチルシラン、ジメトキシジメチルシラン、ジエトキシジメチルシラン、トリメトキシオクチルシラン、トリエトキシオクチルシラン等のアルキルアルコキシシラン類、ヘキサメチルジシラザン、テトラメチルジシラザン等のジシラザン類、クロロトリメチルシラン、ジクロロジメチルシラン、トリクロロオクチルシラン、クロロジメチルオクチルシラン、クロロジメチルオクタデシルシラン、トリクロロオクタデシルシラン、四塩化ケイ素等のハロゲン化シラン類、テトラメトキシシラン、テトラエトキシシラン等のテトラアルコキシシラン、ヘキサメトキシジシロキサン、ヘキサエトキシジシロキサン等のパーアルコキシオリゴシロキサン類が例示できる。これらは、本発明の表面改質組成物中の含フッ素シラン化合物(1)の重量に対し、約0.001から1000重量%の範囲から適宜選ばれる割合で用いることができる。
Of these, (1-2-1), (1-2-3), (1-4-1), and (1-4) are excellent in surface modification properties, stability of the composition, and economy. -3), (1-9-1), (1-9-3), (1-15-1) or (1-15-3) are preferable, and (1-4-1), (1-4). -3), (1-9-1) or (1-9-3) is more preferable. As the fluorine-containing silane compound (1) in these surface modification compositions of the present invention, even if one type is used alone, a plurality of types of fluorine-containing silane compounds (1) are mixed and used in an arbitrary ratio. Is also good.
The concentration of the fluorine-containing silane compound (1) in the surface-modified composition of the present invention is 0.0001% by weight with respect to the total amount of the surface-modified composition of the present invention from the viewpoint of economy and film homogeneity. It is preferable that the concentration is appropriately selected from the range of 50% by weight, and more preferably the concentration is appropriately selected from the range of 0.01% to 20% by weight.
As a component constituting the surface modification composition of the present invention, an organic solvent that partially or completely dissolves the fluorine-containing silane compound (1) is used. The organic solvent is not particularly limited as long as it dissolves the fluorine-containing silane compound (1), and is a lower alcohol solvent such as methanol, ethanol and isopropyl alcohol; acetone, methyl ethyl ketone (MEK) and methyl isobutyl ketone (MIBK). Ketones such as; ester solvents such as methyl acetate, ethyl acetate, butyl acetate; hydrocarbon solvents such as hexane, heptane, octane, benzene, toluene, xylene; 1,2-dimethoxyethane, digrim, 1,4- Examples of ether solvents such as dioxane, diethyl ether, dibutyl ether, tert-butylmethyl ether, cyclopentylmethyl ether, tetrahydrofuran, and diisopropyl ether can be exemplified. Further, a fluorocarbon-based organic solvent such as hydrofluorocarbons, perfluorocarbons, perfluoroethers or hydrofluoroalkyl ethers can also be used. As specific examples, benzotrifluoride (α, α, α-trifluorotoluene), 1,3-bis (trifluoromethyl) benzene, pentafluorobenzene, hexafluorobenzene, 2H, 3H-decafluoropentane (Bertrel), Examples thereof include tetradecafluorohexane, octadecafluorooctane, dodecafluorocyclohexane, 1,3-bis (trifluoromethyl) decafluorocyclohexane, methylnonafluorobutyl ether (isomer mixture), ethylnonafluorobutyl ether (isomer mixture) and the like. can. Of these, lower alcohol solvents such as ethanol and isopropyl alcohol, hydrocarbon solvents such as heptane, octane and toluene, and fluorine-based solvents such as 1,3-bis (trifluoromethyl) benzene and ethyl nonafluorobutyl ether (isomer mixture). The organic solvent is preferable because it has high solubility of the fluorine-containing silane compound (1) and the acid catalyst, and further, the coatability (easiness of spreading) and the drying time (working time) of the water-repellent liquid become appropriate. As these organic solvents, one kind may be used alone, or a plurality of organic solvents may be mixed and used at an arbitrary ratio.
The amount of the organic solvent added is preferably selected from the range of 50 to 99.999% by weight, preferably from 80 to 99.99% by weight, based on the total amount of the surface-modified composition of the present invention. Is more preferable. If it is less than 80% by weight, the amount of the fluorine-containing silane compound (1) adhered to the substrate becomes too large, and the coatability (easiness of spreading) of the composition is lowered. Further, when it exceeds 99.999% by weight, the amount of the fluorine-containing silane compound (1) adhered to the substrate is reduced, and it becomes difficult to sufficiently develop water repellency.
Water may be contained in the surface modification composition of the present invention. The water used in the surface modification composition of the present invention is a component for partially hydrolyzing the fluorine-containing silane compound (1) and smoothly chemically bonding it to a solid surface. The amount of water added is preferably a number of moles appropriately selected from the range of 0.1 to 200 times the number of moles of the fluorine-containing silane compound (1), and the amount of moles appropriately selected from the range of 1 to 50 times. The number is more preferred. Further, in order to adjust the water content in the surface modification composition of the present invention, a dehydrating agent may be added to the water repellent liquid and dehydration treatment may be performed for a predetermined time. As the dehydrating agent, silica gel, synthetic zeolite, activated alumina and the like can be used.
An acid catalyst that facilitates surface treatment may be added to the surface modification composition of the present invention. As the acid catalyst, either an inorganic acid or an organic acid can be used. Examples of the inorganic acid include hydrohalogenated acids such as hydrochloric acid, hydrobromic acid, and hydroiodic acid; inorganic oxo acids such as sulfuric acid, nitric acid, and perchloric acid; and organic carboxylic acids such as formic acid, acetic acid, propionic acid, and oxalic acid. Acids; methane sulfonic acid, ethane sulfonic acid, propane sulfonic acid, 2-propane sulfonic acid, butane sulfonic acid, 2-butane sulfonic acid, pentan sulfonic acid, trifluoromethane sulfonic acid, 2-hydroxyethan-1-sulfonic acid (Isetion). Acid), allylsulfonic acid, 1,3-propanedisulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, m-xylene-4-sulfonic acid, p-xylene-2-sulfonic acid, 2-sulfobenzoic acid, 5 -Organic sulfonic acids such as sulfosalicylic acid and p-phenolsulfonic acid can be exemplified. Of these, acetic acid, methanesulfonic acid, ethanesulfonic acid, trifluoromethanesulfonic acid, benzenesulfonic acid or p-toluenesulfonic acid are preferable from the viewpoints of economy, safety, handleability and high-quality surface modification. , Methane sulfonic acid, benzene sulfonic acid or p-toluene sulfonic acid are more preferable.
The concentration of the acid catalyst in the surface modification composition of the present invention is 0.0001 weight by weight with respect to the total amount of the surface modification composition in terms of economy, stability of the composition (pot life) and homogeneity of the film. The concentration is preferably selected from the range of% to 50% by weight, and more preferably the concentration is selected from the range of 0.01% to 20% by weight.
The surface modification composition of the present invention may contain a silane additive having another surface modification action. The silane additive is a functional silane having a binding action on a solid surface and the fluorine-containing silane compound (1) of the present invention. Specific examples of the silane additive include alkylalkoxysilanes such as trimethoxymethylsilane, triethoxymethylsilane, dimethoxydimethylsilane, diethoxydimethylsilane, trimethoxyoctylsilane, and triethoxyoctylsilane, and hexamethyldi. Disilazans such as silazane and tetramethyldisilazane, chlorotrimethylsilane, dichlorodimethylsilane, trichlorooctylsilane, chlorodimethyloctylsilane, chlorodimethyloctadecylsilane, trichlorooctadecylsilane, halogenated silanes such as silicon tetrachloride, tetramethoxysilane , Tetraalkoxysilanes such as tetraethoxysilane, and peralkoxyoligosiloxanes such as hexamethoxydisiloxane and hexaethoxydisiloxane can be exemplified. These can be appropriately selected from the range of about 0.001 to 1000% by weight with respect to the weight of the fluorine-containing silane compound (1) in the surface modification composition of the present invention.

本発明の表面改質組成物中には、必要に応じてトリエチルアミン、トリエタノールアミン、トリス(2-ヒドロキシエチル)アミン、モルホリンなどのアミン系中和剤、組成物の濡れ性を改善するイオン系、非イオン系などの各種界面活性剤、潤滑性を更に改善するシリコーンオイル、シリコーンワニスなどを添加することもできる。これらは、本発明の表面改質組成物中の含フッ素シラン化合物(1)の重量に対し、約0.001~300重量%の割合で用いることができる。
組成物の調合方法は、適宜決められた量の各成分及び有機溶剤を混合することによって行う。これは、混合後に保存し、適宜使用してもよく、塗工直前に混合し塗工に用いてもよい。
本発明の表面改質組成物の基材への塗工は、浸漬法、ディップコーティング法、吹き付け法、かけ流し法、スピンコーティング法、エアロゾル噴射法、刷毛塗り法、含浸布による塗工法など、フルオロアルキル系表面改質剤の表面改質に通常用いられる任意の方法によって行うことができる。表面改質の均一さ、撥液性の高さ及び経済性の点から、浸漬法、ディップコーティング法、スピンコーティング法、刷毛塗り法又は含浸布による塗工法が好ましく、ディップコーティング法又は含浸布による塗工法が更に好ましい。又、塗工後に必要に応じて加熱又は非加熱条件下での膜養生(アニーリング)及び洗浄の工程を加えてもよい。
本発明の表面改質組成物による表面改質可能な基材としては、固体表面に含フッ素シラン化合物(1)が結合可能な水酸基を有するものである。その形状としては、平面であっても立体物であってもよい。又、粉体や成型体であってもよい。基材の材質としては、無機基材であっても、有機高分子基材であってもよい。該無機基材としては、石英ガラス、ソーダガラス、鉛ガラス、ホウケイ酸ガラス、リン酸塩ガラス等の無機ガラス材料基材;単結晶石英、多結晶石英、シリカゲル等の二酸化ケイ素材料基材;ゼオライト、ムライト、雲母、粘土鉱物等のアルミノケイ酸塩材料基材;アルミナ(酸化アルミニウム)、チタニア(酸化チタン)、ジルコニア(酸化ジルコニウム)等の金属酸化物材料基材;スピネル、鉄フェライト等の複酸化物材料基材を例示することが出来る。該有機高分子基材としては、セルロース等が例示できる。
又、金属表面は水酸基構造を有しているため、金属表面の表面改質処理にも用いることが出来る。該金属材料としては、アルミニウム、チタン、鉄、マンガン、バナジウム、ニッケル、クロム、銅、亜鉛、ケイ素、ゲルマニウム及びそれらの合金が例示できる。
The surface-modified composition of the present invention contains, if necessary, an amine-based neutralizing agent such as triethylamine, triethanolamine, tris (2-hydroxyethyl) amine, and morpholin, and an ionic system for improving the wettability of the composition. , Various surfactants such as non-ionic surfactants, silicone oils that further improve lubricity, silicone varnishes, and the like can also be added. These can be used in a ratio of about 0.001 to 300% by weight with respect to the weight of the fluorine-containing silane compound (1) in the surface modification composition of the present invention.
The method for formulating the composition is carried out by mixing an appropriately determined amount of each component and an organic solvent. This may be stored after mixing and used as appropriate, or may be mixed immediately before coating and used for coating.
The surface modification composition of the present invention may be applied to a substrate by a dipping method, a dip coating method, a spraying method, a pouring method, a spin coating method, an aerosol injection method, a brush coating method, a coating method using an impregnated cloth, or the like. It can be carried out by any method usually used for surface modification of fluoroalkyl-based surface modifiers. From the viewpoint of uniformity of surface modification, high liquid repellency and economy, a dipping method, a dip coating method, a spin coating method, a brush coating method or a coating method using an impregnated cloth is preferable, and a dip coating method or an impregnated cloth is used. The coating method is more preferable. Further, after coating, a film curing (annealing) and cleaning step under heating or non-heating conditions may be added as needed.
The base material that can be surface-modified by the surface-modifying composition of the present invention has a hydroxyl group to which the fluorine-containing silane compound (1) can be bonded to the solid surface. The shape may be a flat surface or a three-dimensional object. Further, it may be a powder or a molded body. The material of the base material may be an inorganic base material or an organic polymer base material. Examples of the inorganic base material include inorganic glass material base materials such as quartz glass, soda glass, lead glass, borosilicate glass, and phosphate glass; silicon dioxide material base materials such as single crystal quartz, polycrystalline quartz, and silica gel; zeolite. , Mulite, mica, aluminosilicate material base material such as clay minerals; metal oxide material base material such as alumina (aluminum oxide), titania (titanium oxide), zirconia (zinc oxide); double oxidation of spinel, iron ferrite, etc. A material material base material can be exemplified. Examples of the organic polymer base material include cellulose and the like.
Further, since the metal surface has a hydroxyl group structure, it can also be used for surface modification treatment of the metal surface. Examples of the metal material include aluminum, titanium, iron, manganese, vanadium, nickel, chromium, copper, zinc, silicon, germanium and alloys thereof.

本発明の含フッ素シラン化合物(1)は、透明で高い撥水撥油性を固体表面に付与可能な表面改質剤として、ガラス、金属又は金属酸化物系材料への表面改質に有用である。このような表面改質した材料は、タッチパネルのような接触式デバイス、光学窓材、撥水・防汚性付与材料、又は離型モールドとして利用可能である。特に、航空機用、自動車用の窓ガラスやミラー、車体の撥水・防汚処理に好適に用いることができる。
また、含フッ素シラン化合物(1)は反応活性な官能基を片末端に持つことから、両親媒性分子として、フルオラス相界面活性剤としての利用が可能になる。さらに、反応活性な官能基を変換させ、別の基に転換することにより、完全縮合型、もしくは不完全縮合型シルセスキオキサン等、新たな分子構造を有する表面改質剤の原料物質としての利用が期待出来る。
The fluorine-containing silane compound (1) of the present invention is useful for surface modification to glass, metal or metal oxide-based materials as a surface modifier capable of imparting transparent and high water and oil repellency to a solid surface. .. Such surface-modified materials can be used as contact-type devices such as touch panels, optical window materials, water-repellent / stain-resistant materials, or mold release molds. In particular, it can be suitably used for windowpanes and mirrors for aircraft and automobiles, and for water-repellent and antifouling treatment of vehicle bodies.
Further, since the fluorine-containing silane compound (1) has a reactive functional group at one end, it can be used as an amphipathic molecule and as a fluorous phase surfactant. Furthermore, by converting a reactive functional group and converting it to another group, it can be used as a raw material for a surface modifier having a new molecular structure, such as a completely condensed type or an incompletely condensed type silsesquioxane. You can expect to use it.

以下、実施例、評価例及び比較例を挙げて本発明をさらに具体的に説明するが、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
実施例に記載の製造は全てアルゴン雰囲気下で実施した。機器分析は、H-NMR(プロトン核磁気共鳴スペクトル)、13C-NMR(炭素13核磁気共鳴スペクトル)、19F-NMR(フッ素核磁気共鳴スペクトル)及び29Si-NMR(ケイ素29核磁気共鳴スペクトル)測定はBruker-Avance社のAscend400核磁気共鳴分光計を用いて測定を行った。核磁気共鳴スペクトル測定溶媒には重クロロホルムを用い、H-NMR及び29Si-NMRではテトラメチルシランを内部標準物質とし、19F-NMRではヘキサフルオロベンゼンを二次外部標準物質として化学シフトを求めた。IR(赤外吸収)スペクトルは(株)堀場製作所のFT-720分光光度計を用い、SensIRtechnologies社のDuraSamplIRII(反射型)測定セルを用いて測定を行った。
Hereinafter, the present invention will be described in more detail with reference to Examples, Evaluation Examples and Comparative Examples, but the scope of the present invention should not be construed as being limited by the specific examples shown below.
All the productions described in the examples were carried out in an argon atmosphere. Instrumental analysis includes 1 H-NMR (proton nuclear magnetic resonance spectrum), 13 C-NMR (carbon 13 nuclear magnetic resonance spectrum), 19 F-NMR (fluoronuclear magnetic resonance spectrum) and 29 Si-NMR (silicon 29 nuclear magnetic resonance). (Resonance spectrum) The measurement was performed using an Ascend 400 nuclear magnetic resonance spectrometer manufactured by Bruker-Avance. Heavy chloroform is used as the solvent for measuring the nuclear magnetic resonance spectrum, tetramethylsilane is used as the internal standard material in 1 H-NMR and 29 Si-NMR, and hexafluorobenzene is used as the secondary external standard material in 19 F-NMR. I asked. The IR (infrared absorption) spectrum was measured using an FT-720 spectrophotometer manufactured by HORIBA, Ltd. and a DuraSamplIRII (reflection type) measuring cell manufactured by SensIR technologies.


製造で用いた、1H,1H,2H,2H-ノナフルオロヘキシルブロミド及び1H,1H,2H,2H-トリデカフルオロオクチルブロミドは、対応するヨージド(東京化成株式会社製)をアセトン中、過剰量のテトラエチルアンモニウムブロミドと加熱することにより合成して用いた。1,3-ビス(トリフルオロメチル)ベンゼン(東京化成工業株式会社製試薬)、トリクロロシラン(東京化成工業株式会社製試薬)、p-トルエンスルホン酸(東京化成工業株式会社製試薬)、トリエトキシ(1H,1H,2H,2H-トリデカフルオロオクチル)シラン(東京化成工業株式会社製試薬)、臭素(富士フイルム和光純薬株式会社製試薬)、マグネシウム(富士フイルム和光純薬株式会社製試薬)、トリエチルアミン(富士フイルム和光純薬株式会社製試薬)、トルエン(富士フイルム和光純薬株式会社製試薬)、脱水テトラヒドロフラン(富士フイルム和光純薬株式会社製試薬)、脱水メタノール(富士フイルム和光純薬株式会社製試薬)、脱水ジクロロメタン(富士フイルム和光純薬株式会社製試薬)、イソプロピルアルコール(富士フイルム和光純薬株式会社製試薬)、脱水ジエチルエーテル(関東化学株式会社製試薬)、クロロホルム(関東化学株式会社製試薬)、アリルマグネシウムクロリドテトラヒドロフラン溶液(シグマアルドリッチジャパン株式会社製試薬)及びジクロロメチルシラン(シグマアルドリッチジャパン株式会社製試薬)は市販品を購入しそのまま用いた。塩化白金酸六水和物は田中貴金属株式会社の製品を購入し、使用直前に減圧下で乾燥して使用した。エチルノナフルオロブチルエチルエーテルは、東京化成工業株式会社製試薬の異性体混合物品をそのまま用いた。
表面改質試験は、十分洗浄し清浄にしたソーダガラス板(短辺26mm、長辺76mm)を基材とし、表面改質後に洗浄し、これを目視で確認し、表面の汚濁等を観察した。撥液性試験における接触角は、水およびn-ヘキサデカンについて、マイクロシリンジより分注した10μLの液滴を表面改質基材上に5ヶ所に乗せ、この液滴をxyzφステージを備えた水平光軸10倍マクロ撮影装置(対物レンズ:カールツァイスイエナ社製ミクロタール30mm、フランジバック220mm)にて表面改質基材の真横から撮影し、液滴の縦横比からθ/2法にて接触角を求め、5ヶ所の測定値から平均値と標準偏差を算出した。水滑落角は、マイクロシリンジより分注した50μLの水滴を表面改質基材に乗せ、傾斜ステージをゆっくりと傾斜させて水滴が動き出す臨界角を5ヶ所で5回求め、その平均値及び標準偏差を算出した。

The 1H, 1H, 2H, 2H-nonafluorohexyl bromide and 1H, 1H, 2H, 2H-tridecafluorooctyl bromide used in the production contained an excess amount of the corresponding iodine (manufactured by Tokyo Kasei Co., Ltd.) in acetone. It was synthesized and used by heating with tetraethylammonium bromide. 1,3-bis (trifluoromethyl) benzene (reagent manufactured by Tokyo Kasei Kogyo Co., Ltd.), trichlorosilane (reagent manufactured by Tokyo Kasei Kogyo Co., Ltd.), p-toluenesulfonic acid (reagent manufactured by Tokyo Kasei Kogyo Co., Ltd.), triethoxy (reagent manufactured by Tokyo Kasei Kogyo Co., Ltd.) 1H, 1H, 2H, 2H-Tridecafluorooctyl) silane (reagent manufactured by Tokyo Kasei Kogyo Co., Ltd.), bromine (reagent manufactured by Fujifilm Wako Junyaku Co., Ltd.), magnesium (reagent manufactured by Fujifilm Wako Junyaku Co., Ltd.), Triethylamine (reagent manufactured by Fujifilm Wako Junyaku Co., Ltd.), toluene (reagent manufactured by Fujifilm Wako Junyaku Co., Ltd.), dehydrated tetrahydrofuran (reagent manufactured by Fujifilm Wako Junyaku Co., Ltd.), dehydrated methanol (Fujifilm Wako Junyaku Co., Ltd.) Reagents manufactured by Fujifilm Wako Junyaku Co., Ltd., Isopropyl alcohol (Reagent manufactured by Fujifilm Wako Junyaku Co., Ltd.), Dehydrated diethyl ether (Reagent manufactured by Kanto Chemical Co., Ltd.), chloroform (Reagent manufactured by Kanto Chemical Co., Ltd.) (Reagent manufactured), allylmagnesium chloride tetrahydrofuran solution (reagent manufactured by Sigma Aldrich Japan Co., Ltd.) and dichloromethylsilane (reagent manufactured by Sigma Aldrich Japan Co., Ltd.) were purchased as commercial products and used as they were. For chloroplatinic acid hexahydrate, a product of Tanaka Kikinzoku Co., Ltd. was purchased and dried under reduced pressure immediately before use. As ethyl nonafluorobutyl ethyl ether, an isomer mixed product of a reagent manufactured by Tokyo Chemical Industry Co., Ltd. was used as it was.
In the surface modification test, a soda glass plate (short side 26 mm, long side 76 mm) that had been thoroughly cleaned and cleaned was used as a base material, and after surface modification, the surface was cleaned, which was visually confirmed, and surface contamination was observed. .. For the contact angle in the liquid repellency test, 10 μL droplets dispensed from a microsyringe were placed on the surface-modified substrate at five locations for water and n-hexadecane, and the droplets were placed in horizontal light with an xyzφ stage. Photographed from the side of the surface-modified substrate with a 10x axis macrophotographer (objective lens: Microtal 30 mm manufactured by Karl Zeis Jena, flange back 220 mm), and the contact angle by the θ / 2 method from the aspect ratio of the droplet. Was obtained, and the average value and standard deviation were calculated from the measured values at five locations. For the water slip angle, 50 μL of water droplets dispensed from a microsyringe are placed on a surface-modified substrate, the tilt stage is slowly tilted, and the critical angle at which the water droplets start to move is obtained five times at five locations, and the average value and standard deviation are obtained. Was calculated.


(合成例1)ビス(1H,1H,2H,2H-ノナフルオロヘキシル)メチルシランの合成

(Synthesis Example 1) Synthesis of bis (1H, 1H, 2H, 2H-nonafluorohexyl) methylsilane

Figure 2022079889000074
Figure 2022079889000074

磁気撹拌子、100mL滴下ロート及びジムロートを備えた300mLの3口フラスコをアルゴンで置換し、金属マグネシウム2.95g(121mmol)を収めた。このフラスコに脱水ジエチルエーテル10mLを加え、少量のジブロモエタンでマグネシウムを活性化した。滴下ロートから1H,1H,2H,2H-ノナフルオロヘキシルブロミド32.7g(100mmol)の脱水ジエチルエーテル80mLを60分かけて滴下した。滴下後、50℃に加熱し、60分撹拌した。この溶液を25℃に戻し、注射器からジクロロメチルシラン5.17g(44.9mmol)をゆっくり加え、60℃で1時間撹拌した。反応混合物に希塩酸を加え、セライトを用いて溶液をろ過した。有機層を分液抽出し、有機層を無水硫酸ナトリウムで乾燥させた。ロータリーエバポレーターで溶媒を留去し、得られた粗生成物を減圧下でクーゲルロール蒸留(蒸留温度65℃/40Pa)することにより、ビス(1H,1H,2H,2H-ノナフルオロヘキシル)メチルシランを無色透明の液体として22.98g(収率95.0%)得た。
H-NMR(400MHz,CDCl):δ0.19~0.20(m,3H),0.87~0.94(m,4H),2.03~2.17(m,4H),3.93(s,1H).
19F-NMR(376MHz,CDCl):δ-126.0,-124.3,-116.2,-81.0.
29Si-NMR(80MHz,CDCl):δ4.37.
IR(neat,cm-1):1442,1354,1207,1130,918,877,845,744.

(合成例2)トリス(1H,1H,2H,2H-ノナフルオロヘキシル)シランの合成
A 300 mL three-necked flask equipped with a magnetic stir bar, a 100 mL dropping funnel and a gym funnel was replaced with argon to contain 2.95 g (121 mmol) of metallic magnesium. 10 mL of dehydrated diethyl ether was added to this flask, and magnesium was activated with a small amount of dibromoethane. 80 mL of 1H, 1H, 2H, 2H-nonafluorohexyl bromide 32.7 g (100 mmol) of dehydrated diethyl ether was added dropwise from the dropping funnel over 60 minutes. After the dropping, the mixture was heated to 50 ° C. and stirred for 60 minutes. The solution was returned to 25 ° C., 5.17 g (44.9 mmol) of dichlormethylsilane was slowly added from the syringe, and the mixture was stirred at 60 ° C. for 1 hour. Dilute hydrochloric acid was added to the reaction mixture, and the solution was filtered using Celite. The organic layer was separated and extracted, and the organic layer was dried over anhydrous sodium sulfate. The solvent was distilled off with a rotary evaporator, and the obtained crude product was distilled under Kugelrohr (distillation temperature 65 ° C./40 Pa) under reduced pressure to obtain bis (1H, 1H, 2H, 2H-nonafluorohexyl) methylsilane. 22.98 g (yield 95.0%) was obtained as a colorless and transparent liquid.
1 1 H-NMR (400 MHz, CDCl 3 ): δ0.19 to 0.20 (m, 3H), 0.87 to 0.94 (m, 4H), 2.03 to 2.17 (m, 4H), 3.93 (s, 1H).
19 F-NMR (376 MHz, CDCl 3 ): δ-126.0, -124.3, -116.2, -81.0.
29 Si-NMR (80 MHz, CDCl 3 ): δ4.37.
IR (neat, cm -1 ): 1442, 1354, 1207, 1130, 918, 877, 845, 744.

(Synthesis Example 2) Synthesis of tris (1H, 1H, 2H, 2H-nonafluorohexyl) silane

Figure 2022079889000075
Figure 2022079889000075

磁気撹拌子、100mL滴下ロート及びジムロートを備えた300mLの3口フラスコをアルゴンで置換し、金属マグネシウム2.95g(121mmol)を収めた。このフラスコに脱水ジエチルエーテル10mLを加え、少量のジブロモエタンでマグネシウムを活性化した。滴下ロートから1H,1H,2H,2H-ノナフルオロヘキシルブロミド32.7g(100mmol)の脱水ジエチルエーテル80mLを60分かけて滴下した。滴下後、50℃に加熱し、60分撹拌した。この溶液を25℃に戻し、注射器からトリクロロシラン4.04g(29.8mmol)をゆっくり加え、50℃で1時間撹拌した。反応混合物に希塩酸を加え、セライトを用いて溶液をろ過した。有機層を分液抽出し、有機層を無水硫酸ナトリウムで乾燥させた。ロータリーエバポレーターで溶媒を留去し、得られた粗生成物を減圧下でクーゲルロール蒸留(蒸留温度100℃/40Pa)することにより、トリス(1H,1H,2H,2H-ノナフルオロヘキシル)シランを無色透明の液体として22.81g(収率99.2%)得た。
H-NMR(400MHz,CDCl):δ0.95-1.00(m,6H),2.06-2.19(m,6H),3.95(s,1H).
29Si-NMR(79MHz,CDCl):δ2.52.
19F-NMR(376MHz,CDCl):δ-126,-124,-116,-81.1.
IR(neat,cm-1):1442,1354,1207,1130,918,877,847,744.

(合成例3)ビス(1H,1H,2H,2H-トリデカフルオロオクチル)メチルシランの合成
A 300 mL three-necked flask equipped with a magnetic stir bar, a 100 mL dropping funnel and a gym funnel was replaced with argon to contain 2.95 g (121 mmol) of metallic magnesium. 10 mL of dehydrated diethyl ether was added to this flask, and magnesium was activated with a small amount of dibromoethane. 80 mL of 1H, 1H, 2H, 2H-nonafluorohexyl bromide 32.7 g (100 mmol) of dehydrated diethyl ether was added dropwise from the dropping funnel over 60 minutes. After the dropping, the mixture was heated to 50 ° C. and stirred for 60 minutes. The solution was returned to 25 ° C., 4.04 g (29.8 mmol) of trichlorosilane was slowly added from the syringe, and the mixture was stirred at 50 ° C. for 1 hour. Dilute hydrochloric acid was added to the reaction mixture, and the solution was filtered using Celite. The organic layer was separated and extracted, and the organic layer was dried over anhydrous sodium sulfate. The solvent was distilled off with a rotary evaporator, and the obtained crude product was distilled under Kugelrohr (distillation temperature 100 ° C./40 Pa) under reduced pressure to obtain Tris (1H, 1H, 2H, 2H-nonafluorohexyl) silane. 22.81 g (yield 99.2%) was obtained as a colorless and transparent liquid.
1 1 H-NMR (400 MHz, CDCl 3 ): δ0.95-1.00 (m, 6H), 2.06-2.19 (m, 6H), 3.95 (s, 1H).
29 Si-NMR (79 MHz, CDCl 3 ): δ2.52.
19 F-NMR (376 MHz, CDCl 3 ): δ-126, 124, -116, -81.1.
IR (neat, cm -1 ): 1442, 1354, 1207, 1130, 918, 877, 847, 744.

(Synthesis Example 3) Synthesis of bis (1H, 1H, 2H, 2H-tridecafluorooctyl) methylsilane

Figure 2022079889000076
Figure 2022079889000076

磁気撹拌子、200mL滴下ロート及びジムロートを備えた300mLの3口フラスコをアルゴンで置換し、金属マグネシウム3.10g(123mmol)を収めた。このフラスコに脱水ジエチルエーテル10mLを加え、少量のジブロモエタンでマグネシウムを活性化した。滴下ロートから1H,1H,2H,2H-トリデカフルオロオクチルブロミド50.8g(119mmol)の脱水ジエチルエーテル100mL溶液を45分かけて滴下した。滴下後、50℃に加熱し、1時間撹拌した。この溶液を25℃に戻し、注射器からジクロロメチルシラン6.41g(55.7mmol)をゆっくり加え、50℃で1時間撹拌した。反応混合物に飽和食塩水及びジエチルエーテルを加え、セライトを用いて溶液をろ過した。有機層を分液抽出し、有機層を無水硫酸マグネシウムで乾燥させた。ロータリーエバポレーターで溶媒を留去し、得られた粗生成物を減圧下で減圧蒸留(沸点81℃/13Pa)することにより、ビス(1H,1H,2H,2H-トリデカフルオロオクチル)メチルシランを無色透明の液体として34.9g(収率85.0%)得た。
H-NMR(400MHz,CDCl):δ0.19~0.20(m,3H),0.83~0.98(m,4H),2.03~2.16(m,4H),3.93(s,1H).
19F-NMR(376MHz,CDCl):δ-126.2,-123.4,-122.9,-122.0,-116.0,-80.9.
29Si-NMR(79.5MHz,CDCl):δ6.78.
IR(neat,cm-1):2940,2130,1442,1234,1188,1142,1120,1066,914,705.

(合成例4)トリス(1H,1H,2H,2H-トリデカフルオロオクチル)シランの合成
A 300 mL three-necked flask equipped with a magnetic stir bar, a 200 mL dropping funnel and a gym funnel was replaced with argon to contain 3.10 g (123 mmol) of metallic magnesium. 10 mL of dehydrated diethyl ether was added to this flask, and magnesium was activated with a small amount of dibromoethane. A solution of 50.8 g (119 mmol) of 1H, 1H, 2H, 2H-tridecafluorooctyl bromide in 100 mL of dehydrated diethyl ether was added dropwise from the dropping funnel over 45 minutes. After the dropping, the mixture was heated to 50 ° C. and stirred for 1 hour. The solution was returned to 25 ° C., 6.41 g (55.7 mmol) of dichlormethylsilane was slowly added from the syringe, and the mixture was stirred at 50 ° C. for 1 hour. Saturated saline and diethyl ether were added to the reaction mixture, and the solution was filtered through Celite. The organic layer was separated and extracted, and the organic layer was dried over anhydrous magnesium sulfate. The solvent was distilled off with a rotary evaporator, and the obtained crude product was distilled under reduced pressure (boiling point 81 ° C./13 Pa) to make bis (1H, 1H, 2H, 2H-tridecafluorooctyl) methylsilane colorless. 34.9 g (yield 85.0%) was obtained as a transparent liquid.
1 1 H-NMR (400 MHz, CDCl 3 ): δ0.19 to 0.20 (m, 3H), 0.83 to 0.98 (m, 4H), 2.03 to 2.16 (m, 4H), 3.93 (s, 1H).
19 F-NMR (376 MHz, CDCl 3 ): δ-126.2,-123.4, -122.9, -122.0, -116.0, -80.9.
29 Si-NMR (79.5 MHz, CDCl 3 ): δ6.78.
IR (neat, cm -1 ): 2940, 2130, 1442, 1234, 1188, 1142, 1120, 1066, 914,705.

(Synthesis Example 4) Synthesis of Tris (1H, 1H, 2H, 2H-Tridecafluorooctyl) silane

Figure 2022079889000077
Figure 2022079889000077

磁気撹拌子、200mL滴下ロート及びジムロートを備えた300mLの3口フラスコをアルゴンで置換し、金属マグネシウム3.09g(123mmol)を収めた。このフラスコに脱水ジエチルエーテル10mLを加え、少量のジブロモエタンでマグネシウムを活性化した。滴下ロートから1H,1H,2H,2H-トリデカフルオロオクチルブロミド51.5g(121mmol)の脱水ジエチルエーテル100mLを60分かけて滴下した。滴下後、60℃に加熱し、30分撹拌した。この溶液を25℃に戻し、注射器からトリクロロシラン5.29g(39.1mmol)をゆっくり加え、50℃で1時間撹拌した。反応混合物に希塩酸を加え、セライトを用いて溶液をろ過した。有機層を分液抽出し、有機層を無水硫酸ナトリウムで乾燥させた。ロータリーエバポレーターで溶媒を留去し、得られた粗生成物を減圧下でクーゲルロール蒸留(蒸留温度165℃/130Pa)することにより、トリス(1H,1H,2H,2H-トリデカフルオロオクチル)シランを無色透明の液体として23.7g(収率56.6%)得た。
H-NMR(400MHz,CDCl):δ0.95~1.00(m,6H),2.06~2.19(m,6H),3.94(s,1H).
19F-NMR(376MHz,CDCl):δ-126.3,-123.4,-123.0,-122.0,-116.0,-80.9.
29Si-NMR(79.5MHz,CDCl):δ2.70.
IR(neat,cm-1):1442,1362,1234,1186,1142,1120,916,705.

(合成例5)アリル(ビス(1H,1H,2H,2H-ノナフルオロヘキシル))メチルシランの合成
A 300 mL three-necked flask equipped with a magnetic stir bar, a 200 mL dropping funnel and a gym funnel was replaced with argon to contain 3.09 g (123 mmol) of metallic magnesium. 10 mL of dehydrated diethyl ether was added to this flask, and magnesium was activated with a small amount of dibromoethane. From the dropping funnel, 100 mL of 51.5 g (121 mmol) of 1H, 1H, 2H, 2H-tridecafluorooctyl bromide dehydrated diethyl ether was added dropwise over 60 minutes. After the dropping, the mixture was heated to 60 ° C. and stirred for 30 minutes. The solution was returned to 25 ° C., 5.29 g (39.1 mmol) of trichlorosilane was slowly added from the syringe, and the mixture was stirred at 50 ° C. for 1 hour. Dilute hydrochloric acid was added to the reaction mixture, and the solution was filtered using Celite. The organic layer was separated and extracted, and the organic layer was dried over anhydrous sodium sulfate. The solvent was distilled off with a rotary evaporator, and the obtained crude product was distilled by Kugelrohr (distillation temperature 165 ° C./130 Pa) under reduced pressure to tris (1H, 1H, 2H, 2H-tridecafluorooctyl) silane. Was obtained as a colorless and transparent liquid in an amount of 23.7 g (yield 56.6%).
1 1 H-NMR (400 MHz, CDCl 3 ): δ0.95 to 1.00 (m, 6H), 2.06 to 2.19 (m, 6H), 3.94 (s, 1H).
19 F-NMR (376 MHz, CDCl 3 ): δ-126.3, 123.4, -123.0, -122.0, -116.0, -80.9.
29 Si-NMR (79.5 MHz, CDCl 3 ): δ2.70.
IR (neat, cm -1 ): 1442,1362,1234,1186,1142,1120,916,705.

(Synthesis Example 5) Synthesis of allyl (bis (1H, 1H, 2H, 2H-nonafluorohexyl)) methylsilane

Figure 2022079889000078
Figure 2022079889000078

磁気撹拌子、30mL滴下ロート及びジムロートを備えた50mLの2口ナスフラスコをアルゴンで置換し、ビス(1H,1H,2H,2H-ノナフルオロヘキシル)メチルシラン11.18g(20.8mmol)及び脱水ジクロロメタン10mlを収め、滴下ロートから臭素3.62g(22.7mmol)の脱水ジクロロメタン10mL溶液を2時間かけて滴下した。減圧下で溶媒を留去し、ここにアリルマグネシウムクロリドのTHF溶液(2.0M)を20.0ml(40.0mmol)加え、25℃で36時間撹拌した。ここにクロロホルムと飽和食塩水を加え、セライトを用いてろ過し、その後分液した。有機層を硫酸マグネシウムで乾燥後、ロータリーエバポレーターで溶媒を留去した。得られた粗生成物をクーゲルロール蒸留(蒸留温度95℃/40Pa)することによりアリルビス(1H,1H,2H,2H-ノナフルオロヘキシル)メチルシランを無色透明の液体として11.6g(収率96.3%)得た。
H-NMR(400MHz,CDCl):δ0.11(s,3H),0.81~0.86(m,2H),1.62~1.64(m,2H),1.98~2.14(m,4H),4.90~4.92(m,1H),4.94~4.96(m,1H),5.69~5.80(m,1H).
19F-NMR(376MHz,CDCl):δ-126.1,-124.3,-116.4,-81.1.
29Si-NMR(79.5MHz,CDCl):δ4.00.
IR(neat,cm-1):2964,2910,1633,1442,1354,1209,1130,877,844,690.

(合成例6)アリル(トリス(1H,1H,2H,2H-ノナフルオロヘキシル))シランの合成
A 50 mL two-necked eggplant flask equipped with a magnetic stirrer, a 30 mL dropping funnel and a Dimroth was replaced with argon and bis (1H, 1H, 2H, 2H-nonafluorohexyl) methylsilane 11.18 g (20.8 mmol) and dehydrated dichloromethane. 10 ml was contained, and a solution of 3.62 g (22.7 mmol) of bromine in 10 mL of dehydrated dichloromethane was added dropwise from the dropping funnel over 2 hours. The solvent was distilled off under reduced pressure, 20.0 ml (40.0 mmol) of a THF solution of allylmagnesium chloride (2.0 M) was added thereto, and the mixture was stirred at 25 ° C. for 36 hours. Chloroform and saturated brine were added thereto, and the mixture was filtered through Celite and then separated. After drying the organic layer with magnesium sulfate, the solvent was distilled off by a rotary evaporator. By subjecting the obtained crude product to Kugelrohr distillation (distillation temperature 95 ° C./40 Pa), 11.6 g of allylbis (1H, 1H, 2H, 2H-nonafluorohexyl) methylsilane as a colorless and transparent liquid (yield 96. 3%) Obtained.
1 1 H-NMR (400 MHz, CDCl 3 ): δ0.11 (s, 3H), 0.81 to 0.86 (m, 2H), 1.62 to 1.64 (m, 2H), 1.98 to 2.14 (m, 4H), 4.90 to 4.92 (m, 1H), 4.94 to 4.96 (m, 1H), 5.69 to 5.80 (m, 1H).
19 F-NMR (376 MHz, CDCl 3 ): δ-126.1, -124.3, -116.4, -81.1.
29 Si-NMR (79.5 MHz, CDCl 3 ): δ4.00.
IR (neat, cm -1 ): 2964, 2910, 1633, 1442, 1354, 1209, 1130, 877, 844, 690.

(Synthesis Example 6) Synthesis of allyl (tris (1H, 1H, 2H, 2H-nonafluorohexyl)) silane

Figure 2022079889000079
Figure 2022079889000079

磁気撹拌子、30mL滴下ロート及びジムロートを備えた100mLの2口ナスフラスコをアルゴンで置換し、トリス(1H,1H,2H,2H-ノナフルオロヘキシル)シラン22.6g(29.3mmol)及び脱水ジクロロメタン20mLを収め、滴下ロートから臭素4.67g(30.4mmol)の脱水ジクロロメタン20mL溶液を90分かけて滴下した。滴下後、25℃で4時間撹拌した。減圧下で低沸点留分を除き、ブロモトリス(1H,1H,2H,2H-ノナフルオロヘキシル)シランを淡黄色液体として23.6g(収率94.8%)を得た。
別に、ジムロート冷却管及び磁気撹拌子を備えた50mLの2口ナスフラスコをアルゴンで置換し、先に調製したブロモトリス(1H,1H,2H,2H-ノナフルオロヘキシル)シラン10.0g(11.8mmol)を収め、ここにアリルマグネシウムクロリドのTHF溶液(2.0M)を2.0ml(0.403g,4.0mmol)加え、25℃で3時間撹拌した。ここにジエチルエーテルと飽和食塩水を加え、セライトを用いてろ過し、その後分液した。有機層を硫酸マグネシウムで乾燥後、ロータリーエバポレーターで溶媒を留去した。得られた粗生成物をクーゲルロール蒸留(蒸留温度115℃/40Pa)することによりアリルトリス(1H,1H,2H,2H-ノナフルオロヘキシル)シランを無色透明の液体として8.37g(収率84.7%)得た。
H-NMR(400MHz,CDCl):δ0.89~0.93(m,6H),1.69~1.71(m,2H),1.99~2.12(m,6H),4.97~4.99(m,1H),5.01(s,1H),5.67~5.79(m,1H).
19F-NMR(376MHz,CDCl):δ-126.0,-124.2,-116.4,-81.0.
29Si-NMR(79.5MHz,CDCl):δ4.71.
IR(neat,cm-1):1633,1442,1353,1209,1130,877,843,741,690.

(合成例7)アリル(ビス(1H,1H,2H,2H-トリデカフルオロオクチル))メチルシランの合成
A 100 mL two-necked eggplant flask equipped with a magnetic stir bar, a 30 mL dropping funnel and a Dimroth was replaced with argon to remove 22.6 g (29.3 mmol) of Tris (1H, 1H, 2H, 2H-nonafluorohexyl) silane and dehydrated dichloromethane. A 20 mL solution of 4.67 g (30.4 mmol) of bromine in dehydrated dichloromethane was added dropwise from the dropping funnel over 90 minutes. After the dropping, the mixture was stirred at 25 ° C. for 4 hours. The low boiling point fraction was removed under reduced pressure to obtain 23.6 g (yield 94.8%) of bromotris (1H, 1H, 2H, 2H-nonafluorohexyl) silane as a pale yellow liquid.
Separately, a 50 mL two-necked eggplant flask equipped with a Dimroth condenser and a magnetic stir bar was replaced with argon, and 10.0 g (11.8 mmol) of the previously prepared bromotris (1H, 1H, 2H, 2H-nonafluorohexyl) silane was used. ), 2.0 ml (0.403 g, 4.0 mmol) of a THF solution of allylmagnesium chloride (2.0 M) was added thereto, and the mixture was stirred at 25 ° C. for 3 hours. Diethyl ether and saturated brine were added thereto, and the mixture was filtered through Celite and then separated. After drying the organic layer with magnesium sulfate, the solvent was distilled off by a rotary evaporator. The obtained crude product was distilled by Kugelrohr (distillation temperature 115 ° C./40 Pa) to make allyltris (1H, 1H, 2H, 2H-nonafluorohexyl) silane a colorless and transparent liquid in an amount of 8.37 g (yield 84.). 7%) Obtained.
1 1 H-NMR (400 MHz, CDCl 3 ): δ0.89 to 0.93 (m, 6H), 1.69 to 1.71 (m, 2H), 1.99 to 2.12 (m, 6H), 4.97 to 4.99 (m, 1H), 5.01 (s, 1H), 5.67 to 5.79 (m, 1H).
19 F-NMR (376 MHz, CDCl 3 ): δ-126.0, -124.2, -116.4, -81.0.
29 Si-NMR (79.5 MHz, CDCl 3 ): δ4.71.
IR (neat, cm -1 ): 163,1442,1353,1209,1130,877,843,741,690.

(Synthesis Example 7) Synthesis of allyl (bis (1H, 1H, 2H, 2H-tridecafluorooctyl)) methylsilane

Figure 2022079889000080
Figure 2022079889000080

磁気撹拌子、50mL滴下ロート及びジムロートを備えた100mLの2口ナスフラスコをアルゴンで置換し、ビス(1H,1H,2H,2H-トリデカフルオロオクチル)メチルシラン39.8g(54.4mmol)を収め、滴下ロートから臭素9.43g(57.1mmol)を40分かけて滴下した。滴下後、50℃で15分撹拌した。減圧下で揮発成分を除去し、ブロモ(ビス(1H,1H,2H,2H-トリデカフルオロオクチル))メチルシランを淡黄色液体として得た。
別に、ジムロート冷却管及び三方コックを備えた50mLの2口フラスコをアルゴンで置換し、アリルマグネシウムクロリド2.0MのTHF溶液を24.0mL(50.0mmоl,2当量)を収め、24mLの脱水THFを加えた。ここに、先に調製したブロモ(ビス(1H,1H,2H,2H-トリデカフルオロオクチル))メチルシラン21.3g(26.1mmоl)を30分かけて滴下した。これを90分加熱還流し、14時間室温で撹拌した。溶液に希塩酸及びクロロホルムを加え、ろ過後に静置し、有機層を硫酸マグネシウムで乾燥した。これをロータリーエバポレーターを用いて濃縮後、減圧下でクーゲルロール蒸留(蒸留温度130℃/60Pa)することにより、アリル(ビス(1H,1H,2H,2H-トリデカフルオロオクチル))メチルシランを17.9g(収率88.0%)得た。
H-NMR(400MHz,CDCl):δ0.11(s,3H),0.82~0.86(m,4H),1.62~1.64(m,2H),1.98~2.11(m,4H),4.92(s,1H),4.95(s,1H),5.69~5.80(m,1H).
19F-NMR(376MHz,CDCl):δ-126.2,-123.3,-122.9,-122.0,-116.1,-80.8.
29Si-NMR(79.5MHz,CDCl):δ4.03.
IR(neat,cm-1):1633,1442,1362,1234,1188,1141,706.

(合成例8)アリル(トリス(1H,1H,2H,2H-トリデカフルオロオクチル))シランの合成
A 100 mL two-necked eggplant flask equipped with a magnetic stir bar, a 50 mL dropping funnel and a Dimroth was replaced with argon to contain 39.8 g (54.4 mmol) of bis (1H, 1H, 2H, 2H-tridecafluorooctyl) methylsilane. , 9.43 g (57.1 mmol) of bromine was added dropwise from the dropping funnel over 40 minutes. After the dropping, the mixture was stirred at 50 ° C. for 15 minutes. The volatile components were removed under reduced pressure to give bromo (bis (1H, 1H, 2H, 2H-tridecafluorooctyl)) methylsilane as a pale yellow liquid.
Separately, a 50 mL two-necked flask equipped with a Dimroth condenser and a three-way cock was replaced with argon, containing 24.0 mL (50.0 mmоl, 2 equivalents) of a THF solution of allylmagnesium chloride 2.0 M and 24 mL of dehydrated THF. Was added. 21.3 g (26.1 mmоl) of the previously prepared bromo (bis (1H, 1H, 2H, 2H-tridecafluorooctyl)) methylsilane was added dropwise thereto over 30 minutes. This was heated to reflux for 90 minutes and stirred at room temperature for 14 hours. Dilute hydrochloric acid and chloroform were added to the solution, and the mixture was allowed to stand after filtration, and the organic layer was dried over magnesium sulfate. This is concentrated using a rotary evaporator and then distilled under reduced pressure by Kugelrohr (distillation temperature 130 ° C./60 Pa) to obtain allyl (bis (1H, 1H, 2H, 2H-tridecafluorooctyl)) methylsilane. 9 g (yield 88.0%) was obtained.
1 1 H-NMR (400 MHz, CDCl 3 ): δ0.11 (s, 3H), 0.82 to 0.86 (m, 4H), 1.62 to 1.64 (m, 2H), 1.98 to 2.11 (m, 4H), 4.92 (s, 1H), 4.95 (s, 1H), 5.69-5.80 (m, 1H).
19 F-NMR (376 MHz, CDCl 3 ): δ-126.2,-123.3, -122.9, -122.0, -116.1, -80.8.
29 Si-NMR (79.5 MHz, CDCl 3 ): δ4.03.
IR (neat, cm -1 ): 1633, 1442, 1362, 1234, 1188, 1141,706.

(Synthesis Example 8) Synthesis of allyl (tris (1H, 1H, 2H, 2H-tridecafluorooctyl)) silane

Figure 2022079889000081
Figure 2022079889000081

磁気撹拌子、50mL滴下ロート及びジムロートを備えた50mLの2口ナスフラスコをアルゴンで置換し、トリス(1H,1H,2H,2H-トリデカフルオロオクチル)シラン23.6g(22.0mmol)及び脱水ジクロロメタン44mlを収め、滴下ロートから臭素3.53g(22.1mmol)を5分かけて滴下し、滴下後80分撹拌した。減圧下で溶媒を留去し、トリス(1H,1H,2H,2H-トリデカフルオロオクチル)シリルブロミドを得た。 A 50 mL two-necked eggplant flask equipped with a magnetic stir bar, a 50 mL dropping funnel and a Dimroth was replaced with argon to 23.6 g (22.0 mmol) of Tris (1H, 1H, 2H, 2H-tridecafluorooctyl) silane and dehydration. 44 ml of dichloromethane was contained, and 3.53 g (22.1 mmol) of bromine was added dropwise from the dropping funnel over 5 minutes, and the mixture was stirred for 80 minutes after the addition. The solvent was distilled off under reduced pressure to obtain tris (1H, 1H, 2H, 2H-tridecafluorooctyl) silyl bromide.


上記の操作で得たトリス(1H,1H,2H,2H-トリデカフルオロオクチル)シリルブロミドを10.6g(9.25mmоl)とり、これを別のフラスコ中でアリルマグネシウムクロリドのTHF溶液(2.0MTHF溶液)を8.7mL(17.4mmol)を加え、25℃で2時間、加熱還流下で70分撹拌した。ここにクロロホルムと飽和食塩水を加え、セライトを用いてろ過し、その後分液した。有機層を硫酸マグネシウムで乾燥後、ロータリーエバポレーターで溶媒を留去した。得られた粗生成物を減圧蒸留(沸点155℃/12Pa)することによりアリルトリス(1H,1H,2H,2H-トリデカフルオロオクチル)シランを無色透明の液体として9.46g(収率92.1%)得た。
H-NMR(400MHz,CDCl):δ0.89~0.94(m,6H),1.69~1.72(m,2H),2.00~2.13(m,6H),4.97~4.99(m,1H),5.01(s,1H),5.68~5.79(m,1H).
19F-NMR(376MHz,CDCl):δ-126.2,-123.3,-122.9,-116.1,-80.8.
29Si-NMR(79.5MHz,CDCl):δ4.67.
IR(neat,cm-1):1633,1442,1362,1234,1186,1142,706.

(実施例1)トリクロロ(3-(ビス(1H,1H,2H,2H-ノナフルオロヘキシル)メチルシリル)プロピル)シラン(例示化合物番号(1-2-1))の合成

Take 10.6 g (9.25 mmоl) of Tris (1H, 1H, 2H, 2H-tridecafluorooctyl) silyl bromide obtained by the above operation, and place this in a separate flask in a THF solution of allylmagnesium chloride (2. 8.7 mL (17.4 mmol) of (0MTHF solution) was added, and the mixture was stirred at 25 ° C. for 2 hours under heating under reflux for 70 minutes. Chloroform and saturated brine were added thereto, and the mixture was filtered through Celite and then separated. After drying the organic layer with magnesium sulfate, the solvent was distilled off by a rotary evaporator. By distilling the obtained crude product under reduced pressure (boiling point 155 ° C. / 12Pa), 9.46 g (yield 92.1) of allyltris (1H, 1H, 2H, 2H-tridecafluorooctyl) silane as a colorless and transparent liquid was obtained. %)Obtained.
1 1 H-NMR (400 MHz, CDCl 3 ): δ0.89 to 0.94 (m, 6H), 1.69 to 1.72 (m, 2H), 2.00 to 2.13 (m, 6H), 4.97-4.99 (m, 1H), 5.01 (s, 1H), 5.68-5.79 (m, 1H).
19 F-NMR (376 MHz, CDCl 3 ): δ-126.2,-123.3, -122.9, -116.1, -80.8.
29 Si-NMR (79.5 MHz, CDCl 3 ): δ4.67.
IR (neat, cm -1 ): 163,1442,1362,1234,1186,1142,706.

(Example 1) Synthesis of trichloro (3- (bis (1H, 1H, 2H, 2H-nonafluorohexyl) methylsilyl) propyl) silane (exemplified compound number (1-2-1))

Figure 2022079889000082
Figure 2022079889000082

磁気撹拌子を備えたキャップ付きねじ口試験管をアルゴンで置換し、アリル(ビス(1H,1H,2H,2H-ノナフルオロヘキシル))メチルシラン11.4g(19.7mmol)を収めた。これに、ヘキサクロロ白金(IV)酸水和物270mg(2.6mol%)及びトリクロロシラン8.06g(59.5mmol)を加え、40℃で14時間加熱撹拌した。減圧下で低沸点成分を留去し、得られた粗生成物を減圧下でクーゲルロール蒸留(蒸留温度110℃/40Pa)することにより、トリクロロ(3-(ビス(1H,1H,2H,2H-ノナフルオロヘキシル)メチルシリル)プロピル)シラン(例示化合物番号(1-2-1))を無色透明の液体として10.3g(収率73.2%)得た。
H-NMR(400MHz,CDCl):δ0.12(s,3H),0.76~0.80(m,2H),0.81~0.86(m,4H),1.48~1.50(m,2H),1.59~1.66(m,2H),1.96~2.09(m,4H).
19F-NMR(376MHz,CDCl):δ-126.1,-124.3,-116.3,-81.1.
29Si-NMR(79.5MHz,CDCl):δ-5.35,6.50.
IR(neat,cm-1):1354,1209,1130,1070,877,736,692.

(実施例2)トリメトキシ(3-(ビス(1H,1H,2H,2H-ノナフルオロヘキシル)メチルシリル)プロピル)シラン(例示化合物番号(1-2-3))の合成
A capped screw cap test tube equipped with a magnetic stir bar was replaced with argon to contain 11.4 g (19.7 mmol) of allyl (bis (1H, 1H, 2H, 2H-nonafluorohexyl)) methylsilane. To this, 270 mg (2.6 mol%) of hexachloroplatinic acid (IV) acid hydrate and 8.06 g (59.5 mmol) of trichlorosilane were added, and the mixture was heated and stirred at 40 ° C. for 14 hours. The low boiling point component was distilled off under reduced pressure, and the obtained crude product was distilled under Kugelrohr (distillation temperature 110 ° C./40 Pa) under reduced pressure to trichloro (3- (bis (1H, 1H, 2H, 2H)). 10.3 g (yield 73.2%) of -nonafluorohexyl) methylsilyl) propyl) silane (exemplified compound number (1-2-1)) was obtained as a colorless and transparent liquid.
1 1 H-NMR (400MHz, CDCl 3 ): δ0.12 (s, 3H), 0.76 to 0.80 (m, 2H), 0.81 to 0.86 (m, 4H), 1.48 to 1.50 (m, 2H), 1.59 to 1.66 (m, 2H), 1.96 to 2.09 (m, 4H).
19 F-NMR (376 MHz, CDCl 3 ): δ-126.1, -124.3, -116.3, -81.1.
29 Si-NMR (79.5 MHz, CDCl 3 ): δ-5.35, 6.50.
IR (neat, cm -1 ): 1354, 1209, 1130, 1070, 877, 736, 692.

(Example 2) Synthesis of trimethoxy (3- (bis (1H, 1H, 2H, 2H-nonafluorohexyl) methylsilyl) propyl) silane (exemplified compound number (1-2-3))

Figure 2022079889000083
Figure 2022079889000083

磁気撹拌子及びジムロートを備えた100mLの2口ナスフラスコをアルゴンで置換し、ここに脱水ジエチルエーテル50mL、脱水メタノール1.00g(31.2mmol)及びトリエチルアミン2.09g(20.6mmol)を収めた。注射器でトリクロロ(3-(ビス(1H,1H,2H,2H-ノナフルオロヘキシル)メチルシリル)プロピル)シラン3.03g(4.24mmol)をゆっくり加え、室温で3時間撹拌した。焼結ガラスフィルターを備えたシュレンク管で沈澱をろ過して除いた。ろ液を減圧下で溶媒留去した後、得られた粗生成物を減圧下でクーゲルロール蒸留(蒸留温度135℃/40Pa)することにより、トリメトキシ(3-(ビス(1H,1H,2H,2H-ノナフルオロヘキシル)メチルシリル)プロピル)シラン(例示化合物番号(1-2-3))を無色液体として2.23g(収率75.3%)得た。
H-NMR(400MHz,CDCl):δ0.67~0.75(m,4H),0.78~0.82(m,4H),1.42~1.50(m,2H),1.95~2.08(m,4H),3.56(s,9H).
19F-NMR(376MHz,CDCl):δ-126.1,-124.3,-116.3,-81.1.
29Si-NMR(79.5MHz,CDCl):δ-42.6,5.05.
IR(neat,cm-1):2947,2844,1209,1130,1086,877,808,739.

(実施例3)トリクロロ(3-(トリス(1H,1H,2H,2H-ノナフルオロヘキシル)シリル)プロピル)シラン(例示化合物番号(1-15-1))の合成
A 100 mL two-necked eggplant flask equipped with a magnetic stir bar and a gym funnel was replaced with argon, which contained 50 mL of dehydrated diethyl ether, 1.00 g (31.2 mmol) of dehydrated methanol and 2.09 g (20.6 mmol) of triethylamine. .. With a syringe, 3.03 g (4.24 mmol) of trichloro (3- (bis (1H, 1H, 2H, 2H-nonafluorohexyl) methylsilyl) propyl) silane was slowly added, and the mixture was stirred at room temperature for 3 hours. The precipitate was filtered off with a Schlenk tube equipped with a sintered glass filter. After distilling off the solvent under reduced pressure, the obtained crude product was subjected to Kugelrohr distillation (distillation temperature 135 ° C./40 Pa) under reduced pressure to obtain trimethoxy (3- (bis (1H, 1H, 2H,). 2.23 g (yield 75.3%) of 2H-nonafluorohexyl) methylsilyl) propyl) silane (exemplified compound number (1-2-3)) was obtained as a colorless liquid.
1 1 H-NMR (400 MHz, CDCl 3 ): δ0.67 to 0.75 (m, 4H), 0.78 to 0.82 (m, 4H), 1.42 to 1.50 (m, 2H), 1.95 to 2.08 (m, 4H), 3.56 (s, 9H).
19 F-NMR (376 MHz, CDCl 3 ): δ-126.1, -124.3, -116.3, -81.1.
29 Si-NMR (79.5 MHz, CDCl 3 ): δ-42.6, 5.05.
IR (neat, cm -1 ): 2497, 2844, 1209, 1130, 1086, 877, 808, 739.

(Example 3) Synthesis of trichloro (3- (tris (1H, 1H, 2H, 2H-nonafluorohexyl) silyl) propyl) silane (exemplified compound number (1-15-1))

Figure 2022079889000084
Figure 2022079889000084

磁気撹拌子及び三方コックを備えたストップコック付き試験管をアルゴンで置換し、アリル(トリス(1H,1H,2H,2H-ノナフルオロヘキシル))シラン1.98g(2.45mmol)を収めた。これに、ヘキサクロロ白金(IV)酸水和物0.032g(2.5mol%)及びトリクロロシラン0.700g(5.17mmol)を加え、40℃で3時間加熱撹拌した。減圧下で低沸点成分を留去し、得られた粗生成物を減圧下でクーゲルロール蒸留(蒸留温度135℃/50Pa)することにより、トリクロロ(3-(トリス(1H,1H,2H,2H-ノナフルオロヘキシル))プロピル)シラン(例示化合物番号(1-15-1))を無色透明の液体として2.05g(収率88.3%)得た。
H-NMR(400MHz,CDCl):δ0.83~0.88(m,2H),0.88~0.93(m,6H),1.50~1.52(m,2H),1.61~1.69(m,2H),1.98~2.11(m,6H).
19F-NMR(376MHz,CDCl):δ-126.0,-124.2,-116.3,-81.0.
29Si-NMR(79.5MHz,CDCl):δ-6.38,5.25.
IR(neat,cm-1):1442,1353,1209,1130,877,744,690.

(実施例4)トリメトキシ(3-(トリス(1H,1H,2H,2H-ノナフルオロヘキシル)シリル)プロピル)シラン(例示化合物番号(1-15-3))の合成
A test tube with a stopcock equipped with a magnetic stir bar and a three-way cock was replaced with argon to contain 1.98 g (2.45 mmol) of allyl (Tris (1H, 1H, 2H, 2H-nonafluorohexyl)) silane. To this, 0.032 g (2.5 mol%) of hexachloroplatinic acid (IV) acid hydrate and 0.700 g (5.17 mmol) of trichlorosilane were added, and the mixture was heated and stirred at 40 ° C. for 3 hours. The low boiling point component was distilled off under reduced pressure, and the obtained crude product was distilled under Kugelrohr (distillation temperature 135 ° C./50 Pa) under reduced pressure to trichloro (3- (Tris (1H, 1H, 2H, 2H)). -Nonafluorohexyl)) propyl) silane (Exemplified Compound No. (1-15-1)) was obtained as a colorless and transparent liquid in an amount of 2.05 g (yield 88.3%).
1 1 H-NMR (400 MHz, CDCl 3 ): δ0.83 to 0.88 (m, 2H), 0.88 to 0.93 (m, 6H), 1.50 to 1.52 (m, 2H), 1.61 to 1.69 (m, 2H), 1.98 to 2.11 (m, 6H).
19 F-NMR (376 MHz, CDCl 3 ): δ-126.0, -124.2, -116.3, -81.0.
29 Si-NMR (79.5 MHz, CDCl 3 ): δ-6.38, 5.25.
IR (neat, cm -1 ): 1442, 1353, 1209, 1130, 877, 744,690.

(Example 4) Synthesis of trimethoxy (3- (tris (1H, 1H, 2H, 2H-nonafluorohexyl) silyl) propyl) silane (exemplified compound number (1-15-3))

Figure 2022079889000085
Figure 2022079889000085

磁気撹拌子及びジムロートを備えた50mLの2口ナスフラスコをアルゴンで置換し、ここに脱水ジエチルエーテル9.0mL、脱水メタノール0.480g(15.0mmol)及びトリエチルアミン0.936g(9.24mmol)を収めた。注射器でトリクロロ(3-トリス(1H,1H,2H,2H-ノナフルオロヘキシル)シリル)プロピル)シラン1.66g(1.75mmol)及び脱水ジエチルエーテル18.0mLをゆっくり加え、室温で15時間撹拌した。混合物にヘキサン10mLを加え、焼結ガラスフィルターを備えたシュレンク管で沈澱をろ過して除いた。ろ液を減圧下で溶媒留去した後、得られた粗生成物を減圧下でクーゲルロール蒸留(蒸留温度135℃/40Pa)することにより、トリメトキシ(3-トリス(1H,1H,2H,2H-ノナフルオロヘキシル)シリル)プロピル)シラン(例示化合物番号(1-15-3))を無色液体として1.04g(収率63.4%)得た。
H-NMR(400MHz,CDCl):δ0.73~0.78(m,4H),0.85~0.89(m,6H),1.43~1.51(m,2H),1.97~2.10(m,6H),3.56(s,9H).
19F-NMR(376MHz,CDCl):δ-126.1,-124.2,-116.3,-81.1.
IR(neat,cm-1):2949,2846,1442,1209,1130,1088,1074,877,746.

(実施例5)トリクロロ(3-(ビス(1H,1H,2H,2H-トリデカフルオロオクチル)メチルシリル)プロピル)シラン(例示化合物番号(1-4-1))の合成
A 50 mL two-necked eggplant flask equipped with a magnetic stir bar and a gym funnel was replaced with argon, in which 9.0 mL of dehydrated diethyl ether, 0.480 g (15.0 mmol) of dehydrated methanol and 0.936 g (9.24 mmol) of triethylamine were added. I put it in. With a syringe, 1.66 g (1.75 mmol) of trichloro (3-tris (1H, 1H, 2H, 2H-nonafluorohexyl) silyl) propyl) silane and 18.0 mL of dehydrated diethyl ether were slowly added, and the mixture was stirred at room temperature for 15 hours. .. 10 mL of hexane was added to the mixture and the precipitate was removed by filtration through a Schlenk tube equipped with a sintered glass filter. After distilling off the solvent under reduced pressure, the obtained crude product is distilled by Kugelrohr (distillation temperature 135 ° C./40 Pa) under reduced pressure to trimethoxy (3-tris (1H, 1H, 2H, 2H). -Nonafluorohexyl) Cyril) propyl) Silane (Exemplified Compound No. (1-15-3)) was obtained as a colorless liquid in an amount of 1.04 g (yield 63.4%).
1 1 H-NMR (400 MHz, CDCl 3 ): δ0.73 to 0.78 (m, 4H), 0.85 to 0.89 (m, 6H), 1.43 to 1.51 (m, 2H), 1.97-2.10 (m, 6H), 3.56 (s, 9H).
19 F-NMR (376 MHz, CDCl 3 ): δ-126.1, -124.2, -116.3, -81.1.
IR (neat, cm -1 ): 2949, 2846, 1442, 1209, 1130, 1088, 1074, 877, 746.

(Example 5) Synthesis of trichloro (3- (bis (1H, 1H, 2H, 2H-tridecafluorooctyl) methylsilyl) propyl) silane (exemplified compound number (1-4-1))

Figure 2022079889000086
Figure 2022079889000086

磁気撹拌子を備えたキャップ付きねじ口試験管をアルゴンで置換し、アリル(ビス(1H,1H,2H,2H-トリデカフルオロオクチル))メチルシラン14.5g(18.6mmol)を収めた。これに、ヘキサクロロ白金(IV)酸水和物48mg(1mol%)及びトリクロロシラン7.88g(57.8mmol)を加え、密閉後に50℃で1時間加熱撹拌し、その後室温で14時間撹拌した。混合物から減圧下で低沸点成分を留去し、得られた粗生成物を減圧下でクーゲルロール蒸留(蒸留温度150℃/18Pa)することにより、トリクロロ(3-(ビス(1H,1H,2H,2H-トリデカフルオロオクチル)メチルシリル)プロピル)シラン(例示化合物番号(1-4-1))を無色透明の液体として15.8g(収率92.7%)得た。
H-NMR(400MHz,CDCl):δ0.12(s,3H),0.76~0.90(m,2H),1.48~1.52(m,2H),1.60~1.68(m,2H),1.96~2.09(m,4H).
19F-NMR(376MHz,CDCl):δ-126.1,-123.3,-122.9,-121.9,-116.0,-80.8.
IR(neat,cm-1):1234,1190,1142,1068,906,706.

(実施例6)トリメトキシ(3-(ビス(1H,1H,2H,2H-トリデカフルオロオクチル)メチルシリル)プロピル)シラン(例示化合物番号(1-4-3))の合成
A capped screw cap test tube equipped with a magnetic stir bar was replaced with argon to contain 14.5 g (18.6 mmol) of allyl (bis (1H, 1H, 2H, 2H-tridecafluorooctyl)) methylsilane. To this, 48 mg (1 mol%) of hexachloroplatinic acid (IV) acid hydrate and 7.88 g (57.8 mmol) of trichlorosilane were added, and after sealing, the mixture was heated and stirred at 50 ° C. for 1 hour, and then stirred at room temperature for 14 hours. The low boiling point component was distilled off from the mixture under reduced pressure, and the obtained crude product was distilled by Kugelrohr (distillation temperature 150 ° C./18 Pa) under reduced pressure to trichloro (3- (bis (1H, 1H, 2H)). , 2H-Tridecafluorooctyl) methylsilyl) propyl) silane (Exemplified Compound No. (1-4-1)) was obtained as a colorless and transparent liquid in an amount of 15.8 g (yield 92.7%).
1 1 H-NMR (400MHz, CDCl 3 ): δ0.12 (s, 3H), 0.76 to 0.90 (m, 2H), 1.48 to 1.52 (m, 2H), 1.60 to 1.68 (m, 2H), 1.96 to 2.09 (m, 4H).
19 F-NMR (376 MHz, CDCl 3 ): δ-126.1, -123.3, -122.9, -121.9, -116.0, -80.8.
IR (neat, cm -1 ): 1234, 1190, 1142, 1068, 906, 706.

(Example 6) Synthesis of trimethoxy (3- (bis (1H, 1H, 2H, 2H-tridecafluorooctyl) methylsilyl) propyl) silane (exemplified compound number (1-4-3))

Figure 2022079889000087
Figure 2022079889000087

磁気撹拌子及びジムロートを備えた50mLの2口ナスフラスコをアルゴンで置換し、ここに脱水THF10mL、脱水メタノール0.831g(25.9mmol)及びトリエチルアミン1.55g(15.3mmol)を収めた。注射器でトリクロロ(3-(ビス(1H,1H,2H,2H-トリデカフルオロオクチル)メチルシリル)プロピル)シラン3.99g(4.37mmol)をゆっくり加え、室温で18時間撹拌した。混合物にヘキサン10mLを加え、焼結ガラスフィルターを備えたシュレンク管で沈澱をろ過して除いた。ろ液を減圧下で溶媒留去した後、得られた粗生成物を減圧下でクーゲルロール蒸留(蒸留温度115℃/25Pa)することにより、トリメトキシ(3-(ビス(1H,1H,2H,2H-トリデカフルオロオクチル)メチルシリル)プロピル)シラン(例示化合物番号(1-4-3))を無色液体として3.03g(収率76.9%)得た。
H-NMR(400MHz,CDCl):δ0.08(s,3H),0.68~0.78(m,4H),0.80~0.83(m,4H),1.43~1.51(m,2H),1.96~2.09(m,4H),3.57(s,9H).
19F-NMR(376MHz,CDCl):δ-126.5,-123.6,-123.2,-122.2,-116.4,-81.2.
29Si-NMR(80MHz,CDCl):δ-42.58,5.07.
IR(neat,cm-1)2946,2844,1234,1188,1142,1090,906,810,706.

(実施例7)トリクロロ(3-(トリス(1H,1H,2H,2H-トリデカフルオロオクチル)シリル)プロピル)シラン(例示化合物番号(1-16-1))の合成
A 50 mL two-necked eggplant flask equipped with a magnetic stir bar and a gym funnel was replaced with argon, which contained 10 mL of dehydrated THF, 0.831 g (25.9 mmol) of dehydrated methanol and 1.55 g (15.3 mmol) of triethylamine. 3.99 g (4.37 mmol) of trichloro (3- (bis (1H, 1H, 2H, 2H-tridecafluorooctyl) methylsilyl) propyl) silane was slowly added with a syringe and stirred at room temperature for 18 hours. 10 mL of hexane was added to the mixture and the precipitate was removed by filtration through a Schlenk tube equipped with a sintered glass filter. After distilling off the solvent under reduced pressure, the obtained crude product was subjected to Kugelrohr distillation (distillation temperature 115 ° C./25 Pa) under reduced pressure to obtain trimethoxy (3- (bis (1H, 1H, 2H,). 2H-Tridecafluorooctyl) methylsilyl) propyl) silane (Exemplified Compound No. (1-4-3)) was obtained as a colorless liquid in an amount of 3.03 g (yield 76.9%).
1 1 H-NMR (400MHz, CDCl 3 ): δ0.08 (s, 3H), 0.68 to 0.78 (m, 4H), 0.80 to 0.83 (m, 4H), 1.43 to 1.51 (m, 2H), 1.96 to 2.09 (m, 4H), 3.57 (s, 9H).
19 F-NMR (376 MHz, CDCl 3 ): δ-126.5, 123.6, -123.2-2-122.2, -116.4-81.2.
29 Si-NMR (80MHz, CDCl 3 ): δ-42.58, 5.07.
IR (neat, cm -1 ) 2946, 2844, 1234, 1188, 1142, 1090, 906, 810, 706.

(Example 7) Synthesis of trichloro (3- (tris (1H, 1H, 2H, 2H-tridecafluorooctyl) silyl) propyl) silane (exemplified compound number (1-16-1))

Figure 2022079889000088
Figure 2022079889000088

磁気撹拌子及び三方コックを備えたストップコック付き試験管をアルゴンで置換し、アリル(トリス(1H,1H,2H,2H-トリデカフルオロオクチル))シラン3.00g(2.70mmol)を収めた。これに、イソプロピルアルコールに溶解させたヘキサクロロ白金(IV)酸水和物(7.3重量%溶液)20mg(0.1mol%)及びトリクロロシラン1.11g(8.20mmol)を加え、60℃で15時間加熱撹拌した。減圧下で低沸点成分を留去し、得られた粗生成物を減圧下でクーゲルロール蒸留(蒸留温度175℃/50Pa)することにより、トリクロロ(3-(トリス(1H,1H,2H,2H-トリデカフルオロオクチル)シリル)プロピル)シラン(例示化合物番号(1-16-1))を無色透明の液体として3.14g(収率93.2%)得た。
H-NMR(400MHz,CDCl):δ0.83~0.93(m,8H),1.50~1.52(m,2H),1.63~1.65(m,2H),1.98~2.11(m,6H).
19F-NMR(376MHz,CDCl):δ-126.2,-123.3,-122.9,-116.1,-80.8.
29Si-NMR(79.5MHz,CDCl):δ-6.40,5.23
IR(neat,cm-1):1442,1360,1186,1142,1072,706.

(実施例8)トリメトキシ(3-(トリス(1H,1H,2H,2H-トリデカフルオロオクチル)シリル)プロピル)シラン(例示化合物番号(1-16-3))の合成
A test tube with a stopcock equipped with a magnetic stir bar and a three-way cock was replaced with argon to contain 3.00 g (2.70 mmol) of allyl (Tris (1H, 1H, 2H, 2H-tridecafluorooctyl)) silane. .. To this, 20 mg (0.1 mol%) of hexachloroplatinic acid (IV) acid hydrate (7.3 wt% solution) dissolved in isopropyl alcohol and 1.11 g (8.20 mmol) of trichlorosilane were added, and the temperature was 60 ° C. The mixture was heated and stirred for 15 hours. The low boiling point component was distilled off under reduced pressure, and the obtained crude product was distilled under Kugelrohr (distillation temperature 175 ° C./50 Pa) under reduced pressure to trichloro (3- (Tris (1H, 1H, 2H, 2H)). -Tridecafluorooctyl) silyl) propyl) silane (Exemplified Compound No. (1-16-1)) was obtained as a colorless and transparent liquid in an amount of 3.14 g (yield 93.2%).
1 1 H-NMR (400 MHz, CDCl 3 ): δ0.83 to 0.93 (m, 8H), 1.50 to 1.52 (m, 2H), 1.63 to 1.65 (m, 2H), 1.98-2.11 (m, 6H).
19 F-NMR (376 MHz, CDCl 3 ): δ-126.2,-123.3, -122.9, -116.1, -80.8.
29 Si-NMR (79.5 MHz, CDCl 3 ): δ-6.40, 5.23
IR (neat, cm -1 ): 1442, 1360, 1186, 1142, 1072,706.

(Example 8) Synthesis of trimethoxy (3- (tris (1H, 1H, 2H, 2H-tridecafluorooctyl) silyl) propyl) silane (exemplified compound number (1-16-3))

Figure 2022079889000089
Figure 2022079889000089

磁気撹拌子及びジムロートを備えた50mLの2口ナスフラスコをアルゴンで置換し、ここに脱水ジエチルエーテル13mL、脱水メタノール0.331g(10.3mmol)及びトリエチルアミン0.650g(6.42mmol)を収めた。注射器でトリクロロ(3-(トリス(1H,1H,2H,2H-トリデカフルオロオクチル)シリル)プロピル)シラン1.35g(1.08mmol)及び脱水ジエチルエーテル20mLを加え、室温で18時間撹拌した。焼結ガラスフィルターを備えたシュレンク管で沈澱をろ過して除いた。ろ液を減圧下で溶媒留去した後、得られた粗生成物を減圧下でクーゲルロール蒸留(蒸留温度135℃/40Pa)することにより、トリメトキシ(3-(トリス(1H,1H,2H,2H-トリデカフルオロオクチル)シリル)プロピル)シラン(例示化合物番号(1-16-3))を無色液体として923mg(収率69.4%)得た。 A 50 mL two-necked eggplant flask equipped with a magnetic stir bar and a gym funnel was replaced with argon, which contained 13 mL of dehydrated diethyl ether, 0.331 g (10.3 mmol) of dehydrated methanol and 0.650 g (6.42 mmol) of triethylamine. .. With a syringe, 1.35 g (1.08 mmol) of trichloro (3- (tris (1H, 1H, 2H, 2H-tridecafluorooctyl) silyl) propyl) silane and 20 mL of dehydrated diethyl ether were added, and the mixture was stirred at room temperature for 18 hours. The precipitate was filtered off with a Schlenk tube equipped with a sintered glass filter. After distilling off the solvent under reduced pressure, the obtained crude product was subjected to Kugelrohr distillation (distillation temperature 135 ° C./40 Pa) under reduced pressure to obtain trimethoxy (3- (Tris (1H, 1H, 2H,). 2H-Tridecafluorooctyl) silyl) propyl) silane (Exemplified Compound No. (1-16-3)) was obtained as a colorless liquid in 923 mg (yield 69.4%).


H-NMR(400MHz,CDCl):δ0.73~0.79(m,4H),0.85~0.90(m,6H),1.43~1.49(m,2H),1.97~2.10(m,6H),3.56(s,9H).
19F-NMR(376MHz,CDCl):δ-126.1,-123.3,-122.9,-122.0,-116.1,-80.8.

(実施例9)9,9,9-トリス((1H,1H,2H,2H-トリデカフルオロオクチル)-3,3,5,5,7,7-ヘキサメチル-1,1,1-トリメトキシペンタシロキサン(例示化合物番号(1-21-3))の合成。

1 1 H-NMR (400 MHz, CDCl 3 ): δ0.73 to 0.79 (m, 4H), 0.85 to 0.90 (m, 6H), 1.43 to 1.49 (m, 2H), 1.97-2.10 (m, 6H), 3.56 (s, 9H).
19 F-NMR (376 MHz, CDCl 3 ): δ-126.1, -123.3, -122.9, -122.0, -116.1, -80.8.

(Example 9) 9,9,9-Tris ((1H, 1H, 2H, 2H-tridecafluorooctyl) -3,3,5,5,7,7-hexamethyl-1,1,1-trimethoxy) Synthesis of pentasiloxane (exemplified compound number (1-21-3)).

Figure 2022079889000090
Figure 2022079889000090

磁気撹拌機、滴下ロ-ト、ジムロ-ト冷却管及び三方コックを備えた50mLの三口フラスコをアルゴンで置換した。フラスコ内にジエチルエ-テル20mL及びヘキサメチルトリシロキサン-1,5-ジオ-ル1.68g(6.98mmol)を収めた。滴下ロ-トからトリス((1H,1H,2H,2H-トリデカフルオロオクチル)ブロモシラン7.64g(6.65mmol)及びピリジン1.93g(24.5mmol)の脱水ジエチルエ-テル10mL溶液を0℃で7時間かけて滴下し、その後1時間撹拌した。反応容器にクロロトリメトキシシラン1.92g(12.3mmol)を注射器より3分かけて加え、その後18時間撹拌した。減圧下で低沸点成分を除去し、ヘキサンを加えてガラスフィルター付シュレンク管を用いてアルゴン雰囲気下でろ過した。得られた反応混合物をクーゲルロール蒸留装置で減圧蒸留(蒸留温度140℃/20Pa)することにより、9,9,9-トリス((1H,1H,2H,2H-トリデカフルオロオクチル)-3,3,5,5,7,7-ヘキサメチル-1,1,1-トリメトキシペンタシロキサン(例示化合物番号(1-21-3))を無色液体として4.95g(収率:52.0%)得た。
H-NMR(400MHz,CDCl)δ(ppm):0.09(s,6H),0.12(s,6H),0.14(s,6H),0.88-0.93(m,6H),2.03-2.18(m,6H),3.55(s,9H)
19F-NMR(376MHz,CDCl) δ(ppm):-126.42,-123.50,-123.11,-122.14,-116.26,-81.16
29Si-NMR(79MHz,CDCl)δ(ppm):-85.42,-20.17,-19.40,-18.46,5.389
IR(neat,cm-1):2964,2914,848,1442,1423,1362,1317,1236,1192,1144,1093,1072,1032,949,904,843,802,773,737,706,644,621.

(実施例10)9,9,9-トリス((1H,1H,2H,2H-トリデカフルオロオクチル)-3,5,7-(3,3,3-トリフルオロプロピル)-3,5,7-トリメチル-1,1,1-トリメトキシペンタシロキサン(例示化合物番号(1-25-3))の合成
A 50 mL three-necked flask equipped with a magnetic stirrer, a dropping rotor, a gym rotor condenser and a three-way cock was replaced with argon. The flask contained 20 mL of diethyl ether and 1.68 g (6.98 mmol) of hexamethyltrisiloxane-1,5-diol. A 10 mL solution of dehydrated diethyl ether of Tris ((1H, 1H, 2H, 2H-tridecafluorooctyl) bromosilane 7.64 g (6.65 mmol) and pyridine 1.93 g (24.5 mmol) from the dropping rotor at 0 ° C. The mixture was added dropwise over 7 hours and then stirred for 1 hour. 1.92 g (12.3 mmol) of chlorotrimethoxysilane was added to the reaction vessel over 3 minutes from the injector, and then the mixture was stirred for 18 hours. Was removed, hexane was added, and the mixture was filtered under an argon atmosphere using a Schlenk tube with a glass filter. 9,9-Tris ((1H, 1H, 2H, 2H-tridecafluorooctyl) -3,3,5,5,7,7-hexamethyl-1,1,1-trimethoxypentasiloxane (exemplified compound number (exemplified compound number) 1-21-3)) was obtained as a colorless liquid in an amount of 4.95 g (yield: 52.0%).
1 1 H-NMR (400MHz, CDCl 3 ) δ (ppm): 0.09 (s, 6H), 0.12 (s, 6H), 0.14 (s, 6H), 0.88-0.93 ( m, 6H), 2.03-2.18 (m, 6H), 3.55 (s, 9H)
19 F-NMR (376MHz, CDCl 3 ) δ (ppm): -126.42, -123.50, -123.11, -122.14, -116.26, -81.16
29 Si-NMR (79MHz, CDCl 3 ) δ (ppm): -85.42, -20.17, -19.40, -18.46, 5.389
IR (net, cm -1 ): 2964, 2914, 848, 1442, 1423, 1362, 1317, 1236, 1192, 114, 1093, 1072, 1032, 949, 904, 843, 802, 773, 737, 706, 644 , 621.

(Example 10) 9,9,9-Tris ((1H, 1H, 2H, 2H-tridecafluorooctyl) -3,5,7- (3,3,3-trifluoropropyl) -3,5, Synthesis of 7-trimethyl-1,1,1-trimethoxypentasiloxane (exemplified compound number (1-25-3))

Figure 2022079889000091
Figure 2022079889000091

磁気撹拌機、滴下ロ-ト、ジムロ-ト冷却管及び三方コックを備えた50mLの三口フラスコをアルゴンで置換し、ジエチルエ-テル15mLおよび1,3,5-(3,3,3-トリフルオロプロピル)-1,3,5-トリメチルシロキサン-1,5-ジオ-ル1.11g(2.50mmol)を収めた。滴下ロ-トからトリス((1H,1H,2H,2H-トリデカフルオロオクチル)ブロモシラン2.11g(1.84mmol)及びピリジン0.810g(10.2mmol)の脱水ジエチルエ-テル5mL溶液を0℃で2時間かけて滴下し、その後室温で1.5時間撹拌した。この溶液中に、0℃でクロロトリメトキシシラン0.823g(5.25mmol)を3分かけて注射器で加え、室温で18時間撹拌した。減圧下で低沸点成分を除去し、ヘキサンを加えガラスフィルター付シュレンク管を用いてアルゴン雰囲気下でろ過した。減圧下で溶媒を除去し、得られた反応混合物をクーゲルロール蒸留装置で減圧蒸留(蒸留温度170℃/20Pa)することにより、9,9,9-トリス9,9,9-トリス((1H,1H,2H,2H-トリデカフルオロオクチル)-3,5,7-(3,3,3-トリフルオロプロピル)-3,5,7-トリメチル-1,1,1-トリメトキシペンタシロキサン(例示化合物番号(1-25-3))を無色液体として1.38g(収率:46.0%)得た。
H-NMR(400MHz,CDCl)δ(ppm):0.17-0.18(m,9H),0.77-0.80(m,6H),0.91-0.96(m,6H),2.03-2.15(m,12H),3.55(s,9H)
19F-NMR(376MHz,CDCl)δ(ppm):-126.54,-123.67,-123.22,-122.23,-116.49,-81.30,-69.33
29Si-NMR(79MHz,CDCl)δ(ppm):-85.60,-21.59,-20.98~-20.86(m),7.237
IR(neat,cm-1):2951,2910,2852,1444,1423,1367,1315,1265,1236,1205,1140,1092,1068,1020,949,899,839,810,773,746,706,644.

(評価例1)
例示化合物番号(1-4-1)50mgをとり、これをエチルエチルノナフルオロブチルエーテル(異性体混合物)24.8gに溶解させ(濃度:0.2重量%)、この溶液に清浄にしたソーダガラス基板を2時間浸漬した。ソーダガラス基板を溶液から引き上げ、エチルノナフルオロブチルエーテル、蒸留水の順に十分に流し洗いし、クロロホルムに浸漬させて超音波洗浄を10分間行った。これを70℃の乾燥機で30分間乾燥させ、その後デシケータで乾燥させた。
処理基板に水およびヘキサデカン1μLをマイクロシリンジで乗せ、その接触角をθ/2法で求め、5回測定分を平均したところ、水接触角は106(2)度、ヘキサデカン接触角は68(1)度であった。また、蒸留水50μLをガラス基板上に乗せ、ガラス基板を徐々に傾け、水滴が動き始めたときの臨界角を5ヶ所で測定し平均を求めたところ、10.7(7)度であった。
A 50 mL three-necked flask equipped with a magnetic stirrer, a dropping roto, a gym rote cooling tube and a three-way cock was replaced with argon and diethyl ether 15 mL and 1,3,5- (3,3,3-trifluoro). It contained 1.11 g (2.50 mmol) of propyl) -1,3,5-trimethylsiloxane-1,5-diol. A 5 mL solution of dehydrated diethyl ether of Tris ((1H, 1H, 2H, 2H-tridecafluorooctyl) bromosilane 2.11 g (1.84 mmol) and pyridine 0.810 g (10.2 mmol) from the dropping rotor at 0 ° C. After 2 hours, the mixture was stirred at room temperature for 1.5 hours. To this solution, 0.823 g (5.25 mmol) of chlorotrimethoxysilane was added over 3 minutes at 0 ° C. with a syringe, and 18 at room temperature. The mixture was stirred for hours. The low boiling point component was removed under reduced pressure, hexane was added, and the mixture was filtered under an argon atmosphere using a Schlenk tube with a glass filter. By vacuum distillation (distillation temperature 170 ° C./20Pa), 9,9,9-tris 9,9,9-tris ((1H, 1H, 2H, 2H-tridecafluorooctyl) -3,5,7 -(3,3,3-trifluoropropyl) -3,5,7-trimethyl-1,1,1-trimethoxypentasiloxane (exemplified compound number (1-25-3)) as a colorless liquid 1.38 g (Yield: 46.0%) was obtained.
1 1 H-NMR (400MHz, CDCl 3 ) δ (ppm): 0.17-0.18 (m, 9H), 0.77-0.80 (m, 6H), 0.91-0.96 (m) , 6H), 2.03-2.15 (m, 12H), 3.55 (s, 9H)
19 F-NMR (376MHz, CDCl 3 ) δ (ppm): -126.54, -123.67, -123.22, -122.23, -116.49, -81.30, -69.33
29 Si-NMR (79MHz, CDCl 3 ) δ (ppm): -85.60, -21.59, -20.98 to -20.86 (m), 7.237
IR (net, cm -1 ): 2951,210,2852,1444,1423,1367,1135,1265, 1236,1205,1140,1092,1068,1020,949,899,839,810,773,746,706 , 644.

(Evaluation example 1)
Exemplified compound No. (1-4-1) 50 mg was taken, and this was dissolved in 24.8 g of ethyl ethyl nonafluorobutyl ether (isomer mixture) (concentration: 0.2% by weight), and the soda glass was cleaned in this solution. The substrate was immersed for 2 hours. The soda glass substrate was pulled out of the solution, washed thoroughly with ethyl nonafluorobutyl ether and distilled water in this order, immersed in chloroform, and ultrasonically washed for 10 minutes. This was dried in a dryer at 70 ° C. for 30 minutes and then dried in a desiccator.
Water and 1 μL of hexadecane were placed on the treated substrate with a microsyringe, and the contact angle was determined by the θ / 2 method. When the five measurements were averaged, the water contact angle was 106 (2) degrees and the hexadecane contact angle was 68 (1). ) Degree. Further, when 50 μL of distilled water was placed on the glass substrate, the glass substrate was gradually tilted, the critical angles when the water droplets started to move were measured at 5 points, and the average was calculated, it was 10.7 (7) degrees. ..


(評価例2)
例示化合物番号(1-4-3)50mg(濃度:0.2重量%)をとり、これをエチルノナフルオロブチルエーテル(異性体混合物)24.8gに溶解させ、この溶液に清浄にしたソーダガラス基板を10秒間浸漬した。ソーダガラス基板を溶液から引き上げ、室温で一日放置した。このソーダガラス基板を、エチルノナフルオロブチルエーテル、蒸留水の順に十分に流し洗いし、クロロホルムに浸漬させて超音波洗浄を10分間行った。これを70℃の乾燥機で30分間乾燥させ、その後デシケータで乾燥させた。
処理基板に水およびヘキサデカン1μLをマイクロシリンジで乗せ、その接触角をθ/2法で求め、5回測定分を平均したところ、水接触角は107(1)度、ヘキサデカン接触角は68(1)度であった。また、蒸留水50μLをガラス基板上に乗せ、ガラス基板を徐々に傾け、水滴が動き始めたときの臨界角を5ヶ所で測定し平均を求めたところ、10.5(7)度であった。

(Evaluation example 2)
Exemplified compound No. (1-4-3) 50 mg (concentration: 0.2% by weight) was taken, this was dissolved in 24.8 g of ethyl nononafluorobutyl ether (isomer mixture), and the soda glass substrate was cleaned in this solution. Was immersed for 10 seconds. The soda glass substrate was pulled out of the solution and left at room temperature for a day. The soda glass substrate was thoroughly washed with ethyl nonafluorobutyl ether and distilled water in this order, immersed in chloroform, and ultrasonically washed for 10 minutes. This was dried in a dryer at 70 ° C. for 30 minutes and then dried in a desiccator.
Water and 1 μL of hexadecane were placed on the treated substrate with a microsyringe, and the contact angle was determined by the θ / 2 method. When the five measurements were averaged, the water contact angle was 107 (1) degrees and the hexadecane contact angle was 68 (1). ) Degree. Further, when 50 μL of distilled water was placed on the glass substrate, the glass substrate was gradually tilted, the critical angles when the water droplets started to move were measured at 5 points, and the average was calculated, it was 10.5 (7) degrees. ..


(評価例3)
例示化合物番号(1-4-3)の5重量%イソプロピルアルコール溶液1gとp-トルエンスルホン酸一水和物の10重量%イソプロピルアルコール溶液60mgを混合後、直ちに0.5mL取り、セルロースティシュー紙で清浄なソーダガラス基板表面へ拭き付け塗工を行った。これを16時間室温で静置した。クロロホルムでかけ流し、次いで蒸留水でかけ流し洗浄した。これを100mLのクロロホルムに浸漬し、超音波照射(28kHz+38kHz、340W)しながら10分間洗浄したところ、均質かつ透明に表面改質されたガラス基板を得た。この処理ガラス基板の水及びヘキサデカンとの接触角をθ/2法にて求めた。水との接触角は112.0(7)度、ヘキサデカンとの接触角は71(2)度、水滑落角は9.4(6)度であった。

(Evaluation example 3)
After mixing 1 g of the 5 wt% isopropyl alcohol solution of Exemplified Compound No. (1-4-3) and 60 mg of the 10 wt% isopropyl alcohol solution of p-toluenesulfonic acid monohydrate, immediately take 0.5 mL and use cellulose tissue paper. The surface of a clean soda glass substrate was wiped and coated. This was allowed to stand at room temperature for 16 hours. It was flushed with chloroform and then flushed with distilled water for washing. This was immersed in 100 mL of chloroform and washed for 10 minutes while irradiating with ultrasonic waves (28 kHz + 38 kHz, 340 W) to obtain a homogeneous and transparent surface-modified glass substrate. The contact angle of this treated glass substrate with water and hexadecane was determined by the θ / 2 method. The contact angle with water was 112.0 (7) degrees, the contact angle with hexadecane was 71 (2) degrees, and the water sliding angle was 9.4 (6) degrees.


(評価例4)
例示化合物番号(1-21-3)50mg(濃度:0.2重量%)をとり、これをエチルノナフルオロブチルエーテル24.8gに溶解させ、この溶液に清浄にしたソーダガラス基板を10秒間浸漬した。ソーダガラス基板を溶液から引き上げ、室温で一日放置した。このソーダガラス基板を、エチルノナフルオロブチルエーテル、蒸留水の順に十分に流し洗いし、クロロホルムに浸漬させて超音波洗浄を10分間行った。これを70℃の乾燥機で30分乾燥させ、その後デシケータで乾燥させた。
処理基板に水およびヘキサデカン1μLをマイクロシリンジで乗せ、その接触角をθ/2法で求め、5回測定分を平均したところ、水接触角は105(1)度、ヘキサデカン接触角は59(2)度であった。また、蒸留水50μLをガラス基板上に乗せ、ガラス基板を徐々に傾け、水滴が動き始めたときの臨界角を5ヶ所で測定し平均を求めたところ、8.2(8)度であった。

(Evaluation example 4)
Exemplified compound number (1-21-3) was taken at 50 mg (concentration: 0.2% by weight), dissolved in 24.8 g of ethyl nonafluorobutyl ether, and a clean soda glass substrate was immersed in this solution for 10 seconds. .. The soda glass substrate was pulled out of the solution and left at room temperature for a day. The soda glass substrate was thoroughly washed with ethyl nonafluorobutyl ether and distilled water in this order, immersed in chloroform, and ultrasonically washed for 10 minutes. This was dried in a dryer at 70 ° C. for 30 minutes and then dried in a desiccator.
Water and 1 μL of hexadecane were placed on the treated substrate with a microsyringe, and the contact angle was determined by the θ / 2 method. When the five measurements were averaged, the water contact angle was 105 (1) degrees and the hexadecane contact angle was 59 (2). ) Degree. Further, when 50 μL of distilled water was placed on the glass substrate, the glass substrate was gradually tilted, the critical angles when the water droplets started to move were measured at 5 points, and the average was calculated, it was 8.2 (8) degrees. ..


(評価例5)
例示化合物番号(1-25-3)50mg(濃度:0.2重量%)をとり、これをエチルノナフルオロブチルエーテル24.8gに溶解させ、この溶液に清浄にしたソーダガラス基板を10秒浸漬した。ソーダガラス基板を溶液から引き上げ、室温で一日放置した。このソーダガラス基板を、エチルノナフルオロブチルエーテル、蒸留水の順に十分に流し洗いし、クロロホルムに浸漬させて超音波洗浄を10分間行った。これを70℃の乾燥機で30分間乾燥させ、その後デシケータで乾燥させた。
処理基板に水およびヘキサデカン1μLをマイクロシリンジで乗せ、その接触角をθ/2法で求め、5回測定分を平均したところ、水接触角は104.7(9)度、ヘキサデカン接触角は52(4)度であった。また、蒸留水50μLをガラス基板上に乗せ、ガラス基板を徐々に傾け、水滴が動き始めたときの臨界角を5ヶ所で測定し平均を求めたところ、9.8(5)度であった。

(Evaluation example 5)
Exemplified compound number (1-25-3) was taken at 50 mg (concentration: 0.2% by weight), dissolved in 24.8 g of ethyl nonafluorobutyl ether, and a clean soda glass substrate was immersed in this solution for 10 seconds. .. The soda glass substrate was pulled out of the solution and left at room temperature for a day. The soda glass substrate was thoroughly washed with ethyl nonafluorobutyl ether and distilled water in this order, immersed in chloroform, and ultrasonically washed for 10 minutes. This was dried in a dryer at 70 ° C. for 30 minutes and then dried in a desiccator.
Water and 1 μL of hexadecane were placed on the treated substrate with a microsyringe, and the contact angle was determined by the θ / 2 method. When the five measurements were averaged, the water contact angle was 104.7 (9) degrees and the hexadecane contact angle was 52. It was (4) degrees. Further, when 50 μL of distilled water was placed on the glass substrate, the glass substrate was gradually tilted, the critical angles when the water droplets started to move were measured at 5 points, and the average was calculated, it was 9.8 (5) degrees. ..


(比較例1)
トリメトキシ(1H,1H,2H,2H-トリデカフルオロオクチル)シラン(C13CHCHSi(OMe))(比較化合物(1))50mg(濃度:0.2重量%)をとり、これをエチルノナフルオロブチルエーテル24.8gに溶解させ、この溶液に清浄にしたソーダガラス基板を10秒間浸漬した。ソーダガラス基板を溶液から引き上げ、室温で一日放置した。このソーダガラス基板を、エチルノナフルオロブチルエーテル、蒸留水の順に十分に流し洗いし、クロロホルムに浸漬させて超音波洗浄を10分間行った。これを70℃の乾燥機で30分間乾燥させ、その後デシケータで乾燥させた。
処理基板に水およびヘキサデカン1μLをマイクロシリンジで乗せ、その接触角をθ/2法で求め、5回測定分を平均したところ、水接触角は105(2)度、ヘキサデカン接触角は62(4)度であった。また、蒸留水50μLをガラス基板上に乗せ、ガラス基板を徐々に傾け、水滴が動き始めたときの臨界角を5ヶ所で測定し平均を求めたところ、15.5(8)度と大きい値を示し、動的撥液性がやや劣る結果が得られた。

(Comparative Example 1)
Take 50 mg (concentration: 0.2% by weight) of trimethoxy (1H, 1H, 2H, 2H-tridecafluorooctyl) silane (C6 F 13 CH 2 CH 2 Si (OMe) 3 ) (comparative compound (1)). , This was dissolved in 24.8 g of ethyl nonafluorobutyl ether, and the cleaned soda glass substrate was immersed in this solution for 10 seconds. The soda glass substrate was pulled out of the solution and left at room temperature for a day. The soda glass substrate was thoroughly washed with ethyl nonafluorobutyl ether and distilled water in this order, immersed in chloroform, and ultrasonically washed for 10 minutes. This was dried in a dryer at 70 ° C. for 30 minutes and then dried in a desiccator.
Water and 1 μL of hexadecane were placed on the treated substrate with a microsyringe, and the contact angle was determined by the θ / 2 method. When the five measurements were averaged, the water contact angle was 105 (2) degrees and the hexadecane contact angle was 62 (4). ) Degree. In addition, 50 μL of distilled water was placed on the glass substrate, the glass substrate was gradually tilted, the critical angles when the water droplets started to move were measured at five points, and the average was calculated. As a result, a large value of 15.5 (8) degrees was obtained. The result was that the dynamic liquid repellency was slightly inferior.


(比較例2)
比較化合物(トリエトキシ(1H,1H,2H,2H-トリデカフルオロオクチル)シラン(C13CHCHSi(OEt)))(比較化合物(2))の5重量%イソプロピルアルコール溶液10gとp-トルエンスルホン酸一水和物の10重量%イソプロピルアルコール溶液600mgを混合後、直ちに0.5mL取り、セルロースティシュー紙で清浄なソーダガラス基板表面へ拭き付け塗工を行った。これを16時間室温で静置した。ヘキサフルオロベンゼン・クロロホルム1:3溶液でかけ流し、次いで蒸留水でかけ流し洗浄した。これを100mLのクロロホルムに浸漬し、超音波照射(28kHz+38kHz、340W)しながら10分間洗浄したところ、ヘイズが大きく白濁した表面改質されたガラス基板を得た。この処理ガラス基板の水及びヘキサデカンとの接触角をθ/2法にて求めた。水との接触角は106(2)度、ヘキサデカンとの接触角は65(2)度であった。水滑落角は19(4)度と大きい値を示し、動的撥液性が劣る結果が得られた。

(Comparative Example 2)
10 g of a 5 wt% isopropyl alcohol solution of the comparative compound (triethoxy (1H, 1H, 2H, 2H-tridecafluorooctyl) silane (C6 F 13 CH 2 CH 2 Si (OEt) 3 )) (comparative compound (2)). After mixing 600 mg of a 10 wt% isopropyl alcohol solution of p-toluenesulfonic acid monohydrate, 0.5 mL was immediately taken and wiped onto a clean soda glass substrate surface with cellulose tissue paper. This was allowed to stand at room temperature for 16 hours. Hexafluorobenzene / chloroform 1: 3 solution was flushed, and then distilled water was flushed and washed. This was immersed in 100 mL of chloroform and washed for 10 minutes while irradiating with ultrasonic waves (28 kHz + 38 kHz, 340 W) to obtain a surface-modified glass substrate having a large haze and cloudiness. The contact angle of this treated glass substrate with water and hexadecane was determined by the θ / 2 method. The contact angle with water was 106 (2) degrees, and the contact angle with hexadecane was 65 (2) degrees. The water sliding angle showed a large value of 19 (4) degrees, and the result that the dynamic liquid repellency was inferior was obtained.


(比較例3)
比較化合物(トリメトキシ(1H,1H,2H,2H-トリデカフルオロオクチル)シラン(C13CHCHSi(OMe)))(比較化合物(1))の5重量%イソプロピルアルコール溶液1gとp-トルエンスルホン酸一水和物の10重量%イソプロピルアルコール溶液60mgを混合後、直ちに0.5mL取り、セルロースティシュー紙で清浄なソーダガラス基板表面へ拭き付け塗工を行った。これを16時間室温で静置した。ヘキサフルオロベンゼン・クロロホルム1:3溶液でかけ流し、次いで蒸留水でかけ流し洗浄した。これを100mLのクロロホルムに浸漬し、超音波照射(28kHz+38kHz、340W)しながら10分間洗浄したところ、ヘイズが大きく白濁した表面改質されたガラス基板を得た。この処理ガラス基板の水及びヘキサデカンとの接触角をθ/2法にて求めた。水との接触角は109(5)度、ヘキサデカンとの接触角は71(3)度であった。水滑落角は19(2)度と大きい値を示し、動的撥液性が劣る結果が得られた。




(Comparative Example 3)
1 g of a 5 wt% isopropyl alcohol solution of a comparative compound (trimethoxy (1H, 1H, 2H, 2H-tridecafluorooctyl) silane (C 6 F 13 CH 2 CH 2 Si (OMe) 3 )) (comparative compound (1)). After mixing 60 mg of a 10 wt% isopropyl alcohol solution of p-toluenesulfonic acid monohydrate, 0.5 mL was immediately taken and wiped onto a clean soda glass substrate surface with cellulose tissue paper. This was allowed to stand at room temperature for 16 hours. Hexafluorobenzene / chloroform 1: 3 solution was flushed, and then distilled water was flushed and washed. This was immersed in 100 mL of chloroform and washed for 10 minutes while irradiating with ultrasonic waves (28 kHz + 38 kHz, 340 W) to obtain a surface-modified glass substrate having a large haze and cloudiness. The contact angle of this treated glass substrate with water and hexadecane was determined by the θ / 2 method. The contact angle with water was 109 (5) degrees, and the contact angle with hexadecane was 71 (3) degrees. The water sliding angle showed a large value of 19 (2) degrees, and the result that the dynamic liquid repellency was inferior was obtained.



Claims (11)

一般式(1)
Figure 2022079889000092
[式中、nは2から6の整数である。mは2又は3である。Rは炭素数1から4のアルキル基を表す。Aは炭素数2から6のアルキレン基、又は一般式(2)
Figure 2022079889000093
(式中、R及びRは、それぞれ独立に、フッ素原子で置換されていてもよい炭素数1から4のアルキル基を表す。pは1から9の整数である。)
で示されるシロキサニレン基を表す。Xはハロゲン原子、炭素数1から3のアルコキシ基又は炭素数2から6のジアルキルアミノ基を表し、複数のXは同一又は相異なってもよい。Rは炭素数1から4のアルキル基を表す。rは0又は1である。ただし、nが6でmが3の時、Aは1,2-エチレン基にはなり得ない。]
で示される含フッ素シラン化合物。
General formula (1)
Figure 2022079889000092
[In the formula, n is an integer from 2 to 6. m is 2 or 3. R 1 represents an alkyl group having 1 to 4 carbon atoms. A is an alkylene group having 2 to 6 carbon atoms, or the general formula (2).
Figure 2022079889000093
(In the formula, R 3 and R 4 each independently represent an alkyl group having 1 to 4 carbon atoms which may be substituted with a fluorine atom. P is an integer of 1 to 9.)
Represents the siroxanilen group represented by. X 1 represents a halogen atom, an alkoxy group having 1 to 3 carbon atoms or a dialkylamino group having 2 to 6 carbon atoms, and a plurality of X 1s may be the same or different from each other. R 2 represents an alkyl group having 1 to 4 carbon atoms. r is 0 or 1. However, when n is 6 and m is 3, A cannot be a 1,2-ethylene group. ]
Fluorine-containing silane compound indicated by.
nが4又は6であり、mが2である、請求項1に記載の含フッ素シラン化合物。 The fluorine-containing silane compound according to claim 1, wherein n is 4 or 6 and m is 2. Aが1,2-エチレン基、1,3-プロピレン基又はR及びRがメチル基であるシロキサニレン基である、請求項1又は2に記載の含フッ素シラン化合物。 The fluorine-containing silane compound according to claim 1 or 2, wherein A is a 1,2-ethylene group, a 1,3-propylene group or a siloxanilen group in which R3 and R4 are methyl groups. 一般式(3)
Figure 2022079889000094
(式中、nは2から6の整数である。mは2又は3である。Rは炭素数1から4のアルキル基を表す。qは2から6の整数である。)
で示されるオレフィン化合物と、一般式(4)
Figure 2022079889000095
(式中、Xはハロゲン原子、炭素数1から3のアルコキシ基又は炭素数2から6のジアルキルアミノ基を表し、複数のXは同一又は相異なってもよい。Rは炭素数1から4のアルキル基を表す。rは0又は1である。)
で示されるヒドロシラン化合物とを、ヒドロシリル化触媒存在下で反応させることを特徴とする、一般式(1a)
Figure 2022079889000096
(式中、n、m、R、q、X、R及びrは前記と同義である。ただし、nが6でmが3の時、Aは1,2-エチレン基にはなり得ない。)
で示される含フッ素シラン化合物の製造方法。
General formula (3)
Figure 2022079889000094
(In the formula, n is an integer of 2 to 6. m is 2 or 3. R 1 represents an alkyl group having 1 to 4 carbon atoms. Q is an integer of 2 to 6.)
The olefin compound represented by the above and the general formula (4).
Figure 2022079889000095
(In the formula, X 1 represents a halogen atom, an alkoxy group having 1 to 3 carbon atoms or a dialkylamino group having 2 to 6 carbon atoms, and a plurality of X 1s may be the same or different from each other. R 2 may have 1 carbon atom. Represents an alkyl group from 4 to 4. r is 0 or 1.)
The general formula (1a) is characterized in that the hydrosilane compound represented by the above is reacted in the presence of a hydrosilylation catalyst.
Figure 2022079889000096
(In the formula, n, m, R 1 , q, X 1 , R 2 and r are synonymous with the above. However, when n is 6 and m is 3, A becomes a 1,2-ethylene group. I don't get it.)
A method for producing a fluorine-containing silane compound shown by.
一般式(6)
Figure 2022079889000097
(式中、R及びRは、それぞれ独立に、フッ素原子で置換されていてもよい炭素数1から4のアルキル基を表す。pは1から9の整数である。)
で示されるシロキサンジオール化合物に、一般式(5)
Figure 2022079889000098
(式中、nは2から6の整数である。mは2又は3である。Rは炭素数1から4のアルキル基を表す。Xはハロゲン原子を表す。)
で示される含フッ素ハロゲン化シラン化合物と、一般式(8)
Figure 2022079889000099
(式中、Xはハロゲン原子、炭素数1から3のアルコキシ基又は炭素数2から6のジアルキルアミノ基を表し、複数のXは同一又は相異なってもよい。Rは炭素数1から4のアルキル基を表す。rは0又は1である。Xはハロゲン原子を表す。)
で示されるハロゲン化シラン化合物とを反応させることを特徴とする、一般式(1b)
Figure 2022079889000100
(式中、n、m、R、X、R、R、p、R及びrは前記と同義である。)
で示される含フッ素シラン化合物の製造方法。
General formula (6)
Figure 2022079889000097
(In the formula, R 3 and R 4 each independently represent an alkyl group having 1 to 4 carbon atoms which may be substituted with a fluorine atom. P is an integer of 1 to 9.)
The siloxane diol compound represented by the above formula (5)
Figure 2022079889000098
(In the formula, n is an integer of 2 to 6. m is 2 or 3. R 1 represents an alkyl group having 1 to 4 carbon atoms. X 2 represents a halogen atom.)
Fluorine-containing halogenated silane compound represented by and the general formula (8).
Figure 2022079889000099
(In the formula, X 1 represents a halogen atom, an alkoxy group having 1 to 3 carbon atoms or a dialkylamino group having 2 to 6 carbon atoms, and a plurality of X 1s may be the same or different from each other. R 2 may have 1 carbon atom. Represents an alkyl group from 4 to 4. r is 0 or 1. X 3 represents a halogen atom.)
The general formula (1b) is characterized by reacting with the halogenated silane compound represented by.
Figure 2022079889000100
(In the formula, n, m, R 1 , X 1 , R 3 , R 4 , p, R 2 and r are synonymous with the above.)
A method for producing a fluorine-containing silane compound shown by.
一般式(1c)
Figure 2022079889000101
[式中、nは2から6の整数である。mは2又は3である。Rは、炭素数1から4のアルキル基を表す。Aは、炭素数2から6のアルキレン基、又は、一般式(2)
Figure 2022079889000102
(式中、R及びRは、それぞれ独立に、フッ素原子で置換されていてもよい炭素数1から4のアルキル基を表す。pは1から9の整数である。)
で示されるシロキサニレン基を表す。Xはハロゲン原子を表す。Rは炭素数1から4のアルキル基を表す。rは0又は1である。]
で示される含フッ素シラン化合物を、アルコキシ化剤又はアミノ化剤と反応させることを特徴とする、一般式(1d)
Figure 2022079889000103
(式中、n、m、R、A、R及びrは前記と同義である。Xは炭素数1から4のアルコキシ基又は炭素数2から6のジアルキルアミノ基を表す。)で示される含フッ素シラン化合物の製造方法。
General formula (1c)
Figure 2022079889000101
[In the formula, n is an integer from 2 to 6. m is 2 or 3. R 1 represents an alkyl group having 1 to 4 carbon atoms. A is an alkylene group having 2 to 6 carbon atoms, or the general formula (2).
Figure 2022079889000102
(In the formula, R 3 and R 4 each independently represent an alkyl group having 1 to 4 carbon atoms which may be substituted with a fluorine atom. P is an integer of 1 to 9.)
Represents the siroxanilen group represented by. X4 represents a halogen atom. R 2 represents an alkyl group having 1 to 4 carbon atoms. r is 0 or 1. ]
The general formula (1d), which comprises reacting the fluorine-containing silane compound represented by
Figure 2022079889000103
(In the formula, n, m, R 1 , A, R 2 and r are synonymous with the above. X 5 represents an alkoxy group having 1 to 4 carbon atoms or a dialkylamino group having 2 to 6 carbon atoms). The method for producing a fluorine-containing silane compound shown.
アルコキシ化剤がアルコール化合物である、請求項6に記載の含フッ素シラン化合物の製造方法。 The method for producing a fluorine-containing silane compound according to claim 6, wherein the alkoxylating agent is an alcohol compound. 請求項1から3のいずれかに記載の含フッ素シラン化合物及び有機溶剤を含んでなる表面改質組成物。 A surface modification composition comprising the fluorine-containing silane compound according to any one of claims 1 to 3 and an organic solvent. 請求項1から3のいずれかに記載の含フッ素シラン化合物、有機溶剤及び重合促進触媒を含んでなる請求項8に記載の表面改質組成物。 The surface modification composition according to claim 8, which comprises the fluorine-containing silane compound according to any one of claims 1 to 3, an organic solvent and a polymerization promoting catalyst. 重合促進触媒が酸触媒である請求項9に記載の表面改質組成物。 The surface modification composition according to claim 9, wherein the polymerization promoting catalyst is an acid catalyst. 請求項8、9又は10のいずれかに記載の表面改質組成物を塗工することを特徴とするガラス基材、金属酸化物基材又は金属基材の表面改質方法。

A method for surface modification of a glass substrate, a metal oxide substrate or a metal substrate, which comprises applying the surface modification composition according to any one of claims 8, 9 or 10.

JP2020190751A 2020-11-17 2020-11-17 Fluorine-containing silane compound, method for producing the same and surface-modifying composition comprising the same Pending JP2022079889A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020190751A JP2022079889A (en) 2020-11-17 2020-11-17 Fluorine-containing silane compound, method for producing the same and surface-modifying composition comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020190751A JP2022079889A (en) 2020-11-17 2020-11-17 Fluorine-containing silane compound, method for producing the same and surface-modifying composition comprising the same

Publications (1)

Publication Number Publication Date
JP2022079889A true JP2022079889A (en) 2022-05-27

Family

ID=81731495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020190751A Pending JP2022079889A (en) 2020-11-17 2020-11-17 Fluorine-containing silane compound, method for producing the same and surface-modifying composition comprising the same

Country Status (1)

Country Link
JP (1) JP2022079889A (en)

Similar Documents

Publication Publication Date Title
JP6791147B2 (en) Fluorine-containing ether compounds, fluorine-containing ether compositions, coating liquids and articles
KR102643184B1 (en) Fluorinated ether compounds, fluorinated ether compositions, coating solutions and articles
JP6107659B2 (en) Fluorine-containing ether compound, coating liquid, and method for producing substrate having surface treatment layer
JP5774018B2 (en) Surface treatment composition, method for producing the same, and surface-treated article
JP6378203B2 (en) Fluorine-containing ether composition, method for producing the same, coating liquid, substrate having surface treatment layer, and method for producing the same
CN111051383B (en) Fluorine-containing ether compound, composition, and article
US9611399B2 (en) Fluorinated coatings with lubricious additive
JP6950697B2 (en) Method for Producing Fluorine-Containing Ether Compound
CN105102505A (en) Fluorine-containing ether compound, fluorine-containing ether composition, and coating solution, as well as substrate having surface layer, and method for manufacturing same
JP2013510931A5 (en)
WO2013121984A1 (en) Fluorine-containing ether compound, fluorine-containing ether composition and coating fluid, and substrate having surface-treated layer and method for producing said substrate
JPWO2019039226A1 (en) Fluorine-containing ether compound, fluorine-containing ether composition, coating liquid, article and its manufacturing method
JPWO2013121986A1 (en) Fluorinated ether compound, fluorinated ether composition and coating liquid, and substrate having surface treatment layer and method for producing the same
WO2016032738A1 (en) Novel polyfluoroalkylated alkenes and silane compounds prepared therefrom
JP2014040373A (en) Fluorine-containing compound, coating composition, base material having water-repellent layer, and method for producing the material
JP5600900B2 (en) Water repellent composition
JP2022079889A (en) Fluorine-containing silane compound, method for producing the same and surface-modifying composition comprising the same
JP2022000417A (en) Fluoroalkyl-substituted silane compound, production method of the same, and surface modification composition containing the same
CN110650991B (en) Method for producing fluorine-containing ether compound, and fluorine-containing ether compound
JP5979332B1 (en) Fluorine-containing alkylsilane compound and process for producing the same
JP5979333B1 (en) Polyfluoroalkylallyl compound and process for producing the same
JP6741170B2 (en) Method for producing fluorine-containing ether compound, method for producing article
CN118922426A (en) Compound, composition, surface treatment agent, article, and method for producing article

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20201118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240625