JP2022077128A - Battery cell and manufacturing method - Google Patents

Battery cell and manufacturing method Download PDF

Info

Publication number
JP2022077128A
JP2022077128A JP2020187805A JP2020187805A JP2022077128A JP 2022077128 A JP2022077128 A JP 2022077128A JP 2020187805 A JP2020187805 A JP 2020187805A JP 2020187805 A JP2020187805 A JP 2020187805A JP 2022077128 A JP2022077128 A JP 2022077128A
Authority
JP
Japan
Prior art keywords
region
core material
battery cell
active material
material layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020187805A
Other languages
Japanese (ja)
Other versions
JP7245813B2 (en
Inventor
晴也 中井
Seiya Nakai
亮介 城田
Ryosuke Shirota
秀将 河合
Hidemasa Kawai
勝也 塩崎
Katsuya SHIOZAKI
和宏 前田
Kazuhiro Maeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Prime Planet Energy and Solutions Inc
Original Assignee
Prime Planet Energy and Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Prime Planet Energy and Solutions Inc filed Critical Prime Planet Energy and Solutions Inc
Priority to JP2020187805A priority Critical patent/JP7245813B2/en
Publication of JP2022077128A publication Critical patent/JP2022077128A/en
Application granted granted Critical
Publication of JP7245813B2 publication Critical patent/JP7245813B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

To provide a battery cell in which bending of electrode tabs is suppressed and a manufacturing method thereof.SOLUTION: A manufacturing method of a battery cell includes the steps of forming an active material layer and an uncoated portion on a long core material by applying a slurry containing a conductive material to a part of the core material, and applying compressive force to the active material layer with a compression roll while applying tension to the core material. In the step of applying compressive force to the active material layer, the compression roll and the uncoated portion are separated from each other.SELECTED DRAWING: Figure 5

Description

本技術は、電池セルおよびその製造方法に関する。 This technique relates to a battery cell and a method for manufacturing the same.

特開2015-176773号公報(特許文献1)には、電極板の未塗工部に直線上に延びる複数の皺(凹凸)を形成することが示されている。 Japanese Unexamined Patent Publication No. 2015-176773 (Patent Document 1) shows that a plurality of wrinkles (unevenness) extending in a straight line are formed on an uncoated portion of an electrode plate.

特開2015-176773号公報JP-A-2015-176737A

本体部と電極タブとを有する電極板において、電極タブの折り曲げに対する強度を向上させることが求められている。特許文献1に記載の電池は、捲回型の電極体構造を有するものであり、電極タブを有する電極体とは前提構成が全く異なる。従来の構造は、電極タブの折れ曲がりを抑制する観点から、必ずしも十分なものではない。 In an electrode plate having a main body and an electrode tab, it is required to improve the strength of the electrode tab against bending. The battery described in Patent Document 1 has a winding type electrode body structure, and its premise configuration is completely different from that of an electrode body having an electrode tab. The conventional structure is not always sufficient from the viewpoint of suppressing the bending of the electrode tab.

本技術の目的は、電極タブの折れ曲がりが抑制された電池セルおよびその製造方法を提供することにある。 An object of the present art is to provide a battery cell in which bending of an electrode tab is suppressed and a method for manufacturing the same.

本技術に係る電池セルの製造方法は、長尺の芯材上の一部に導電材を含むスラリーを塗布することにより、芯材上に活物質層と未塗工部とを形成する工程と、芯材に張力を作用させながら圧縮ロールにより活物質層に圧縮力を加える工程とを備える。活物質層に圧縮力を加える工程において、圧縮ロールと未塗工部とが離間する。 The method for manufacturing a battery cell according to this technique is a step of forming an active material layer and an uncoated portion on the core material by applying a slurry containing a conductive material to a part of the long core material. It is provided with a step of applying a compressive force to the active material layer by a compression roll while applying tension to the core material. In the process of applying a compressive force to the active material layer, the compression roll and the uncoated portion are separated from each other.

1つの局面では、本技術に係る電池セルは、芯材上に設けられた活物質層と未塗工部とを含み、本体部および本体部から突出する電極タブを有する電極板を備える。電極タブの根元部に位置する未塗工部に凹凸が形成されている。 In one aspect, the battery cell according to the present technology includes an active material layer provided on a core material and an uncoated portion, and includes a main body portion and an electrode plate having an electrode tab protruding from the main body portion. Unevenness is formed on the uncoated part located at the base of the electrode tab.

他の局面では、本技術に係る電池セルは、第1領域および第2領域を有する芯材、芯材の第1領域上に設けられた活物質層、および芯材の第2領域に位置する未塗工部を含む電極板を備える。電極板は、芯材の第1領域を含む本体部と、芯材の第2領域を含む電極タブとを有する。第1領域と第2領域とにおいて電極板の引張破断強度が互いに異なる。 In another aspect, the battery cell according to the present technique is located in a core material having a first region and a second region, an active material layer provided on the first region of the core material, and a second region of the core material. An electrode plate including an uncoated part is provided. The electrode plate has a main body portion including a first region of the core material and an electrode tab including a second region of the core material. The tensile breaking strength of the electrode plate differs between the first region and the second region.

本技術によれば、電極タブの折れ曲がりが抑制された電池セルおよびその製造方法を提供することができる。 According to the present technique, it is possible to provide a battery cell in which bending of an electrode tab is suppressed and a method for manufacturing the same.

角形二次電池の斜視図である。It is a perspective view of a square secondary battery. 図1におけるII-II断面図である。FIG. 2 is a sectional view taken along line II-II in FIG. 電池セルの製造方法の第一工程を示す図である。It is a figure which shows the 1st process of the manufacturing method of a battery cell. 電池セルの製造方法の第二工程を示す図である。It is a figure which shows the 2nd process of the manufacturing method of a battery cell. 電池セルの製造方法の第三工程を示す図である。It is a figure which shows the 3rd process of the manufacturing method of a battery cell. 電池セルの製造方法の第四工程を示す図である。It is a figure which shows the 4th process of the manufacturing method of a battery cell. 電極タブ周辺の構造を示す拡大図である。It is an enlarged view which shows the structure around the electrode tab. サンプル用の切り抜き部を示す図である。It is a figure which shows the cutout part for a sample. 環状サンプルの形成方法を示す図である。It is a figure which shows the formation method of the annular sample. 環状サンプルに圧縮力を加える工程を示す図(その1)である。It is a figure (the 1) which shows the process of applying a compressive force to an annular sample. 環状サンプルに圧縮力を加える工程を示す図(その2)である。It is a figure (the 2) which shows the process of applying a compressive force to an annular sample. 環状サンプルに圧縮力を加えたときの反力の計測結果を示す図である。It is a figure which shows the measurement result of the reaction force when the compressive force is applied to the annular sample. 芯材の第1領域および第2領域を示す図である。It is a figure which shows the 1st region and the 2nd region of a core material.

以下に、本技術の実施の形態について説明する。なお、同一または相当する部分に同一の参照符号を付し、その説明を繰返さない場合がある。 Hereinafter, embodiments of the present technology will be described. In some cases, the same or corresponding parts are designated by the same reference numeral and the description thereof may not be repeated.

なお、以下に説明する実施の形態において、個数、量などに言及する場合、特に記載がある場合を除き、本技術の範囲は必ずしもその個数、量などに限定されない。また、以下の実施の形態において、各々の構成要素は、特に記載がある場合を除き、本技術にとって必ずしも必須のものではない。 In the embodiments described below, when the number, quantity, etc. are referred to, the scope of the present technique is not necessarily limited to the number, quantity, etc., unless otherwise specified. Further, in the following embodiments, each component is not necessarily essential for the present technique unless otherwise specified.

なお、本明細書において、「備える(comprise)」および「含む(include)」、「有する(have)」の記載は、オープンエンド形式である。すなわち、ある構成を含むが、当該構成以外の他の校正を含むことを除外しない。 In addition, in this specification, the description of "comprise", "include", and "have" is in an open-ended format. That is, it includes certain configurations, but does not exclude inclusion of other calibrations other than those configurations.

図1は、角形二次電池1の斜視図である。図2は、図1におけるII-II断面図である。 FIG. 1 is a perspective view of the square secondary battery 1. FIG. 2 is a sectional view taken along line II-II in FIG.

図1,図2に示すように、角形二次電池1は、電池ケース100と、電極体200と、絶縁シート300と、正極端子400と、負極端子500と、正極集電部材600と、負極集電部材700と、カバー部材800とを含む。 As shown in FIGS. 1 and 2, the square secondary battery 1 includes a battery case 100, an electrode body 200, an insulating sheet 300, a positive electrode terminal 400, a negative electrode terminal 500, a positive electrode current collector member 600, and a negative electrode. The current collector member 700 and the cover member 800 are included.

電池ケース100は、開口を有する有底角筒状の角形外装体110と、角形外装体110の開口を封口する封口板120とからなる。角形外装体110および封口板120は、それぞれ金属製であることが好ましく、アルミニウムまたはアルミニウム合金製とすることが好ましい。 The battery case 100 includes a bottomed square cylindrical outer body 110 having an opening and a sealing plate 120 for sealing the opening of the square outer body 110. The square exterior body 110 and the sealing plate 120 are preferably made of metal, and preferably made of aluminum or an aluminum alloy.

封口板120には、電解液注液孔121が設けられる。電解液注液孔121から電池ケース100内に電解液が注液された後、電解液注液孔121は、封止部材122により封止される。封止部材122としては、たとえばブラインドリベットおよびその他の金属部材を用いることができる。 The sealing plate 120 is provided with an electrolytic solution injection hole 121. After the electrolytic solution is injected into the battery case 100 from the electrolytic solution injection hole 121, the electrolytic solution injection hole 121 is sealed by the sealing member 122. As the sealing member 122, for example, a blind rivet and other metal members can be used.

封口板120には、ガス排出弁123が設けられる。ガス排出弁123は、電池ケース100内の圧力が所定値以上となった際に破断する。これにより、電池ケース100内のガスが電池ケース100外に排出される。 The sealing plate 120 is provided with a gas discharge valve 123. The gas discharge valve 123 breaks when the pressure in the battery case 100 exceeds a predetermined value. As a result, the gas inside the battery case 100 is discharged to the outside of the battery case 100.

電極体200は、電解液とともに電池ケース100内に収容されている。電極体200は、枚葉状の正極板と枚葉状の負極板がセパレータを介して交互に積層されたものである。電極体200と角形外装体110の間には樹脂製の絶縁シート300が配置されている。 The electrode body 200 is housed in the battery case 100 together with the electrolytic solution. The electrode body 200 is formed by alternately laminating a single-leaf positive electrode plate and a single-leaf negative electrode plate via a separator. A resin insulating sheet 300 is arranged between the electrode body 200 and the square exterior body 110.

電極体200の封口板120側の端部には、正極板あるいは負極板から突出し、それらが積層されてなる正極積層タブ210および負極積層タブ220が設けられている。 At the end of the electrode body 200 on the sealing plate 120 side, a positive electrode laminated tab 210 and a negative electrode laminated tab 220 that protrude from the positive electrode plate or the negative electrode plate and are laminated thereof are provided.

正極積層タブ210と正極端子400とは、正極集電部材600を介して電気的に接続されている。正極集電部材600は、第1正極集電体610および第2正極集電体620を含む。なお、正極集電部材600は、1つの部品から構成されてもよい。正極集電部材600は、金属製であることが好ましく、アルミニウムまたはアルミニウム合金製とすることがより好ましい。 The positive electrode laminated tab 210 and the positive electrode terminal 400 are electrically connected to each other via a positive electrode current collector member 600. The positive electrode current collector 600 includes a first positive electrode current collector 610 and a second positive electrode current collector 620. The positive electrode current collector member 600 may be composed of one component. The positive electrode current collector member 600 is preferably made of metal, and more preferably made of aluminum or an aluminum alloy.

負極積層タブ220と負極端子500とは、負極集電部材700を介して電気的に接続されている。負極集電部材700は、第1負極集電体710および第2負極集電体720を含む。なお、負極集電部材700は、1つの部品から構成されてもよい。負極集電部材700は、金属製であることが好ましく、銅または銅合金製であることがより好ましい。 The negative electrode laminated tab 220 and the negative electrode terminal 500 are electrically connected via the negative electrode current collector 700. The negative electrode current collector 700 includes a first negative electrode current collector 710 and a second negative electrode current collector 720. The negative electrode current collector 700 may be composed of one component. The negative electrode current collector 700 is preferably made of metal, more preferably copper or a copper alloy.

正極端子400は、樹脂製の外部側絶縁部材410を介して封口板120に固定されている。負極端子500は、樹脂製の外部側絶縁部材510を介して封口板120に固定されている。 The positive electrode terminal 400 is fixed to the sealing plate 120 via a resin outer insulating member 410. The negative electrode terminal 500 is fixed to the sealing plate 120 via a resin outer insulating member 510.

正極端子400は金属製であることが好ましく、アルミニウムまたはアルミニウム合金製であることがより好ましい。負極端子500は金属製であることが好ましく、銅または銅合金製であることがより好ましい。負極端子500が、電池ケース100の内部側に配置される銅または銅合金からなる領域と、電池ケース100の外部側に配置されるアルミニウムまたはアルミニウム合金からなる領域を有するようにしてもよい。 The positive electrode terminal 400 is preferably made of metal, more preferably aluminum or an aluminum alloy. The negative electrode terminal 500 is preferably made of metal, more preferably copper or a copper alloy. The negative electrode terminal 500 may have a region made of copper or a copper alloy arranged on the inner side of the battery case 100 and a region made of aluminum or an aluminum alloy arranged on the outer side of the battery case 100.

カバー部材800は、第1正極集電体610と電極体200との間に位置する。カバー部材800は、負極集電体側に設けられてもよい。また、カバー部材800は必須の部材ではなく、適宜省略が可能である。 The cover member 800 is located between the first positive electrode current collector 610 and the electrode body 200. The cover member 800 may be provided on the negative electrode current collector side. Further, the cover member 800 is not an essential member and can be omitted as appropriate.

図3~図6は、角形二次電池1の電極体200の各製造工程を示す図である。なお、以下では、正極板について説明するが、負極板においても同様の構成を採用することが可能である。 3 to 6 are views showing each manufacturing process of the electrode body 200 of the square secondary battery 1. Although the positive electrode plate will be described below, the same configuration can be adopted for the negative electrode plate.

図3に示すように、長尺の芯材10が準備される。芯材10は、たとえばアルミニウム箔からなる。 As shown in FIG. 3, a long core material 10 is prepared. The core material 10 is made of, for example, aluminum foil.

次に、図4に示すように、芯材10上にスラリーが塗布され、正極活物質合剤層11および保護層12(両者を合わせて「活物質層」と称する場合がある。)が形成される。 Next, as shown in FIG. 4, the slurry is applied onto the core material 10 to form the positive electrode active material mixture layer 11 and the protective layer 12 (they may be collectively referred to as an “active material layer”). Will be done.

正極活物質合剤層11は、芯材10の両面に形成される。正極活物質合剤層11は、正極活物質(たとえばリチウムニッケルコバルトマンガン複合酸化物等)、結着材(ポリフッ化ビニリデン(PVdF)等)、および導電材(たとえば炭素材料等)を含む。 The positive electrode active material mixture layer 11 is formed on both surfaces of the core material 10. The positive electrode active material mixture layer 11 contains a positive electrode active material (for example, lithium nickel cobalt manganese composite oxide, etc.), a binder (polyvinylidene fluoride (PVdF), etc.), and a conductive material (for example, carbon material, etc.).

保護層12は、芯材10の両面に形成される。保護層12は、アルミナ粒子、結着材、および導電材を含む。なお、保護層12は形成されなくてもよい。 The protective layer 12 is formed on both sides of the core material 10. The protective layer 12 contains alumina particles, a binder, and a conductive material. The protective layer 12 does not have to be formed.

正極活物質合剤層11および保護層12は、芯材10表面の一部を残して形成される。正極活物質合剤層11および保護層12が形成されない領域は、未塗工部13となる。 The positive electrode active material mixture layer 11 and the protective layer 12 are formed leaving a part of the surface of the core material 10. The region where the positive electrode active material mixture layer 11 and the protective layer 12 are not formed is the uncoated portion 13.

さらに、図5に示すように、芯材10に(図中左右方向および上下方向の)張力を作用させながら、圧縮ロール900により活物質層(正極活物質合剤層11および保護層12)に圧縮力が加えられる。このとき、圧縮ロール900の第1部分910は、正極活物質合剤層11および保護層12に当接し、圧縮ロール900の第2部分920は、未塗工部13と離間している。圧縮ロール900の第2部分920の径は、第1部分910の径よりも小さい。 Further, as shown in FIG. 5, the active material layer (positive electrode active material mixture layer 11 and protective layer 12) is subjected to the compression roll 900 while applying tension (in the left-right direction and the vertical direction in the figure) to the core material 10. Compressive force is applied. At this time, the first portion 910 of the compression roll 900 is in contact with the positive electrode active material mixture layer 11 and the protective layer 12, and the second portion 920 of the compression roll 900 is separated from the uncoated portion 13. The diameter of the second portion 920 of the compression roll 900 is smaller than the diameter of the first portion 910.

この結果、正極活物質合剤層11および保護層12が形成された領域(第1領域)においては、芯材10に圧縮力が加えられ、芯材10を引き延ばす力が作用する。他方、未塗工部13が位置する領域(第2領域)においては、芯材10に圧縮力は加えられず、芯材10を引き延ばす力が作用しない。より具体的には、第1領域(合材部)は第2領域(箔部)と比較して、0.6%以上1.0%以下程度長手方向に伸ばされる。この結果、保護層12と未塗工部13との境界部分、より具体的には未塗工部13における保護層12に隣接する部分に紋様14(凹凸)が形成される。 As a result, in the region (first region) where the positive electrode active material mixture layer 11 and the protective layer 12 are formed, a compressive force is applied to the core material 10 and a force to stretch the core material 10 acts. On the other hand, in the region (second region) where the uncoated portion 13 is located, no compressive force is applied to the core material 10, and no force for stretching the core material 10 acts. More specifically, the first region (mixed material portion) is stretched in the longitudinal direction by about 0.6% or more and 1.0% or less as compared with the second region (foil portion). As a result, a pattern 14 (unevenness) is formed at the boundary portion between the protective layer 12 and the uncoated portion 13, and more specifically, at the portion of the uncoated portion 13 adjacent to the protective layer 12.

紋様14は、長尺の長手方向(図5中左右方向)に対して斜め方向に延びる。紋様14の延在方向は、長尺の長手方向(図5中左右方向)に対して好ましくは5°以上30°以下程度傾斜する。紋様14の凹凸の深さは、好ましくは0.025mm以上0.055mm以下程度である。紋様14の(図5中上下方向の)幅は、好ましくは3mm以上10mm以下程度である。 The pattern 14 extends in an oblique direction with respect to a long longitudinal direction (left-right direction in FIG. 5). The extending direction of the pattern 14 is preferably inclined by about 5 ° or more and 30 ° or less with respect to the long longitudinal direction (left-right direction in FIG. 5). The depth of the unevenness of the pattern 14 is preferably about 0.025 mm or more and 0.055 mm or less. The width of the pattern 14 (in the vertical direction in FIG. 5) is preferably about 3 mm or more and 10 mm or less.

そして、図6に示すように、保護層12部分と未塗工部13部分の芯材10を切断し、本体部200Aおよび本体部200Aから突出する正極タブ210A(電極タブ)が切り出される。そして本体部200Aの所定位置にて、長尺の長手方向に垂直(図5中上下方向)に切断して、枚葉状の正極板(電極板)を作成する。そして枚葉状の正極板は、別途形成される枚葉状の負極板と共にセパレータを介して交互に積層され、電極体200が作製される。 Then, as shown in FIG. 6, the core material 10 of the protective layer 12 portion and the uncoated portion 13 portion is cut, and the positive electrode tab 210A (electrode tab) protruding from the main body portion 200A and the main body portion 200A is cut out. Then, at a predetermined position of the main body portion 200A, a single-wafer-shaped positive electrode plate (electrode plate) is created by cutting vertically in the long longitudinal direction (vertical direction in FIG. 5). Then, the single-wafer-shaped positive electrode plate is alternately laminated with the separately formed single-wafer-shaped negative electrode plate via a separator to produce the electrode body 200.

図7は、正極タブ210A周辺の構造を示す拡大図である。図7に示すように、紋様14は、正極タブ210Aの根元部に位置する未塗工部13に形成されている。 FIG. 7 is an enlarged view showing the structure around the positive electrode tab 210A. As shown in FIG. 7, the pattern 14 is formed on the uncoated portion 13 located at the root portion of the positive electrode tab 210A.

図8は、サンプル用の切り抜き部10Aを示す図である。図8に示すように、本体部200Aおよび正極タブ210Aを有する正極板を切り出す前の芯材10から切り抜き部10Aが切り出される。切り抜き部10Aは、紋様14を含む未塗工部13から切り出される。 FIG. 8 is a diagram showing a cutout portion 10A for a sample. As shown in FIG. 8, the cutout portion 10A is cut out from the core material 10 before cutting out the positive electrode plate having the main body portion 200A and the positive electrode tab 210A. The cutout portion 10A is cut out from the unpainted portion 13 including the pattern 14.

図9は、正極タブ210Aの折り曲げに対する強度を測定するためのサンプルの形成方法を示す図である。図9(a)に示される切り抜き部10Aを環状にすることで、図9(b)に示される環状サンプル10Bが形成される。 FIG. 9 is a diagram showing a method of forming a sample for measuring the strength of the positive electrode tab 210A against bending. By forming the cutout portion 10A shown in FIG. 9A into an annular shape, the annular sample 10B shown in FIG. 9B is formed.

図10,図11は、環状サンプル10Bに圧縮力を加える工程を示す図である。図10に示すように、治具20のテーブル21上に環状サンプル10Bが載置され、テープ10Cにより環状サンプル10Bはテーブル21に固定される。治具20は、オートグラフにセットされる。オートグラフにより、押圧部材22を介して環状サンプル10Bに圧縮力が加えられる。図11に示すように、環状サンプル10Bはその高さがH(mm)になるまで圧縮される。 10 and 11 are diagrams showing a step of applying a compressive force to the annular sample 10B. As shown in FIG. 10, the annular sample 10B is placed on the table 21 of the jig 20, and the annular sample 10B is fixed to the table 21 by the tape 10C. The jig 20 is set in the autograph. A compressive force is applied to the annular sample 10B via the pressing member 22 by the autograph. As shown in FIG. 11, the annular sample 10B is compressed until its height reaches H (mm).

図12は、環状サンプル10Bに圧縮力を加えたときの反力の計測結果を示す図である。図12に示すように、H=0.5mm,1.0mm,1.5mmの各ケースについて、紋様14の凹凸の深さを0mm~0.070mmの間で変化させ(「0mm」は紋様14無しを意味する。)、オートグラフにより押圧部材22を移動させてHが所定の値(0.5mm,1.0mm,1.5mm)となるまで環状サンプル10Bを圧縮して変形させたときに計測される反力(N)を比較した結果、紋様14の凹凸が0.025mmおよび0.055mmの場合において、相対的に高い反力を示すことが示された。これは、紋様14の凹凸の深さが0.025mm以上0.055mm以下程度の範囲において、正極タブ210Aの折り曲げに対する反力が高いを示している。 FIG. 12 is a diagram showing a measurement result of a reaction force when a compressive force is applied to the annular sample 10B. As shown in FIG. 12, for each case of H = 0.5 mm, 1.0 mm, and 1.5 mm, the depth of the unevenness of the pattern 14 is changed between 0 mm and 0.070 mm (“0 mm” is the pattern 14). (Meaning none), when the pressing member 22 is moved by the autograph and the annular sample 10B is compressed and deformed until H reaches a predetermined value (0.5 mm, 1.0 mm, 1.5 mm). As a result of comparing the measured reaction forces (N), it was shown that when the unevenness of the pattern 14 was 0.025 mm and 0.055 mm, a relatively high reaction force was exhibited. This indicates that the reaction force against bending of the positive electrode tab 210A is high in the range where the unevenness depth of the pattern 14 is about 0.025 mm or more and 0.055 mm or less.

図13は、芯材10の第1領域10αおよび第2領域10βを示す図である。第1領域10αは、正極活物質合剤層11が塗工された部分に位置する。第2領域10βは、未塗工部13に位置する。第1領域10αおよび第2領域10βは、互いに同じ形状を有する。 FIG. 13 is a diagram showing a first region 10α and a second region 10β of the core material 10. The first region 10α is located in the portion where the positive electrode active material mixture layer 11 is coated. The second region 10β is located in the uncoated portion 13. The first region 10α and the second region 10β have the same shape as each other.

図13に示す第1領域10αおよび第2領域10βにおいて切り出されたサンプルの両端をオートグラフを用いて引っ張り、サンプルが破断したときの強度および伸びを測定した。その結果、第1領域10αと第2領域10βとにおいて、サンプルの引張破断強度は互いに異なる。より具体的には、芯材10の第1領域10αと第2領域10βとは、互いに同じ形状を有するにも関わらず、第1領域10αよりも第2領域10βの引張破断荷重の方が大きい。これは、第1領域10αにおいては、圧縮ロール900により芯材10が既に長手方向に圧延され、厚みが相対的に小さく(薄く)なっているのに対し、第2領域10βにおいては、圧縮ロール900の圧縮力が芯材10に作用しておらず、芯材10の厚みが第1領域10αよりも相対的に大きい(厚い)からであると考えられる。 Both ends of the sample cut out in the first region 10α and the second region 10β shown in FIG. 13 were pulled using an autograph, and the strength and elongation when the sample broke were measured. As a result, the tensile breaking strengths of the samples differ from each other in the first region 10α and the second region 10β. More specifically, although the first region 10α and the second region 10β of the core material 10 have the same shape, the tensile breaking load of the second region 10β is larger than that of the first region 10α. .. This is because in the first region 10α, the core material 10 is already rolled in the longitudinal direction by the compression roll 900 and the thickness is relatively small (thin), whereas in the second region 10β, the compression roll is used. It is considered that this is because the compressive force of 900 does not act on the core material 10 and the thickness of the core material 10 is relatively larger (thicker) than the first region 10α.

このように、本実施の形態に係る角形二次電池1によれば、正極タブ210Aの根元部に位置する未塗工部13に形成された紋様14により、正極タブ210Aの折れ曲がりを抑制することが可能である。同様の効果は、負極タブにおいても得られる。 As described above, according to the square secondary battery 1 according to the present embodiment, the pattern 14 formed on the uncoated portion 13 located at the root portion of the positive electrode tab 210A suppresses the bending of the positive electrode tab 210A. Is possible. Similar effects can be obtained with the negative electrode tab.

以上、本技術の実施の形態について説明したが、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本技術の範囲は特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 Although the embodiments of the present technology have been described above, it should be considered that the embodiments disclosed this time are exemplary in all respects and are not restrictive. The scope of the present invention is indicated by the scope of claims and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.

1 角形二次電池、10 芯材、10A 切り抜き部、10B 環状サンプル、10C テープ、10α 第1領域、10β 第2領域、11 正極活物質合剤層、12 保護層、13 未塗工部、14 紋様、20 治具、21 テーブル、22 押圧部材、100 電池ケース、110 角形外装体、120 封口板、121 電解液注液孔、122 封止部材、123 ガス排出弁、200 電極体、200A 本体部、210 正極積層タブ、220 負極積層タブ、210A 正極タブ、300 絶縁シート、400 正極端子、410 外部側絶縁部材、500 負極端子、510 外部側絶縁部材、600 正極集電部材、610 第1正極集電体、620 第2正極集電体、700 負極集電部材、710 第1負極集電体、720 第2負極集電体、800 カバー部材、900 圧縮ロール、910 第1部分(圧縮部分)、920 第2部分(離間部分)。 1 Square secondary battery, 10 core material, 10A cutout part, 10B annular sample, 10C tape, 10α 1st region, 10β 2nd region, 11 positive electrode active material mixture layer, 12 protective layer, 13 uncoated part, 14 Pattern, 20 jigs, 21 tables, 22 pressing members, 100 battery cases, 110 square exterior bodies, 120 sealing plates, 121 electrolyte injection holes, 122 sealing members, 123 gas discharge valves, 200 electrode bodies, 200A main body , 210 Positive Electrode Laminated Tab, 220 Negative Electrode Laminated Tab, 210A Positive Electrode Tab, 300 Insulation Sheet, 400 Positive Electrode Terminal, 410 External Insulation Member, 500 Negative Electrode Terminal, 510 External Insulation Member, 600 Positive Electrode Collector, 610 First Positive Electrode Collection Electric body, 620 second positive electrode collector, 700 negative electrode current collector, 710 first negative electrode collector, 720 second negative electrode collector, 800 cover member, 900 compression roll, 910 first part (compression part), 920 Second part (separated part).

Claims (10)

長尺の芯材上の一部に導電材を含むスラリーを塗布することにより、前記芯材上に活物質層と未塗工部とを形成する工程と、
前記芯材に張力を作用させながら圧縮ロールにより前記活物質層に圧縮力を加える工程とを備え、
前記活物質層に前記圧縮力を加える工程において、前記圧縮ロールと前記未塗工部とが離間する、電池セルの製造方法。
A step of forming an active material layer and an uncoated portion on the core material by applying a slurry containing a conductive material to a part of the long core material.
A step of applying a compressive force to the active material layer by a compression roll while applying tension to the core material is provided.
A method for manufacturing a battery cell in which the compression roll and the uncoated portion are separated from each other in the step of applying the compressive force to the active material layer.
前記活物質層に前記圧縮力を加える工程において、前記未塗工部における前記活物質層に隣接する部分に前記長尺の長手方向に対して斜め方向に延びる凹凸が形成される、請求項1に記載の電池セルの製造方法。 Claim 1 in the step of applying the compressive force to the active material layer, unevenness extending in an oblique direction with respect to the long longitudinal direction is formed in a portion of the uncoated portion adjacent to the active material layer. The method for manufacturing a battery cell described in 1. 前記凹凸の深さが0.025mm以上0.055mm以下である、請求項2に記載の電池セルの製造方法。 The method for manufacturing a battery cell according to claim 2, wherein the depth of the unevenness is 0.025 mm or more and 0.055 mm or less. 前記活物質層に前記圧縮力を加える工程の後、前記長尺の前記芯材を切断して、本体部および前記本体部から突出する電極タブを有する電極板を切り出す工程をさらに備えた、請求項1から請求項3のいずれか1項に記載の電池セルの製造方法。 After the step of applying the compressive force to the active material layer, the claim further comprises a step of cutting the long core material to cut out a main body portion and an electrode plate having an electrode tab protruding from the main body portion. The method for manufacturing a battery cell according to any one of claims 1 to 3. 前記電極板は正極板である、請求項4に記載の電池セルの製造方法。 The method for manufacturing a battery cell according to claim 4, wherein the electrode plate is a positive electrode plate. 芯材上に設けられた活物質層と未塗工部とを含み、本体部および前記本体部から突出する電極タブを有する電極板を備え、
前記電極タブの根元部に位置する前記未塗工部に凹凸が形成された、電池セル。
It includes an active material layer provided on a core material and an uncoated portion, and is provided with an electrode plate having a main body portion and an electrode tab protruding from the main body portion.
A battery cell in which irregularities are formed on the uncoated portion located at the base of the electrode tab.
前記凹凸は、前記本体部と前記電極タブとの境界に対して斜め方向に延びる、請求項6に記載の電池セル。 The battery cell according to claim 6, wherein the unevenness extends in an oblique direction with respect to a boundary between the main body and the electrode tab. 前記凹凸の深さは0.025mm以上0.055mm以下である、請求項6または請求項7に記載の電池セル。 The battery cell according to claim 6 or 7, wherein the unevenness has a depth of 0.025 mm or more and 0.055 mm or less. 第1領域および第2領域を有する芯材、前記芯材の第1領域上に設けられた活物質層、および前記芯材の第2領域に位置する未塗工部を含む電極板を備え、
前記電極板は、前記芯材の前記第1領域を含む本体部と、前記芯材の前記第2領域を含む電極タブとを有し、
前記第1領域と前記第2領域とにおいて前記電極板の引張破断強度が互いに異なる、電池セル。
An electrode plate including a core material having a first region and a second region, an active material layer provided on the first region of the core material, and an uncoated portion located in the second region of the core material is provided.
The electrode plate has a main body portion including the first region of the core material and an electrode tab including the second region of the core material.
A battery cell in which the tensile breaking strengths of the electrode plates differ from each other in the first region and the second region.
前記電極板は正極板である、請求項6から請求項9のいずれか1項に記載の電池セル。 The battery cell according to any one of claims 6 to 9, wherein the electrode plate is a positive electrode plate.
JP2020187805A 2020-11-11 2020-11-11 Battery cell and manufacturing method thereof Active JP7245813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020187805A JP7245813B2 (en) 2020-11-11 2020-11-11 Battery cell and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020187805A JP7245813B2 (en) 2020-11-11 2020-11-11 Battery cell and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2022077128A true JP2022077128A (en) 2022-05-23
JP7245813B2 JP7245813B2 (en) 2023-03-24

Family

ID=81654248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020187805A Active JP7245813B2 (en) 2020-11-11 2020-11-11 Battery cell and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP7245813B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013235673A (en) * 2012-05-07 2013-11-21 Toray Eng Co Ltd Battery electrode sheet manufacturing apparatus and manufacturing method
WO2018021214A1 (en) * 2016-07-28 2018-02-01 三洋電機株式会社 Secondary battery and method for manufacturing same
JP2018156839A (en) * 2017-03-17 2018-10-04 三洋電機株式会社 Manufacturing method of electrode plate and manufacturing method of secondary battery
JP2020135979A (en) * 2019-02-15 2020-08-31 プライムアースEvエナジー株式会社 Secondary battery electrode plate group, manufacturing method thereof, and secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013235673A (en) * 2012-05-07 2013-11-21 Toray Eng Co Ltd Battery electrode sheet manufacturing apparatus and manufacturing method
WO2018021214A1 (en) * 2016-07-28 2018-02-01 三洋電機株式会社 Secondary battery and method for manufacturing same
JP2018156839A (en) * 2017-03-17 2018-10-04 三洋電機株式会社 Manufacturing method of electrode plate and manufacturing method of secondary battery
JP2020135979A (en) * 2019-02-15 2020-08-31 プライムアースEvエナジー株式会社 Secondary battery electrode plate group, manufacturing method thereof, and secondary battery

Also Published As

Publication number Publication date
JP7245813B2 (en) 2023-03-24

Similar Documents

Publication Publication Date Title
JP5852061B2 (en) Electrolyte assembly for secondary battery with new laminated structure
EP2445036B1 (en) Terminal for sealed battery and manufacturing method therefor
DE69927556T2 (en) Flat cells
JP2022093710A (en) Battery grid with varied corrosion resistance
EP2395587A1 (en) Secondary battery, battery pack having the secondary battery, and method for manufacturing the secondary battery
US8734537B2 (en) Battery production method
KR20040088500A (en) Battery and method for manufacturing spiral electrode group for use therein
US11811091B2 (en) Electrode assembly and secondary battery
US8852774B2 (en) Method of battery production
EP2637238B1 (en) Rechargeable battery and battery module
JP4855708B2 (en) Electrode hoop rolling method
WO2001084647A1 (en) Cell tube and method of manufacturing the cell tube
KR101017909B1 (en) Cylindrical Battery Can for Preparation of Battery and Process of Fabricating the Same
JP5364512B2 (en) Cylindrical battery
JP2022077128A (en) Battery cell and manufacturing method
JP2009054376A (en) Method and device for manufacturing lithium secondary battery, and lithium secondary battery
JP2007103218A (en) Battery
CN220106583U (en) Pole piece, battery core and secondary battery
US20190341201A1 (en) Electrode for an electrochemical bundle of a metal-ion storage battery or a supercapacitor, method for producing the associated bundle and storage battery
EP4040545A1 (en) Method for producing secondary battery, and secondary battery
WO2021149489A1 (en) Secondary battery
CN220106582U (en) Pole piece, battery core and secondary battery
CN116259857A (en) Lithium ion secondary battery and method for manufacturing lithium ion secondary battery
KR19990057608A (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP2023097821A (en) Battery manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230313

R150 Certificate of patent or registration of utility model

Ref document number: 7245813

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150