JP2022074953A - Optical device - Google Patents

Optical device Download PDF

Info

Publication number
JP2022074953A
JP2022074953A JP2020185408A JP2020185408A JP2022074953A JP 2022074953 A JP2022074953 A JP 2022074953A JP 2020185408 A JP2020185408 A JP 2020185408A JP 2020185408 A JP2020185408 A JP 2020185408A JP 2022074953 A JP2022074953 A JP 2022074953A
Authority
JP
Japan
Prior art keywords
receiving window
dew condensation
light
light emitting
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020185408A
Other languages
Japanese (ja)
Other versions
JP7046144B1 (en
Inventor
一 小堀
Hajime Kobori
栄嗣 川崎
Eiji Kawasaki
智之 石川
Tomoyuki Ishikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Signal Co Ltd
Original Assignee
Nippon Signal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Signal Co Ltd filed Critical Nippon Signal Co Ltd
Priority to JP2020185408A priority Critical patent/JP7046144B1/en
Application granted granted Critical
Publication of JP7046144B1 publication Critical patent/JP7046144B1/en
Publication of JP2022074953A publication Critical patent/JP2022074953A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To determine dew condensation regardless of ambient brightness.SOLUTION: A control part 22 starts light emission by a laser light projecting part 11 (step S11), and measures a temperature and humidity of air of an internal space B1 of own machine, and a temperature of an inner surface 151 of a light projecting and receiving window 15 (step S12). A distance measuring part 21 measures a distance measuring value and a light quantity value (step S13). The control part 22 determines whether or not there is dew condensation on the light projecting and receiving window 15, based on the measured distance measuring value and light quantity value (step S14). When it determines whether there is not dew condensation, the control part 22 calculates a dew condensation index, and determines where or not the calculated dew condensation index is equal to or more than a threshold (step S15). When it determines there is the dew condensation in the step S14 (YES), and the dew condensation index is equal to or more than the threshold in the step S15 (YES), the control part 22 controls a heater driver 25 and heats the light projecting and receiving window 15.SELECTED DRAWING: Figure 3

Description

本発明は、結露を少なくする技術に関する。 The present invention relates to a technique for reducing dew condensation.

結露を少なくする技術として、特許文献1には、カメラで撮影した窓の画像を解析して窓が曇る可能性が高い、又は窓が曇っている、と判定した場合に窓をヒータで加熱する技術が開示されている。 As a technique for reducing dew condensation, Patent Document 1 describes that when an image of a window taken by a camera is analyzed and it is determined that the window is likely to be fogged or the window is fogged, the window is heated by a heater. The technology is disclosed.

特開2019-004254号公報Japanese Unexamined Patent Publication No. 2019-004254

特許文献1の技術のように撮影した窓の画像に基づいて結露の判定を行う場合、周囲が暗いと窓の画像も暗くなって結露の判定ができなくなることが起こり得る。
本発明は、上記の背景に鑑み、周囲の明るさによらず結露の判定を行うことを目的とする。
When the determination of dew condensation is performed based on the image of the window taken as in the technique of Patent Document 1, if the surroundings are dark, the image of the window may become dark and the determination of dew condensation may not be possible.
In view of the above background, an object of the present invention is to determine dew condensation regardless of the ambient brightness.

上述した課題を解決するために、本発明は、同軸光学系の距離画像センサの測距値に基づき前記距離画像センサの投受光窓に結露があると判定した場合、前記投受光窓を加熱する光学機器を第1の態様として提供する。 In order to solve the above-mentioned problems, the present invention heats the light emitting / receiving window when it is determined that there is dew condensation on the light emitting / receiving window of the distance image sensor based on the distance measurement value of the distance image sensor of the coaxial optical system. The optical device is provided as the first aspect.

第1の態様の光学機器によれば、周囲の明るさによらず結露の判定を行うことができる。 According to the optical device of the first aspect, dew condensation can be determined regardless of the ambient brightness.

上記の第1の態様の光学機器において、所定範囲内の測距値が測定される場合に前記投受光窓に結露があると判定する、という構成が第2の態様として採用されてもよい。 In the optical device of the first aspect described above, the configuration in which it is determined that there is dew condensation on the light emitting / receiving window when the distance measurement value within a predetermined range is measured may be adopted as the second aspect.

第2の態様の光学機器によれば、距離画像に含まれる各画素の測距値だけがあれば結露の有無を判定することができる。 According to the optical device of the second aspect, it is possible to determine the presence or absence of dew condensation if there is only the distance measurement value of each pixel included in the distance image.

上記の第1の態様の光学機器において、所定範囲内の測距値が測定された画素が、所定距離内で所定数以上、隣接又は近接する場合に前記投受光窓に結露があると判定する、という構成が第3の態様として採用されてもよい。 In the optical device of the first aspect described above, when the pixels whose distance measurement values within a predetermined range are measured are adjacent or close to each other by a predetermined number or more within a predetermined distance, it is determined that there is dew condensation on the light emitting / receiving window. , May be adopted as the third aspect.

第3の態様の光学機器によれば、外乱等の影響で測距値に誤りが生じる場合の誤判定を抑制することができる。 According to the optical device of the third aspect, it is possible to suppress erroneous determination when an error occurs in the distance measurement value due to the influence of disturbance or the like.

上記の第1乃至第3のいずれか1の態様の光学機器において、前記測距値に加え前記距離画像センサが測定する光量値に基づき前記投受光窓における結露の有無を判定する、という構成が第4の態様として採用されてもよい。 In the optical device according to any one of the first to third aspects, the presence or absence of dew condensation in the light emitting / receiving window is determined based on the light quantity value measured by the distance image sensor in addition to the distance measuring value. It may be adopted as a fourth aspect.

第4の態様の光学機器によれば、測距値だけを用いて判定が行われる場合に比べて、結露の判定の精度を高めることができる。 According to the optical device of the fourth aspect, the accuracy of the determination of dew condensation can be improved as compared with the case where the determination is performed using only the distance measurement value.

上記の第4の態様の光学機器において、所定範囲内の測距値が測定され、かつ、当該測距値が測定された画素の光量値が所定範囲内である場合に前記投受光窓に結露があると判定する、という構成が第5の態様として採用されてもよい。 In the optical device of the fourth aspect described above, when the distance measurement value within a predetermined range is measured and the light intensity value of the pixel to which the distance measurement value is measured is within the predetermined range, dew condensation occurs on the light emitting / receiving window. The configuration of determining that there is may be adopted as the fifth aspect.

第5の態様の光学機器によれば、測距値だけを用いて判定が行われる場合に比べて、結露の判定の精度を高めることができる。 According to the optical device of the fifth aspect, the accuracy of the determination of dew condensation can be improved as compared with the case where the determination is performed using only the distance measurement value.

上記の第4の態様の光学機器において、所定範囲内の測距値が測定され、かつ、所定範囲内の光量値が測定された画素が、所定距離内で所定数以上、隣接又は近接する場合に前記投受光窓に結露があると判定する、という構成が第6の態様として採用されてもよい。 In the optical device of the fourth aspect described above, when the distance measurement value within a predetermined range is measured and the pixels for which the light intensity value within the predetermined range is measured are adjacent or close to each other by a predetermined number or more within a predetermined distance. A configuration in which it is determined that there is dew condensation on the light receiving / receiving window may be adopted as the sixth aspect.

第6の態様の光学機器によれば、外乱等の影響で画素単位で測距値又は光量値に誤りが生じる場合の誤判定を抑制することができる。 According to the optical device of the sixth aspect, it is possible to suppress erroneous determination when an error occurs in the distance measurement value or the light amount value in pixel units due to the influence of disturbance or the like.

上記の第1乃至第6いずれか1の態様の光学機器において、前記距離画像センサの所定領域内の画素に関する測定値に基づき前記投受光窓における結露の有無を判定する、という構成が第7態様として採用されてもよい。 In the optical device according to any one of the first to sixth aspects, the seventh aspect is to determine the presence or absence of dew condensation on the light emitting / receiving window based on the measured values of the pixels in the predetermined region of the distance image sensor. May be adopted as.

第7の態様の光学機器によれば、判定の処理の負荷を軽減することができる。 According to the optical device of the seventh aspect, the load of the determination process can be reduced.

上記の第1乃至第7いずれか1の態様の光学機器において、自機内の空気の温度と湿度の測定値と、前記投受光窓の温度の測定値に基づき算出した前記投受光窓における結露の発生のしやすさの指標が所定の閾値以上である場合に前記投受光窓を加熱する、という構成が第8の態様として採用されてもよい。 In the optical device of any one of the first to seventh aspects described above, the dew condensation in the light emitting / receiving window calculated based on the measured values of the temperature and humidity of the air in the own machine and the measured values of the temperature of the light receiving / receiving window. An eighth aspect may be adopted in which the light emitting / receiving window is heated when the index of susceptibility to generation is equal to or higher than a predetermined threshold value.

第8の態様の光学機器によれば、予め透過部材を加熱して結露を予防することができる。 According to the optical device of the eighth aspect, the transmission member can be heated in advance to prevent dew condensation.

上記の第8の態様の光学機器において、前記投受光窓を加熱するヒータの抵抗値に基づき前記投受光窓の温度を測定する、という構成が第9の態様として採用されてもよい。 In the optical device of the eighth aspect described above, the configuration of measuring the temperature of the light emitting and receiving window based on the resistance value of the heater for heating the light receiving and receiving window may be adopted as the ninth aspect.

第9の態様の光学機器によれば、電流及び電圧以外の値を測定しなくとも、投受光窓の温度を測定することができる。 According to the optical device of the ninth aspect, the temperature of the light emitting / receiving window can be measured without measuring values other than the current and the voltage.

上記の第8の態様の光学機器において、前記距離画像センサに対する電力供給の開始時刻からの経過時間に基づき前記投受光窓の温度を測定する、という構成が第10の態様として採用されてもよい。 In the optical device of the eighth aspect described above, a configuration in which the temperature of the light receiving / receiving window is measured based on the elapsed time from the start time of power supply to the distance image sensor may be adopted as the tenth aspect. ..

第10の態様の光学機器によれば、投受光窓に何も設けなくとも、投受光窓の温度を測定することができる。 According to the optical device of the tenth aspect, the temperature of the light emitting / receiving window can be measured without providing anything in the light emitting / receiving window.

実施例に係る光学機器の構成を表す図The figure which shows the structure of the optical device which concerns on Example 測距値及び光量値の一例を表す図Diagram showing an example of distance measurement value and light intensity value 加熱処理における動作手順の一例を表す図The figure which shows an example of the operation procedure in a heat treatment

[1]実施例
図1は実施例に係る光学機器1の構成を表す。光学機器1は、光を照射して、物体に反射して戻ってきた光に基づいて物体までの距離を測定する装置である。光学機器1は、レーザー投光部11と、レーザー受光部12と、ハーフミラー13と、可動ミラー14と、投受光窓15と、ヒータ16と、測距部21と、制御部22と、電源部23と、温度・湿度センサ24と、ヒータドライバ25とを備える。
[1] Example FIG. 1 shows the configuration of the optical device 1 according to the embodiment. The optical device 1 is a device that irradiates light and measures the distance to the object based on the light reflected by the object and returned. The optical device 1 includes a laser flooding unit 11, a laser light receiving unit 12, a half mirror 13, a movable mirror 14, a light emitting / receiving window 15, a heater 16, a ranging unit 21, a control unit 22, and a power supply. A unit 23, a temperature / humidity sensor 24, and a heater driver 25 are provided.

レーザー投光部11は、所定の光量の光を発する光源である。本実施例では、レーザー投光部11は、LED(Light Emitting Diode:発光ダイオード)を主走査方向A11に1列に並べたLEDロッドである。主走査方向A11は、図1においては、図の奥行方向に沿った方向である。レーザー受光部12は、レーザー投光部11が照射した光の反射光を受光して電気信号に変換する複数の受光素子を1列に並べたイメージセンサである。レーザー受光部12は、レーザー投光部11が有するLEDと同じ数の受光素子を有する。 The laser projection unit 11 is a light source that emits a predetermined amount of light. In this embodiment, the laser light emitting unit 11 is an LED rod in which LEDs (Light Emitting Diodes) are arranged in a row in the main scanning direction A11. In FIG. 1, the main scanning direction A11 is a direction along the depth direction of the figure. The laser light receiving unit 12 is an image sensor in which a plurality of light receiving elements that receive the reflected light of the light emitted by the laser light projecting unit 11 and convert it into an electric signal are arranged in a row. The laser light receiving unit 12 has the same number of light receiving elements as the LEDs of the laser light projecting unit 11.

レーザー受光部12が受光した光が変換された電気信号は、後述するように、光を反射した物体の画像を表すことになる。ハーフミラー13は、一方の面(透過面)に入射する光を透過し、反対側の面(反射面)に入射する光を全反射する。ハーフミラー13は、レーザー投光部11が照射した光が透過面に入射し、その光の入射光をレーザー受光部12に向けて全反射する位置に設けられている。 The electric signal converted from the light received by the laser light receiving unit 12 represents an image of an object that reflects the light, as will be described later. The half mirror 13 transmits light incident on one surface (transmissive surface) and totally reflects light incident on the opposite surface (reflection surface). The half mirror 13 is provided at a position where the light emitted by the laser projection unit 11 is incident on the transmission surface and the incident light of the light is totally reflected toward the laser light receiving unit 12.

可動ミラー14は、副走査方向A12に移動可能に設けられたミラーである。副走査方向A12とは、主走査方向A11に直交する方向のことであり、主走査方向A11への走査が行われたあと副走査方向A12に1列ずれて走査が行われることで矩形の画像が形成される。可動ミラー14は、副走査方向A12に移動しながら、ハーフミラー13を透過してきたレーザー投光部11の光を投受光窓15に向けて反射する。 The movable mirror 14 is a mirror provided so as to be movable in the sub-scanning direction A12. The sub-scanning direction A12 is a direction orthogonal to the main scanning direction A11, and is a rectangular image due to scanning in the main scanning direction A11 and then scanning by one row in the sub-scanning direction A12. Is formed. The movable mirror 14 reflects the light of the laser projecting unit 11 that has passed through the half mirror 13 toward the light emitting / receiving window 15 while moving in the sub-scanning direction A12.

なお、本実施例では、上記のとおり可動ミラー14が副走査方向A12に沿った1軸の経路を移動したが、例えば、レーザー投光部11が、1つのLRDだけを有し、主走査方向A11及び副走査方向A12に沿った2軸の経路を移動することで2方向の走査を行ってもよい。投受光窓15は、自装置の内部空間B1と外部空間B2の境目に設けられた、レーザー投光部11が投光した光とレーザー受光部12が受光する光とを透過する透明な窓である。 In this embodiment, as described above, the movable mirror 14 moves along the uniaxial path along the sub-scanning direction A12. For example, the laser projection unit 11 has only one LRD and the main scanning direction. Scanning in two directions may be performed by moving a biaxial path along A11 and the sub-scanning direction A12. The light emitting / receiving window 15 is a transparent window provided at the boundary between the internal space B1 and the external space B2 of the own device and transmitting the light projected by the laser light emitting unit 11 and the light received by the laser light receiving unit 12. be.

内部空間B1及び外部空間B2の気温差が大きくなると、外部空間B2の空気によって冷やされた投受光窓15の内部空間B1側の内面151付近の空気が冷やされて、内面151に水滴が付着する現象、いわゆる結露が生じることがある。結露が生じると、投受光窓15に入射した反射光が内面151から出射する際に水滴に当たって拡散し、レーザー受光部12が受光する光の光量が減少する。その結果、光を反射した物体の正確な画像が表されなくなる。 When the temperature difference between the internal space B1 and the external space B2 becomes large, the air near the inner surface 151 on the internal space B1 side of the light receiving / receiving window 15 cooled by the air in the external space B2 is cooled, and water droplets adhere to the inner surface 151. A phenomenon, so-called dew condensation, may occur. When dew condensation occurs, the reflected light incident on the light emitting / receiving window 15 hits water droplets and diffuses when emitted from the inner surface 151, and the amount of light received by the laser light receiving unit 12 decreases. As a result, an accurate image of the light-reflecting object is not represented.

ヒータ16は、以上のとおり画質を劣化させる原因となる結露を防止するために設けられた加熱用の器具である。ヒータ16は、電気を流すことで熱を発する発熱線を有し、その発熱線が投受光窓15の内面151に貼り付けられる。発熱線に電気が流されることで、ヒータ16は、投受光窓15の内面151側を加熱する。ヒータ16によって投受光窓15の内面151側が加熱されると、内面151付近の空気が冷やされなくなり、結露を防止することができる。 The heater 16 is a heating device provided for preventing dew condensation that causes deterioration of image quality as described above. The heater 16 has a heating wire that generates heat by passing electricity, and the heating wire is attached to the inner surface 151 of the light emitting / receiving window 15. By passing electricity through the heating wire, the heater 16 heats the inner surface 151 side of the light emitting / receiving window 15. When the inner surface 151 side of the light emitting / receiving window 15 is heated by the heater 16, the air near the inner surface 151 is not cooled, and dew condensation can be prevented.

図1では、レーザー投光部11からハーフミラー13までの光路A1と、ハーフミラー13から可動ミラー14及び投受光窓15を経由して光が往復する光路A2と、ハーフミラー13からレーザー受光部12までの光路A3とが表されている。ハーフミラー13より先の光路A2においては、照射光と反射光の光路が共通になっており、光学機器1は、反射光が投受光窓15に入射する方向と同じ方向から光が照射されるいわゆる同軸光学系となっている。 In FIG. 1, an optical path A1 from the laser projection unit 11 to the half mirror 13, an optical path A2 in which light reciprocates from the half mirror 13 via a movable mirror 14 and a light emitting / receiving window 15, and a laser receiving unit from the half mirror 13. The optical path A3 up to 12 is represented. In the optical path A2 ahead of the half mirror 13, the optical path of the irradiation light and the reflected light is common, and the optical device 1 is irradiated with light from the same direction as the reflected light is incident on the light emitting / receiving window 15. It is a so-called coaxial optical system.

測距部21は、レーザー受光部12が受光した光を反射した物体までの距離と、その反射光の光量とを測定する。測距部21には、レーザー投光部11から光の照射を開始したことが各LEDについて通知され、レーザー受光部12から反射光を受光したことが各受光素子について通知される。測距部21は、照射の開始時刻から反射光を受光した時刻までに光が進む距離の半分を物体までの距離として各画素について測定する。 The ranging unit 21 measures the distance to an object that reflects the light received by the laser light receiving unit 12 and the amount of the reflected light. The ranging unit 21 is notified of each LED that the laser light projecting unit 11 has started irradiating light, and is notified of each light receiving element that the reflected light has been received from the laser light receiving unit 12. The distance measuring unit 21 measures each pixel with half the distance traveled by the light from the start time of irradiation to the time when the reflected light is received as the distance to the object.

このように、測距部21は、光学機器1という同軸光学系の距離画像センサとして機能する。また、測距部21には、レーザー受光部12から受光した反射光の波形を示す電気信号が各受光素子について供給される。測距部21は、供給された波形に基づき、受光した反射光の光量を各画素について測定する。測距部21は、画素毎の距離及び光量の測定を所定の時間間隔で繰り返し行う。測距部21は、測定した測距の値(以下「測距値」と言う)及び光量の値(以下「光量値」と言う)を制御部22に供給する。 In this way, the distance measuring unit 21 functions as a distance image sensor of a coaxial optical system called an optical device 1. Further, an electric signal indicating the waveform of the reflected light received from the laser light receiving unit 12 is supplied to the distance measuring unit 21 for each light receiving element. The ranging unit 21 measures the amount of received reflected light for each pixel based on the supplied waveform. The distance measuring unit 21 repeatedly measures the distance and the amount of light for each pixel at predetermined time intervals. The ranging unit 21 supplies the measured distance measuring value (hereinafter referred to as “distance measuring value”) and the light quantity value (hereinafter referred to as “light quantity value”) to the control unit 22.

制御部22は、自装置が備える各部を制御する。制御部22は、プロセッサ、メモリ及びストレージを備える。プロセッサは、例えば、CPU(Central Processing Unit)等の演算装置、レジスタ及び周辺回路等を有する。メモリは、プロセッサが読み取り可能な記録媒体であり、RAM(Random Access Memory)及びROM(Read Only Memory)等を有する。ストレージは、プロセッサが読み取り可能な記録媒体であり、例えば、ハードディスクドライブ又はフラッシュメモリ等を有する。 The control unit 22 controls each unit included in the own device. The control unit 22 includes a processor, a memory, and a storage. The processor has, for example, an arithmetic unit such as a CPU (Central Processing Unit), registers, peripheral circuits, and the like. The memory is a recording medium that can be read by a processor, and includes a RAM (Random Access Memory), a ROM (Read Only Memory), and the like. The storage is a recording medium readable by the processor and includes, for example, a hard disk drive or flash memory.

プロセッサは、RAMをワークエリアとして用いてROMやストレージに記憶されているプログラムを実行することで自装置の各部の動作を制御する。制御部22は、レーザー投光部11に対して光の出射の開始を指示する。また、制御部22は、可動ミラー14の副走査方向への移動を制御する。可動ミラー14は、副走査方向における現在の位置を示す信号を制御部22に供給する。 The processor controls the operation of each part of its own device by executing a program stored in ROM or storage using RAM as a work area. The control unit 22 instructs the laser projection unit 11 to start emitting light. Further, the control unit 22 controls the movement of the movable mirror 14 in the sub-scanning direction. The movable mirror 14 supplies a signal indicating the current position in the sub-scanning direction to the control unit 22.

制御部22には、測距部21から各画素について測定された物体までの距離値と光量値とが供給される。制御部22は、供給された可動ミラー14の位置を示す信号、画素毎の測距値及び光量値に基づいて、物体までの距離を画素毎に表した距離画像を生成する。制御部22は、測距値及び光量値の測定が行われるたびに1つの距離画像を生成する。こうして生成された1つの距離画像のことを「フレーム」とも言う。制御部22は、生成した距離画像(フレーム)を示す画像データを、例えばディスプレイを備える外部機器に送信する。 The control unit 22 is supplied with a distance value and a light quantity value from the distance measuring unit 21 to the object measured for each pixel. The control unit 22 generates a distance image representing the distance to the object for each pixel based on the signal indicating the position of the supplied movable mirror 14, the distance measurement value for each pixel, and the light amount value. The control unit 22 generates one distance image each time the distance measurement value and the light intensity value are measured. One distance image generated in this way is also called a "frame". The control unit 22 transmits image data indicating the generated distance image (frame) to, for example, an external device including a display.

電源部23は、外部電源と接続されており、自装置が備える各部に電力を供給する。温度・湿度センサ24は、自装置の内部に設けられ、内部空間B1の空気の温度及び湿度と、投受光窓15の内面151の温度とを測定する。温度・湿度センサ24は、例えば、投受光窓15を加熱するヒータ16の発熱線の抵抗値に基づき投受光窓15の温度を測定する。発熱線は、例えば、鉄、クロム、アルミ又はニッケル等の合金であり、温度によって抵抗値が変化する。 The power supply unit 23 is connected to an external power source and supplies electric power to each unit included in the own device. The temperature / humidity sensor 24 is provided inside the own device and measures the temperature and humidity of the air in the internal space B1 and the temperature of the inner surface 151 of the light receiving / receiving window 15. The temperature / humidity sensor 24 measures, for example, the temperature of the light-receiving window 15 based on the resistance value of the heating wire of the heater 16 that heats the light-receiving window 15. The heating wire is, for example, an alloy such as iron, chromium, aluminum, or nickel, and its resistance value changes depending on the temperature.

温度・湿度センサ24は、発熱線の温度と抵抗値との関係を予め記憶しておくことで、発熱線の現在の抵抗値から発熱線の温度を算出する。発熱線の温度が上昇すると、少し遅れて投受光窓15の温度も上昇し、最終的には発熱線の温度と等しくなる。そこで、温度・湿度センサ24は、算出した発熱線の温度を投受光窓15の内面151の温度として測定する。 The temperature / humidity sensor 24 calculates the temperature of the heating wire from the current resistance value of the heating wire by storing the relationship between the temperature of the heating wire and the resistance value in advance. When the temperature of the heating wire rises, the temperature of the light emitting / receiving window 15 also rises with a slight delay, and finally becomes equal to the temperature of the heating wire. Therefore, the temperature / humidity sensor 24 measures the calculated temperature of the heating wire as the temperature of the inner surface 151 of the light receiving / receiving window 15.

発熱線の抵抗値は、発熱線を流れる電流及び電圧が分かれば算出可能である。このように、本実施例では、電流及び電圧以外の値を測定しなくとも、投受光窓15の内面151の温度を測定することができる。温度・湿度センサ24は、空気の温度及び湿度の測定値と内面151の温度の測定値とを制御部22に供給する。 The resistance value of the heating wire can be calculated if the current and voltage flowing through the heating wire are known. As described above, in this embodiment, the temperature of the inner surface 151 of the light emitting / receiving window 15 can be measured without measuring values other than the current and the voltage. The temperature / humidity sensor 24 supplies the measured values of air temperature and humidity and the measured values of the temperature of the inner surface 151 to the control unit 22.

ヒータドライバ25は、制御部22によって制御されてヒータ16を駆動させ、投受光窓15の内面151側を加熱させる。制御部22は、測距部21から供給された物体までの距離(測距値)及び光量(光量値)に基づき投受光窓15に結露があるか否かを判定する。具体的には、制御部22は、所定範囲内の測距値が測定され、かつ、その測距値が測定された画素の光量値が所定範囲内である場合に、投受光窓15に結露があると判定する。 The heater driver 25 is controlled by the control unit 22 to drive the heater 16 to heat the inner surface 151 side of the light emitting / receiving window 15. The control unit 22 determines whether or not there is condensation on the light emitting / receiving window 15 based on the distance (distance measuring value) and the amount of light (light quantity value) from the distance measuring unit 21 to the supplied object. Specifically, when the distance measurement value within a predetermined range is measured and the light intensity value of the pixel to which the distance measurement value is measured is within the predetermined range, the control unit 22 causes dew condensation on the light emitting / receiving window 15. It is determined that there is.

図2は測距値及び光量値の一例を表す。図2では、或る距離画像における或る画素のフレーム毎の測距値(mm:ミリメートル単位)及び光量値(digit単位)が表されている。図2の例では、測距値がおおよそ100mmから800mmまでの範囲に収まっている。なお、測距値にこれだけの幅があるのは、光学機器1においては、物体との距離が短いほど投光から受光までの時間が短くなり、測定時間のわずかな誤差が測距値を大きく変動させることになるためである。また、光量値はおおよそ0digitから70digitまでの範囲に収まっている。制御部22は、例えばこれらの範囲を所定範囲として結露の判定を行う。 FIG. 2 shows an example of a distance measurement value and a light intensity value. In FIG. 2, the distance measurement value (mm: millimeter unit) and the light amount value (digit unit) for each frame of a certain pixel in a certain distance image are shown. In the example of FIG. 2, the ranging value is within the range of approximately 100 mm to 800 mm. It should be noted that the reason why the distance measurement value has such a range is that in the optical device 1, the shorter the distance to the object, the shorter the time from the projection to the light reception, and the slight error in the measurement time increases the distance measurement value. This is because it will fluctuate. Further, the light intensity value is within a range of approximately 0 digit to 70 digit. The control unit 22 determines dew condensation, for example, with these ranges as predetermined ranges.

制御部22は、結露があると判定した場合、ヒータドライバ25を制御してヒータ16を駆動させ、投受光窓15の内面151側を加熱させる。その結果、内面151付近の空気の温度も上昇し、水滴が再び水蒸気となって空気中に含まれるようになり、結露が減少する。制御部22は、結露がないと判定するまでヒータ16に加熱を続けさせるようヒータドライバ25を制御する。 When the control unit 22 determines that there is dew condensation, the control unit 22 controls the heater driver 25 to drive the heater 16 to heat the inner surface 151 side of the light emitting / receiving window 15. As a result, the temperature of the air near the inner surface 151 also rises, and the water droplets become water vapor again and are contained in the air, and dew condensation is reduced. The control unit 22 controls the heater driver 25 so that the heater 16 continues to heat until it is determined that there is no dew condensation.

また、制御部22は、結露がないと判定した場合でも、結露の発生の可能性が高い場合にはヒータ16による加熱の制御を行う。制御部22は、具体的には、自機(光学機器1)内の空気の温度と湿度の測定値と、投受光窓15の温度の測定値に基づき投受光窓15における結露の発生のしやすさの指標(以下「結露指標」と言う)を算出する。制御部22は、例えば、まず、空気の温度及び湿度の測定値から絶対湿度C1を算出する。 Further, even if it is determined that there is no dew condensation, the control unit 22 controls the heating by the heater 16 when the possibility of dew condensation is high. Specifically, the control unit 22 causes dew condensation on the light emitting / receiving window 15 based on the measured values of the temperature and humidity of the air in the own machine (optical device 1) and the measured values of the temperature of the light emitting / receiving window 15. An index of ease (hereinafter referred to as "condensation index") is calculated. For example, the control unit 22 first calculates the absolute humidity C1 from the measured values of the temperature and humidity of the air.

また、制御部22には、前述したとおり温度・湿度センサ24から投受光窓15の内面151の温度の測定値T1が供給される。内面151の近辺の空気の温度は、内面151の温度、すなわち供給された測定値T1に近くなるので、制御部22は、測定値T1の空気における飽和水蒸気量D1を算出する。制御部22は、以上のとおり算出した絶対湿度C1及び飽和水蒸気量D1に基づいて、絶対湿度C1+α>飽和水蒸気量D1であるか否かを判断する。 Further, as described above, the temperature / humidity sensor 24 supplies the control unit 22 with the measured value T1 of the temperature of the inner surface 151 of the light emitting / receiving window 15. Since the temperature of the air in the vicinity of the inner surface 151 is close to the temperature of the inner surface 151, that is, the supplied measured value T1, the control unit 22 calculates the saturated water vapor amount D1 in the air having the measured value T1. The control unit 22 determines whether or not the absolute humidity C1 + α> the saturated water vapor amount D1 is based on the absolute humidity C1 and the saturated water vapor amount D1 calculated as described above.

なお、αはマージンであり、例えば光学機器1の特性等に応じて定められる。絶対湿度C1+αは本発明の「指標」の一例である。制御部22は、絶対湿度C1+α>飽和水蒸気量D1である場合、結露が発生しやすい状況であると判断し、投受光窓15を加熱させる。このように、制御部22は、算出した結露指標(絶対湿度C1+α)が所定の閾値(飽和水蒸気量D1)以上である場合に投受光窓15を加熱させる。これにより、結露が発生しそうな状況において予め投受光窓15を加熱しておくことで結露を予防することができる。 It should be noted that α is a margin, and is determined according to, for example, the characteristics of the optical device 1. Absolute humidity C1 + α is an example of the "index" of the present invention. When the absolute humidity C1 + α> the saturated water vapor amount D1, the control unit 22 determines that dew condensation is likely to occur, and heats the light emitting / receiving window 15. As described above, the control unit 22 heats the light emitting / receiving window 15 when the calculated dew condensation index (absolute humidity C1 + α) is equal to or higher than a predetermined threshold value (saturated water vapor amount D1). As a result, it is possible to prevent dew condensation by heating the light emitting / receiving window 15 in advance in a situation where dew condensation is likely to occur.

測距部21及び制御部22は、上記の構成に基づいて、結露に関する判定を行い、必要なら投受光窓15を加熱して結露を防ぐ加熱処理を行う。
図3は加熱処理における動作手順の一例を表す。まず、制御部22は、光源であるレーザー投光部11による発光を開始させる(ステップS11)。次に、制御部22は、自機の内部空間B1の空気の温度及び湿度と、投受光窓15の内面151の温度とを測定する(ステップS12)。
The distance measuring unit 21 and the control unit 22 determine the dew condensation based on the above configuration, and if necessary, heat the light emitting / receiving window 15 to perform a heat treatment to prevent dew condensation.
FIG. 3 shows an example of an operation procedure in heat treatment. First, the control unit 22 starts light emission by the laser projection unit 11 which is a light source (step S11). Next, the control unit 22 measures the temperature and humidity of the air in the internal space B1 of the own machine and the temperature of the inner surface 151 of the light receiving / receiving window 15 (step S12).

続いて、測距部21は、測距値及び光量値を測定する(ステップS13)。次に、制御部22は、測距値及び光量値に基づき投受光窓15に結露があるか否かを判定する(ステップS14)。ステップS14で結露がない(NO)と判定した場合、制御部22は、自機内の空気の温度と湿度の測定値と、投受光窓15の温度の測定値に基づき結露指標を算出し、算出した結露指標が閾値以上であるか否かを判定する(ステップS15)。 Subsequently, the ranging unit 21 measures the ranging value and the light intensity value (step S13). Next, the control unit 22 determines whether or not there is condensation on the light emitting / receiving window 15 based on the distance measurement value and the light amount value (step S14). When it is determined in step S14 that there is no dew condensation (NO), the control unit 22 calculates and calculates a dew condensation index based on the measured values of the temperature and humidity of the air in the own machine and the measured values of the temperature of the light emitting / receiving window 15. It is determined whether or not the dew condensation index is equal to or higher than the threshold value (step S15).

ステップS14で結露がある(YES)と判定した場合、及び、ステップS15で結露指標が閾値以上である(YES)と判定した場合、制御部22は、ヒータドライバ25を制御して投受光窓15を加熱させる(ステップS16)。制御部22は、ステップS16の後は、ステップS12に戻って動作を行う。ステップS15で結露指標が閾値以上でない(NO)と判定した場合、制御部22は、投受光窓15が加熱中であるか否かを判断する(ステップS17)。 When it is determined in step S14 that there is dew condensation (YES), and when it is determined in step S15 that the dew condensation index is equal to or greater than the threshold value (YES), the control unit 22 controls the heater driver 25 to control the light emitting / receiving window 15. Is heated (step S16). After step S16, the control unit 22 returns to step S12 to perform an operation. When it is determined in step S15 that the dew condensation index is not equal to or greater than the threshold value (NO), the control unit 22 determines whether or not the light emitting / receiving window 15 is being heated (step S17).

ステップS17で加熱中でない(NO)と判定した場合、制御部22は、ステップS12に戻って動作する。ステップS17で加熱中である(YES)と判定した場合、制御部22は、投受光窓15の加熱を中止する(ステップS18)。制御部22は、ステップS18の後は、ステップS12に戻って動作を行う。 If it is determined in step S17 that heating is not in progress (NO), the control unit 22 returns to step S12 and operates. If it is determined in step S17 that heating is in progress (YES), the control unit 22 stops heating the light emitting / receiving window 15 (step S18). After step S18, the control unit 22 returns to step S12 to perform an operation.

本実施例では、上記のとおり、測距値及び光量値の両方を用いて結露の判定が行われた。これにより、例えば、測距値だけを用いて結露の判定が行われる場合に比べて、結露の判定の精度を高めることができる。また、本実施例では、光学機器1自身が発する光に基づいて結露の判定が行われるので、周囲の明るさによらず(特に周囲が暗い場合でも)結露の判定を行うことができる。 In this embodiment, as described above, the determination of dew condensation was performed using both the distance measurement value and the light intensity value. Thereby, for example, the accuracy of the determination of dew condensation can be improved as compared with the case where the determination of dew condensation is performed using only the distance measurement value. Further, in the present embodiment, since the determination of dew condensation is performed based on the light emitted by the optical device 1 itself, it is possible to determine the dew condensation regardless of the brightness of the surroundings (especially even when the surroundings are dark).

[2]変形例
上述した実施例は本発明の実施の一例に過ぎず、以下のように変形させてもよい。また、実施例及び各変形例は必要に応じてそれぞれ組み合わせてもよい。
[2] Modifications The above-mentioned examples are merely examples of the implementation of the present invention, and may be modified as follows. Moreover, you may combine Examples and each modification as needed.

[2-1]結露の判定方法
制御部22は、光量値は用いずに、測距値だけを用いて、所定範囲内の測距値が測定される場合に投受光窓15に結露があると判定してもよい。測距値は、近くの物体と結露の水滴とで近い値になる場合があるが、その場合でも、投受光窓15に汚れが付着せず且つ遠くの物体だけを測距する環境下であれば、距離画像に含まれる各画素の測距値だけに基づいて結露の有無を判定することができる。
[2-1] Dew condensation determination method The control unit 22 has dew condensation on the light emitting / receiving window 15 when the distance measurement value within a predetermined range is measured by using only the distance measurement value without using the light amount value. May be determined. The distance measurement value may be close to that of a nearby object and water droplets of dew condensation, but even in that case, even in such an environment where the light emitting / receiving window 15 is not contaminated and only a distant object is measured. For example, the presence or absence of dew condensation can be determined based only on the distance measurement value of each pixel included in the distance image.

また、制御部22は、反対に、測距値は用いずに、光量値だけを用いて、所定範囲内の光量値が測定される場合に投受光窓15に結露があると判定してもよい。光量値は、遠くの物体と結露の水滴とで近い値になる場合があるが、その場合でも、近くの物体だけを測距する環境下であれば、距離画像に含まれる各画素の光量値だけに基づいて結露の有無を判定することができる。また、いずれの場合も、測距値及び光量値の両方を用いる場合に比べて、結露の有無を判定する際の処理の負荷を軽減することができる。 Further, on the contrary, even if the control unit 22 determines that there is dew condensation on the light emitting / receiving window 15 when the light quantity value within a predetermined range is measured by using only the light quantity value without using the distance measurement value. good. The light intensity value may be close to that of a distant object and water droplets of dew condensation, but even in that case, the light intensity value of each pixel included in the distance image is used in an environment where only a nearby object is measured. The presence or absence of dew condensation can be determined based solely on. Further, in either case, it is possible to reduce the processing load when determining the presence or absence of dew condensation, as compared with the case where both the distance measurement value and the light amount value are used.

[2-2]測定エラー
測定値及び光量値の測定においては、外乱等の影響で、画素単位で測定値及び光量値に誤り(エラー)が生じる場合がある。このエラーが生じると、結露していないのに結露があるという誤判定が行われる場合がある。本変形例では、そのような誤判定を避けるための結露の判定が行われる。
[2-2] Measurement error In the measurement of the measured value and the light intensity value, an error may occur in the measured value and the light intensity value on a pixel-by-pixel basis due to the influence of disturbance or the like. When this error occurs, it may be erroneously determined that there is condensation even though there is no condensation. In this modification, the determination of dew condensation is performed to avoid such an erroneous determination.

本変形例の制御部22は、所定範囲内の測距値が測定され、かつ、所定範囲内の光量値が測定された画素が、所定距離内で所定数以上、隣接又は近接する場合に投受光窓15に結露があると判定する。画素が方眼状に並んでいる場合、隣接する画素とは或る画素の上下左右に接する画素、又は、或る画素の斜め上又は斜め下に位置する画素のことである。また、近接する画素とは、例えば、或る画素から所定距離内で離れた画素のことである。 The control unit 22 of this modification is thrown when the distance measurement value within a predetermined range is measured and the pixels for which the light intensity value within the predetermined range is measured are adjacent or close to each other by a predetermined number or more within a predetermined distance. It is determined that there is dew condensation on the light receiving window 15. When the pixels are arranged in a grid pattern, the adjacent pixels are pixels that are in contact with the top, bottom, left, and right of a certain pixel, or pixels that are located diagonally above or diagonally below a certain pixel. Further, the adjacent pixels are, for example, pixels separated from a certain pixel within a predetermined distance.

所定距離及び所定数は、投受光窓15に付着し得る最小の水滴の距離画像における大きさに基づいて定められる。例えば、最小の水滴が3×3画素の大きさであった場合、3画素の長さが所定距離として定められ、9画素が所定数として定められる。なお、本変形例は、測距値だけを用いて結露の判定が行われる場合にも適用してよい。その場合、制御部22は、所定範囲内の測距値が測定された画素が、所定距離内で所定数以上、隣接又は近接する場合に投受光窓15に結露があると判定する。 The predetermined distance and the predetermined number are determined based on the size of the minimum water droplet that can adhere to the light receiving / receiving window 15 in the distance image. For example, when the smallest water droplet has a size of 3 × 3 pixels, the length of 3 pixels is defined as a predetermined distance, and 9 pixels are defined as a predetermined number. In addition, this modification may be applied even when the determination of dew condensation is performed using only the distance measurement value. In that case, the control unit 22 determines that there is dew condensation on the light emitting / receiving window 15 when the pixels whose distance measurement values within the predetermined range are measured are adjacent to or close to a predetermined number within a predetermined distance.

また、本変形例は、光量値だけを用いて結露の判定が行われる場合にも適用してよい。その場合、制御部22は、所定範囲内の光量値が測定された画素が、所定距離内で所定数以上、隣接又は近接する場合に投受光窓15に結露があると判定する。いずれの場合も、外乱等の影響で測距値又は光量値に誤りが生じる場合の誤判定を、水滴の大きさを考慮しない場合に比べて、抑制することができる。 Further, this modification may be applied to the case where the determination of dew condensation is performed using only the light amount value. In that case, the control unit 22 determines that there is dew condensation on the light emitting / receiving window 15 when the pixels whose light amount values within the predetermined range are measured are adjacent to or close to a predetermined number within a predetermined distance. In either case, the erroneous determination when an error occurs in the distance measurement value or the light intensity value due to the influence of disturbance or the like can be suppressed as compared with the case where the size of the water droplet is not taken into consideration.

[2-3]結露しやすい領域
投受光窓15においては、結露しやすい領域が決まっている場合がある。例えば自機内に発熱する部材がある場合、その部材から遠い領域の方が外気によって冷えやすく、結露しやすい。そこで、本変形例では、制御部22は、測距部21の所定領域内の画素に関する測定値に基づき投受光窓15における結露の有無を判定する。
[2-3] Areas that are prone to dew condensation In the light receiving / receiving window 15, a region that is prone to dew condensation may be determined. For example, when there is a member that generates heat in the own machine, the area farther from the member is more likely to be cooled by the outside air and dew condensation is more likely to occur. Therefore, in this modification, the control unit 22 determines the presence or absence of dew condensation on the light emitting / receiving window 15 based on the measured values of the pixels in the predetermined region of the distance measuring unit 21.

所定領域としては、投受光窓15において結露しやすい領域が定められる。なお、所定領域は複数定められてもよいし、投受光窓15の全体よりも小さければどのような大きさの領域が定められてもよい。本変形例によれば、所定領域以外の画素については判定の処理に用いられないので、距離画像の全体の画素に関する測定値が用いられる場合に比べて、判定の処理の負荷を軽減することができる。 As the predetermined region, a region where dew condensation is likely to occur in the light emitting / receiving window 15 is defined. A plurality of predetermined regions may be defined, or any size region may be defined as long as it is smaller than the entire light emitting / receiving window 15. According to this modification, since the pixels other than the predetermined region are not used for the determination processing, the load of the determination processing can be reduced as compared with the case where the measured values for the entire pixels of the distance image are used. can.

[2-4]投受光窓の温度の測定方法
温度・湿度センサ24は、実施例では、ヒータ16の発熱線の抵抗値に基づき投受光窓15の温度を測定したが、投受光窓15の温度の測定方法はこれに限らない。本変形例では、例えば制御部22が、測距部21に対する電力供給の開始時刻からの経過時間に基づき投受光窓15の温度を測定する。
[2-4] Method for measuring the temperature of the light emitting / receiving window In the embodiment, the temperature / humidity sensor 24 measures the temperature of the light emitting / receiving window 15 based on the resistance value of the heating wire of the heater 16, but the light receiving / receiving window 15 is measured. The method for measuring temperature is not limited to this. In this modification, for example, the control unit 22 measures the temperature of the light emitting / receiving window 15 based on the elapsed time from the start time of power supply to the distance measuring unit 21.

本変形例では、電源部23が、最初に制御部22への電力供給を行い、その後に他の各部への電力供給を行う。また、電源部23は、測距部21に対する電力供給を開始すると、その旨を制御部22に通知する。制御部22は、この通知を受け取った時刻を測距部21に対する電力供給の開始時刻として記憶する。測距部21が稼働すると、測定のためレーザー投光部11及びレーザー受光部12も稼働し、それぞれ熱を発生させる。 In this modification, the power supply unit 23 first supplies power to the control unit 22, and then supplies power to other units. Further, when the power supply unit 23 starts supplying power to the distance measuring unit 21, the power supply unit 23 notifies the control unit 22 to that effect. The control unit 22 stores the time when this notification is received as the start time of power supply to the distance measuring unit 21. When the distance measuring unit 21 operates, the laser light emitting unit 11 and the laser light receiving unit 12 also operate for measurement, and generate heat, respectively.

こうして発生した熱は、自機の筐体や空気を伝播して投受光窓15を暖める。制御部22は、測距部21に対する電力供給の開始時刻からの経過時間と投受光窓15の温度との相関関係を予め記憶しておく。制御部22は、上記の通知を受け取った時刻からの経過時間と相関関係にある温度を現在の投受光窓15の温度として特定する。本変形例によれば、投受光窓15又はヒータ16に何も設けなくとも投受光窓15の温度を測定することができる。 The heat generated in this way propagates through the housing of the own machine and air to warm the light emitting / receiving window 15. The control unit 22 stores in advance the correlation between the elapsed time from the start time of power supply to the distance measuring unit 21 and the temperature of the light emitting / receiving window 15. The control unit 22 specifies a temperature that correlates with the elapsed time from the time when the above notification is received as the current temperature of the light receiving / receiving window 15. According to this modification, the temperature of the light-receiving window 15 can be measured without providing anything to the light-receiving window 15 or the heater 16.

[2-5]発明のカテゴリ
本発明は、光学機器1の他、光学機器1の測距部21及び制御部22が実施する処理を実現するための情報処理方法としても捉えられるし、光学機器1を制御するコンピュータを機能させるためのプログラムとしても捉えられる。このプログラムは、それを記憶させた光ディスク等の記録媒体の形態で提供されてもよいし、インターネット等のネットワークを介してコンピュータにダウンロードさせ、それをインストールして利用可能にするなどの形態で提供されてもよい。
[2-5] Category of Invention The present invention can be regarded as an information processing method for realizing the processing performed by the distance measuring unit 21 and the control unit 22 of the optical device 1 in addition to the optical device 1, and is also regarded as an optical device. It can also be regarded as a program for operating the computer that controls 1. This program may be provided in the form of a recording medium such as an optical disk that stores it, or may be provided in the form of being downloaded to a computer via a network such as the Internet and installed and made available. May be done.

1…光学機器、11…レーザー投光部、12…レーザー受光部13…ハーフミラー、14…可動ミラー、15…投受光窓、16…ヒータ、21…測距部、22…制御部、23…電源部、24…湿度センサ、25…ヒータドライバ。 1 ... Optical equipment, 11 ... Laser light projecting unit, 12 ... Laser light receiving unit 13 ... Half mirror, 14 ... Movable mirror, 15 ... Projecting light receiving window, 16 ... Heater, 21 ... Distance measuring unit, 22 ... Control unit, 23 ... Power supply unit, 24 ... Humidity sensor, 25 ... Heater driver.

上述した課題を解決するために、本発明は、同軸光学系の距離画像センサにより所定範囲内の測距値が測定され、かつ、自機内の空気の温度と湿度の測定値と、前記距離画像センサに対する電力供給の開始時刻からの経過時間と、に基づき算出した前記距離画像センサの投受光窓における結露の発生のしやすさの指標が所定の閾値以上である場合に、前記投受光窓に結露があると判定し前記投受光窓を加熱する光学機器を第1の態様として提供する。 In order to solve the above-mentioned problems, in the present invention, the distance measurement value within a predetermined range is measured by the distance image sensor of the coaxial optical system, the measured value of the air temperature and humidity in the own machine, and the distance image. When the elapsed time from the start time of power supply to the sensor and the index of the susceptibility to dew condensation in the light emitting / receiving window of the distance image sensor calculated based on the predetermined threshold value or more, the light receiving / receiving window is fitted with the light emitting / receiving window . As the first aspect, an optical device that determines that there is dew condensation and heats the light emitting / receiving window is provided.

第1の態様の光学機器によれば、周囲の明るさによらず結露の判定を行うことができる。また、第1の態様の光学機器によれば、投受光窓に何も設けなくとも、投受光窓の温度を測定することができる。 According to the optical device of the first aspect, it is possible to determine dew condensation regardless of the ambient brightness. Further, according to the optical device of the first aspect, the temperature of the light emitting / receiving window can be measured without providing anything in the light emitting / receiving window.

上記の第1の態様の光学機器において、所定範囲内の測距値が測定された画素が、所定距離内で所定数以上、隣接又は近接する場合に前記投受光窓に結露があると判定する、という構成が第の態様として採用されてもよい。 In the optical device of the first aspect described above, when the pixels whose distance measurement values within a predetermined range are measured are adjacent or close to each other by a predetermined number or more within a predetermined distance, it is determined that there is dew condensation on the light emitting / receiving window. , May be adopted as the second aspect.

の態様の光学機器によれば、外乱等の影響で測距値に誤りが生じる場合の誤判定を抑制することができる。 According to the optical device of the second aspect, it is possible to suppress erroneous determination when an error occurs in the distance measurement value due to the influence of disturbance or the like.

上記の第の態様の光学機器において、所定範囲内の測距値が測定され、かつ、当該測距値が測定された画素の光量値が所定範囲内である場合に前記投受光窓に結露があると判定する、という構成が第の態様として採用されてもよい。 In the optical device of the second aspect described above, when the distance measurement value within a predetermined range is measured and the light intensity value of the pixel to which the distance measurement value is measured is within the predetermined range, dew condensation occurs on the light emitting / receiving window. A configuration in which it is determined that there is a presence may be adopted as the third aspect.

の態様の光学機器によれば、測距値だけを用いて判定が行われる場合に比べて、結露の判定の精度を高めることができる。 According to the optical device of the third aspect, the accuracy of the determination of dew condensation can be improved as compared with the case where the determination is performed using only the distance measurement value.

上記の第の態様の光学機器において、所定範囲内の測距値が測定され、かつ、所定範囲内の光量値が測定された画素が、所定距離内で所定数以上、隣接又は近接する場合に前記投受光窓に結露があると判定する、という構成が第の態様として採用されてもよい。 In the optical device of the third aspect described above, when the distance measurement value within a predetermined range is measured and the pixels for which the light intensity value within the predetermined range is measured are adjacent or close to each other by a predetermined number or more within a predetermined distance. A configuration in which it is determined that there is dew condensation on the light receiving / receiving window may be adopted as the fourth aspect.

の態様の光学機器によれば、外乱等の影響によって画素単位で測距値又は光量値に誤りが生じる場合の誤判定を抑制することができる。 According to the optical device of the fourth aspect, it is possible to suppress erroneous determination when an error occurs in the distance measurement value or the light intensity value on a pixel- by -pixel basis due to the influence of disturbance or the like.

上記の第1乃至第いずれか1の態様の光学機器において、所定範囲内の測距値が測定され、かつ、当該測距値が前記距離画像センサの所定領域内の画素に関する測距値である場合に前記投受光窓に結露があると判定する、という構成が第5の態様として採用されてもよい。 In the optical instrument according to any one of the first to fourth aspects , the distance measurement value within a predetermined range is measured, and the distance measurement value is a distance measurement value for a pixel in a predetermined area of the distance image sensor. A configuration in which it is determined that there is dew condensation on the light receiving / receiving window in a certain case may be adopted as the fifth aspect.

の態様の光学機器によれば、判定の処理の負荷を軽減することができる。 According to the optical device of the fifth aspect, the load of the determination process can be reduced.

上述した課題を解決するために、本発明は、同軸光学系の距離画像センサに対する電力供給の開始時刻からの経過時間に基づき該距離画像センサの投受光窓の温度を測定し、測定された前記投受光窓の温度と、自機内の空気の温度と湿度の測定値と、に基づいて該投受光窓における結露の発生のしやすさの指標を算出し、前記距離画像センサにより所定範囲内の測距値が測定され、かつ、前記指標が所定の閾値以上である場合に、前記投受光窓に結露があると判定し、前記投受光窓を加熱する光学機器を第1の態様として提供する。 In order to solve the above-mentioned problems, the present invention measures and measures the temperature of the light emitting / receiving window of the distance image sensor based on the elapsed time from the start time of power supply to the distance image sensor of the coaxial optical system. Based on the temperature of the light-receiving window and the measured values of the temperature and humidity of the air inside the machine, an index of the susceptibility to dew condensation in the light-receiving window is calculated, and a predetermined range is determined by the distance image sensor. The first aspect is an optical device that determines that there is dew condensation on the light emitting / receiving window and heats the light receiving / receiving window when the distance measurement value in the inside is measured and the index is equal to or higher than a predetermined threshold value. offer.

Claims (10)

同軸光学系の距離画像センサの測距値に基づき前記距離画像センサの投受光窓に結露があると判定した場合、前記投受光窓を加熱する
光学機器。
An optical device that heats the light emitting / receiving window when it is determined that there is dew condensation on the light emitting / receiving window of the distance image sensor based on the distance measurement value of the distance image sensor of the coaxial optical system.
所定範囲内の測距値が測定される場合に前記投受光窓に結露があると判定する
請求項1に記載の光学機器。
The optical device according to claim 1, wherein it is determined that there is dew condensation on the light emitting / receiving window when a distance measurement value within a predetermined range is measured.
所定範囲内の測距値が測定された画素が、所定距離内で所定数以上、隣接又は近接する場合に前記投受光窓に結露があると判定する
請求項1に記載の光学機器。
The optical device according to claim 1, wherein when the pixels whose distance measurement values within a predetermined range are measured are adjacent or close to each other by a predetermined number or more within a predetermined distance, it is determined that there is dew condensation on the light emitting / receiving window.
前記測距値に加え前記距離画像センサが測定する光量値に基づき前記投受光窓における結露の有無を判定する
請求項1から3のいずれか1項に記載の光学機器。
The optical device according to any one of claims 1 to 3, wherein the presence or absence of dew condensation in the light emitting / receiving window is determined based on the light intensity value measured by the distance image sensor in addition to the distance measuring value.
所定範囲内の測距値が測定され、かつ、当該測距値が測定された画素の光量値が所定範囲内である場合に前記投受光窓に結露があると判定する
請求項4に記載の光学機器。
The fourth aspect of claim 4, wherein it is determined that there is dew condensation on the light emitting / receiving window when the distance measurement value within a predetermined range is measured and the light intensity value of the pixel to which the distance measurement value is measured is within the predetermined range. Optical equipment.
所定範囲内の測距値が測定され、かつ、所定範囲内の光量値が測定された画素が、所定距離内で所定数以上、隣接又は近接する場合に前記投受光窓に結露があると判定する
請求項4に記載の光学機器。
It is determined that there is dew condensation on the light emitting / receiving window when the distance measurement value within a predetermined range is measured and the number of pixels whose light intensity value within the predetermined range is measured is more than a predetermined number within a predetermined distance, adjacent to or close to each other. The optical device according to claim 4.
前記距離画像センサの所定領域内の画素に関する測定値に基づき前記投受光窓における結露の有無を判定する
請求項1から6のいずれか1項に記載の光学機器。
The optical device according to any one of claims 1 to 6, wherein the presence or absence of dew condensation in the light emitting / receiving window is determined based on a measured value of a pixel in a predetermined area of the distance image sensor.
自機内の空気の温度と湿度の測定値と、前記投受光窓の温度の測定値に基づき算出した前記投受光窓における結露の発生のしやすさの指標が所定の閾値以上である場合に前記投受光窓を加熱する
請求項1から7のいずれか1項に記載の光学機器。
When the index of the susceptibility to dew condensation in the light receiving / receiving window calculated based on the measured values of the temperature and humidity of the air in the own machine and the measured value of the temperature of the light receiving / receiving window is equal to or higher than a predetermined threshold value. The optical device according to any one of claims 1 to 7, which heats a light receiving / receiving window.
前記投受光窓を加熱するヒータの抵抗値に基づき前記投受光窓の温度を測定する
請求項8に記載の光学機器。
The optical device according to claim 8, wherein the temperature of the light emitting / receiving window is measured based on the resistance value of the heater that heats the light receiving / receiving window.
前記距離画像センサに対する電力供給の開始時刻からの経過時間に基づき前記投受光窓の温度を測定する
請求項8に記載の光学機器。
The optical device according to claim 8, wherein the temperature of the light emitting / receiving window is measured based on the elapsed time from the start time of power supply to the distance image sensor.
JP2020185408A 2020-11-05 2020-11-05 Optical equipment Active JP7046144B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020185408A JP7046144B1 (en) 2020-11-05 2020-11-05 Optical equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020185408A JP7046144B1 (en) 2020-11-05 2020-11-05 Optical equipment

Publications (2)

Publication Number Publication Date
JP7046144B1 JP7046144B1 (en) 2022-04-01
JP2022074953A true JP2022074953A (en) 2022-05-18

Family

ID=81255887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020185408A Active JP7046144B1 (en) 2020-11-05 2020-11-05 Optical equipment

Country Status (1)

Country Link
JP (1) JP7046144B1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011013135A (en) * 2009-07-03 2011-01-20 Nippon Signal Co Ltd:The Optical range finder
JP2017090409A (en) * 2015-11-17 2017-05-25 株式会社デンソーウェーブ Method, device, and program for detecting snow accretion on laser radar device
WO2017179331A1 (en) * 2016-04-12 2017-10-19 日立オートモティブシステムズ株式会社 Vehicle-mounted optical device and vehicle-mounted optical system
JP2018115943A (en) * 2017-01-18 2018-07-26 株式会社デンソーウェーブ Laser radar device
JP2019004254A (en) * 2017-06-13 2019-01-10 株式会社デンソー Vehicle photographing device
JP2019155946A (en) * 2018-03-07 2019-09-19 株式会社デンソー Electromagnetic wave use system
JP2020012716A (en) * 2018-07-18 2020-01-23 株式会社デンソーウェーブ Laser radar system
JP2020038154A (en) * 2018-09-05 2020-03-12 株式会社デンソー Distance measuring device
JP2020085486A (en) * 2018-11-16 2020-06-04 日本信号株式会社 Object detector
JP2020111122A (en) * 2019-01-09 2020-07-27 本田技研工業株式会社 Movable body
JP2020143982A (en) * 2019-03-06 2020-09-10 日本電産モビリティ株式会社 Object detection device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011013135A (en) * 2009-07-03 2011-01-20 Nippon Signal Co Ltd:The Optical range finder
JP2017090409A (en) * 2015-11-17 2017-05-25 株式会社デンソーウェーブ Method, device, and program for detecting snow accretion on laser radar device
WO2017179331A1 (en) * 2016-04-12 2017-10-19 日立オートモティブシステムズ株式会社 Vehicle-mounted optical device and vehicle-mounted optical system
JP2018115943A (en) * 2017-01-18 2018-07-26 株式会社デンソーウェーブ Laser radar device
JP2019004254A (en) * 2017-06-13 2019-01-10 株式会社デンソー Vehicle photographing device
JP2019155946A (en) * 2018-03-07 2019-09-19 株式会社デンソー Electromagnetic wave use system
JP2020012716A (en) * 2018-07-18 2020-01-23 株式会社デンソーウェーブ Laser radar system
JP2020038154A (en) * 2018-09-05 2020-03-12 株式会社デンソー Distance measuring device
JP2020085486A (en) * 2018-11-16 2020-06-04 日本信号株式会社 Object detector
JP2020111122A (en) * 2019-01-09 2020-07-27 本田技研工業株式会社 Movable body
JP2020143982A (en) * 2019-03-06 2020-09-10 日本電産モビリティ株式会社 Object detection device

Also Published As

Publication number Publication date
JP7046144B1 (en) 2022-04-01

Similar Documents

Publication Publication Date Title
JP5284975B2 (en) Target tracking illumination
KR20110112813A (en) Gated 3d camera
JP6609995B2 (en) Laser distance measuring device
KR100850500B1 (en) Compact and light x-ray device
JP6911825B2 (en) Optical ranging device
JP7094937B2 (en) Built-in calibration of time-of-flight depth imaging system
JP2011530722A (en) Liquid lens with temperature compensated focusing time
JP7046144B1 (en) Optical equipment
JP4205117B2 (en) Optical reflective information reading sensor and electronic device
US5162645A (en) Photographic scanner with reduced susceptibility to scattering
KR102122275B1 (en) Light distribution characteristic measurement apparatus and light distribution characteristic measurement method
JP2020132076A (en) Vehicular optical apparatus
US11575875B2 (en) Multi-image projector and electronic device having multi-image projector
CN110275406A (en) Light scanning apparatus and the image forming apparatus for having the light scanning apparatus
JP2015050507A (en) Scanner
JP6890699B2 (en) Distance measurement sensor
JP2011127914A (en) Millimeter wave image pickup device, millimeter wave image pickup system and program
US20150370416A1 (en) Input device
JP6626552B1 (en) Multi-image projector and electronic device having multi-image projector
KR20120084952A (en) The apparatus and method for measurement of generated heat from led
JP5225753B2 (en) Fluorescence temperature sensor
EP3637044B1 (en) Multi-image projector and electronic device having the multi-image projector
JP7435024B2 (en) optical equipment
JP2019066185A (en) Imaging apparatus and method for calculating distance of imaging apparatus
JP2006058246A (en) Temperature sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210906

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220322

R150 Certificate of patent or registration of utility model

Ref document number: 7046144

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150