JP2022073486A - Heat insulating wall material for ventilation duct of building - Google Patents

Heat insulating wall material for ventilation duct of building Download PDF

Info

Publication number
JP2022073486A
JP2022073486A JP2020183505A JP2020183505A JP2022073486A JP 2022073486 A JP2022073486 A JP 2022073486A JP 2020183505 A JP2020183505 A JP 2020183505A JP 2020183505 A JP2020183505 A JP 2020183505A JP 2022073486 A JP2022073486 A JP 2022073486A
Authority
JP
Japan
Prior art keywords
heat insulating
wall material
molded body
ventilation duct
insulating wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020183505A
Other languages
Japanese (ja)
Inventor
伸行 八幡
Nobuyuki Yajima
元宏 中澤
Motohiro Nakazawa
友弘 江水
Tomohiro Emizu
泰照 野上
Yasuteru Nogami
芳宣 佐藤
Yoshinori Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANRITSU KAKO KK
Fujimori Sangyo Co Ltd
Original Assignee
SANRITSU KAKO KK
Fujimori Sangyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANRITSU KAKO KK, Fujimori Sangyo Co Ltd filed Critical SANRITSU KAKO KK
Priority to JP2020183505A priority Critical patent/JP2022073486A/en
Publication of JP2022073486A publication Critical patent/JP2022073486A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Thermal Insulation (AREA)
  • Duct Arrangements (AREA)

Abstract

To provide a heat insulating wall material for a ventilation duct that is easy to mold in a desired wall shape, is self-supporting, can be reshaped, is light, and has a certain degree of dehydration.SOLUTION: A heat insulating wall material 2 comprises a heat insulating molded body 10 formed into a predetermined wall shape along a flow path of a ventilation duct 1 of a building. The heat insulating molded body 10 includes a laminated compression body 11 in which defibrated bodies 11a made of glass fiber are laminated and compressed, and an inorganic binder cured product 12 that is diffused in the laminated compression body 11 and connects the defibrated bodies 11a to each other. The density of the laminated compression bodies 11 in the heat insulating molded body 10 is 190 kg/m3 to 370 kg/m3.SELECTED DRAWING: Figure 1

Description

本発明は、建築物に設けられる通気ダクト用の断熱壁材に関する。 The present invention relates to a heat insulating wall material for a ventilation duct provided in a building.

一般に建築物の厨房排気ダクト、空調ダクト、煙突などの通気ダクトには、耐熱や保温用の断熱材が設けられている。この種の通気ダクト用断熱材は、ガラス繊維フェルトやケイ酸カルシウムによって構成されている。 In general, ventilation ducts such as kitchen exhaust ducts, air conditioning ducts, and chimneys of buildings are provided with heat insulating materials for heat resistance and heat retention. This type of ventilation duct insulation is composed of fiberglass felt and calcium silicate.

特開2018-112329号公報Japanese Unexamined Patent Publication No. 2018-11229 特開2020-003105号公報Japanese Unexamined Patent Publication No. 2020-003105

ガラス繊維フェルト製の通気ダクト用断熱材は、所望の壁形状に成形しにくく、成形したとしても、自立してその壁形状を保持させるのは難しい。
ケイ酸カルシウム製の通気ダクト用断熱材は、比較的密度が高く重い。また、水分を吸収した後の脱水性に劣り、乾燥するのに時間がかかる。
本発明は、かかる事情に鑑み、所望の壁形状に成形しやすく、かつ自立して保形可能であり、かつ軽くて、脱水性も確保できる通気ダクト用断熱壁材を提供することを目的とする。
The heat insulating material for a ventilation duct made of glass fiber felt is difficult to form into a desired wall shape, and even if it is formed, it is difficult to stand on its own and maintain the wall shape.
Insulation for ventilation ducts made of calcium silicate is relatively dense and heavy. In addition, it is inferior in dehydration after absorbing water, and it takes time to dry.
In view of the above circumstances, it is an object of the present invention to provide a heat insulating wall material for a ventilation duct which is easy to form into a desired wall shape, can stand on its own and can retain its shape, is light, and can secure dehydration. do.

前記課題を解決するため、本発明は、建築物の通気ダクトにおける断熱壁材であって、
前記通気ダクトの流路に沿う所定の壁形状に成形された断熱成形体を備え、前記断熱成形体が、ガラス繊維の解繊体が積み重ねられて圧縮された積重圧縮体と、前記積重圧縮体内に拡散されて前記解繊体どうしを接合する無機バインダ硬化物とを含み、
前記断熱成形体における前記積重圧縮体の密度が、190kg/m~370kg/m程度であることを特徴とする。
これによって、所望の壁形状に成形しやすく、かつ自立して保形可能であり、かつ軽量で、ある程度の脱水性も確保できる通気ダクト用断熱壁材が得られる。
In order to solve the above problems, the present invention is a heat insulating wall material in a ventilation duct of a building.
The heat insulating molded body is provided with a heat insulating molded body formed into a predetermined wall shape along the flow path of the ventilation duct, and the heat insulating molded body includes a stacked compressed body in which glass fiber defibrated bodies are stacked and compressed, and the stacked body. It contains an inorganic binder cured product that is diffused into the compressed body and joins the defibrated bodies to each other.
The density of the stacked compressed body in the adiabatic molded body is about 190 kg / m 3 to 370 kg / m 3 .
As a result, it is possible to obtain a heat insulating wall material for a ventilation duct, which is easy to form into a desired wall shape, can stand on its own and can retain its shape, is lightweight, and can secure a certain degree of dehydration.

当該通気ダクト用断熱壁材の両面を当て板で挟み、ボルトを貫通させて20Nmの締め付けトルクを付与したときの減厚度合が、60%以下であることが好ましい。これによって、断熱壁材の耐締付力ひいては自立保形性を確実に確保できる。断熱壁材の耐締付力ひいては自立保形性の確保の観点からは、前記密度が250kg/m超370kg/m程度以下であることがより好ましい。
当該通気ダクト用断熱壁材における、実質完全吸水時の重量に対する、吸水後の脱水開始から25時間経過後の重量減少割合が、温度20℃~30℃、相対湿度60%RH~80%RHにおいて、6%超であることが好ましく、8%以上であることがより好まししく、9%以上であることが一層好ましい。これによって、断熱壁材の脱水性を確保できる。断熱壁材の軽量化の観点又は脱水性確保の観点からは、前記密度が190kg/m程度以上200kg/m未満であることがより好ましい。
実質完全吸水時であるから、断熱壁材が完全に吸水した段階に限らず、ほぼ完全に吸水した段階でもよく、具体的には完全吸水状態の90%程度以上、吸水した段階であればよい。通常、当該断熱壁材を水に漬けると数分でほぼ完全に吸水した状態になり、それ以後、吸水を継続しても、吸水による重量増大はほとんど起きない。
It is preferable that the thickness reduction degree is 60% or less when both sides of the heat insulating wall material for the ventilation duct are sandwiched between backing plates and a bolt is passed through to apply a tightening torque of 20 Nm. As a result, the tightening resistance of the heat insulating wall material and thus the self-supporting shape retention can be reliably ensured. From the viewpoint of ensuring the tightening resistance of the heat insulating wall material and thus the self-supporting shape retention, it is more preferable that the density is more than 250 kg / m 3 and about 370 kg / m 3 or less.
The weight loss ratio of the heat insulating wall material for ventilation ducts 25 hours after the start of dehydration after water absorption with respect to the weight at the time of substantially complete water absorption is at a temperature of 20 ° C to 30 ° C and a relative humidity of 60% RH to 80% RH. , 6% or more, more preferably 8% or more, and even more preferably 9% or more. This makes it possible to ensure the dehydration of the heat insulating wall material. From the viewpoint of reducing the weight of the heat insulating wall material or ensuring dehydration, it is more preferable that the density is about 190 kg / m 3 or more and less than 200 kg / m 3 .
Since it is the time of substantially complete water absorption, it is not limited to the stage where the heat insulating wall material completely absorbs water, but it may be the stage where water is almost completely absorbed. .. Normally, when the heat insulating wall material is immersed in water, it becomes almost completely absorbed in water, and even if water absorption is continued thereafter, the weight increase due to water absorption hardly occurs.

前記解繊体が積み重ねられた圧縮前の積重体の密度は、100kg/m~200kg/m程度であることが好ましい。
前記積重圧縮体には、厚み方向へ延びる筋状部が面内方向に分散して多数形成されており、各筋状部においては前記解繊体が互いに絡み合っていることが好ましい。
前記厚み方向は、断熱壁材における内側面(前記流路を向く面)と外側面を結ぶ方向を言う。前記面内方向は、前記厚み方向と直交する面に沿う方向、又は前記内側面もしくは前記外側面に沿う方向を言う。好ましくは、前記積重体は、前記厚み方向へ圧縮されることによって前記積重圧縮体となる。
The density of the stacked bodies in which the defibrated bodies are stacked before compression is preferably about 100 kg / m 3 to 200 kg / m 3 .
In the stacked compressed body, a large number of streaky portions extending in the thickness direction are dispersed in the in-plane direction, and it is preferable that the defibrated bodies are entangled with each other in each streak portion.
The thickness direction refers to the direction connecting the inner side surface (the surface facing the flow path) and the outer surface of the heat insulating wall material. The in-plane direction refers to a direction along a surface orthogonal to the thickness direction, or a direction along the inner surface or the outer surface. Preferably, the stack is compressed in the thickness direction to become the stack compress.

前記通気ダクト用断熱壁材が、前記断熱成形体の表面を覆う表層シートを更に備え、前記表層シートが、前記表面の無機バインダ硬化物によって前記断熱成形体と直接接着されていることが好ましい。前記表面は、前記断熱成形体の外面でもよく内面ないしは流路画成面でもよい。 It is preferable that the heat insulating wall material for a ventilation duct further includes a surface layer sheet covering the surface of the heat insulating molded body, and the surface layer sheet is directly adhered to the heat insulating molded body by an inorganic binder cured product on the surface. The surface may be the outer surface of the heat insulating molded product, the inner surface, or the flow path image plane.

本発明によれば、所望の壁形状に成形しやすく、かつ自立して保形可能であり、かつ軽量で、ある程度の脱水性も確保できる通気ダクト用断熱壁材を得ることができる。 According to the present invention, it is possible to obtain a heat insulating wall material for a ventilation duct which is easy to form into a desired wall shape, can be self-supporting and can retain its shape, is lightweight, and can secure a certain degree of dehydration.

図1は、本発明の一実施形態に係る建築物用通気ダクトの断面図である。FIG. 1 is a cross-sectional view of a ventilation duct for a building according to an embodiment of the present invention. 図2は、前記建築物用通気ダクトの斜視図である。FIG. 2 is a perspective view of the ventilation duct for a building. 図3は、前記建築物用通気ダクトの分解斜視図である。FIG. 3 is an exploded perspective view of the ventilation duct for a building. 図4は、前記建築物用通気ダクトの断熱壁材の拡大断面構造を解説的に示す解説図である。FIG. 4 is an explanatory view explanatoryly showing an enlarged cross-sectional structure of the heat insulating wall material of the ventilation duct for a building. 図5(a)~(h)は、前記断熱壁材の製造工程の説明図である。5 (a) to 5 (h) are explanatory views of the manufacturing process of the heat insulating wall material.

以下、本発明の一実施形態を図面にしたがって説明する。
図1及び図2は、建築物用通気ダクト1を示す。建築物は、家屋でもよく、オフィスビルでもよく、工場でもよい。建築物用通気ダクト1は、厨房排気ダクトでもよく、空調ダクトでもよく、煙突(排煙ダクト)でもよい。
建築物用通気ダクト1は、例えば円筒形になっている。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
1 and 2 show a ventilation duct 1 for a building. The building may be a house, an office building, or a factory. The ventilation duct 1 for a building may be a kitchen exhaust duct, an air conditioning duct, or a chimney (smoke exhaust duct).
The ventilation duct 1 for a building has, for example, a cylindrical shape.

図1及び図3に示すように、建築物用通気ダクト1は、断熱壁材2と、内面部材3を備えている。断熱壁材2は、一対の断熱成形体10と、表層シート4を含む。断熱成形体10は、建築物用通気ダクト1の壁形状に合わせて成形されている。例えば、各断熱成形体10は、半割円筒形になっている。2つの断熱成形体10が合わさり、円筒形状の断熱壁材2が形成されている。
図示は省略するが、断熱成形体10どうしの接合手段としては、粘着テープや接着剤が用いられている。
As shown in FIGS. 1 and 3, the ventilation duct 1 for a building includes a heat insulating wall material 2 and an inner surface member 3. The heat insulating wall material 2 includes a pair of heat insulating molded bodies 10 and a surface layer sheet 4. The heat insulating molded body 10 is molded according to the wall shape of the ventilation duct 1 for a building. For example, each heat insulating molded body 10 has a half-divided cylindrical shape. The two heat insulating molded bodies 10 are combined to form a cylindrical heat insulating wall material 2.
Although not shown, an adhesive tape or an adhesive is used as a means for joining the heat insulating molded bodies 10.

図4に示すように、断熱成形体10は、積重圧縮体11と、無機バインダ硬化物12を含む。積重圧縮体11は、ガラス繊維の解繊体11aを多数、積み重ねた積重体11xを圧縮したものである。
前記ガラス繊維は、SiOを主成分として含み、その他、Al、Fe、TiO、CaO、NaO等を含み得る。ガラス繊維におけるSiOの含有量は、好ましくは50~98wt%程度 、より好ましくは60~95wt%程度、一層好ましくは70~95wt%程度である。
前記ガラス繊維の解繊体11aは、好ましくは長繊維であり、その平均長さは通常10mm以上、好ましくは20mm以上、より好ましくは30mm 以上、一層好ましくは50mm 以上である。解繊体11aの平均直径は、通常2~30μm程度 、好ましくは5~30μm程度、より好ましくは5~20μm程度、一層好ましくは5~15μm程度である。
解繊体11aが積み重ねられた圧縮前の積重体11x(図5(d))の密度は、好ましくは100kg/m~200kg/m程度である。
断熱成形体10における積重圧縮体11の密度は、190kg/m~370kg/m程度である。
As shown in FIG. 4, the adiabatic molded body 10 includes a stacking compressed body 11 and an inorganic binder cured product 12. The stacked compressed body 11 is obtained by compressing a large number of glass fiber defibrated bodies 11a and a stacked stacked body 11x.
The glass fiber contains SiO 2 as a main component, and may also contain Al 2 O 3 , Fe 2 O 3 , TiO 2 , CaO, Na 2 O, and the like. The content of SiO 2 in the glass fiber is preferably about 50 to 98 wt%, more preferably about 60 to 95 wt%, and even more preferably about 70 to 95 wt%.
The defibrated body 11a of the glass fiber is preferably a long fiber, and the average length thereof is usually 10 mm or more, preferably 20 mm or more, more preferably 30 mm or more, still more preferably 50 mm or more. The average diameter of the defibrated body 11a is usually about 2 to 30 μm, preferably about 5 to 30 μm, more preferably about 5 to 20 μm, and even more preferably about 5 to 15 μm.
The density of the stacked body 11x (FIG. 5 (d)) on which the defibrated bodies 11a are stacked before compression is preferably about 100 kg / m 3 to 200 kg / m 3 .
The density of the stacked compressed body 11 in the heat insulating molded body 10 is about 190 kg / m 3 to 370 kg / m 3 .

無機バインダ硬化物12は、積重体11xに塗布・含浸された無機バインダ12a(図5(e))が硬化したものである。無機バインダ硬化物12を介して解繊体11aどうしが接合されている。無機バインダ硬化物12は、断熱成形体10の全域にほぼ均一に分散されている。
好ましくは、無機バインダ12aは、塗布・含浸時には液状体であり、加熱によって不可逆的に硬化する熱硬化性無機バインダである。
無機バインダ12aの主成分としては、シリカ、珪酸アルミニウムその他の粘土鉱物が挙げられる。シリカと珪酸アルミニウムの重量配合比は、例えばシリカ:珪酸アルミニウム=50:50~10:90である。
さらに硬化前の無機バインダ12aには水その他の液体も含まれている。水等の液体の配合量によって、無機バインダ12aの粘性を調整できる。珪酸アルミニウムが含水珪酸アルミニウムであってもよい。
The cured inorganic binder 12 is a cured inorganic binder 12a (FIG. 5 (e)) coated and impregnated on the stack 11x. The defibrated bodies 11a are bonded to each other via the cured inorganic binder 12. The inorganic binder cured product 12 is substantially uniformly dispersed over the entire area of the heat insulating molded product 10.
Preferably, the inorganic binder 12a is a thermosetting inorganic binder that is a liquid material at the time of coating and impregnation and is irreversibly cured by heating.
Examples of the main component of the inorganic binder 12a include silica, aluminum silicate and other clay minerals. The weight mixing ratio of silica and aluminum silicate is, for example, silica: aluminum silicate = 50:50 to 10:90.
Further, the inorganic binder 12a before curing also contains water and other liquids. The viscosity of the inorganic binder 12a can be adjusted by adjusting the blending amount of a liquid such as water. The aluminum silicate may be hydrous aluminum silicate.

断熱成形体10に占める解繊体11aの割合は、好ましくは80wt%~90wt%程度である。
断熱成形体10に占める無機バインダ硬化物12の割合は、好ましくは10wt%~20wt%である。
断熱成形体10において、解繊体11a及び無機バインダ硬化物12を除いた残部は、ボイド(空隙部ないしは空気層)によってほとんど占められている。断熱成形体10におけるボイド(空隙部)の体積割合は、好ましくは0.1vol%~10vol%程度であり、より好ましくは、0.5vol%~5vol%程度である。ボイドは、断熱成形体10の内部にほぼ均一に分散されている。
The ratio of the defibrated body 11a to the heat insulating molded body 10 is preferably about 80 wt% to 90 wt%.
The ratio of the cured inorganic binder 12 to the heat insulating molded product 10 is preferably 10 wt% to 20 wt%.
In the heat insulating molded body 10, the remainder excluding the defibrated body 11a and the cured inorganic binder 12 is mostly occupied by voids (void portions or air layers). The volume ratio of the void (void portion) in the heat insulating molded product 10 is preferably about 0.1 vol% to 10 vol%, and more preferably about 0.5 vol% to 5 vol%. The voids are dispersed almost uniformly inside the heat insulating molded body 10.

積重圧縮体11ひいては断熱成形体10には、多数の筋状部13が形成されている。これら筋状部13は、それぞれ断熱成形体10の厚み方向(径方向、図4の上下方向)へ延びるとともに、互いに断熱成形体10の面内方向(周方向及び軸長方向、図4の左右及び紙面直交方法)に分散して配置され、好ましくはほぼ均一間隔で配置されている。各筋状部13においては、解繊体11aが互いに絡み合っている。筋状部13の配置間隔d13は、好ましくはd13=0.1mm~10mm程度であり、より好ましくはd13=0.5mm~5mm程度である。 A large number of streaky portions 13 are formed in the stacked compressed body 11 and thus the heat insulating molded body 10. Each of these streaky portions 13 extends in the thickness direction (diametrical direction, vertical direction in FIG. 4) of the heat insulating molded body 10, and also extends in the in-plane direction (circumferential direction and axial length direction, left and right in FIG. 4) of the heat insulating molded body 10. And the method of orthogonal to the paper surface), they are distributed and preferably arranged at almost uniform intervals. In each streak portion 13, the defibrated bodies 11a are intertwined with each other. The arrangement interval d 13 of the streaks 13 is preferably about d 13 = 0.1 mm to 10 mm, and more preferably about d 13 = 0.5 mm to 5 mm.

断熱成形体10の外周面(表面)は、アルミガラスクロス等の表層シート4によって覆われている。表層シート4は、断熱成形体10の外周面に現れた無機バインダによって断熱成形体10と直接接着されて一体化されている。別途、表層シート4を接合するための接着剤は用いられていない。
断熱壁材2の両面を鋼板からなる当て板で挟み、ボルトを貫通させて20Nmの締め付けトルクを付与したときの減厚度合は、好ましくは60%以下である。
断熱壁材2における、実質完全吸水時の重量に対する、吸水後の脱水開始から25時間経過後の重量減少割合は、温度20℃~30℃、相対湿度60%RH~80%RHの環境において、好ましくは6%超、より好ましくは8%以上、一層好ましくは9%以上である。
The outer peripheral surface (surface) of the heat insulating molded body 10 is covered with a surface layer sheet 4 such as an aluminum glass cloth. The surface layer sheet 4 is directly adhered to and integrated with the heat insulating molded body 10 by an inorganic binder appearing on the outer peripheral surface of the heat insulating molded body 10. Separately, no adhesive for joining the surface layer sheet 4 is used.
The degree of thickness reduction when both sides of the heat insulating wall material 2 are sandwiched between backing plates made of steel plates and a tightening torque of 20 Nm is applied by penetrating a bolt is preferably 60% or less.
The weight loss ratio of the heat insulating wall material 2 25 hours after the start of dehydration after water absorption with respect to the weight at the time of substantially complete water absorption is in an environment of a temperature of 20 ° C to 30 ° C and a relative humidity of 60% RH to 80% RH. It is preferably more than 6%, more preferably 8% or more, and even more preferably 9% or more.

断熱壁材2の内周面には内面部材3が設けられている。内面部材3は、例えば円形断面の金属管によって構成されている。内面部材3の内部空間が、厨房排気エア、空調エア、煙突排ガスなどの流通対象流体の流路となっている。
前記金属管としては、亜鉛めっき鋼板のスパイラル管でもよく、ステンレススチール管でもよい。内面部材3の材質は、金属に限らず、樹脂、セラミックス、紙、木材等であってもよい。内面部材3が、表層シート4と同様のシートによって構成され、断熱成形体10の内周面(表面)に現れた無機バインダによって断熱成形体10と直接接着されて一体化されていてもよい。
An inner surface member 3 is provided on the inner peripheral surface of the heat insulating wall material 2. The inner surface member 3 is composed of, for example, a metal tube having a circular cross section. The internal space of the inner surface member 3 is a flow path for fluids to be distributed such as kitchen exhaust air, air conditioning air, and chimney exhaust gas.
The metal pipe may be a spiral pipe made of galvanized steel plate or a stainless steel pipe. The material of the inner surface member 3 is not limited to metal, but may be resin, ceramics, paper, wood, or the like. The inner surface member 3 may be formed of a sheet similar to the surface layer sheet 4, and may be directly adhered to and integrated with the heat insulating molded body 10 by an inorganic binder appearing on the inner peripheral surface (surface) of the heat insulating molded body 10.

前記の建築物用通気ダクト1は、次のようにして製造される。
図5(a)に示すように、材料となるガラス繊維2aを用意する。
図5(b)に示すように、ガラス繊維2aを解繊して、解繊体11aを得る。該解繊体11aを堆積させることで、積重体11xを形成する。
図5(c)に示すように、多数の針5aを有するニードルパンチ装置5によって、積重体11xにニードルパンチ(針穿)を施す。針5aには突起状の返し5cが形成されている。針5aの高速往復動によって、解繊体11aが互いに絡み合う。これによって、図5(d)に示すように、積重体11xがマット状になるとともに、積重体11xの厚み方向へ延びる多数の筋状部13が形成される。
この段階の積重体11xは、保形性が無く、重力その他の外力によって容易に変形され得る。
The building ventilation duct 1 is manufactured as follows.
As shown in FIG. 5A, glass fiber 2a as a material is prepared.
As shown in FIG. 5B, the glass fiber 2a is defibrated to obtain a defibrated body 11a. By depositing the defibrated body 11a, a stacked body 11x is formed.
As shown in FIG. 5 (c), a needle punching device 5 having a large number of needles 5a is used to perform needle punching (needle punching) on the stacked body 11x. A protruding barb 5c is formed on the needle 5a. Due to the high-speed reciprocating movement of the needle 5a, the defibrated bodies 11a are entangled with each other. As a result, as shown in FIG. 5D, the stacking body 11x becomes mat-shaped, and a large number of streaky portions 13 extending in the thickness direction of the stacking body 11x are formed.
The stack 11x at this stage is not shape-retaining and can be easily deformed by gravity or other external force.

続いて、図5(e)に示すように、前記積重体11xの両面(同図において上面及び下面)に無機バインダ12aを塗布する。塗布は、好ましくはローラで行う。スプレーで塗布してもよい。
塗布に代えて、積重体11xを無機バインダ槽に漬けることで、積重体11x内に無機バインダ12aを含浸させてもよい。この場合、積重体11xの上面側の部分及び下面側の部分をそれぞれ積重体11xの厚みの半分以下だけ無機バインダ槽に漬けることが好ましい。積重体11xの厚み方向の中央部分には、無機バインダ12aの非含浸層が形成されることが好ましい。これによって、積重体11x内にボイド(空気層)を確保できる。 このため、塗布又は含浸から後記圧縮成形までの段階においては、積重体11x中の無機バインダ12aの含有率が、積重体11xの両面側部分(上面側部分及び下面側部分)では高く、積重体11xの厚み方向の中央部分では低い。また、積重体11x中のボイド(空隙部)の存在率が、積重体11xの両面側部分では低く、積重体11xの厚み方向の中央部分では高い。
Subsequently, as shown in FIG. 5 (e), the inorganic binder 12a is applied to both surfaces (upper surface and lower surface in the same figure) of the stack 11x. The coating is preferably carried out with a roller. It may be applied by spraying.
Instead of coating, the stack 11x may be impregnated with the inorganic binder 12a by immersing the stack 11x in an inorganic binder tank. In this case, it is preferable to immerse the upper surface side portion and the lower surface side portion of the stacking body 11x in the inorganic binder tank by half or less of the thickness of the stacking body 11x, respectively. It is preferable that a non-impregnated layer of the inorganic binder 12a is formed in the central portion of the stack 11x in the thickness direction. As a result, a void (air layer) can be secured in the stack 11x. Therefore, in the stage from coating or impregnation to compression molding described later, the content of the inorganic binder 12a in the stacking body 11x is high in the double-sided side portions (upper surface side portion and lower surface side portion) of the stacking body 11x, and the stacking body It is low in the central part in the thickness direction of 11x. Further, the abundance rate of voids (void portions) in the stack 11x is low in the double-sided portions of the stack 11x and high in the central portion of the stack 11x in the thickness direction.

図5(f)に示すように、塗布又は含浸後の積重体11xの上面(通気ダクト1の外周
側を向く表面)には、表層シート4を貼り付けておく。表層シート4は、積重体11xの上面に現れた無機バインダ12aによって直接的に積重体11xと接着される。
As shown in FIG. 5 (f), the surface layer sheet 4 is attached to the upper surface of the stacked body 11x after coating or impregnation (the surface facing the outer peripheral side of the ventilation duct 1). The surface sheet 4 is directly adhered to the stack 11x by the inorganic binder 12a appearing on the upper surface of the stack 11x.

図5(f)に示すように、別途、断熱成形体10の仕上がり形状(半割筒形状)に対応する型面6a,7aを有する金型6,7を用意する。金型6,7の少なくとも一方にはヒータ8が組み込まれている。図において、ヒータ8は、複数本の棒状ヒータによって構成されているが、これに限らず、プレートヒータなどであってもよい。 As shown in FIG. 5 (f), separately, dies 6 and 7 having mold surfaces 6a and 7a corresponding to the finished shape (half-split cylinder shape) of the heat insulating molded body 10 are prepared. A heater 8 is incorporated in at least one of the molds 6 and 7. In the figure, the heater 8 is composed of a plurality of rod-shaped heaters, but the heater 8 is not limited to this, and may be a plate heater or the like.

前記積重体11xを金型6,7間にセットする。
続いて、図5(g)に示すように、金型6,7を閉じて、積重体11xをヒータ8によって加熱しながら加圧して圧縮成形する。加圧には、エアシリンダを用いることが好ましい。
前記加熱及び圧縮成形工程における加圧力は、0.1MPa~0.7MPa程度が好ましい。加熱温度は、100℃~400℃程度が好ましい。成形時間(前記加圧力の印加及び加熱の継続時間)は、3分~30分程度が好ましい。
これによって、積重体11xが厚み方向に圧縮され、積重圧縮体11となる。好ましくは、積重圧縮体11の厚みが、圧縮前の積重体11xの厚みの2分の1~5分の4程度になるように圧縮成形される。
また、加熱によって、無機バインダ12aの流動性が増し、更に無機バインダ12aの液成分の沸騰、気化、放散が起きる。この過程で無機バインダ12aの固形成分が積重体11x内の全域に拡散されながら無機バインダ硬化物12となる。
さらに、積重体11x内のボイド(空隙部ないしは空気層)が積重体11xの圧縮によって減容されるとともに、無機バインダ12aの拡散、液成分の気化・放散に伴って、積重圧縮体11内の全域にボイドが拡散される。
図5(h)に示すように、その後、脱型する。
The stack 11x is set between the molds 6 and 7.
Subsequently, as shown in FIG. 5 (g), the molds 6 and 7 are closed, and the stack 11x is pressurized while being heated by the heater 8 to be compression-molded. It is preferable to use an air cylinder for pressurization.
The pressing force in the heating and compression molding steps is preferably about 0.1 MPa to 0.7 MPa. The heating temperature is preferably about 100 ° C to 400 ° C. The molding time (the duration of application of the pressing force and heating) is preferably about 3 to 30 minutes.
As a result, the stack 11x is compressed in the thickness direction to become the stack compress 11. Preferably, the thickness of the stacked compressed body 11 is compression-molded so as to be about half to four-fifths of the thickness of the stacked body 11x before compression.
Further, the heating increases the fluidity of the inorganic binder 12a, and further causes boiling, vaporization, and dissipation of the liquid component of the inorganic binder 12a. In this process, the solid component of the inorganic binder 12a is diffused over the entire area of the stack 11x to form the cured inorganic binder 12.
Further, the voids (void portions or air layers) in the stack 11x are reduced in volume by the compression of the stack 11x, and the inside of the stack compressor 11 is caused by the diffusion of the inorganic binder 12a and the vaporization / dissipation of the liquid component. Voids are diffused over the entire area of.
Then, as shown in FIG. 5 (h), the mold is removed.

これによって、ダクト1の少なくとも一部の壁形状(半割筒形状)を有する断熱成形体10が成形される。無機バインダ硬化物12を介して、断熱成形体10の全域の解繊体11aが万遍なく接合されることによって、断熱成形体10の自立保形性が確保される。更に、筋状部13においては解繊体11aが互いに絡み合っているために、積重圧縮体11がばらけるのを一層確実に防止でき、断熱成形体10の自立保形性を一層高めることができる。
断熱成形体10の主材としてガラス繊維を用いることによって、断熱成形体10の断熱性及び耐熱性を確保できる。
更に、バインダとして有機バインダではなく無機バインダを用いることによって、断熱成形体10の耐熱性、耐火性、断熱性を確保できる。加えて、断熱成形体10の全域にわたってボイドが均一に分散されることで、断熱性が一層高まる。
断熱成形体10の外周面(表面)には、表層シート4が一体的に積層される。表層シート4は、断熱成形体10の外周面(表面)の無機バインダ硬化物12によって直接的に断熱成形体10と接合される。無機バインダ硬化物12が表層シート4の接合手段となるから、接着剤などの別途の接合手段は不要である。
As a result, the heat insulating molded body 10 having at least a part of the wall shape (half-split cylinder shape) of the duct 1 is formed. The self-supporting shape-retaining property of the heat-insulating molded body 10 is ensured by evenly joining the defibrated bodies 11a over the entire area of the heat-insulating molded body 10 via the inorganic binder cured product 12. Further, since the defibrated bodies 11a are entangled with each other in the streaky portion 13, it is possible to more reliably prevent the stacked compressed body 11 from being disassembled, and it is possible to further enhance the self-sustaining shape retention of the heat insulating molded body 10. can.
By using glass fiber as the main material of the heat insulating molded body 10, the heat insulating property and heat resistance of the heat insulating molded body 10 can be ensured.
Further, by using an inorganic binder instead of an organic binder as the binder, the heat resistance, fire resistance, and heat insulating property of the heat insulating molded product 10 can be ensured. In addition, the voids are uniformly dispersed over the entire area of the heat insulating molded body 10, so that the heat insulating property is further enhanced.
The surface layer sheet 4 is integrally laminated on the outer peripheral surface (surface) of the heat insulating molded body 10. The surface layer sheet 4 is directly bonded to the heat insulating molded body 10 by the inorganic binder cured product 12 on the outer peripheral surface (surface) of the heat insulating molded body 10. Since the inorganic binder cured product 12 serves as a joining means for the surface layer sheet 4, a separate joining means such as an adhesive is not required.

前記半割筒形状の断熱成形体10を一対作製する。
これら一対の断熱成形体10を、別途作製した内面部材3の両側部に被せる。
また、粘着テープや接着剤などの接合手段によって一対の断熱成形体10を接合する。これによって、円筒形状の断熱壁材2が得られる。
このようにして、建築物用通気ダクト1が得られる。内面部材3は、断熱壁材2の内周面から解繊体11aが飛散するのを防止する機能を果たす。表層シート4は、断熱壁材2の外周面から解繊体11aが飛散するのを防止する機能を果たす。
本発明形態によれば、種々の建築物用通気ダクトの壁形状に応じた金型を用意することによって、断熱成形体10の形状ひいては断熱壁材2の形状を任意に設定できる。
断熱成形体10における積重圧縮体11の密度を190kg/m~370kg/m程度とすることによって、自立して保形可能であり、かつ軽量で、ある程度の脱水性をも有する通気ダクト用断熱壁材が得られる。
前記密度を190kg/m以上、好ましくは250kg/m超とし、前記減厚度合を60%以下とすることによって、通気ダクト用断熱壁材2の耐締付力ひいては自立保形性を十分に確保できる。
前記密度を370kg/m以下、好ましくは200kg/m未満とし、前記重量減少割合を好ましくは6%超、より好ましくは8%以上、一層好ましくは9%以上とすることによって、断熱壁材2を軽量にでき、かつ通気ダクト用断熱壁材2としての脱水性を確保できる。
A pair of the heat insulating molded bodies 10 having a half-split cylinder shape are manufactured.
The pair of heat insulating molded bodies 10 are placed on both sides of a separately prepared inner surface member 3.
Further, the pair of heat insulating molded bodies 10 are joined by a joining means such as an adhesive tape or an adhesive. As a result, the cylindrical heat insulating wall material 2 is obtained.
In this way, the ventilation duct 1 for a building is obtained. The inner surface member 3 functions to prevent the defibrated body 11a from scattering from the inner peripheral surface of the heat insulating wall material 2. The surface layer sheet 4 functions to prevent the defibrated body 11a from scattering from the outer peripheral surface of the heat insulating wall material 2.
According to the embodiment of the present invention, the shape of the heat insulating molded body 10 and the shape of the heat insulating wall material 2 can be arbitrarily set by preparing molds corresponding to the wall shapes of various ventilation ducts for buildings.
By setting the density of the stacked compressed body 11 in the heat insulating molded body 10 to about 190 kg / m 3 to 370 kg / m 3 , a ventilation duct that can be self-supporting and can be kept in shape, is lightweight, and has a certain degree of dehydration. Insulated wall material can be obtained.
By setting the density to 190 kg / m 3 or more, preferably 250 kg / m 3 or more, and the thickness reduction degree to 60% or less, the tightening resistance of the heat insulating wall material 2 for ventilation ducts and the self-supporting shape retention are sufficient. Can be secured.
By setting the density to 370 kg / m 3 or less, preferably less than 200 kg / m 3 , and the weight reduction rate to preferably more than 6%, more preferably 8% or more, still more preferably 9% or more, the heat insulating wall material. 2 can be made lightweight, and dehydration as a heat insulating wall material 2 for a ventilation duct can be ensured.

本発明は、前記実施形態に限定されるものではなく、その趣旨を逸脱しない範囲において種々の改変をなすことができる。
例えば、建築物用通気ダクトは、厨房排気フード、空調ダクト、煙突に限られず、換気ダクトなどであってもよい。
通気ダクトの形状は、円筒形に限らず、四角筒形その他の多角筒形でもよく、その他様々な形状でもよい。断熱壁材は、平板状でもよく、湾曲板状でもよく、その他様々な形状であってもよい。
解繊体11aは、長繊維に限られず、短繊維であってもよい。
無機バインダ12aは、熱硬化性バインダに限らず、例えば水和反応等によって硬化する水硬化性バインダなどであってもよい。無機バインダ12aは、加熱によって溶融して解繊体11aどうしを接合し、その後、冷却によって硬化されるものであってもよい。無機バインダ12aが、分散媒又は溶媒を含んでいてもよい。加熱時に分散媒又は溶媒が気化されてもよい。分散媒又は溶媒は水であってもよい。
壁形状の断熱成形体における内面(ダクト流路画成面)に表層シート4を設けてもよい。断熱成形体における内面の無機バインダによって前記表層シート4を断熱成形体と直接接着してもよい。表層シートは省略してもよい。
The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
For example, the ventilation duct for a building is not limited to a kitchen exhaust hood, an air conditioning duct, and a chimney, and may be a ventilation duct or the like.
The shape of the ventilation duct is not limited to a cylindrical shape, but may be a square cylinder or a polygonal cylinder, or various other shapes. The heat insulating wall material may have a flat plate shape, a curved plate shape, or various other shapes.
The defibrated body 11a is not limited to long fibers, but may be short fibers.
The inorganic binder 12a is not limited to a thermosetting binder, and may be, for example, a water-curable binder that is cured by a hydration reaction or the like. The inorganic binder 12a may be one that is melted by heating to bond the defibrated bodies 11a to each other and then cured by cooling. The inorganic binder 12a may contain a dispersion medium or a solvent. The dispersion medium or solvent may be vaporized during heating. The dispersion medium or solvent may be water.
The surface layer sheet 4 may be provided on the inner surface (duct flow path image surface) of the wall-shaped heat insulating molded body. The surface layer sheet 4 may be directly adhered to the heat insulating molded body by an inorganic binder on the inner surface of the heat insulating molded body. The surface sheet may be omitted.

実施例を説明する。本発明が以下の実施例に限定されるものではない。
実施例1では、断熱壁材の密度に応じた耐締付力を検証した。
積重圧縮体と無機バインダ硬化物を含む断熱成形体からなる断熱壁材のサンプル1~4を用意した。
断熱壁材サンプル1~4の縦横サイズは、約100mm×約100mmであり、初期(締め付け前)の厚みは19.7mm~20.7mmであった。なお、厚みは、各断熱壁材サンプル1~4の4点で測定し、その平均値を採用した(実施例2において同様)。
断熱壁材サンプルの初期(締め付け前)の密度は、198kg/m~367kg/mであった。
各断熱壁材サンプル1~4の両面を一対の鋼板からなる当て板で挟み、ボルトを一方の当て板から断熱壁材サンプル1~4及び他方の当て板へ貫通させてナットをねじ込み、20Nmの締め付けトルクを付与したときの減厚度合(締付時厚み/初期厚み)を測定した。
表1に示すように、測定結果は、それぞれ59%、50%、42%、30%であり、通気ダクト用断熱壁材として十分な自立保形性が確保されることが確認された。
Examples will be described. The present invention is not limited to the following examples.
In Example 1, the tightening resistance according to the density of the heat insulating wall material was verified.
Samples 1 to 4 of a heat insulating wall material made of a heat insulating molded body containing a stacked compressed body and an inorganic binder cured product were prepared.
The vertical and horizontal sizes of the heat insulating wall material samples 1 to 4 were about 100 mm × about 100 mm, and the initial thickness (before tightening) was 19.7 mm to 20.7 mm. The thickness was measured at four points of each heat insulating wall material sample 1 to 4, and the average value thereof was adopted (the same applies to Example 2).
The initial density (before tightening) of the heat insulating wall material sample was 198 kg / m 3 to 367 kg / m 3 .
Both sides of each heat insulating wall material sample 1 to 4 are sandwiched between a pair of steel plate backing plates, a bolt is passed through one backing plate to the heat insulating wall material samples 1 to 4 and the other backing plate, and a nut is screwed in to 20 Nm. The degree of thickness reduction (thickness at the time of tightening / initial thickness) when the tightening torque was applied was measured.
As shown in Table 1, the measurement results were 59%, 50%, 42%, and 30%, respectively, and it was confirmed that sufficient self-sustaining shape retention as a heat insulating wall material for ventilation ducts was ensured.

Figure 2022073486000002
Figure 2022073486000002

実施例2では、断熱壁材の密度に応じた吸水後の脱水性を検証した。
積重圧縮体と無機バインダ硬化物を含む断熱成形体からなる断熱壁材サンプル5~8を用意した。
各断熱壁材サンプル5~8の縦横サイズは、約100mm×約100mmであり、厚みは20mm~20.8mmであった。
断熱壁材サンプルの初期(吸水前)の重量は、0.041kg~0.073kgであった。
断熱壁材サンプルの密度は、205kg/m~347kg/mであった。
これら断熱壁材サンプルを、バケツ内の水に漬けて吸水させた(吸水工程)。これら断熱壁材サンプルを1時間(60分)の吸水工程によって実質完全吸水させた後、バケツから取り出して、直後の重量を測定したところ、0.220kg~0.244kgであった。
前記取り出した断熱壁材サンプルを温度20℃~30℃、相対湿度60%RH~80%RHの環境に静置して脱水させた。
表2に示すように、前記取り出し時(吸水工程終了時)から25時間経過の断熱壁材サンプルの重量は、0.197kg~0.221kgであり、重量減少割合は、9%~10%であった。
In Example 2, the dehydration property after water absorption was verified according to the density of the heat insulating wall material.
Insulation wall material samples 5 to 8 composed of a heat insulating molded body containing a stacked compressed body and an inorganic binder cured product were prepared.
The vertical and horizontal sizes of the heat insulating wall material samples 5 to 8 were about 100 mm × about 100 mm, and the thickness was 20 mm to 20.8 mm.
The initial weight (before water absorption) of the heat insulating wall material sample was 0.041 kg to 0.073 kg.
The density of the heat insulating wall material sample was 205 kg / m 3 to 347 kg / m 3 .
These heat insulating wall material samples were immersed in water in a bucket to absorb water (water absorption step). After the heat insulating wall material sample was substantially completely absorbed by the water absorption step for 1 hour (60 minutes), it was taken out from the bucket and the weight immediately after was measured and found to be 0.220 kg to 0.244 kg.
The removed heat insulating wall material sample was allowed to stand in an environment having a temperature of 20 ° C. to 30 ° C. and a relative humidity of 60% RH to 80% RH to dehydrate it.
As shown in Table 2, the weight of the heat insulating wall material sample 25 hours after the removal (at the end of the water absorption process) is 0.197 kg to 0.221 kg, and the weight reduction rate is 9% to 10%. there were.

[比較例]
比較例として、ケイ酸カルシウムからなる断熱壁材サンプルを用意した。該ケイ酸カルシウムからなる断熱壁材サンプルの縦横サイズは99mm×99mm、厚みは26.3mm、密度は440kg/mであった。該ケイ酸カルシウムからなる断熱壁材サンプルについて、実施例2と同一条件で脱水性を検証したところ、重量減少割合は6%であった。
本発明に係る断熱壁材によれば、ケイ酸カルシウムからなる断熱壁材よりも軽量で、脱水性が優っていることが確認された。
[Comparison example]
As a comparative example, a heat insulating wall material sample made of calcium silicate was prepared. The vertical and horizontal size of the heat insulating wall material sample made of calcium silicate was 99 mm × 99 mm, the thickness was 26.3 mm, and the density was 440 kg / m 3 . When the dehydration property of the heat insulating wall material sample made of calcium silicate was verified under the same conditions as in Example 2, the weight loss rate was 6%.
According to the heat insulating wall material according to the present invention, it was confirmed that the heat insulating wall material is lighter in weight and superior in dehydration property than the heat insulating wall material made of calcium silicate.

Figure 2022073486000003
Figure 2022073486000003

本発明は、例えば建築物における厨房排気ダクト、空調ダクト、煙突などの通気ダクトに適用できる。 The present invention can be applied to, for example, ventilation ducts such as kitchen exhaust ducts, air conditioning ducts, and chimneys in buildings.

1 建築物用通気ダクト
2 断熱壁材
2a ガラス繊維
4 表層シート
10 断熱成形体
11 積重圧縮体
11a 解繊体
11x 積重体
12 無機バインダ硬化物
12a 無機バインダ
13 筋状部
1 Ventilation duct for buildings 2 Insulation wall material 2a Glass fiber 4 Surface sheet 10 Insulation molded body 11 Stacked compressor 11a Defibering body 11 x Stacked body 12 Inorganic binder cured product 12a Inorganic binder 13 Streaks

Claims (3)

建築物の通気ダクトにおける断熱壁材であって、
前記通気ダクトの流路に沿う所定の壁形状に成形された断熱成形体を備え、前記断熱成形体が、ガラス繊維の解繊体が積み重ねられて圧縮された積重圧縮体と、前記積重圧縮体内に拡散されて前記解繊体どうしを接合する無機バインダ硬化物とを含み、
前記断熱成形体における前記積重圧縮体の密度が、190kg/m~370kg/mであることを特徴とする通気ダクト用断熱壁材。
Insulated wall material in ventilation ducts of buildings
The heat insulating molded body is provided with a heat insulating molded body formed into a predetermined wall shape along the flow path of the ventilation duct, and the heat insulating molded body includes a stacked compressed body in which glass fiber defibrated bodies are stacked and compressed, and the stacked body. It contains an inorganic binder cured product that is diffused into the compressed body and joins the defibrated bodies to each other.
A heat insulating wall material for a ventilation duct, characterized in that the density of the stacked compressed body in the heat insulating molded body is 190 kg / m 3 to 370 kg / m 3 .
当該通気ダクト用断熱壁材の両面を当て板で挟み、ボルトを貫通させて20Nmの締め付けトルクを付与したときの減厚度合が、60%以下であることを特徴とする請求項1に記載の通気ダクト用断熱壁材。 2. Insulated wall material for ventilation ducts. 当該通気ダクト用断熱壁材における、実質完全吸水時の重量に対する、吸水後の脱水開始から25時間経過後の重量減少割合が、温度20℃~30℃、相対湿度60%RH~80%RHにおいて、6%超であることを特徴とする請求項1又は2に記載の通気ダクト用断熱壁材。 The weight reduction ratio of the heat insulating wall material for ventilation duct 25 hours after the start of dehydration after water absorption with respect to the weight at the time of substantially complete water absorption is at a temperature of 20 ° C to 30 ° C and a relative humidity of 60% RH to 80% RH. , The heat insulating wall material for a ventilation duct according to claim 1 or 2, wherein the temperature is more than 6%.
JP2020183505A 2020-11-02 2020-11-02 Heat insulating wall material for ventilation duct of building Pending JP2022073486A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020183505A JP2022073486A (en) 2020-11-02 2020-11-02 Heat insulating wall material for ventilation duct of building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020183505A JP2022073486A (en) 2020-11-02 2020-11-02 Heat insulating wall material for ventilation duct of building

Publications (1)

Publication Number Publication Date
JP2022073486A true JP2022073486A (en) 2022-05-17

Family

ID=81605264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020183505A Pending JP2022073486A (en) 2020-11-02 2020-11-02 Heat insulating wall material for ventilation duct of building

Country Status (1)

Country Link
JP (1) JP2022073486A (en)

Similar Documents

Publication Publication Date Title
JP6804776B2 (en) Manufacturing method of heat insulating wall material for ventilation duct of building
JP6487494B2 (en) Flexible insulating structure and method for making and using the same
US8753732B2 (en) Flexible insulating product
CN108136750A (en) The preparation facilities and preparation method of composite sheet comprising airsetting film
KR101336964B1 (en) An aerogel binder for forming insulating materials of glass long fibers and forming process of insulating materials thereby
JPH10510888A (en) Fiber web / airgel composites containing bicomponent fibers, methods for their preparation and their use
EA018719B1 (en) Pipe section and methods for its production
RU2597590C1 (en) Glass fibre reinforced and mineral wool based acoustic tile
KR101539950B1 (en) Silica aerogels and fiberglass laminated heat insulating material and Method for producing the same
JP2022073486A (en) Heat insulating wall material for ventilation duct of building
US2079664A (en) Method of making lightweight articles
EP2180229A1 (en) Pipe insulating assembly
KR0150509B1 (en) Inorganic constructional board and method of manufacturing the same
US20120138878A1 (en) Composite materials
KR101539951B1 (en) Silica aerogels and fiberglass laminated pipe type heat insulating material and Method for producing the same
US2393947A (en) Hard surfacing of mineral fiber
JP2015223782A (en) Fiber board and method for producing the same
JP3164291B2 (en) Manufacturing method of core material for vacuum insulation structure
JP2013067949A (en) Inorganic plate
KR101400354B1 (en) Water repellent e-glass fiber heat insulating materials and its manufacturing method
KR101903363B1 (en) Manufacturing method of eco-friendly bti heat insulating materials
JPH0648848A (en) Incombustible composite material structure and its production
KR101536564B1 (en) Aramid fiber, fiberglass and Silica aerogels and laminated pipe type heat insulating material with iproved impact resistance and Method for producing the same
JP3930966B2 (en) Architectural composite board and manufacturing method thereof
JP4894682B2 (en) Manufacturing method of fiberboard panel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240423