JP2022070440A - Gas purifier and gas purification method - Google Patents

Gas purifier and gas purification method Download PDF

Info

Publication number
JP2022070440A
JP2022070440A JP2020179508A JP2020179508A JP2022070440A JP 2022070440 A JP2022070440 A JP 2022070440A JP 2020179508 A JP2020179508 A JP 2020179508A JP 2020179508 A JP2020179508 A JP 2020179508A JP 2022070440 A JP2022070440 A JP 2022070440A
Authority
JP
Japan
Prior art keywords
adsorption
component
gas
cylinder
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020179508A
Other languages
Japanese (ja)
Other versions
JP7502962B2 (en
Inventor
宏之 武井
Hiroyuki Takei
悟 三沢
Satoru Misawa
真二 村上
Shinji Murakami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2020179508A priority Critical patent/JP7502962B2/en
Publication of JP2022070440A publication Critical patent/JP2022070440A/en
Application granted granted Critical
Publication of JP7502962B2 publication Critical patent/JP7502962B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Of Gases By Adsorption (AREA)

Abstract

To provide a gas purifier which can remove air components from a rare gas with good efficiency, and a gas purification method with use of the gas purifier.SOLUTION: A gas purifier comprises: an adsorption cylinder A1 for strong adsorption component which adsorbs and removes a component of air components that is strongly adsorbed by an adsorbent; an adsorption cylinder A2 for weak adsorption component which adsorbs and removes a component that is adsorbed weakly by the adsorbent; a heater H1 for heating the adsorption cylinder A1 for strong adsorption component; a raw material gas introduction passage L1 which introduces a raw material gas into the adsorption cylinder A1 for strong adsorption component; an adsorption cylinder connection passage L2 which connects an outlet side of the adsorption cylinder A1 for strong adsorption component and an inlet side of the adsorption cylinder A2 for weak adsorption component; a purified gas derivation passage L3 which derives a purified gas from the adsorption cylinder A2 for weak adsorption component; an exhaust gas passage L4 which is connected to the adsorption cylinder A1 for strong adsorption component; and a vacuum exhaust passage L5 which is connected to the adsorption cylinder A1 for strong adsorption component, and has a vacuum pump.SELECTED DRAWING: Figure 1

Description

本発明は、希ガス等の気体から不純物としての空気成分(窒素、酸素、二酸化炭素、水等)を吸着除去するガス精製装置及び当該ガス精製装置を用いたガス精製方法に関する。 The present invention relates to a gas purification apparatus that adsorbs and removes air components (nitrogen, oxygen, carbon dioxide, water, etc.) as impurities from a gas such as a rare gas, and a gas purification method using the gas purification apparatus.

半導体製造、熱処理、検査、分析などの分野では様々なガスが用いられている。そのようなガスの中でも、希ガス(ヘリウム、アルゴン等)は高価なため、使用後に回収精製することが望まれている。しかし、回収した希ガスには、不純物として空気成分(窒素、酸素、二酸化炭素、水等)が含まれていることが多い。 Various gases are used in fields such as semiconductor manufacturing, heat treatment, inspection, and analysis. Among such gases, rare gases (helium, argon, etc.) are expensive, and therefore it is desired to recover and purify them after use. However, the recovered noble gas often contains air components (nitrogen, oxygen, carbon dioxide, water, etc.) as impurities.

また、ガスの回収によるメリットを大きくするために、回収精製装置の価格を安価に抑えたい一方で、できる限り回収ガスのロスを少なくして収率を高くすることが望まれている。さらに、回収精製装置を実際に設置する上で、設置面積等の条件を考えれば、必然的に装置サイズができる限り小さいことが望まれている。 Further, in order to increase the merit of recovering the gas, it is desired to keep the price of the recovery and purification apparatus low, while reducing the loss of the recovery gas as much as possible and increasing the yield. Further, when actually installing the recovery / purification device, it is inevitably desired that the device size be as small as possible in consideration of conditions such as the installation area.

回収されたガス中の空気成分を除去する装置として、TSA(温度スイング吸着装置)やPSA(圧力スイング吸着装置)がある。TSAとPSAにはそれぞれ長所と短所とがあり、適用するガスの組成、濃度、吸着剤の種類などによって使い分けられている。 As a device for removing the air component in the recovered gas, there are TSA (temperature swing adsorption device) and PSA (pressure swing adsorption device). TSA and PSA have advantages and disadvantages, respectively, and are used properly according to the composition, concentration, type of adsorbent, etc. of the applied gas.

TSAでは、一般的に、2筒の吸着筒、8個のバルブ、ヒーターを装置の基本構造として、吸着、脱圧、加熱、再生、冷却、均圧の工程を繰り返しながら、ガスを連続で処理する。TSAにおいては、吸着剤を加熱することで吸着質の脱離を促進できるため、再生後のガス吸着量が多くなる。また、加熱によって、強吸着成分(吸着剤に強く吸着される成分)を比較的短時間で脱離させることが可能である。但し、加熱再生の後に冷却を行うため、PSAに比べると1サイクルに要する時間が長いものとなる。 In TSA, generally, two suction cylinders, eight valves, and a heater are used as the basic structure of the device, and gas is continuously processed while repeating the steps of adsorption, depressurization, heating, regeneration, cooling, and pressure equalization. do. In TSA, the desorption of the adsorbent can be promoted by heating the adsorbent, so that the amount of gas adsorbed after regeneration increases. Further, by heating, the strongly adsorbed component (the component strongly adsorbed by the adsorbent) can be desorbed in a relatively short time. However, since cooling is performed after heating and regeneration, the time required for one cycle is longer than that of PSA.

なお、上記加熱には、「高温のガスを用いて加熱する方法」と「ヒーター等の加熱装置で吸着筒ごと直接加熱する方法」とがある。「高温のガスを用いて加熱する方法」によって加熱再生を行う場合、再生用のガスが必要となる。当該再生用のガスには、精製ガスの一部や別途のガス供給設備を使用するが、その分、精製ガスのロスやランニングコストの増大を招いてしまう。また、加熱した再生用のガスが通る配管等には耐熱性の仕様が求められる。一方、「ヒーター等の加熱装置で吸着筒ごと直接加熱する方法」であれば、再生用のガスは不要だが、吸着筒の径が太い場合に中心部まで熱が伝わりにくいこと、加熱後の吸着剤の冷却に長時間を要することから、当該方法は径の細い吸着筒にしか適用できない。 The heating includes "a method of heating using a high-temperature gas" and "a method of directly heating the entire adsorption cylinder with a heating device such as a heater". When heat regeneration is performed by the "method of heating using a high temperature gas", a gas for regeneration is required. A part of the refined gas or a separate gas supply facility is used for the regenerated gas, which causes a loss of the refined gas and an increase in running cost. In addition, heat-resistant specifications are required for pipes and the like through which heated regeneration gas passes. On the other hand, if the method is to directly heat the entire adsorption cylinder with a heating device such as a heater, no gas for regeneration is required, but if the diameter of the adsorption cylinder is large, it is difficult for heat to be transferred to the center, and adsorption after heating. Since it takes a long time to cool the agent, this method can be applied only to an adsorption cylinder having a small diameter.

一方、PSAでは、一般的に、2筒の吸着筒、8個のバルブを装置の基本構造として、吸着、均圧、再生の工程を繰り返しながら、ガスを連続で処理する。PSAにおいては、吸着剤を減圧によって再生するため、TSAに比べて短時間での再生が可能である。但し、再生後の吸着量がTSAに比べて少ないことや、一度にあまり多くの量の強吸着成分を脱離できないことから、短時間の吸着と減圧再生を数分で繰り返すこととなり、再生時の排気による回収ガスのロスが大きくなる。よって、排気される回収ガスの量を抑え、回収ガスのロスを減らすための工夫がなされている。 On the other hand, in PSA, generally, two suction cylinders and eight valves are used as the basic structure of the device, and the gas is continuously processed while repeating the steps of suction, pressure equalization, and regeneration. In PSA, since the adsorbent is regenerated by reducing the pressure, it can be regenerated in a shorter time than in TSA. However, since the amount of adsorption after regeneration is smaller than that of TSA and a large amount of strongly adsorbed components cannot be desorbed at one time, short-time adsorption and vacuum regeneration are repeated in a few minutes, and during regeneration. The loss of recovered gas due to the exhaust of the exhaust gas increases. Therefore, measures have been taken to reduce the amount of recovered gas exhausted and reduce the loss of recovered gas.

当該回収ガスのロスを減らすための工夫として、「一回の再生工程で排気される回収ガスの量を抑える方法」と「時間当たりの再生回数を減らす方法」とがある。「一回の再生工程で排気される回収ガスの量を抑える方法」は、吸着筒に残留する回収ガスの一部をタンク等に回収することで、一回の再生工程で排気される回収ガスの量を抑えるものである。2つ以上の吸着筒を備えるPSAであれば吸着工程終了時に吸着筒に残留するガスを他の吸着筒に回収することができるが、吸着筒が1つしかない場合には回収用のタンクや補助吸着筒が必要である。これらのタンクや補助吸着筒は容積が小さいとガス回収の効果が小さくなるため、吸着筒と同等以上の容積のものを用いることが多い。他にも、ガスの流れを切り替えるための配管やバルブ等も必要となる。そのため、装置全体としての価格が増大するとともに、当該装置のサイズも大きくなってしまう。また、「時間当たりの再生回数を減らす方法」は、吸着工程の時間を長くして再生工程の頻度を下げるものである。但し、吸着剤の量を増やして吸着工程の時間を引き延ばすと、減圧のみでは再生できなくなり、再生用のガスが必要になるので、逆にロスが増大してしまう。 As a device for reducing the loss of the recovered gas, there are "a method of reducing the amount of recovered gas exhausted in one regeneration process" and "a method of reducing the number of regenerations per hour". The "method of reducing the amount of recovered gas exhausted in one regeneration process" is to recover a part of the recovered gas remaining in the adsorption cylinder to a tank or the like, and the recovered gas exhausted in one regeneration process. It suppresses the amount of gas. If the PSA has two or more adsorption cylinders, the gas remaining in the adsorption cylinder at the end of the adsorption process can be collected in another adsorption cylinder, but if there is only one adsorption cylinder, a recovery tank or An auxiliary suction tube is required. Since the effect of gas recovery is small when the volume of these tanks and auxiliary adsorption cylinders is small, those having a volume equal to or larger than that of the adsorption cylinders are often used. In addition, piping and valves for switching the gas flow are also required. Therefore, the price of the device as a whole increases, and the size of the device also increases. Further, the "method of reducing the number of regenerations per hour" is to lengthen the time of the adsorption step and reduce the frequency of the regeneration step. However, if the amount of the adsorbent is increased to prolong the time of the adsorption step, regeneration cannot be performed only by reducing the pressure, and a gas for regeneration is required, so that the loss increases on the contrary.

一般的なTSAやPSAでは、処理するガスの量が少なくなっても、必要最低限の基本的構成は変わらないために、設備投資額を低減することが難しい。但し、バイオガス中のメタンや水蒸気改質ガス中の水素を製品ガスとして取り出すPSAにおいては、特許文献1や特許文献2に示されるように、1筒の吸着筒と4個のバルブを装置の基本構造とする1系統のプロセスを採用することで、装置の低コスト化や装置サイズの小型化が可能である。 In general TSA and PSA, it is difficult to reduce the amount of capital investment because the minimum required basic configuration does not change even if the amount of gas to be processed is small. However, in PSA that takes out methane in biogas and hydrogen in steam reforming gas as a product gas, as shown in Patent Document 1 and Patent Document 2, one adsorption cylinder and four valves are used in the device. By adopting one system of process as the basic structure, it is possible to reduce the cost of the device and the size of the device.

特許第6114341号公報Japanese Patent No. 6114341 特許第6284563号公報Japanese Patent No. 6284563

しかしながら、上記特許文献1や特許文献2に記載の技術は、バイオガス中からメタンを取り出す場合や水蒸気改質ガス中から水素を取り出す場合など、その用途が限られるものであり、同じ技術を他の用途にそのまま転用できない。その一方で、希ガスからの空気成分除去においては、除去効率の良い方法が確立されていないという課題があった。 However, the techniques described in Patent Document 1 and Patent Document 2 have limited applications such as the case of extracting methane from biogas and the case of extracting hydrogen from steam reformed gas, and the same technique is used. It cannot be used as it is for the purpose of. On the other hand, in removing air components from rare gases, there is a problem that a method with good removal efficiency has not been established.

そこで、本発明は、希ガスからの空気成分除去を効率良く行うことのできるガス精製装置及び当該ガス精製装置を用いたガス精製方法を確立することを目的としている。特に、空気の主な構成成分が吸着剤(ゼオライト、活性アルミナ、シリカゲル等)に相対的に強く吸着される成分(強吸着成分:水、二酸化炭素等)と相対的に弱く吸着される成分(弱吸着成分:窒素、酸素等)の二つに大別できることに鑑みて、強吸着成分用と弱吸着成分用の2筒の吸着筒を備えるガス精製装置を想定し、当該ガス精製装置を構成する上で、当該装置の低コスト化、装置サイズの小型化、回収ガスのロス抑制(回収率の向上)を行うことを目的としている。 Therefore, an object of the present invention is to establish a gas purification apparatus capable of efficiently removing air components from a rare gas and a gas purification method using the gas purification apparatus. In particular, the main constituents of air are relatively strongly adsorbed on the adsorbent (zeolite, active alumina, silica gel, etc.) (strongly adsorbed components: water, carbon dioxide, etc.) and relatively weakly adsorbed (strongly adsorbed components: water, carbon dioxide, etc.). Considering that it can be roughly divided into two types (weakly adsorbed components: nitrogen, oxygen, etc.), the gas purification device is configured assuming a gas purification device equipped with two adsorption tubes, one for the strong adsorption component and the other for the weak adsorption component. The purpose of this is to reduce the cost of the device, reduce the size of the device, and suppress the loss of recovered gas (improve the recovery rate).

本発明は、空気成分を含む原料ガスから当該空気成分を吸着除去するガス精製装置であって、空気成分のうち相対的に吸着剤に強く吸着される成分を吸着除去するための強吸着成分用吸着筒と、空気成分のうち相対的に吸着剤に弱く吸着される成分を吸着除去するための弱吸着成分用吸着筒と、前記強吸着成分用吸着筒を加熱するための加熱手段と、前記原料ガスを前記強吸着成分用吸着筒の入口側に導入する原料ガス導入経路と、前記強吸着成分用吸着筒の出口側と前記弱吸着成分用吸着筒の入口側を接続する吸着筒接続経路と、前記弱吸着成分用吸着筒の出口側から精製ガスを導出する精製ガス導出経路と、前記強吸着成分用吸着筒の入口側に接続される排ガス経路と、前記強吸着成分用吸着筒の入口側に接続され、真空ポンプを有する真空排気経路と、を備えていることを特徴とするものである。 The present invention is a gas purification device that adsorbs and removes the air component from a raw material gas containing an air component, and is for a strongly adsorbed component for adsorbing and removing a component that is relatively strongly adsorbed by an adsorbent among the air components. A suction cylinder, a suction cylinder for a weak adsorption component for adsorbing and removing a component that is relatively weakly adsorbed by an adsorbent among air components, a heating means for heating the adsorption cylinder for a strong adsorption component, and the above-mentioned A raw material gas introduction path for introducing the raw material gas to the inlet side of the strong adsorption component adsorption tube, and a suction tube connection path for connecting the outlet side of the strong adsorption component adsorption tube and the inlet side of the weak adsorption component adsorption tube. , The purified gas out-out path for deriving the purified gas from the outlet side of the weakly adsorbed component adsorption tube, the exhaust gas path connected to the inlet side of the strong adsorption component adsorption tube, and the strong adsorption component adsorption tube. It is characterized by having a vacuum exhaust path, which is connected to the inlet side and has a vacuum pump.

好適には、前記精製ガス導出経路に設けられた背圧調整弁を更に備えており、弱吸着成分用吸着筒より強吸着成分用吸着筒の方が小径であり、強吸着成分用吸着筒と弱吸着成分用吸着筒に充填される吸着剤は同じものであるか異なるものであり、前記空気成分を含む原料ガスは不純物として空気成分を含む希ガスである。 Preferably, the back pressure adjusting valve provided in the purified gas out-out path is further provided, and the adsorption cylinder for the strong adsorption component has a smaller diameter than the adsorption cylinder for the weak adsorption component, and the adsorption cylinder for the strong adsorption component and the adsorption cylinder. The adsorbents filled in the adsorbent for weakly adsorbed components are the same or different, and the raw material gas containing the air component is a rare gas containing an air component as an impurity.

さらに、本発明は、前記ガス精製装置を用いるガス精製方法であって、前記原料ガスを前記原料ガス導入経路から導入し、強吸着成分用吸着筒及び弱吸着成分用吸着筒で空気成分を吸着除去し、前記精製ガス導出経路から精製ガスを取り出す吸着工程と、前記吸着工程後のガス流路内の圧力を、前記排ガス経路を開放することにより大気圧に戻す脱圧工程と、前記脱圧工程後の前記強吸着成分用吸着筒を前記加熱手段によって加熱するとともに、前記真空ポンプを用いて前記強吸着成分用吸着筒及び前記弱吸着成分用吸着筒を減圧し、それぞれの内部に充填されている吸着剤から吸着除去された空気成分を脱離させる再生工程と、前記再生工程の終了後、前記強吸着成分用吸着筒を冷却する冷却工程とを含むことを特徴とするものである。好適には、前記空気成分を含む原料ガスは、不純物として空気成分を含む希ガスである。 Further, the present invention is a gas purification method using the gas purification apparatus, in which the raw material gas is introduced from the raw material gas introduction path, and the air component is adsorbed by the suction cylinder for a strong adsorption component and the adsorption cylinder for a weak adsorption component. An adsorption step of removing and taking out purified gas from the purified gas derivation path, a depressurization step of returning the pressure in the gas flow path after the adsorption step to atmospheric pressure by opening the exhaust gas path, and the depressurization. The suction cylinder for the strong adsorption component after the step is heated by the heating means, and the suction cylinder for the strong adsorption component and the suction cylinder for the weak adsorption component are depressurized by using the vacuum pump, and the inside of each is filled. It is characterized by including a regeneration step of desorbing an air component adsorbed and removed from the adsorbent, and a cooling step of cooling the suction cylinder for the strongly adsorbed component after the completion of the regeneration step. Preferably, the raw material gas containing the air component is a noble gas containing an air component as an impurity.

本発明のガス精製装置及びガス精製方法によれば、特に、不純物として空気成分を含む希ガスについて、強吸着成分用と弱吸着成分用の吸着筒を分離して、2筒の吸着筒を配管で接続した構成となり、個々の吸着剤に吸着される空気成分が分離されることによって、効率の良いガス精製が行われるものとなる。強吸着成分用吸着筒に充填された吸着剤は加熱と真空脱離によって再生可能であり、再生ガスを不要とする。また、強吸着成分用吸着筒と弱吸着成分用吸着筒とを一つの真空ポンプにより減圧可能である。 According to the gas purification apparatus and the gas purification method of the present invention, particularly for rare gas containing an air component as an impurity, the adsorption cylinders for the strong adsorption component and the adsorption cylinder for the weak adsorption component are separated, and two adsorption cylinders are piped. By separating the air components adsorbed by the individual adsorbents, efficient gas purification can be performed. The adsorbent filled in the adsorbent for strongly adsorbed components can be regenerated by heating and vacuum desorption, and does not require a regenerated gas. Further, the suction cylinder for the strong adsorption component and the adsorption cylinder for the weak adsorption component can be depressurized by one vacuum pump.

また、弱吸着成分用吸着筒より強吸着成分用吸着筒の方が小径であることから、加熱手段を有する強吸着成分用吸着筒は確実に再生され、弱吸着成分用吸着筒は大きな筒とすることにより吸着量を増加させることができ、吸着時間を長くすることが可能である。さらに、種々の条件に合わせて吸着剤を選択することが可能である。 In addition, since the adsorption cylinder for strong adsorption components has a smaller diameter than the adsorption cylinder for weak adsorption components, the adsorption cylinder for strong adsorption components having a heating means is surely regenerated, and the adsorption cylinder for weak adsorption components is a large cylinder. By doing so, the amount of adsorption can be increased and the adsorption time can be lengthened. Furthermore, it is possible to select the adsorbent according to various conditions.

よって、当該装置の低コスト化、装置サイズの小型化、回収ガスのロス抑制(回収率の向上)が達成される。 Therefore, it is possible to reduce the cost of the device, reduce the size of the device, and suppress the loss of the recovered gas (improve the recovery rate).

本発明のガス精製装置の一形態例を示す系統図である。It is a system diagram which shows one embodiment example of the gas purification apparatus of this invention. 比較例1~2におけるガス精製装置を示す図(特許文献1の図1に示されるものと同様の装置)である。It is a figure which shows the gas purification apparatus in Comparative Examples 1 and 2 (the same apparatus as the one shown in FIG. 1 of Patent Document 1). 比較例3~4におけるガス精製装置を示す図である。It is a figure which shows the gas purification apparatus in the comparative example 3-4. 比較例5におけるガス精製装置を示す図である。It is a figure which shows the gas purification apparatus in the comparative example 5. 比較例6におけるガス精製装置を示す図である。It is a figure which shows the gas purification apparatus in the comparative example 6. 比較例7におけるガス精製装置を示す図である。It is a figure which shows the gas purification apparatus in the comparative example 7.

図1は本発明のガス精製装置の一形態例を示す系統図である。本形態例のガス精製装置は、図1に示すように、原料ガスを昇圧する圧縮機P1と、真空ポンプP2と、バルブV1~V4と、背圧調整弁V5と、強吸着成分用吸着筒A1と、弱吸着成分用吸着筒A2と、原料ガス導入経路L1と、吸着筒接続経路L2と、精製ガス導出経路L3と、排ガス経路L4と、真空排気経路L5と、強吸着成分用吸着筒A1の周囲に巻かれるヒーター(加熱手段)H1とを備えて構成される。 FIG. 1 is a system diagram showing an example of a form of the gas purification apparatus of the present invention. As shown in FIG. 1, the gas purification apparatus of this embodiment includes a compressor P1 for boosting the raw material gas, a vacuum pump P2, valves V1 to V4, a back pressure adjusting valve V5, and an adsorption cylinder for a strong adsorption component. A1, a weak adsorption component adsorption tube A2, a raw material gas introduction path L1, an adsorption tube connection path L2, a refined gas lead-out path L3, an exhaust gas path L4, a vacuum exhaust path L5, and a strong adsorption component adsorption tube. It is configured to include a heater (heating means) H1 wound around A1.

原料ガス導入経路L1は、精製が行われる原料ガスを強吸着成分用吸着筒A1の入口側に導入するための経路である。当該原料ガス導入経路L1には、圧縮機P1とバルブV1とが設けられている。圧縮機P1は原料ガスを圧縮して特定の圧力に昇圧するものであり、バルブV1によって開閉が制御される。 The raw material gas introduction route L1 is a route for introducing the raw material gas to be refined to the inlet side of the adsorption cylinder A1 for a strongly adsorbed component. A compressor P1 and a valve V1 are provided in the raw material gas introduction path L1. The compressor P1 compresses the raw material gas and boosts it to a specific pressure, and the opening and closing is controlled by the valve V1.

吸着筒接続経路L2は、強吸着成分用吸着筒A1の出口側と弱吸着成分用吸着筒A2の入口側とを接続する経路であり、強吸着成分用吸着筒A1において強吸着成分が除去された後の原料ガスを弱吸着成分用吸着筒A2に導入するものである。当該吸着筒接続経路L2にはバルブ等が設けられておらず、単一の配管から構成される。 The adsorption tube connection path L2 is a path for connecting the outlet side of the strong adsorption component adsorption tube A1 and the inlet side of the weak adsorption component adsorption tube A2, and the strong adsorption component is removed in the strong adsorption component adsorption tube A1. After that, the raw material gas is introduced into the adsorption cylinder A2 for weakly adsorbed components. The suction cylinder connection path L2 is not provided with a valve or the like, and is composed of a single pipe.

精製ガス導出経路L3は、弱吸着成分用吸着筒A2の出口側から弱吸着成分が除去された後の原料ガスを精製ガスとして導出するための経路である。当該精製ガス導出経路L3には、バルブV2と背圧調整弁V5とが設けられている。背圧調整弁V5によって精製ガスの圧力が制御されており、バルブV2によって開閉が制御される。 The refined gas derivation route L3 is a route for deriving the raw material gas as a refined gas after the weakly adsorbed component is removed from the outlet side of the weakly adsorbed component adsorption cylinder A2. The refined gas lead-out path L3 is provided with a valve V2 and a back pressure adjusting valve V5. The pressure of the purified gas is controlled by the back pressure adjusting valve V5, and the opening and closing is controlled by the valve V2.

排ガス経路L4は、原料ガス導入経路L1と合流して強吸着成分用吸着筒A1の入口側に接続される経路であり、後述する脱圧工程において、強吸着成分用吸着筒A1において吸着された強吸着成分と弱吸着成分用吸着筒A2において吸着された弱吸着成分を脱離させるために、系内の圧力を大気圧にするために排気する際に用いられる経路である。当該排ガス経路L4には、バルブV3が設けられており、当該バルブV3によって開閉が制御される。 The exhaust gas path L4 is a path that merges with the raw material gas introduction path L1 and is connected to the inlet side of the strong adsorption component adsorption tube A1, and was adsorbed by the strong adsorption component adsorption tube A1 in the depressurization step described later. This is a route used when exhausting to bring the pressure in the system to atmospheric pressure in order to desorb the weakly adsorbed component adsorbed by the strongly adsorbed component and the weakly adsorbed component A2. A valve V3 is provided in the exhaust gas path L4, and opening and closing is controlled by the valve V3.

真空排気経路L5は、原料ガス導入経路L1と合流して強吸着成分用吸着筒A1の入口側に接続される経路であり、後述する再生工程において、強吸着成分用吸着筒A1において吸着された強吸着成分と弱吸着成分用吸着筒A2において吸着された弱吸着成分を脱離させるために、真空吸引を行って排気するための経路である。当該真空排気経路L5には、バルブV4と真空ポンプP2とが設けられており、真空ポンプP2によって真空吸引が行われ、バルブV4によって開閉が制御される。排ガス経路L4と真空排気経路L5とは、当該真空排気経路L5の真空ポンプP2よりも下流側において合流している。 The vacuum exhaust path L5 is a path that merges with the raw material gas introduction path L1 and is connected to the inlet side of the strong adsorption component adsorption tube A1, and was adsorbed by the strong adsorption component adsorption tube A1 in the regeneration step described later. This is a route for performing vacuum suction and exhausting in order to desorb the weakly adsorbed component adsorbed in the strongly adsorbed component and the weakly adsorbed component adsorbing cylinder A2. A valve V4 and a vacuum pump P2 are provided in the vacuum exhaust path L5, vacuum suction is performed by the vacuum pump P2, and opening / closing is controlled by the valve V4. The exhaust gas path L4 and the vacuum exhaust path L5 merge on the downstream side of the vacuum pump P2 of the vacuum exhaust path L5.

強吸着成分用吸着筒A1は、空気成分のうち相対的に吸着剤に強く吸着される成分(水、二酸化炭素等)を吸着するための吸着筒である。強吸着成分用吸着筒A1は、円筒状で、内部に強吸着成分を吸着する強吸着成分用吸着剤が充填されている。強吸着成分用吸着剤としては、水や二酸化炭素を吸着できる吸着剤、具体的にはCaXゼオライト、NaXゼオライト、LiXゼオライト、NaAゼオライト、CaAゼオライト、KAゼオライト、活性アルミナ、シリカゲル等を使用することができ、中でもCaXゼオライト、NaXゼオライトが好ましく、特に水の吸着量の多いNaXゼオライトがより好ましい。 The adsorption cylinder A1 for a strongly adsorbed component is an adsorption cylinder for adsorbing a component (water, carbon dioxide, etc.) that is relatively strongly adsorbed by the adsorbent among the air components. The adsorption cylinder A1 for a strong adsorption component has a cylindrical shape, and is filled with an adsorbent for a strong adsorption component that adsorbs the strong adsorption component. As the adsorbent for the strongly adsorbed component, an adsorbent capable of adsorbing water or carbon dioxide, specifically, CaX zeolite, NaX zeolite, LiX zeolite, NaA zeolite, CaA zeolite, KA zeolite, activated alumina, silica gel, etc. shall be used. Of these, CaX zeolite and NaX zeolite are preferable, and NaX zeolite having a large amount of water adsorbed is particularly preferable.

弱吸着成分用吸着筒A2は、空気成分のうち相対的に吸着剤に弱く吸着される成分(窒素、酸素等)を吸着するための吸着筒である。弱吸着成分用吸着筒A2は、円筒状で、内部に弱吸着成分を吸着する弱吸着成分用吸着剤が充填されている。弱吸着成分用吸着剤としては、窒素や酸素を吸着できる吸着剤、具体的にはCaXゼオライト、NaXゼオライト、LiXゼオライト、NaAゼオライト、CaAゼオライト、KAゼオライト、活性アルミナ、活性炭(モレキュラーシーブ)等を使用することができ、中でも活性アルミナ、CaXゼオライトが好ましく、特に窒素および酸素を減圧のみで脱離できかつ吸着量の多いCaXゼオライトがより好ましい。 The adsorption cylinder A2 for a weakly adsorbed component is an adsorption cylinder for adsorbing a component (nitrogen, oxygen, etc.) that is relatively weakly adsorbed by an adsorbent among air components. The adsorption cylinder A2 for a weakly adsorbed component has a cylindrical shape, and is filled with an adsorbent for a weakly adsorbed component that adsorbs the weakly adsorbed component. Adsorbents for weakly adsorbed components include adsorbents capable of adsorbing nitrogen and oxygen, specifically CaX zeolite, NaX zeolite, LiX zeolite, NaA zeolite, CaA zeolite, KA zeolite, activated alumina, activated carbon (molecular sieve), etc. Activated alumina and CaX zeolite are preferable, and CaX zeolite which can desorb nitrogen and oxygen only by reducing pressure and has a large adsorption amount is more preferable.

なお、吸着された各成分の脱離のしやすさを考慮して、弱吸着成分用吸着筒A2より強吸着成分用吸着筒A1の方が小径となるように各吸着筒の大きさが設定されている。また、上記強吸着成分用吸着剤及び弱吸着成分用吸着剤には、同じ物質または異なる物質を用いても構わない。また、長時間吸着できるように吸着剤を充填することが好ましく、強吸着成分用吸着筒A1の吸着可能時間と弱吸着成分用吸着筒A2の吸着可能時間とが同じになるか、少なくとも、強吸着成分用吸着筒A1の吸着可能時間が長くなるように吸着剤を充填することが好ましい。 In consideration of the ease of desorption of each adsorbed component, the size of each adsorption cylinder is set so that the adsorption cylinder A1 for a strong adsorption component has a smaller diameter than the adsorption cylinder A2 for a weak adsorption component. Has been done. Further, the same substance or different substances may be used as the adsorbent for the strongly adsorbed component and the adsorbent for the weak adsorbed component. Further, it is preferable to fill the adsorbent so that the adsorbent can be adsorbed for a long time, and the adsorbable time of the adsorbent cylinder A1 for a strong adsorbent component and the adsorbable time of the adsorbent cylinder A2 for a weak adsorbent component are the same, or at least strong. It is preferable to fill the adsorbent so that the adsorbable time of the adsorbent cylinder A1 for the adsorbed component is long.

上記構成のガス精製装置を用いて行われるガス精製方法は、以下の4工程からなる。 The gas refining method performed using the gas refining apparatus having the above configuration comprises the following four steps.

1.吸着工程
バルブV1、V2を開、バルブV3、V4を閉として、圧縮機P1で原料ガスを圧縮し、圧縮された原料ガスを、原料ガス導入経路L1、吸着筒接続経路L2、精製ガス導出経路L3の順に流しながら、バルブV1、強吸着成分用吸着筒A1、弱吸着成分用吸着筒A2、バルブV2、背圧調整弁V5を通過させる。この時、原料ガスが流れる区間は背圧調整弁V5の働きにより、大気圧より高い圧力まで上昇する。経路を進む途中で、原料ガス中の強吸着成分である水と二酸化炭素は強吸着成分用吸着筒A1で吸着除去される。その際にガスの流通によって当該ガスの温度が上昇するが、吸着筒接続経路L2を通る間の放熱により当該ガスは冷却される。その後、弱吸着成分用吸着筒A2において弱吸着成分である窒素と酸素が吸着除去される。これらの過程を経て、原料ガス中の不純物を吸着除去し、精製されたガスを取り出す。この吸着工程は例えば1~24時間、好適には2~12時間継続される。
1. 1. Suction step The valves V1 and V2 are opened, the valves V3 and V4 are closed, the raw material gas is compressed by the compressor P1, and the compressed raw material gas is introduced into the raw material gas introduction path L1, the adsorption cylinder connection path L2, and the purified gas lead-out path. While flowing in the order of L3, the valve V1, the suction cylinder A1 for the strong adsorption component, the suction cylinder A2 for the weak adsorption component, the valve V2, and the back pressure adjusting valve V5 are passed. At this time, the section through which the raw material gas flows rises to a pressure higher than the atmospheric pressure due to the action of the back pressure adjusting valve V5. On the way along the path, water and carbon dioxide, which are strongly adsorbed components in the raw material gas, are adsorbed and removed by the adsorption tube A1 for the strongly adsorbed component. At that time, the temperature of the gas rises due to the flow of the gas, but the gas is cooled by heat radiation while passing through the adsorption cylinder connection path L2. After that, nitrogen and oxygen, which are weakly adsorbed components, are adsorbed and removed in the adsorption tube A2 for weakly adsorbed components. Through these processes, impurities in the raw material gas are adsorbed and removed, and the purified gas is taken out. This adsorption step lasts, for example, 1 to 24 hours, preferably 2 to 12 hours.

2.脱圧工程
吸着工程の終了後、バルブV1、V2、V4を閉、バルブV3を開にして、排ガス経路L4内にガスを流通させることで、系内(バルブV1~V4で区切られる部分)の脱圧を行う。脱圧工程は系内が大気圧になるまで継続される。この脱圧工程において、強吸着成分用吸着剤と弱吸着成分用吸着剤にそれぞれ吸着した不純物の一部が脱離される。この脱圧工程は例えば1時間以内、好適には5~30分実施する。
2. 2. Depressurization step After the adsorption step is completed, the valves V1, V2, and V4 are closed, the valve V3 is opened, and the gas is circulated in the exhaust gas path L4, so that the gas is circulated in the system (the part separated by the valves V1 to V4). Depressurize. The decompression process is continued until the pressure inside the system reaches atmospheric pressure. In this depressurization step, some of the impurities adsorbed on the adsorbent for the strongly adsorbed component and the adsorbent for the weak adsorbed component are desorbed. This depressurization step is carried out, for example, within 1 hour, preferably 5 to 30 minutes.

3.再生工程
脱圧工程の終了後、バルブV1、V2、V3を閉、バルブV4を開にし、強吸着成分用吸着筒A1のヒーターH1と真空ポンプP2を動作させて、真空排気経路L5を通じて、強吸着成分用吸着剤と弱吸着成分用吸着剤にそれぞれ吸着した不純物を脱離させる。ヒーターは100~600℃、好適には150~400℃に加熱する。この再生工程は不純物が脱離するのに十分な時間継続される。この再生工程は例えば1~24時間、好適には2~12時間継続される。
3. 3. After the regeneration process is completed, the valves V1, V2, and V3 are closed, the valve V4 is opened, the heater H1 and the vacuum pump P2 of the adsorption cylinder A1 for the strong adsorption component are operated, and the strong adsorption path L5 is used. Desorbs impurities adsorbed on the adsorbent for adsorbed components and the adsorbent for weakly adsorbed components, respectively. The heater heats to 100-600 ° C, preferably 150-400 ° C. This regeneration step is continued for a sufficient time for impurities to be eliminated. This regeneration step lasts, for example, 1 to 24 hours, preferably 2 to 12 hours.

4.冷却工程
再生工程の終了後、バルブV1~V4を閉にし、強吸着成分用吸着筒A1のヒーターH1を停止させて強吸着成分用吸着筒A1を冷却する。この冷却工程は例えば1~24時間、好適には2~12時間継続される。冷却は自然放冷で行うことができるが、ヒーターを取り外す、冷却ファン等で風を当てる、吸着筒内に冷却ガスを流す等の方法により冷却を促進してもよい。冷却工程終了後は、次の吸着工程に備えて、待機状態となる。
4. Cooling step After the regeneration step is completed, the valves V1 to V4 are closed, and the heater H1 of the adsorption cylinder A1 for the strong adsorption component is stopped to cool the adsorption cylinder A1 for the strong adsorption component. This cooling step lasts, for example, 1 to 24 hours, preferably 2 to 12 hours. Cooling can be performed by natural cooling, but cooling may be promoted by removing the heater, blowing air with a cooling fan or the like, or flowing cooling gas into the adsorption cylinder. After the cooling step is completed, it is in a standby state in preparation for the next adsorption step.

なお、本発明のガス精製装置及びガス精製方法の適用範囲は、以下の表1のとおりである。

Figure 2022070440000002
The applicable range of the gas refining apparatus and the gas refining method of the present invention is as shown in Table 1 below.
Figure 2022070440000002

図1に示される構成のガス精製装置を使用してガス精製を行った。詳細は表2のとおりである。

Figure 2022070440000003
Gas purification was performed using the gas purification apparatus having the configuration shown in FIG. Details are shown in Table 2.
Figure 2022070440000003

[比較例1]
比較例1として、図2に示されるような均圧回収用タンクを備える1筒式PSAの構成からなるガス精製装置を使用してガス精製を行った。弱吸着成分用と強吸着成分用の吸着剤を一つの吸着筒に積層して充填しているものである。(特許文献1の図1に示される装置と同様の装置である。)詳細は表3のとおりである。

Figure 2022070440000004
上記比較例1では、実施例と比べて、回収ガスの純度が、精製ガスとして利用することができない程度に低かった。さらに、強吸着成分を吸着させすぎたためか、真空ポンプによる真空吸引だけでは吸着剤を完全に再生できなかった。 [Comparative Example 1]
As Comparative Example 1, gas purification was performed using a gas purification device having a 1-cylinder PSA configuration equipped with a pressure equalizing recovery tank as shown in FIG. Adsorbents for weakly adsorbed components and strongly adsorbed components are laminated and filled in one adsorption cylinder. (The device is similar to the device shown in FIG. 1 of Patent Document 1.) Details are shown in Table 3.
Figure 2022070440000004
In Comparative Example 1 above, the purity of the recovered gas was so low that it could not be used as a purified gas as compared with Examples. Furthermore, the adsorbent could not be completely regenerated only by vacuum suction with a vacuum pump, probably because the strongly adsorbed component was adsorbed too much.

[比較例2]
比較例2として、比較例1と同様に図2に示される構成のガス精製装置を使用して、以下の表4に示す条件でガス精製を行った。

Figure 2022070440000005
上記比較例2では、空気を含む希ガスの精製において、実施例ほど製品ガスのロス抑制効果が得られなかった。 [Comparative Example 2]
As Comparative Example 2, gas purification was performed under the conditions shown in Table 4 below using the gas purification apparatus having the configuration shown in FIG. 2 in the same manner as in Comparative Example 1.
Figure 2022070440000005
In Comparative Example 2 above, in the purification of the noble gas containing air, the effect of suppressing the loss of the product gas was not obtained as much as in the examples.

[比較例3]
比較例3として、図3に示される構成のガス精製装置を使用してガス精製を行った。(図2の構成から均圧回収用タンクがない構成の装置である。)詳細は表5のとおりである。

Figure 2022070440000006
上記比較例3についても、比較例1と同様に、真空ポンプによる真空吸引だけでは吸着剤が完全に再生できない上に、回収ガスの純度が、精製ガスとして利用することができない程度に低かった。 [Comparative Example 3]
As Comparative Example 3, gas purification was performed using the gas purification apparatus having the configuration shown in FIG. (The device is configured without a pressure equalizing recovery tank from the configuration shown in FIG. 2.) Details are shown in Table 5.
Figure 2022070440000006
In Comparative Example 3 as well, as in Comparative Example 1, the adsorbent could not be completely regenerated only by vacuum suction by a vacuum pump, and the purity of the recovered gas was so low that it could not be used as a purified gas.

[比較例4]
比較例4として、比較例3と同様に図3に示される構成のガス精製装置を使用して、以下の表6に示す条件でガス精製を行った。

Figure 2022070440000007
上記比較例4では、製品ガスのロスが多くなってしまった。 [Comparative Example 4]
As Comparative Example 4, gas purification was performed under the conditions shown in Table 6 below using the gas purification apparatus having the configuration shown in FIG. 3 in the same manner as in Comparative Example 3.
Figure 2022070440000007
In Comparative Example 4 above, the loss of product gas has increased.

[比較例5]
比較例5として、図4に示される構成のガス精製装置を使用してガス精製を行った。(図3の構成から、吸着筒の側面にヒーターを巻き付けた構成の装置である。)詳細は表7のとおりである。

Figure 2022070440000008
上記比較例5では、ヒーターによる加熱再生では吸着筒中心部の吸着剤が再生されない上に、回収ガスの純度が、精製ガスとして利用することができない程度に低かった。 [Comparative Example 5]
As Comparative Example 5, gas purification was performed using the gas purification apparatus having the configuration shown in FIG. (From the configuration of FIG. 3, it is a device having a heater wound around the side surface of the suction cylinder.) Details are as shown in Table 7.
Figure 2022070440000008
In Comparative Example 5 above, the adsorbent in the center of the adsorption cylinder was not regenerated by heating and regeneration with a heater, and the purity of the recovered gas was so low that it could not be used as a purified gas.

[比較例6]
比較例6として、図5に示される構成のガス精製装置を使用してガス精製を行った。(図4の構成から、吸着筒の出口側配管に接続した精製ヘリウム供給ラインを有する構成の装置である。)詳細は表8のとおりである。

Figure 2022070440000009
上記比較例6では、精製ヘリウム供給ラインを別途追加することで装置が複雑化し、装置価格が上昇する。また、製品ガスロス以上の精製ヘリウムガスを別途供給しなければならないものとなった。 [Comparative Example 6]
As Comparative Example 6, gas purification was performed using the gas purification apparatus having the configuration shown in FIG. (From the configuration of FIG. 4, it is a device having a purified helium supply line connected to the outlet side pipe of the adsorption cylinder.) Details are as shown in Table 8.
Figure 2022070440000009
In Comparative Example 6 above, by adding a purified helium supply line separately, the device becomes complicated and the price of the device rises. In addition, purified helium gas that exceeds the product gas loss must be supplied separately.

[比較例7]
比較例7として、図6に示される構成のガス精製装置を使用してガス精製を行った。(図2~5の構成に用いられる吸着筒を3筒直列に接続した装置である。)詳細は表9のとおりである。

Figure 2022070440000010
上記比較例7では、吸着筒を複数設けたため装置が複雑化し、装置価格が上昇する。 [Comparative Example 7]
As Comparative Example 7, gas purification was performed using the gas purification apparatus having the configuration shown in FIG. (This is a device in which three suction cylinders used in the configurations shown in FIGS. 2 to 5 are connected in series.) Details are shown in Table 9.
Figure 2022070440000010
In Comparative Example 7 above, since a plurality of suction cylinders are provided, the device becomes complicated and the price of the device rises.

以上から、実施例と比較例1~7とを比較すると、吸着剤の再生、回収精製ガス純度、製品ガスのロス、装置価格、装置サイズなどの点を総合的に考慮した上で、実施例で用いられた装置がガス精製装置として最も優れているものといえる。 From the above, when the Examples and Comparative Examples 1 to 7 are compared, the Examples are made after comprehensively considering the points such as the regeneration of the adsorbent, the purity of the recovered purified gas, the loss of the product gas, the price of the device, and the size of the device. It can be said that the device used in the above is the most excellent gas refining device.

これは、本発明のガス精製装置及びガス精製方法が、強吸着成分用吸着筒と弱吸着成分用吸着筒とに分離することにより、いわゆる1系統のガス装置ながら、TSAとPSAの長所を組み合わせた構成となっているからである。以下、その効果を具体的に述べる。 This is because the gas refining device and the gas refining method of the present invention combine the advantages of TSA and PSA while being a so-called one-system gas device by separating the suction tube for a strong adsorption component and the adsorption tube for a weak adsorption component. This is because it has a different structure. The effect will be described in detail below.

1.再生用のガスが不要
弱吸着成分は中真空領域まで吸引できる真空ポンプによる減圧だけで容易に脱離可能であるが、強吸着成分は減圧のみでは脱離しにくい。吸着筒を直接加熱しながら真空吸引する手法では、再生用のガスは不要だが、当該手法は径の細い吸着筒にしか採用できない。
また、強吸着成分は吸着剤の重量当たりの吸着量が多く、少量での吸着除去が可能である一方で、弱吸着成分は吸着剤の重量当たりの吸着量が少ないために、必要になる吸着剤の量が多い。そのため、強吸着成分用の吸着剤と弱吸着成分用の吸着剤を同じ吸着筒に充填すると、全体として筒の径が太くなってしまい、吸着筒の直接加熱を採用できない。
しかしながら、本発明のように、強吸着成分用吸着筒A1を分離して、弱吸着成分用吸着筒A2よりも小径のものとすることで、吸着筒の直接加熱を採用することが可能となり、再生用のガスが不要となる。
1. 1. No need for regenerating gas Weakly adsorbed components can be easily desorbed only by depressurizing with a vacuum pump that can suck up to the medium vacuum region, but strongly adsorbed components are difficult to desorb only by depressurizing. The method of vacuum suctioning while directly heating the adsorption cylinder does not require a gas for regeneration, but this method can be adopted only for the adsorption cylinder having a small diameter.
In addition, the strong adsorption component has a large amount of adsorption per weight of the adsorbent and can be adsorbed and removed in a small amount, while the weak adsorbent component has a small amount of adsorption per weight of the adsorbent, which is necessary. The amount of agent is large. Therefore, if the same adsorption cylinder is filled with the adsorbent for the strong adsorption component and the adsorbent for the weak adsorption component, the diameter of the cylinder becomes large as a whole, and direct heating of the adsorption cylinder cannot be adopted.
However, as in the present invention, by separating the adsorption cylinder A1 for the strong adsorption component and making it smaller in diameter than the adsorption cylinder A2 for the weak adsorption component, it becomes possible to adopt direct heating of the adsorption cylinder. No need for recycling gas.

2.弱吸着成分の有効吸着量が増加
弱吸着成分は真空ポンプ等による減圧だけで容易に脱離できるため、吸着筒の径を太くしても問題はない。そこで、弱吸着成分用吸着筒を強吸着成分用吸着筒よりも大径のものとすることで、物質移動帯を短くして有効吸着量を増加させることが可能となる。
2. 2. The effective adsorption amount of the weakly adsorbed component increases. Since the weakly adsorbed component can be easily desorbed only by depressurizing with a vacuum pump or the like, there is no problem even if the diameter of the adsorption cylinder is increased. Therefore, by making the adsorption cylinder for the weakly adsorbed component larger in diameter than the adsorption cylinder for the strongly adsorbed component, it is possible to shorten the mass transfer zone and increase the effective adsorption amount.

3.1つの真空ポンプで対応可能かつ2筒間にバルブ等が不要
吸着筒接続経路L2は単に接続配管でつなぐだけの構造であり、当該配管にバルブ等は不要である。また、当該構造を採用するがゆえに、強吸着成分用吸着筒A1と弱吸着成分用吸着筒A2の2筒の真空吸引を同時に行えるため、真空ポンプは1機のみで良い。
3. One vacuum pump can be used and no valve or the like is required between the two cylinders. The suction cylinder connection path L2 has a structure that is simply connected by a connecting pipe, and no valve or the like is required for the pipe. Further, since the structure is adopted, two vacuum suction tubes, a suction tube A1 for a strong adsorption component and a suction tube A2 for a weak adsorption component, can be simultaneously vacuum-sucked, so that only one vacuum pump is required.

4.回収タンクや補助吸着筒なしでも回収ガスの十分なロス抑制が可能
強吸着成分を大量に吸着させても、再生工程において強吸着成分用吸着筒A1の直接加熱と真空吸引とをあわせて行うことで当該強吸着成分を脱離させることができる。一方、弱吸着成分は真空吸引のみで脱離させることができるため、弱吸着成分用吸着筒A2については吸着時間に合わせて筒を大きくしても問題なく、吸着時間を長くすることも可能である。その際に、回収タンクや補助吸着筒を設ける必要はない。その上で、再生工程の時間を長くして頻度を減らすことにより、回収ガスの十分なロス抑制効果が得られる。
4. Sufficient loss suppression of recovered gas is possible without a recovery tank or auxiliary adsorption tube. Even if a large amount of strongly adsorbed components are adsorbed, direct heating of the strong adsorption component adsorption tube A1 and vacuum suction should be performed together in the regeneration process. Can be desorbed from the strongly adsorbed component. On the other hand, since the weakly adsorbed component can be desorbed only by vacuum suction, there is no problem in increasing the size of the adsorption tube A2 for the weakly adsorbed component according to the adsorption time, and the adsorption time can be lengthened. be. At that time, it is not necessary to provide a recovery tank or an auxiliary suction cylinder. On top of that, by lengthening the time of the regeneration step and reducing the frequency, a sufficient effect of suppressing the loss of the recovered gas can be obtained.

5.バルブや真空ポンプの耐熱仕様が不要
脱圧工程により吸着筒内を排気(ブローダウン)してから、再生工程において当該吸着筒の直接加熱と真空吸引を行うため、再生時に高温のガスが微量しか流れない。また、配管が放熱機構として働き、当該配管を通過することでガスの温度が下がる。よって、真空排気経路L5に設けられるバルブV4や真空ポンプP2といった配管機器に耐熱仕様は不要である。
5. No need for heat-resistant specifications for valves and vacuum pumps Since the suction cylinder is exhausted (blowed down) by the depressurization process and then the adsorption cylinder is directly heated and vacuum sucked in the regeneration process, only a small amount of high-temperature gas is used during regeneration. Not flowing. In addition, the pipe acts as a heat dissipation mechanism, and the temperature of the gas is lowered by passing through the pipe. Therefore, the heat-resistant specifications are not required for the piping equipment such as the valve V4 and the vacuum pump P2 provided in the vacuum exhaust path L5.

6.強吸着成分の吸着熱を放散できる
強吸着成分が吸着することにより生じる吸着熱は、吸着筒接続経路L2を通じて放散されるので、弱吸着成分用吸着筒A2の加熱による弱吸着成分の吸着量低下を防止できる。
6. The heat of adsorption of the strongly adsorbed component can be dissipated. Since the heat of adsorption generated by the adsorption of the strongly adsorbed component is dissipated through the adsorption cylinder connection path L2, the amount of weakly adsorbed component adsorbed by heating the adsorption cylinder A2 for the weakly adsorbed component is reduced. Can be prevented.

7.配管や死容積の違いによる回収ガスのロスに差が生じにくい
上述のように、強吸着成分用吸着筒A1は直接加熱しながら真空吸引をすることにより再生可能であり、弱吸着成分用吸着筒A2の筒を大きく設計することも可能なことから、吸着時間を長くすることが可能である。吸着時間を長くすることによって、配管や死容積部分の違いによる回収ガスのロスへの影響が微小である。
7. As described above, the adsorption cylinder A1 for strong adsorption components can be regenerated by vacuum suction while directly heating, and the adsorption cylinder for weak adsorption components is less likely to cause a difference in the loss of recovered gas due to the difference in piping and dead volume. Since it is possible to design the A2 cylinder to be large, it is possible to lengthen the adsorption time. By lengthening the adsorption time, the effect on the loss of recovered gas due to the difference in piping and dead volume portion is small.

8.ガス流量の変動による影響が小さい
上述のように、吸着時間を長くすることによって、瞬時的なガス流量の変動による影響が小さい。
8. Small effect of fluctuations in gas flow rate As described above, by lengthening the adsorption time, the effect of instantaneous fluctuations in gas flow rate is small.

なお、本発明において、原料ガスに自圧がある場合、圧縮機P1は不要である。また、大気圧程度の圧力での吸着を行う場合、精製ガス導出経路L3に背圧調整弁V5は不要である。また、精製ガスのロス抑制を効率よく行うために、回収タンクや補助吸着筒を設けてもよい。その他に、原料ガスや精製ガスのレシーバータンク、微量不純物除去装置、粉塵フィルター、精製器等を前後に取り付けてもよい。 In the present invention, when the raw material gas has its own pressure, the compressor P1 is unnecessary. Further, when the adsorption is performed at a pressure of about atmospheric pressure, the back pressure adjusting valve V5 is not required in the purified gas lead-out path L3. Further, in order to efficiently suppress the loss of the refined gas, a recovery tank or an auxiliary adsorption cylinder may be provided. In addition, a receiver tank for a raw material gas or a refined gas, a trace impurity removing device, a dust filter, a refiner, or the like may be attached to the front and back.

A1・・・強吸着成分用吸着筒、A2・・・弱吸着成分用吸着筒、L1・・・原料ガス導入経路、L2・・・吸着筒接続経路、L3・・・精製ガス導出経路、L4・・・排ガス経路、L5・・・真空排気経路、P1・・・圧縮機、P2・・・真空ポンプ、V1~V4・・・バルブ、V5・・・背圧調整弁、H1・・・ヒーター(加熱手段) A1 ... Adsorption cylinder for strong adsorption component, A2 ... Adsorption cylinder for weak adsorption component, L1 ... Raw material gas introduction route, L2 ... Adsorption cylinder connection route, L3 ... Purified gas derivation route, L4 ... Exhaust gas path, L5 ... Vacuum exhaust path, P1 ... Compressor, P2 ... Vacuum pump, V1 to V4 ... Valve, V5 ... Back pressure adjustment valve, H1 ... Heater (Heating means)

Claims (8)

空気成分を含む原料ガスから当該空気成分を吸着除去するガス精製装置であって、
空気成分のうち相対的に吸着剤に強く吸着される成分を吸着除去するための強吸着成分用吸着筒と、
空気成分のうち相対的に吸着剤に弱く吸着される成分を吸着除去するための弱吸着成分用吸着筒と、
前記強吸着成分用吸着筒を加熱するための加熱手段と、
前記原料ガスを前記強吸着成分用吸着筒の入口側に導入する原料ガス導入経路と、
前記強吸着成分用吸着筒の出口側と前記弱吸着成分用吸着筒の入口側を接続する吸着筒接続経路と、
前記弱吸着成分用吸着筒の出口側から精製ガスを導出する精製ガス導出経路と、
前記強吸着成分用吸着筒の入口側に接続される排ガス経路と、
前記強吸着成分用吸着筒の入口側に接続され、真空ポンプを有する真空排気経路と、
を備えていることを特徴とするガス精製装置。
A gas refining device that adsorbs and removes the air component from the raw material gas containing the air component.
A suction cylinder for strong adsorption components for adsorbing and removing components that are relatively strongly adsorbed by the adsorbent among air components,
A suction cylinder for weakly adsorbed components for adsorbing and removing components that are relatively weakly adsorbed by the adsorbent among air components,
A heating means for heating the adsorption cylinder for the strongly adsorbed component, and
The raw material gas introduction path for introducing the raw material gas to the inlet side of the adsorption cylinder for the strongly adsorbed component, and
A suction cylinder connection path connecting the outlet side of the adsorption cylinder for a strong adsorption component and the inlet side of the adsorption cylinder for a weak adsorption component,
A purified gas derivation route for deriving purified gas from the outlet side of the adsorption cylinder for weakly adsorbed components,
The exhaust gas path connected to the inlet side of the adsorption cylinder for strong adsorption components,
A vacuum exhaust path connected to the inlet side of the adsorption cylinder for a strong adsorption component and having a vacuum pump,
A gas purification device characterized by being equipped with.
前記精製ガス導出経路に設けられた背圧調整弁を更に備えていることを特徴とする請求項1に記載のガス精製装置。 The gas purification apparatus according to claim 1, further comprising a back pressure adjusting valve provided in the purification gas lead-out path. 弱吸着成分用吸着筒より強吸着成分用吸着筒の方が小径であることを特徴とする請求項1又は2に記載のガス精製装置。 The gas purification apparatus according to claim 1 or 2, wherein the adsorption cylinder for a strong adsorption component has a smaller diameter than the adsorption cylinder for a weak adsorption component. 強吸着成分用吸着筒と弱吸着成分用吸着筒に充填される吸着剤が同じであることを特徴とする請求項1~3のいずれかに記載のガス精製装置。 The gas purification apparatus according to any one of claims 1 to 3, wherein the adsorbent filled in the adsorbent cylinder for a strong adsorbent component and the adsorbent cylinder for a weak adsorbent component is the same. 強吸着成分用吸着筒と弱吸着成分用吸着筒に充填される吸着剤が異なることを特徴とする請求項1~3のいずれかに記載のガス精製装置。 The gas purification apparatus according to any one of claims 1 to 3, wherein the adsorbent filled in the adsorbent cylinder for a strong adsorbent component and the adsorbent cylinder for a weak adsorbent component are different. 前記空気成分を含む原料ガスが、不純物として空気成分を含む希ガスであることを特徴とする、請求項1乃至5のいずれかに記載のガス精製装置。 The gas purification apparatus according to any one of claims 1 to 5, wherein the raw material gas containing an air component is a rare gas containing an air component as an impurity. 請求項1乃至5のいずれかに記載のガス精製装置を用いるガス精製方法であって、
前記原料ガスを前記原料ガス導入経路から導入し、強吸着成分用吸着筒及び弱吸着成分用吸着筒で空気成分を吸着除去し、前記精製ガス導出経路から精製ガスを取り出す吸着工程と、
前記吸着工程後のガス流路内の圧力を、前記排ガス経路を開放することにより大気圧に戻す脱圧工程と、
前記脱圧工程後の前記強吸着成分用吸着筒を前記加熱手段によって加熱するとともに、前記真空ポンプを用いて前記強吸着成分用吸着筒及び前記弱吸着成分用吸着筒を減圧し、それぞれの内部に充填されている吸着剤から吸着除去された空気成分を脱離させる再生工程と、
前記再生工程の終了後、前記強吸着成分用吸着筒を冷却する冷却工程とを含む、
ガス精製方法。
A gas purification method using the gas purification apparatus according to any one of claims 1 to 5.
An adsorption step in which the raw material gas is introduced from the raw material gas introduction path, air components are adsorbed and removed by a strong adsorption component adsorption tube and a weak adsorption component adsorption tube, and the refined gas is taken out from the refined gas out-source path.
A depressurization step of returning the pressure in the gas flow path after the adsorption step to atmospheric pressure by opening the exhaust gas path, and a depressurization step.
The suction cylinder for the strong adsorption component after the depressurization step is heated by the heating means, and the suction cylinder for the strong adsorption component and the adsorption cylinder for the weak adsorption component are depressurized by using the vacuum pump to reduce the pressure inside each. A regeneration process that desorbs the air components adsorbed and removed from the adsorbent filled in the
After the completion of the regeneration step, a cooling step of cooling the adsorption cylinder for the strongly adsorbed component is included.
Gas purification method.
前記空気成分を含む原料ガスが、不純物として空気成分を含む希ガスであることを特徴とする請求項7に記載のガス精製方法。 The gas purification method according to claim 7, wherein the raw material gas containing an air component is a rare gas containing an air component as an impurity.
JP2020179508A 2020-10-27 2020-10-27 Gas purification device and gas purification method Active JP7502962B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020179508A JP7502962B2 (en) 2020-10-27 2020-10-27 Gas purification device and gas purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020179508A JP7502962B2 (en) 2020-10-27 2020-10-27 Gas purification device and gas purification method

Publications (2)

Publication Number Publication Date
JP2022070440A true JP2022070440A (en) 2022-05-13
JP7502962B2 JP7502962B2 (en) 2024-06-19

Family

ID=81534927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020179508A Active JP7502962B2 (en) 2020-10-27 2020-10-27 Gas purification device and gas purification method

Country Status (1)

Country Link
JP (1) JP7502962B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5417392A (en) * 1977-06-30 1979-02-08 Bergwerksverband Gmbh Adsorption*desorption method for producing hydrogen
JP2001353416A (en) * 2000-06-13 2001-12-25 Sumitomo Seika Chem Co Ltd Method for concentrating specific component gas and concentration apparatus therefor
JP2002137909A (en) * 2000-10-30 2002-05-14 Air Water Inc Helium gas refining method
WO2003045536A1 (en) * 2001-11-27 2003-06-05 Nippon Sanso Corporation Gas separation method and device
JP2012025729A (en) * 2010-06-21 2012-02-09 Sumitomo Seika Chem Co Ltd Method and apparatus for purifying propane

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2477322B (en) 2010-02-01 2015-10-21 Gas Recovery & Recycle Ltd Inert gas recovery system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5417392A (en) * 1977-06-30 1979-02-08 Bergwerksverband Gmbh Adsorption*desorption method for producing hydrogen
JP2001353416A (en) * 2000-06-13 2001-12-25 Sumitomo Seika Chem Co Ltd Method for concentrating specific component gas and concentration apparatus therefor
JP2002137909A (en) * 2000-10-30 2002-05-14 Air Water Inc Helium gas refining method
WO2003045536A1 (en) * 2001-11-27 2003-06-05 Nippon Sanso Corporation Gas separation method and device
JP2012025729A (en) * 2010-06-21 2012-02-09 Sumitomo Seika Chem Co Ltd Method and apparatus for purifying propane

Also Published As

Publication number Publication date
JP7502962B2 (en) 2024-06-19

Similar Documents

Publication Publication Date Title
EP0042159B1 (en) Air fractionation by pressure swing adsorption
JP2634022B2 (en) Separation method of gas components by vacuum swing adsorption method
TWI581855B (en) Method and apparatus for making a high purity gas
JP5577044B2 (en) Air purification method
JP5888908B2 (en) Concentration method of ozone gas
JP2002126435A (en) Method of separating and purifying gas and equipment therefor
JP3902416B2 (en) Gas separation method
JPH02281096A (en) Carbon dioxide and moisture remover for methane-enriched mixed gas
TW200404598A (en) Gas separation method
JPH0459926B2 (en)
JP5584887B2 (en) Ozone gas concentration method and apparatus
KR100856912B1 (en) Purifying nitrogen supply apparatus
JP4895467B2 (en) Oxygen concentration method and oxygen concentration apparatus
JP7502962B2 (en) Gas purification device and gas purification method
JP5462763B2 (en) Operation method of PSA equipment for high purity hydrogen gas production
JP7374925B2 (en) Gas separation equipment and gas separation method
JP6655645B2 (en) Purified gas production apparatus and purified gas production method
JP6965127B2 (en) Nitrogen and oxygen production method
JP7319830B2 (en) Nitrogen production method and apparatus
JPH01297120A (en) Regeneration of adsorption device for refining helium gas
JPH0531331A (en) Separation of hydrogen isotope
JP2022090755A (en) Gas adsorption and separation device
JP4171392B2 (en) Gas separation and recovery method and pressure swing adsorption gas separation and recovery system
JPH06254395A (en) Method for regenerating adsorbent in pressure swing adsorption for recovering co2
JP2023112327A (en) Gas separation recovery apparatus, gas separation recovery method, and gas separation recovery system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240607

R150 Certificate of patent or registration of utility model

Ref document number: 7502962

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150