JP2022068616A - Reinforced fiber base material for resin injection molding, reinforced fiber laminate for resin injection molding and fiber reinforced resin - Google Patents

Reinforced fiber base material for resin injection molding, reinforced fiber laminate for resin injection molding and fiber reinforced resin Download PDF

Info

Publication number
JP2022068616A
JP2022068616A JP2020177391A JP2020177391A JP2022068616A JP 2022068616 A JP2022068616 A JP 2022068616A JP 2020177391 A JP2020177391 A JP 2020177391A JP 2020177391 A JP2020177391 A JP 2020177391A JP 2022068616 A JP2022068616 A JP 2022068616A
Authority
JP
Japan
Prior art keywords
reinforcing fiber
resin
base material
injection molding
resin injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020177391A
Other languages
Japanese (ja)
Inventor
彰彦 白波瀬
Akihiko Shirahase
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2020177391A priority Critical patent/JP2022068616A/en
Publication of JP2022068616A publication Critical patent/JP2022068616A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a reinforced fiber base material and a reinforced fiber laminate with excellent handling properties (especially, form stability) as well as high productivity of a fiber reinforced resin with good matrix resin impregnation and excellent mechanical properties such as impact resistance and mechanical properties at high temperature.SOLUTION: A reinforced fiber base material for resin injection molding comprises a resin material, which is a semi-aromatic polyamide containing a terephthalic acid component, disposed on at least one side surface of a reinforced fiber assembly selected from [1]: a reinforced fiber yarn, [2]: a group of reinforced fiber yarn consisting of parallel strands of reinforced fiber yarn, and [3]: a reinforced fiber fabric comprising [1] or [2].SELECTED DRAWING: Figure 1

Description

本発明は、強化繊維基材、強化繊維積層体およびそれらからなる繊維強化樹脂に関する。 The present invention relates to a reinforcing fiber base material, a reinforcing fiber laminate, and a fiber reinforced resin composed thereof.

強化繊維にマトリックス樹脂を含浸させた繊維強化樹脂(FRP)は、優れた力学特性、軽量化等の要求特性を満たすことから主に航空、宇宙、スポーツ用途に用いられてきた。これらの代表的な製造方法として、オートクレーブ成形法が知られている。かかる成形法では、強化繊維束群にマトリックス樹脂を予め含浸させたプリプレグを、成形型に積層してオートクレーブにて加熱・加圧し、FRPを成形する。プリプレグを用いると極めて信頼性の高いFRPが得られる利点があるが、製造に高いコストがかかる問題があった。 Fiber reinforced plastic (FRP), which is made by impregnating reinforced fibers with a matrix resin, has been mainly used for aerospace, space, and sports applications because it satisfies the required characteristics such as excellent mechanical properties and weight reduction. An autoclave molding method is known as a typical production method for these. In such a molding method, a prepreg in which a group of reinforced fiber bundles is impregnated with a matrix resin in advance is laminated on a molding die and heated and pressed by an autoclave to form an FRP. The use of prepreg has the advantage of obtaining extremely reliable FRP, but has the problem of high manufacturing cost.

一方、FRPの生産性に優れる成形法としては、例えばレジン・トランスファー・モールディング成形法(RTM)等の樹脂注入成形が挙げられる。RTM成形法は、マトリックス樹脂を予備含浸していないドライな強化繊維束群で構成される強化繊維基材を、成形型に積層して、液状で低粘度のマトリックス樹脂を注入することにより、後からマトリックス樹脂を含浸・固化させてFRPを成形する成形法である。 On the other hand, examples of the molding method having excellent FRP productivity include resin injection molding such as a resin transfer molding method (RTM). The RTM molding method is performed by laminating a reinforcing fiber base material composed of a group of dry reinforcing fiber bundles not pre-impregnated with a matrix resin on a molding die and injecting a liquid and low-viscosity matrix resin. This is a molding method for molding FRP by impregnating and solidifying a matrix resin.

樹脂注入成形法は、FRPの生産性には優れるが、マトリックス樹脂が低粘度である必要があるため、プリプレグに用いられる高粘度のマトリックス樹脂から成形されたFRPに比べて、力学特性を十分に発揮できない場合があった。 The resin injection molding method is excellent in the productivity of FRP, but since the matrix resin needs to have a low viscosity, it has sufficient mechanical properties as compared with the FRP molded from the high viscosity matrix resin used for the prepreg. In some cases, it could not be demonstrated.

上記に対する解決手段として、例えば特許文献1や特許文献2に開示されるように、規定の目付を有する炭素繊維の一方向層と規定の厚みを有する熱可塑性繊維ウェブ(不織布)が合わされている中間材料が提案されている。しかしながら、これらの熱可塑性繊維ウェブを用いた場合、一定の力学特性を発揮することができると開示されているが、一部の熱可塑性繊維ウェブは耐熱性が低いため、FRPの高温時力学特性が十分に発現できないことがあった。 As a solution to the above, as disclosed in Patent Document 1 and Patent Document 2, for example, an intermediate layer in which a unidirectional layer of carbon fiber having a specified basis weight and a thermoplastic fiber web (nonwoven fabric) having a specified thickness are combined. Materials have been proposed. However, although it is disclosed that certain thermoplastic properties can be exhibited when these thermoplastic fiber webs are used, some thermoplastic fiber webs have low heat resistance, so that the high temperature mechanical properties of FRP are exhibited. Was not fully expressed in some cases.

特表2012-506499号公報Special Table 2012-506499 Gazette 特表2008-517812号公報Japanese Patent Publication No. 2008-517812

本発明は、かかる従来技術の課題を解決するものであり、具体的には、マトリックス樹脂の含浸性が良好で、耐衝撃性などの力学特性および高温時力学特性に優れる繊維強化樹脂を生産性良く得られるだけでなく、取扱性(特に、形態安定性)に優れた強化繊維基材および強化繊維積層体を提供せんとするものである。また、かかる強化繊維基材および強化繊維積層体から得られる繊維強化樹脂を提供せんとするものである。 The present invention solves the problems of the prior art. Specifically, the present invention produces a fiber-reinforced resin having good impregnation property of a matrix resin and excellent mechanical properties such as impact resistance and high temperature mechanical properties. It is intended to provide a reinforcing fiber base material and a reinforcing fiber laminate which are not only well obtained but also excellent in handleability (particularly, morphological stability). Further, the present invention is intended to provide a fiber reinforced resin obtained from such a reinforced fiber base material and a reinforced fiber laminate.

本発明は、かかる課題を解決するために、次のような手段を採用するものである。すなわち、
(1)[1]:強化繊維糸条、[2]:強化繊維糸条を並行に引き揃えてなる強化繊維糸条群、[3]:[1]または[2]で構成される強化繊維布帛、のうちいずれかより選ばれる強化繊維集合体の少なくとも片側表面に樹脂材料が配置された強化繊維基材であって、前記樹脂材料は、テレフタル酸成分を含む半芳香族ポリアミドであることを特徴とする樹脂注入成形用強化繊維基材。
(2)前記樹脂材料の形状がポーラス状である、(1)に記載の樹脂注入成形用強化繊維基材。
(3)前記樹脂材料を、強化繊維基材に対して1~20重量%の範囲で有している、(1)または(2)に記載の樹脂注入成形用強化繊維基材。
(4)前記強化繊維糸条群が、複数の強化繊維糸条が並行に引き揃えられたシート状のものである、(1)~(3)のいずれかに記載の樹脂注入成形用強化繊維基材。
(5)前記強化繊維糸条群が、オートメーテッドファイバープレイスメント装置により並行に引き揃え配置されたシート状のものである、(1)~(3)のいずれかに記載の樹脂注入成形用強化繊維基材。
(6)前記強化繊維集合体が、強化繊維糸条を一方向に並行に引き揃えてなる強化繊維糸条群と、強化繊維糸条と交差する方向に延在する、繊度が強化繊維糸条の繊度の1/5以下である補助繊維糸条群とから構成される一方向性織物である、(1)~(3)のいずれかに記載の樹脂注入成形用強化繊維基材。
(7)前記強化繊維集合体が、一方向に配列された前記強化繊維糸条群と、異なる方向に一方向に配列された強化繊維糸条群とから構成される二方向性織物である、(1)~(3)のいずれかに記載の樹脂注入成形用強化繊維基材。
(8)前記強化繊維布帛が、一方向に配列された前記強化繊維糸条群と、異なる方向に一方向に配列された強化繊維糸条群との少なくとも2層以上が交差積層され、繊度が強化繊維糸条の1/5以下である補助繊維糸条群により縫合一体化されたステッチ布帛である、(1)~(3)のいずれかに記載の樹脂注入成形用強化繊維基材。
(9)強化繊維として(1)~(8)のいずれかに記載の樹脂注入成形用強化繊維基材を含む樹脂注入成形用強化繊維積層体。
(10)熱融着またはステッチにより一体化されてなる(9)に記載の樹脂注入成形用強化繊維積層体。
(11)強化繊維として(1)~(8)のいずれかに記載の樹脂注入成形用強化繊維基材または(9)または(10)に記載の樹脂注入成形用強化繊維積層体を含む繊維強化樹脂。
である。
The present invention employs the following means in order to solve such a problem. That is,
(1) [1]: Reinforcing fiber thread, [2]: Reinforcing fiber thread group formed by arranging reinforcing fiber threads in parallel, [3]: Reinforcing fiber composed of [1] or [2] It is a reinforcing fiber base material in which a resin material is arranged on at least one side surface of a reinforcing fiber aggregate selected from any of fabrics, and the resin material is a semi-aromatic polyamide containing a terephthalic acid component. A characteristic reinforcing fiber base material for resin injection molding.
(2) The reinforcing fiber base material for resin injection molding according to (1), wherein the resin material has a porous shape.
(3) The reinforcing fiber base material for resin injection molding according to (1) or (2), which has the resin material in the range of 1 to 20% by weight with respect to the reinforcing fiber base material.
(4) The reinforcing fiber for resin injection molding according to any one of (1) to (3), wherein the reinforcing fiber thread group is in the form of a sheet in which a plurality of reinforcing fiber threads are arranged in parallel. Base material.
(5) The reinforcement for resin injection molding according to any one of (1) to (3), wherein the reinforcing fiber yarn group is in the form of a sheet arranged in parallel by an automated fiber placement device. Fiber substrate.
(6) Reinforcing fiber threads having a fineness extending in a direction intersecting with a group of reinforcing fiber threads in which the reinforcing fiber aggregates are aligned in parallel in one direction and a reinforcing fiber thread. The reinforcing fiber base material for resin injection molding according to any one of (1) to (3), which is a unidirectional fabric composed of an auxiliary fiber thread group having a fineness of 1/5 or less of the above.
(7) The reinforcing fiber aggregate is a bidirectional woven fabric composed of the reinforcing fiber thread group arranged in one direction and the reinforcing fiber thread group arranged in one direction in different directions. The reinforcing fiber base material for resin injection molding according to any one of (1) to (3).
(8) At least two or more layers of the reinforcing fiber yarn group arranged in one direction and the reinforcing fiber yarn group arranged in a different direction are cross-laminated, and the fineness of the reinforcing fiber cloth is increased. The reinforcing fiber base material for resin injection molding according to any one of (1) to (3), which is a stitch fabric sutured and integrated by a group of auxiliary fiber threads which is 1/5 or less of the reinforcing fiber threads.
(9) A reinforcing fiber laminate for resin injection molding containing the reinforcing fiber base material for resin injection molding according to any one of (1) to (8) as the reinforcing fiber.
(10) The reinforcing fiber laminate for resin injection molding according to (9), which is integrated by heat fusion or stitching.
(11) Fiber reinforcement containing the reinforcing fiber base material for resin injection molding according to any one of (1) to (8) or the reinforcing fiber laminate for resin injection molding according to (9) or (10) as the reinforcing fiber. resin.
Is.

本発明によれば、以下に詳述するとおり、形態安定性に優れるだけでなく、RTM成形時の樹脂含浸性に優れた強化繊維基材および強化繊維積層体が得られ、また成形後は耐衝撃性および耐熱性に優れたFRPを得ることができる。 According to the present invention, as described in detail below, a reinforced fiber base material and a reinforced fiber laminate having not only excellent morphological stability but also excellent resin impregnation property during RTM molding can be obtained, and post-molding resistance It is possible to obtain FRP having excellent impact resistance and heat resistance.

本発明における強化繊維基材の一態様を説明する概略断面図である。It is a schematic sectional drawing explaining one aspect of the reinforcing fiber base material in this invention. 本発明における強化繊維基材の製造装置の一態様を示す概略側面図である。It is a schematic side view which shows one aspect of the manufacturing apparatus of the reinforcing fiber base material in this invention. 本発明における強化繊維糸条群の一態様を示す概略斜視図である。It is a schematic perspective view which shows one aspect of the reinforcing fiber thread group in this invention. 本発明における強化繊維集合体としての一方向性織物の一態様を示す概略斜視図である。It is a schematic perspective view which shows one aspect of the unidirectional woven fabric as a reinforcing fiber aggregate in this invention. 本発明における強化繊維集合体としての二方向性織物の一態様を示す概略斜視図である。It is a schematic perspective view which shows one aspect of the bidirectional woven fabric as a reinforcing fiber aggregate in this invention. 本発明における強化繊維集合体としてのステッチ布帛の一態様を示す概略斜視図である。It is a schematic perspective view which shows one aspect of the stitch cloth as a reinforcing fiber aggregate in this invention.

以下、本発明の実施形態の例を、図面を参照しながら説明する。 Hereinafter, examples of embodiments of the present invention will be described with reference to the drawings.

図1は本発明における強化繊維基材11の一態様を説明する概略断面図である。この図に示す強化繊維基材11は、強化繊維集合体12の片面に樹脂材料13が配置された後、接着一体化されているものである。 FIG. 1 is a schematic cross-sectional view illustrating an aspect of the reinforcing fiber base material 11 in the present invention. The reinforcing fiber base material 11 shown in this figure is one in which the resin material 13 is arranged on one side of the reinforcing fiber aggregate 12 and then bonded and integrated.

強化繊維基材11は、強化繊維糸条、強化繊維糸条群、または強化繊維糸条もしくは強化繊維糸条群で構成される強化繊維布帛、のうちいずれかより選ばれる強化繊維集合体12の、少なくとも片側表面に樹脂材料13を有することが重要である。かかる樹脂材料13を少なくとも片側表面に存在させることにより、強化繊維基材11の幅や繊維配向などの形態安定性を向上させることができたり、強化繊維糸条群からなるシート状の強化繊維基材11の搬送時などの取扱性を向上させたりすることができる。 The reinforcing fiber base material 11 is a reinforcing fiber aggregate 12 selected from any of a reinforcing fiber thread, a reinforcing fiber thread group, or a reinforcing fiber cloth composed of a reinforcing fiber thread or a reinforcing fiber thread group. It is important to have the resin material 13 on at least one side surface. By allowing the resin material 13 to be present on at least one side surface, morphological stability such as the width and fiber orientation of the reinforcing fiber base material 11 can be improved, or a sheet-shaped reinforcing fiber group composed of a group of reinforcing fiber threads can be improved. It is possible to improve the handleability of the material 11 when it is transported.

また、後述する強化繊維基材11または強化繊維集合体12を積層した積層体(プリフォーム)を得る際の強化繊維集合体12同士の接着性を付与させることができたり、プリフォームに適度な剛性を付与させることができたり、プリフォームの中の強化繊維の目ズレを防止する等の形態安定効果を付与させることができる等、プリフォームの取扱性の向上ができる。 Further, it is possible to impart adhesiveness between the reinforcing fiber aggregates 12 when obtaining a laminated body (preform) in which the reinforcing fiber base material 11 or the reinforcing fiber aggregate 12 described later is laminated, or the preform is appropriate. It is possible to improve the handleability of the preform, such as being able to impart rigidity and imparting a morphological stabilizing effect such as preventing misalignment of the reinforcing fibers in the preform.

特に、樹脂材料13は、強化繊維集合体12の層間に、後述するマトリックス樹脂を流動、拡散させるスペースを確保(マトリックス樹脂による強化繊維集合体12の層間の塑性変形能の付与)することができたり、樹脂材料13が強化繊維集合体12の層間に発生するクラックのストッパーとなる等、衝撃を受けた時に、強化繊維集合体12の層間の損傷を抑制することができ、特に優れた力学特性(特に衝撃後圧縮強度:CAI)を達成することができるという効果を発現する。その他にも、樹脂材料13がスペーサーとなって、強化繊維集合体12の層間にマトリックス樹脂の流路が確保され、樹脂注入成形に供した際にマトリックス樹脂の含浸が容易になるだけでなく、その含浸速度も速くなり、FRPの生産性により優れる、といった効果をも発現する。 In particular, the resin material 13 can secure a space for flowing and diffusing the matrix resin described later between the layers of the reinforcing fiber aggregate 12 (giving the plastic deformability between the layers of the reinforcing fiber aggregate 12 by the matrix resin). Further, when the resin material 13 acts as a stopper for cracks generated between the layers of the reinforcing fiber aggregate 12, it is possible to suppress damage between the layers of the reinforcing fiber aggregate 12 when an impact is received, and particularly excellent mechanical properties. (Especially, the compression strength after impact: CAI) can be achieved. In addition, the resin material 13 serves as a spacer to secure a flow path of the matrix resin between the layers of the reinforcing fiber aggregate 12, which not only facilitates impregnation of the matrix resin when subjected to resin injection molding. The impregnation rate is also increased, and the effect of being more excellent in the productivity of FRP is also exhibited.

かかる樹脂材料13は、強化繊維集合体12と接着し、少なくとも強化繊維集合体12の片側表面に存在していればよく、強化繊維集合体12の内部に存在(強化繊維糸条に浸透)していてもよい。好ましくは、前述の理由で強化繊維集合体12の表面にその50重量%以上、より好ましくは70重量%以上が偏在しているのが好ましい。また樹脂材料13と強化繊維束12とを接着する目的でバインダー成分を含んでいてもよく、例えば樹脂材料13より軟化点(融点やガラス転移温度Tg)の低い熱可塑性樹脂や、熱硬化性樹脂を用いることも可能である。 The resin material 13 may be adhered to the reinforcing fiber aggregate 12 and may be present at least on one side surface of the reinforcing fiber aggregate 12, and may be present inside the reinforcing fiber aggregate 12 (penetrates into the reinforcing fiber thread). May be. It is preferable that 50% by weight or more, more preferably 70% by weight or more thereof is unevenly distributed on the surface of the reinforcing fiber aggregate 12 for the above-mentioned reason. Further, a binder component may be contained for the purpose of adhering the resin material 13 and the reinforcing fiber bundle 12, and for example, a thermoplastic resin having a lower softening point (melting point or glass transition temperature Tg) than the resin material 13 or a thermosetting resin. It is also possible to use.

また、樹脂材料13の形態はポーラス状であることが好ましい。本発明において、ポーラス状とは平面上の厚み方向に孔が空いている形状のことをいい、かかる形態のものであれば、強化繊維基材11の厚み方向にマトリックス樹脂や空気の流路が確保できるだけでなく、平面方向の繋がりがあるため、強化繊維糸条を用いた場合の幅安定性の向上や、強化繊維糸条群からなるシート状の強化繊維基材11の搬送時などの取扱性や、また強化繊維糸条群や布帛を用いた場合の基材の形態安定性を向上させることができる。かかるポーラス状の樹脂材料13としては、例えば不織布状、マット状、ネット状、メッシュ状、織物状、編物状、短繊維群状、穿孔フィルム状、多孔フィルム状などが挙げられる。中でも不織布、マットまたはメッシュは安価に入手でき、且つ平面方向にもマトリックス樹脂や空気の流路が形成されているため、上記の効果が高く発現するため好ましい。樹脂材料13が不織布である場合、構成する繊維の形態としては長繊維や短繊維が挙げられ、メルトブロー、スパンボンド、エアレイド、カーディング、抄紙などの方法によって製造されるが、特に限定はされない。また副成分として繊維同士を結着させるためのバインダー成分を含んでいてもよい。構成する繊維の繊維径は1μm以上100μm未満であることが好ましく、5μm以上80μm未満がより好ましく、10μm以上60μm未満がさらに好ましい。繊維径が1μm未満であると樹脂材料の表面積が大きくなるため、後述する樹脂含浸工程において樹脂の流動が妨げられることがあるため好ましくない。また繊維径が100μm以上であるとFRPとしたときの強化繊維基材層間の厚みが大きくなり、繊維体積含有率(Vf)が低下するため好ましくない。 Further, the form of the resin material 13 is preferably porous. In the present invention, the porous shape means a shape having holes in the thickness direction on the plane, and in the case of such a shape, the matrix resin and the air flow path are formed in the thickness direction of the reinforcing fiber base material 11. Not only can it be secured, but because there is a connection in the plane direction, the width stability is improved when the reinforcing fiber threads are used, and the sheet-shaped reinforcing fiber base material 11 made of the reinforcing fiber threads is handled during transportation. It is possible to improve the properties and the morphological stability of the base material when the reinforcing fiber yarn group or the cloth is used. Examples of the porous resin material 13 include a non-woven fabric, a mat, a net, a mesh, a woven fabric, a knitted fabric, a short fiber group, a perforated film, and a porous film. Among them, the non-woven fabric, the mat or the mesh is preferable because it can be obtained at a low price and the matrix resin and the air flow path are formed in the plane direction, so that the above effect is highly exhibited. When the resin material 13 is a non-woven fabric, the morphology of the constituent fibers includes long fibers and short fibers, which are produced by methods such as melt blow, spunbond, airlaid, carding, and papermaking, but are not particularly limited. Further, as a sub-component, a binder component for binding the fibers to each other may be contained. The fiber diameter of the constituent fibers is preferably 1 μm or more and less than 100 μm, more preferably 5 μm or more and less than 80 μm, and further preferably 10 μm or more and less than 60 μm. If the fiber diameter is less than 1 μm, the surface area of the resin material becomes large, which may hinder the flow of the resin in the resin impregnation step described later, which is not preferable. Further, when the fiber diameter is 100 μm or more, the thickness between the layers of the reinforcing fiber base material when FRP is used becomes large, and the fiber volume content (Vf) decreases, which is not preferable.

本発明で使用する樹脂材料13は、強化繊維基材11の1~20重量%であることが好ましい。好ましくは2~18重量%、より好ましくは3~16重量%である。樹脂材料13が、前記範囲で配置されていることにより、強化繊維基材11の形態安定性がもたらされ、取扱性に優れた強化繊維基材11を得ることが可能となる。1重量%未満であると強化繊維基材11の取扱性が低下するだけでなく、力学特性(特にCAI)の向上効果が小さくなるため好ましくない。また20重量%を超えると、FRPにしたときの強化繊維体積含有率が低くなりすぎたり、FRPの耐熱性、耐薬品性や圧縮強度が低下する場合があるので好ましくない。 The resin material 13 used in the present invention is preferably 1 to 20% by weight of the reinforcing fiber base material 11. It is preferably 2 to 18% by weight, more preferably 3 to 16% by weight. By arranging the resin material 13 in the above range, the morphological stability of the reinforcing fiber base material 11 is brought about, and it becomes possible to obtain the reinforcing fiber base material 11 having excellent handleability. If it is less than 1% by weight, not only the handleability of the reinforcing fiber base material 11 is lowered, but also the effect of improving the mechanical properties (particularly CAI) is reduced, which is not preferable. On the other hand, if it exceeds 20% by weight, the volume content of the reinforced fiber when it is made into FRP may become too low, and the heat resistance, chemical resistance and compressive strength of FRP may decrease, which is not preferable.

樹脂材料13は耐熱性、高剛性、耐薬品性、低吸水など多くの点でメリットを持つテレフタル酸成分を含む半芳香族ポリアミドであることが重要である。テレフタル酸を含む半芳香族ポリアミドとしては、ポリアミド6T、ポリアミド9T、ポリアミド10T、ポリアミド6T/6、ポリアミド6T/12、ポリアミド6T/66、ポリアミド6T/6I、ポリアミド66/6T/6Iなどを挙げることができ、中でも吸水性や耐衝撃性の観点からポリアミド9Tやポリアミド10Tなどメチレン鎖部分が長いものが好ましい。かかる樹脂材料13は、FRP層間に靭性の高い層を形成することができ、力学特性(特にCAIやILSS[層間剪断強度])を高めることができるだけでなく、更に耐薬品性や耐吸水性に優れ、とりわけ高温・吸水時圧縮特性の優れた繊維強化複合材料を得ることができる。 It is important that the resin material 13 is a semi-aromatic polyamide containing a terephthalic acid component, which has many advantages such as heat resistance, high rigidity, chemical resistance, and low water absorption. Examples of the semi-aromatic polyamide containing terephthalic acid include polyamide 6T, polyamide 9T, polyamide 10T, polyamide 6T / 6, polyamide 6T / 12, polyamide 6T / 66, polyamide 6T / 6I, and polyamide 66 / 6T / 6I. Of these, those having a long methylene chain portion such as polyamide 9T and polyamide 10T are preferable from the viewpoint of water absorption and impact resistance. Such a resin material 13 can form a layer having high toughness between FRP layers, and can not only enhance mechanical properties (particularly CAI and ILSS [interlayer shear strength]), but also improve chemical resistance and water absorption resistance. It is possible to obtain a fiber-reinforced composite material which is excellent, especially excellent in compression characteristics at high temperature and water absorption.

テレフタル酸成分を含まない半芳香族ポリアミドとしては、イソフタル酸成分を含む半芳香族ポリアミドが挙げられるが、これらの多くは非晶性ポリマーであることから、テレフタル酸成分を含む半芳香族ポリアミドと比較して耐薬品性や耐吸水性が劣る場合がある。 Examples of the semi-aromatic polyamide containing no terephthalic acid component include semi-aromatic polyamides containing an isophthalic acid component. However, since most of these are amorphous polymers, the semi-aromatic polyamide containing a terephthalic acid component can be used. In comparison, chemical resistance and water absorption resistance may be inferior.

また樹脂材料13は、FRPのマトリックス樹脂との親和性が低いと、樹脂材料13とマトリックス樹脂との界面において剥離が発生し、力学特性の向上効果が満足に得ることができないことがある。したがって樹脂材料13とマトリックス樹脂との溶解度パラメータ差の絶対値は5以下、好ましくは3以下であることが好ましい。なお樹脂材料13の溶解度パラメータは下記(1)式によって求められる。当該方法は“福本修編(1988)『ポリアミド樹脂ハンドブック』日刊工業新聞社”に記載されている。 Further, if the resin material 13 has a low affinity for the matrix resin of FRP, peeling may occur at the interface between the resin material 13 and the matrix resin, and the effect of improving the mechanical properties may not be satisfactorily obtained. Therefore, the absolute value of the solubility parameter difference between the resin material 13 and the matrix resin is preferably 5 or less, preferably 3 or less. The solubility parameter of the resin material 13 is obtained by the following equation (1). The method is described in "Osamu Fukumoto (1988)" Polyamide Resin Handbook "Nikkan Kogyo Shimbun."

Figure 2022068616000002
Figure 2022068616000002

ここで、
M:分子量
ρ:密度
ΔH:アミド基間相互作用
T:温度。
here,
M: Molecular weight ρ: Density ΔH: Interaction between amide groups T: Temperature.

またマトリックス樹脂の溶解度パラメータはフェダーズ(Fedors)の方法により決定される25℃の温度におけるポリマーの繰り返し単位の値により求められる。当該方法は、F.Fedors,Polym.Eng.Sci.,14(2),147(1974)に記載されている。 The solubility parameter of the matrix resin is determined by the value of the repeating unit of the polymer at a temperature of 25 ° C. determined by the Fedors method. The method is described in F.I. Fedors, Polym. Eng. Sci. , 14 (2), 147 (1974).

本発明における強化繊維糸条は、マルチフィラメント糸であってガラス繊維糸、有機(アラミド、PBO、PVA、PE等)繊維糸、炭素繊維(PAN系、ピッチ系等)糸等である。炭素繊維は比強度および比弾性率に優れ、殆ど吸水しないので、航空機構造材や自動車の強化繊維として好ましく用いられる。 The reinforcing fiber yarn in the present invention is a multifilament yarn, which is a glass fiber yarn, an organic (aramid, PBO, PVA, PE, etc.) fiber yarn, a carbon fiber (PAN-based, pitch-based, etc.) yarn, and the like. Since carbon fiber has excellent specific strength and specific elastic modulus and hardly absorbs water, it is preferably used as a reinforcing fiber for aircraft structural materials and automobiles.

本発明に使用する強化繊維糸条は3,000~50,000フィラメントであることが好ましく、取扱性の観点から12,000~24,000フィラメントであるのが特に好ましい。強化繊維糸条の形態は特に限定されないが、糸条の幅や厚みの安定性に優れる無撚糸であることが好ましく、さらに繊維配向に優れる開繊糸であることが好ましい。 The reinforcing fiber yarn used in the present invention is preferably 3,000 to 50,000 filaments, and particularly preferably 12,000 to 24,000 filaments from the viewpoint of handleability. The form of the reinforcing fiber yarn is not particularly limited, but it is preferably a non-twisted yarn having excellent stability in the width and thickness of the yarn, and more preferably an open fiber yarn having an excellent fiber orientation.

ここで、本発明における強化繊維基材は[1]:強化繊維糸条、[2]:強化繊維糸条を並行に引き揃えてなる強化繊維糸条群、または[3]強化繊維糸条もしくは強化繊維糸条群で構成される強化繊維布帛、のうちいずれかより選ばれる強化繊維集合体からなることが重要である。 Here, the reinforcing fiber base material in the present invention is [1]: reinforcing fiber threads, [2]: a group of reinforcing fiber threads in which reinforcing fiber threads are arranged in parallel, or [3] reinforcing fiber threads or. It is important that it consists of a reinforcing fiber aggregate selected from any of the reinforcing fiber fabrics composed of the reinforcing fiber yarn group.

まず、[1]:強化繊維糸条からなる強化繊維基材21は、例えば図2に例示する装置を使用して作成される。詳しくは、ボビン20から引き出された強化繊維糸条22は、開繊ユニット201により開繊、幅規制ローラ202にて所望の幅に調整した後、あらかじめ所望の幅にスリットした樹脂材料23(好ましくは、ポーラス状樹脂材料)と重ね合わせ、ヒーター203により加熱、プレスロール204により圧着することにより作成される。開繊ユニット201は振動ローラなどにより構成され、強化繊維糸条22の進行方向に対して直行する鉛直方向や水平方向に振動を加える機構を備える。また開繊ユニット201は、強化繊維糸条22表面に付着したサイジング剤を軟化させるためのヒーター(図示せず)を備えていても良い。このとき、ボビン20から引き出された強化繊維糸条22の糸幅をw0とすると、開繊後の強化繊維糸条22の幅はw1(w0<w1)に拡幅され、その後幅規制ローラ202によって幅w2(w1>w2)に調整される。w2は強化繊維基材21に求められる目付に応じて調整することが好ましい。また強化繊維基材21の幅精度を向上させるため、プレスロール204は溝付き構造とすることが好ましい。 First, [1]: The reinforcing fiber base material 21 made of the reinforcing fiber threads is produced, for example, by using the apparatus illustrated in FIG. 2. Specifically, the reinforcing fiber thread 22 drawn out from the bobbin 20 is opened by the fiber opening unit 201, adjusted to a desired width by the width regulating roller 202, and then slit into a desired width in advance (preferably a resin material 23). Is created by superimposing a porous resin material), heating it with a heater 203, and crimping it with a press roll 204. The fiber opening unit 201 is composed of a vibrating roller or the like, and includes a mechanism for applying vibration in the vertical direction or the horizontal direction perpendicular to the traveling direction of the reinforcing fiber thread 22. Further, the fiber opening unit 201 may be provided with a heater (not shown) for softening the sizing agent adhering to the surface of the reinforcing fiber thread 22. At this time, assuming that the thread width of the reinforcing fiber thread 22 drawn from the bobbin 20 is w0, the width of the reinforcing fiber thread 22 after opening is widened to w1 (w0 <w1), and then by the width regulating roller 202. The width is adjusted to w2 (w1> w2). It is preferable to adjust w2 according to the basis weight required for the reinforcing fiber base material 21. Further, in order to improve the width accuracy of the reinforcing fiber base material 21, it is preferable that the press roll 204 has a grooved structure.

かかる装置により作成された強化繊維基材21は、幅や目付の安定性が良く、また繊維配向にも優れるため、FRPの力学特性(特に圧縮強度)向上に寄与することができる。また樹脂材料23は強化繊維糸条群の両面に配置すると、強化繊維基材21の形態安定性がさらに向上するため好ましい。 The reinforcing fiber base material 21 produced by such an apparatus has good stability in width and basis weight, and is also excellent in fiber orientation, so that it can contribute to improvement of mechanical properties (particularly compressive strength) of FRP. Further, it is preferable to arrange the resin material 23 on both sides of the reinforcing fiber thread group because the morphological stability of the reinforcing fiber base material 21 is further improved.

次に、[2]:強化繊維糸条群からなる強化繊維基材21は、強化繊維糸条22からなる強化繊維基材の作成方法と同様に、例えば図2に例示する装置に複数のボビン20を掛け、複数の強化繊維糸条22を並行に引き揃えながら引き出すことにより作成される。ここで、並行に引き揃えるとは、隣接する強化繊維糸条22同士が、実質的に交差または交錯しない様に引き揃えることをいい、好ましくは、隣接する2本の強化繊維糸条を100mmの長さの範囲で直線に近似したとき、近似した直線が形成する角度が5°以下、さらに好ましくは2°以下となるよう引き揃えることである。ここで、強化繊維糸条22を直線に近似するとは、100mmの起点と終点とを結んで直線を形成することをいう。また隣接する強化繊維糸条22同士は、求められる強化繊維基材21の目付に応じて一定の間隔を隔てていてもよく、重なり合っていてもよい。一定の間隔を隔てる場合、間隔は強化繊維糸条22幅の200%以下であることが好ましく、重なり合っている場合は強化繊維糸条22幅の100%重なっていてもよい。このように並行に引き揃えながら引き出された強化繊維糸条群は、開繊ユニットを通過することにより、幅方向の目付を均一に分布させることが好ましい。また、かかる強化繊維糸条群から作られた強化繊維基材21は、必要であればスリットを行い、任意の幅に制御することも可能である。 Next, [2]: The reinforcing fiber base material 21 composed of the reinforcing fiber yarn group has a plurality of bobbins in the apparatus exemplified in FIG. 2, for example, in the same manner as the method for producing the reinforcing fiber base material consisting of the reinforcing fiber yarn 22. It is created by multiplying by 20 and pulling out a plurality of reinforcing fiber threads 22 while aligning them in parallel. Here, "aligning in parallel" means aligning the adjacent reinforcing fiber threads 22 so that they do not substantially intersect or intersect with each other, and preferably, the two adjacent reinforcing fiber threads are aligned by 100 mm. When approximated to a straight line within the range of length, the angles formed by the approximated straight line are aligned so as to be 5 ° or less, more preferably 2 ° or less. Here, approximating the reinforcing fiber thread 22 to a straight line means forming a straight line by connecting the starting point and the ending point of 100 mm. Further, the adjacent reinforcing fiber threads 22 may be spaced apart from each other at a certain interval according to the required basis weight of the reinforcing fiber base material 21, or may be overlapped with each other. When separated by a certain interval, the interval is preferably 200% or less of the width of the reinforcing fiber threads 22, and when overlapping, 100% of the width of the reinforcing fiber threads 22 may be overlapped. It is preferable that the reinforcing fiber yarn group pulled out while being drawn in parallel in this way passes through the fiber opening unit to uniformly distribute the basis weight in the width direction. Further, the reinforcing fiber base material 21 made from the reinforcing fiber thread group can be slit to an arbitrary width if necessary.

[3]強化繊維糸条もしくは強化繊維糸条群で構成される強化繊維布帛については後述する。 [3] The reinforcing fiber fabric composed of the reinforcing fiber threads or the reinforcing fiber threads group will be described later.

また、強化繊維糸条22および強化繊維糸条群を使用した強化繊維基材21は、オートメーテッドファイバープレイスメント(AFP)やオートメーテッドテープレイアップ(ATL)装置が好適に用いられる。かかる装置は強化繊維基材21の廃棄率削減や積層工程自動化を目的として使用されるが、配置後の幅や繊維配向などが厳しく求められるため、強化繊維基材21の形態安定性が重要になる。ここで本発明に用いるポーラス状樹脂材料23はポーラス状の形態をしているため、平面方向の繋がりにより幅安定性や形態安定性に優れるため、AFPやATLに好適に用いることができる。 Further, as the reinforcing fiber base material 21 using the reinforcing fiber thread 22 and the reinforcing fiber thread group, an automated fiber placement (AFP) or an automated tape layup (ATL) device is preferably used. Such a device is used for the purpose of reducing the disposal rate of the reinforcing fiber base material 21 and automating the laminating process, but since the width and fiber orientation after placement are strictly required, the morphological stability of the reinforcing fiber base material 21 is important. Become. Here, since the porous resin material 23 used in the present invention has a porous shape, it is excellent in width stability and morphological stability due to the connection in the plane direction, and therefore can be suitably used for AFP and ATL.

さらに本発明における強化繊維糸条群の別の態様としては、AFPやATLにより並行に引き揃え配置されたシート状のものも挙げられる。図3は本発明に用いられる強化繊維糸条群の一態様を示すものであり、強化繊維糸条32はAFPヘッド300によって供給され、並行に引き揃え配置される。かかる強化繊維糸条群31に、ポーラス状樹脂材料(図示せず)を重ね合わせるように配置し、遠赤外ヒーターなどにより加熱接着することで、強化繊維基材を得ることができる。AFPやATLによって引き揃え配置されたシート状の強化繊維糸条群31は、繊維方向と交差する方向に拘束が無いため、搬送の際に強化繊維糸条群31の形態が崩れる問題がある。かかる問題に対し、ポーラス状樹脂材料を配置し接着することで、繊維方向と交差する方向の拘束力が生まれ、搬送の問題を解決することができる。また、AFPやATLによって強化繊維糸条32を引き揃え配置する際の強化繊維糸条32同士の間隔は0.5~2mmであることが好ましい。間隔が0.5mm未満の場合、RTM成形時の樹脂含浸性が十分でなくなることがある。また間隔が2mmを超えると、複数枚の強化繊維基材を積層した際に、上層の強化繊維が下層の強化繊維糸条32間に落ち込み、厚さ方向のうねりが発生し力学特性(特に圧縮強度)が低下することがある。 Further, as another aspect of the reinforcing fiber yarn group in the present invention, there is also a sheet-like one arranged in parallel by AFP or ATL. FIG. 3 shows one aspect of the reinforcing fiber yarn group used in the present invention, in which the reinforcing fiber yarn 32 is supplied by the AFP head 300 and is aligned and arranged in parallel. A reinforcing fiber base material can be obtained by arranging a porous resin material (not shown) so as to be superposed on the reinforcing fiber thread group 31 and heat-adhering it with a far-infrared heater or the like. Since the sheet-shaped reinforcing fiber thread group 31 aligned and arranged by AFP or ATL is not restricted in the direction intersecting the fiber direction, there is a problem that the form of the reinforcing fiber thread group 31 collapses during transportation. By arranging and adhering the porous resin material to the problem, a binding force in the direction intersecting the fiber direction is generated, and the problem of transportation can be solved. Further, when the reinforcing fiber threads 32 are aligned and arranged by AFP or ATL, the distance between the reinforcing fiber threads 32 is preferably 0.5 to 2 mm. If the interval is less than 0.5 mm, the resin impregnation property at the time of RTM molding may not be sufficient. If the interval exceeds 2 mm, when a plurality of reinforcing fiber base materials are laminated, the upper reinforcing fibers fall between the lower reinforcing fiber threads 32, causing undulations in the thickness direction and mechanical properties (particularly compression). Strength) may decrease.

次に[3]強化繊維糸条もしくは強化繊維糸条群で構成される強化繊維布帛としては、織物(一方向性、二方向性、多軸)、編物、組物、一方向に引き揃えられたシート(一方向シート)、一方向シートを2層以上重ね合わせた多軸シート等が挙げられる。このような強化繊維集合体はステッチ糸、結節糸、粗布、バインダー等の樹脂等による各種接合手段により複数のものを一体化したものであってもよい。特に輸送機器(特に航空機)の構造(特に一次構造)部材として用いる場合には、一方向シート、一方向性織物、または多軸シート(特にステッチ接合したもの)であるのが好ましい。 Next, as the reinforcing fiber cloth composed of [3] reinforcing fiber threads or a group of reinforcing fiber threads, woven fabrics (unidirectional, bidirectional, multiaxial), knitted fabrics, braids, and unidirectionally aligned. Examples thereof include a woven sheet (one-way sheet) and a multi-axis sheet in which two or more layers of unidirectional sheets are stacked. Such a reinforcing fiber aggregate may be a combination of a plurality of such reinforcing fiber aggregates by various joining means such as stitch yarn, knotting yarn, sackcloth, and resin such as a binder. In particular, when used as a structural (particularly primary structure) member of a transport device (particularly an aircraft), a unidirectional sheet, a unidirectional woven fabric, or a multiaxial sheet (particularly stitch-joined) is preferable.

図4は、本発明に用いる強化繊維布帛としての一方向性織物41の一態様を示す概略斜視図である。強化繊維糸条42および経補助糸43が一方向性織物41の長さ方向、つまりたて方向に配列し、よこ方向には強化繊維糸条42より細い緯補助糸44が配列し、経補助糸43と緯補助糸44が交錯し、図4に示す織組織を有する一方向性織物である。かかる補助糸43としては低収縮性のものであることが好ましく、例えば、ガラス繊維糸、アラミド繊維糸、炭素繊維糸等が挙げられ、補助糸の繊度(単位長さあたりの重量)は強化繊維糸条の1/5以下であるのが好ましい。1/5を超えると、補助糸が太くなるので、補助糸によって強化繊維糸条がクリンプし、FRPにした際に若干強化繊維の強度低下をもたらす。一方、強化繊維集合体の形態安定性、製造安定性の面から、補助糸の繊度は強化繊維糸条の0.05%以上であるのが好ましい。上記範囲の繊度であると、強度低下を最小限にし、かつ成形の際に経補助糸によって形成される強化繊維糸条42の間隙が樹脂流路となり、マトリックス樹脂の含浸が促進できるので好ましい。 FIG. 4 is a schematic perspective view showing one aspect of the unidirectional woven fabric 41 as the reinforcing fiber cloth used in the present invention. Reinforcing fiber threads 42 and warp auxiliary threads 43 are arranged in the length direction of the unidirectional woven fabric 41, that is, in the warp direction, and weft auxiliary threads 44 thinner than the reinforcing fiber threads 42 are arranged in the weft direction to assist the warp. It is a unidirectional woven fabric in which the yarn 43 and the weft auxiliary yarn 44 are interlaced and have the weaving structure shown in FIG. The auxiliary yarn 43 preferably has low shrinkage, and examples thereof include glass fiber yarn, aramid fiber yarn, carbon fiber yarn, and the like, and the fineness (weight per unit length) of the auxiliary yarn is reinforced fiber. It is preferably 1/5 or less of the thread. If it exceeds 1/5, the auxiliary yarn becomes thicker, so that the auxiliary yarn crimps the reinforcing fiber threads, resulting in a slight decrease in the strength of the reinforcing fiber when FRP is used. On the other hand, from the viewpoint of morphological stability and production stability of the reinforcing fiber aggregate, the fineness of the auxiliary yarn is preferably 0.05% or more of that of the reinforcing fiber yarn. When the fineness is in the above range, the decrease in strength is minimized, and the gaps between the reinforcing fiber threads 42 formed by the warp auxiliary yarns during molding serve as resin flow paths, and the impregnation of the matrix resin can be promoted, which is preferable.

図5は、本発明に用いる強化繊維布帛としての二方向性織物51の一態様を示す概略斜視図である。強化繊維糸条52が二方向性織物51の長さ方向、つまりたて方向に配列し、よこ方向に強化繊維糸条53が配列し、たて糸52とよこ糸53が交錯し、図5に示す織組織を有する二方向性織物である。 FIG. 5 is a schematic perspective view showing one aspect of the bidirectional woven fabric 51 as the reinforcing fiber cloth used in the present invention. The reinforcing fiber threads 52 are arranged in the length direction of the bidirectional woven fabric 51, that is, in the warp direction, the reinforcing fiber threads 53 are arranged in the weft direction, and the warp threads 52 and the weft threads 53 are interlaced, and the weave shown in FIG. It is a bidirectional woven fabric with a texture.

図6は、本発明に用いる強化繊維布帛としてのステッチ布帛61の一態様を示す概略斜視図である。ステッチ布帛61の下面から、まず長さ方向イに対して斜め方向に多数本の強化繊維糸条が並行に配列して+α°層62を構成し、次いで強化布帛の幅方向に多数本の強化繊維糸条が並行に配列して90°層63を構成し、次いで斜め方向に多数本の強化繊維糸条が並行に配列して-α°層64を構成し、次いで強化布帛の長さ方向に多数本の強化繊維糸条が並行に配列して0°層65を構成し、互いに配列方向が異なる4つの層が積層された状態で、ステッチ糸66でこれら4層が縫合一体化されている。縫合一体化にあたってのステッチ糸66が形成する縫い組織としては、例えば単環縫い、1/1のトリコット編みが挙げられる。ステッチ糸の材料としては、ポリエステル樹脂、ポリアミド樹脂、ポリエチレン樹脂、ビニルアルコール樹脂、ポリフェニレンサルファイド樹脂、ポリアラミド樹脂、それらの組成物等から選ぶことができる。中でも、ポリエステル樹脂、ポリアミド樹脂であると好ましい。布帛の賦型性の観点からは、スパンデックス(ポリウレタン弾性繊維)、ポリアミド樹脂またはポリエステル樹脂の加工糸であることが好ましい。ステッチ糸の繊度は強化繊維糸条のクリンプを抑制するために強化繊維糸条の1/5以下であることが好ましい。また強化繊維集合体の形態安定性、製造安定性の面から10dtex以上、より好ましくは30dtex以上であることが好ましい。さらに、後述するプリフォーミング工程での賦形性の観点から、ステッチ糸は伸縮性を有することが好ましい。なお、図6で、断面形状が楕円状に示されている強化繊維の集合体が1糸条で、この強化繊維糸条間にステッチ糸66が配列しているかに見えるが、ステッチ糸66は強化繊維糸条に対してはランダムに挿入され、楕円状に示されている強化繊維の集合体はステッチ糸66の拘束によって形成されているのである。 FIG. 6 is a schematic perspective view showing one aspect of the stitch fabric 61 as the reinforcing fiber fabric used in the present invention. From the lower surface of the stitch fabric 61, a large number of reinforcing fiber threads are first arranged in parallel in the diagonal direction with respect to the length direction a to form a + α ° layer 62, and then a large number of reinforcing fibers are reinforced in the width direction of the reinforced fabric. The fiber threads are arranged in parallel to form the 90 ° layer 63, and then a large number of reinforcing fiber threads are arranged in parallel in the diagonal direction to form the −α ° layer 64, and then in the length direction of the reinforcing cloth. A large number of reinforcing fiber threads are arranged in parallel to form a 0 ° layer 65, and four layers having different arrangement directions are laminated, and these four layers are stitched and integrated with the stitch thread 66. There is. Examples of the sewing structure formed by the stitch thread 66 in integrating the stitches include single ring stitching and 1/1 tricot knitting. The material of the stitch thread can be selected from polyester resin, polyamide resin, polyethylene resin, vinyl alcohol resin, polyphenylene sulfide resin, polyaramid resin, and compositions thereof. Of these, polyester resin and polyamide resin are preferable. From the viewpoint of the shapeability of the fabric, it is preferable to use a processed yarn of spandex (polyurethane elastic fiber), polyamide resin or polyester resin. The fineness of the stitch thread is preferably 1/5 or less of that of the reinforcing fiber thread in order to suppress the crimp of the reinforcing fiber thread. Further, from the viewpoint of morphological stability and production stability of the reinforcing fiber aggregate, it is preferably 10 dtex or more, more preferably 30 dtex or more. Further, from the viewpoint of formability in the preforming step described later, it is preferable that the stitch thread has elasticity. In FIG. 6, the aggregate of the reinforcing fibers whose cross-sectional shape is shown in an elliptical shape is one thread, and it seems that the stitch threads 66 are arranged between the reinforcing fiber threads, but the stitch threads 66 are It is randomly inserted into the reinforcing fiber thread, and the aggregate of the reinforcing fibers shown in an elliptical shape is formed by the restraint of the stitch thread 66.

ここで、図6に示した多軸ステッチ布帛61の強化繊維の構成は+α°層/90°層/-α°層/0°層の4層構成について説明したが、これに限定するものではない。たとえば0°層/90°層、+α°層/-α°層、0°層/+α°層などからなる2層、+α°層/0°層/-α°層、+α°層/-α°層/0°層などからなる3層、また、0°層/+α°層/0°層/-α°層/90°層/-α°層/0°層/+α°層/0°層のように、0°層が多く含まれるような、0°、+α°、-α°、90゜の4方向を含むものであってもよい。また、0°、+α°、-α°、90゜のいずれかを含むものであってもよい。なお、バイアス角α゜は、ステッチ布帛をFRPの長さ方向に積層し、強化繊維による剪断補強を効果的に行う観点から45゜が好ましい。 Here, the structure of the reinforcing fiber of the multi-axis stitch fabric 61 shown in FIG. 6 has been described as a four-layer structure of + α ° layer / 90 ° layer / −α ° layer / 0 ° layer, but the structure is not limited to this. not. For example, two layers consisting of 0 ° layer / 90 ° layer, + α ° layer / −α ° layer, 0 ° layer / + α ° layer, + α ° layer / 0 ° layer / −α ° layer, + α ° layer / −α Three layers consisting of ° layer / 0 ° layer, 0 ° layer / + α ° layer / 0 ° layer / -α ° layer / 90 ° layer / -α ° layer / 0 ° layer / + α ° layer / 0 ° Like the layer, it may include four directions of 0 °, + α °, −α °, and 90 ° so as to include many 0 ° layers. Further, it may contain any of 0 °, + α °, −α °, and 90 °. The bias angle α ° is preferably 45 ° from the viewpoint of laminating stitch fabrics in the length direction of the FRP and effectively performing shear reinforcement with reinforcing fibers.

本発明における強化繊維基材の好ましい1層当たりの目付は50~800g/mの範囲内である。より好ましくは100~500g/m、更に好ましくは120~300g/mの範囲内である。50g/m未満であると所定のFRPの厚みを得るための積層枚数が増え、成形の作業性が悪く好ましくない。また、一層当たりの目付が小さいと、層内の強化繊維糸条と強化繊維糸条の間に隙間ができ、強化繊維体積含有率Vfが部分的に不均一となり、成形すると強化繊維体積含有率Vfが大きなところはFRPが厚くなり、また強化繊維体積含有率Vfが小さなところはFRPが薄くなり、表面が凸凹したFRPとなる。このような場合には、製織寸前やステッチ糸による一体化加工前に、または/および強化布帛加工後に強化繊維糸条を振動ローラやエアー・ジェット噴射で薄く拡げると、強化布帛の全面にわたり強化繊維の体積比が均一となり、表面が平滑なFRPが得られるので好ましい。また、800g/mを超えるとマトリックス樹脂の含浸性が悪くなるので好ましくない。 The preferred basis weight per layer of the reinforcing fiber base material in the present invention is in the range of 50 to 800 g / m 2 . It is more preferably in the range of 100 to 500 g / m 2 , and even more preferably in the range of 120 to 300 g / m 2 . If it is less than 50 g / m 2 , the number of laminated sheets for obtaining a predetermined thickness of FRP increases, and the workability of molding is poor, which is not preferable. Further, if the texture per layer is small, a gap is formed between the reinforcing fiber threads in the layer, the reinforcing fiber volume content Vf becomes partially non-uniform, and when molded, the reinforcing fiber volume content is partially non-uniform. Where the Vf is large, the FRP becomes thick, and when the reinforcing fiber volume content Vf is small, the FRP becomes thin, resulting in an FRP having an uneven surface. In such a case, if the reinforcing fiber yarn is thinly spread by a vibrating roller or air jet injection just before weaving, before the integrated processing with the stitch thread, and / and after the reinforcing fabric processing, the reinforcing fiber is spread over the entire surface of the reinforcing fabric. It is preferable because FRP having a uniform volume ratio and a smooth surface can be obtained. Further, if it exceeds 800 g / m 2 , the impregnation property of the matrix resin deteriorates, which is not preferable.

次に、本発明における強化繊維積層体について説明する。本発明における強化繊維基材はFRP成形に先立って、所望とする厚みに達するまで複数枚積層を行い、強化繊維積層体を形成する。本発明において、強化繊維積層体の取扱性や形態安定性を付与するために熱融着やステッチにより一体化されていることが好ましい。 Next, the reinforcing fiber laminate in the present invention will be described. Prior to FRP molding, a plurality of reinforcing fiber base materials in the present invention are laminated until a desired thickness is reached to form a reinforcing fiber laminated body. In the present invention, it is preferable that the reinforcing fiber laminate is integrated by heat fusion or stitching in order to impart handleability and morphological stability.

また本発明における強化繊維積層体は、目的とする炭素繊維強化樹脂成形体の形態に合わせて、前記炭素繊維積層基材に対して賦形型や治具等を用いて立体形状を付与し、形状固着したプリフォームとすることもできる。特に、成形型が立体形状である場合において、このようにすることによって、型締め時、あるいは、樹脂注入・含浸時の繊維乱れやしわの発生を容易に抑制することができる。 Further, the reinforced fiber laminate in the present invention is given a three-dimensional shape to the carbon fiber laminated base material by using a shaping mold, a jig, or the like according to the form of the target carbon fiber reinforced resin molded body. It can also be a preform with a fixed shape. In particular, when the molding die has a three-dimensional shape, by doing so, it is possible to easily suppress the occurrence of fiber disorder and wrinkles during mold clamping or resin injection / impregnation.

次に、本発明のFRPについて説明する。本発明のFRPは、上述の強化繊維積層体にマトリックス樹脂が含浸したものである。かかるマトリックス樹脂は必要に応じて固化(硬化または重合)される。かかるマトリックス樹脂の好ましい例としては、例えば、熱硬化性樹脂、RIM(Reaction Injection Molding)用熱可塑性樹脂等が挙げられるが、中でも樹脂注入成形に好適であるエポキシ樹脂、フェノール樹脂、ビニルエステル樹脂、不飽和ポリエステル樹脂、シアネートエステル樹脂、ビスマレイミド樹脂およびベンゾオキサジン樹脂から選ばれる少なくとも1種であるのが好ましい。 Next, the FRP of the present invention will be described. The FRP of the present invention is obtained by impregnating the above-mentioned reinforcing fiber laminate with a matrix resin. The matrix resin is solidified (cured or polymerized) as needed. Preferred examples of such a matrix resin include, for example, a thermosetting resin, a thermoplastic resin for RIM (Reaction Injection Molding), and the like, among which epoxy resin, phenol resin, vinyl ester resin, etc., which are suitable for resin injection molding, are used. It is preferably at least one selected from unsaturated polyester resin, cyanate ester resin, bismaleimide resin and benzoxazine resin.

また、本発明のFRPは優れた力学特性を有し、かつ軽量であるため、その用途が航空機、自動車、船舶の輸送機器のいずれかにおける一次構造部材、二次構造部材、外装部材または内装部材であることが好ましい。 Further, since the FRP of the present invention has excellent mechanical properties and is lightweight, its use is as a primary structural member, a secondary structural member, an exterior member or an interior member in any of transportation equipment of aircraft, automobiles and ships. Is preferable.

次に、本発明における強化繊維基材を用いたFRPの成形方法について説明する。 Next, a method for forming an FRP using a reinforcing fiber base material in the present invention will be described.

本発明における強化繊維基材のうち、強化繊維糸条や強化繊維糸条群からなる強化繊維基材は、AFPやATL装置によって所望の形状に引き揃え配置される。 Among the reinforcing fiber base materials in the present invention, the reinforcing fiber base material composed of the reinforcing fiber threads and the reinforcing fiber thread group is aligned and arranged in a desired shape by an AFP or an ATL device.

かかる配置工程は、2次元平面形状で行われてもよいし、3次元形状で行われてもよい。2次元平面形状の場合は、1層毎に強化繊維基材を配置した後、ポーラス状の樹脂材料を配置・接着することで、1層毎の搬送が容易なシート状の強化繊維基材を作成することができ、別で用意している賦形用金型に、引き揃え配置された状態の形状を崩さず搬送することが可能となる。このとき配置するポーラス状の樹脂材料に少なくとも部分的に切れ込みが入っていると、後述するプリフォーミング工程での賦形性がより良好になるため好ましい。また搬送手段としては、静電気や吸引、針刺しなどの方法による搬送手段を用いることができる。 Such an arrangement step may be performed in a two-dimensional planar shape or may be performed in a three-dimensional shape. In the case of a two-dimensional plane shape, by arranging a reinforcing fiber base material for each layer and then arranging and adhering a porous resin material, a sheet-shaped reinforcing fiber base material that can be easily transported for each layer can be obtained. It can be created and can be transported to a separately prepared shaping mold without breaking the shape in the aligned and arranged state. It is preferable that the porous resin material to be arranged at this time has at least a partial notch because the shapeability in the preforming step described later becomes better. Further, as the transporting means, a transporting means by a method such as static electricity, suction, or needle stick can be used.

また1層毎に作成したシート状の強化繊維基材は、更に取扱性を良くするため、複数の層を重ね合わせて熱融着もしくはステッチにより一体化した強化繊維積層体としてもよい。このとき、2層目以降のn層目の強化繊維基材の配置方向を、n-1層目の配置方向とは異なる方向とすることにより、布帛と同様に扱うことができる複数層の強化繊維積層体とすることができる。かかる強化繊維基材の一体化工程は、強化繊維基材が重なり合っている全面に行われても良いし、部分的に行われていても良い。全面で一体化されていると強化繊維基材の形態安定性に優れる。一方、部分的に一体化されていると、後述するプリフォーミング工程において成形品形状への賦形の際に変形がしやすい(すなわち賦形性が良い)。よって成形品形状の複雑さによって、これらを任意に使い分けることが好ましい。 Further, the sheet-shaped reinforcing fiber base material prepared for each layer may be a reinforcing fiber laminate in which a plurality of layers are laminated and integrated by heat fusion or stitching in order to further improve the handleability. At this time, by setting the arrangement direction of the nth layer of the reinforcing fiber base material of the second and subsequent layers to be different from the arrangement direction of the n-1th layer, the reinforcement of a plurality of layers that can be treated in the same manner as the cloth. It can be a fiber laminate. The step of integrating the reinforcing fiber base materials may be performed on the entire surface where the reinforcing fiber base materials are overlapped, or may be performed partially. When integrated on the entire surface, the morphological stability of the reinforcing fiber base material is excellent. On the other hand, if it is partially integrated, it is easily deformed (that is, has good shapeability) when it is shaped into a molded product shape in the preforming step described later. Therefore, it is preferable to use these arbitrarily depending on the complexity of the molded product shape.

ここで、本発明における強化繊維基材は、(樹脂材料の付着していない)強化繊維糸条をAFPやATL装置によって所望の形状に引き揃え配置した強化繊維糸条群に、ポーラス状の樹脂材料を配置・接着したものも含むことができる。このことにより、耐衝撃性などの特性を有していない炭素繊維糸条に対しても耐衝撃性などの特性を付与することができる。 Here, the reinforcing fiber base material in the present invention is a porous resin in a group of reinforcing fiber threads in which reinforcing fiber threads (without resin material attached) are aligned and arranged in a desired shape by an AFP or ATL device. It can also include materials that have been placed and bonded. As a result, it is possible to impart characteristics such as impact resistance to carbon fiber yarns that do not have characteristics such as impact resistance.

更に、1層目の強化繊維基材を配置した後、同じ平面上で2層目以降の配置を繰り返しても良い。かかる配置工程ではAFPやATL装置のヘッド部分にヒーターを設け、強化繊維基材表面の樹脂材料を溶融しながら2層目以降の強化繊維基材を配置することにより、強化繊維基材の配置工程と一体化工程の一括化ができる。このとき、2層目以降のn層目の強化繊維基材の配置方向を、n-1層目の配置方向とは異なる方向とすることにより、布帛と同様に扱うことができる複数層の強化繊維積層体とすることができる。 Further, after arranging the first layer of the reinforcing fiber base material, the arrangement of the second and subsequent layers may be repeated on the same plane. In such an arrangement process, a heater is provided at the head portion of the AFP or ATL device, and the reinforcing fiber base material of the second and subsequent layers is arranged while melting the resin material on the surface of the reinforcing fiber base material, whereby the reinforcing fiber base material is arranged. And the integration process can be integrated. At this time, by setting the arrangement direction of the nth layer of the reinforcing fiber base material of the second and subsequent layers to be different from the arrangement direction of the n-1th layer, the reinforcement of a plurality of layers that can be treated in the same manner as the cloth. It can be a fiber laminate.

また本発明における強化繊維基材のうち、強化繊維集合体からなる強化繊維基材、および強化繊維糸条群の層間に樹脂材料を含む強化繊維積層体は、成形品形状に合わせて所望の形状にカットして用いられる。 Further, among the reinforcing fiber base materials in the present invention, the reinforcing fiber base material made of the reinforcing fiber aggregate and the reinforcing fiber laminate containing the resin material between the layers of the reinforcing fiber thread group have a desired shape according to the shape of the molded product. It is used by cutting it into.

このように作成した強化繊維基材もしくは強化繊維積層体は、1層ずつ、もしくは複数層を所望の角度構成で積層したのち、プリフォーミング工程を実施しプリフォームを作成することができる。 The reinforcing fiber base material or the reinforcing fiber laminate thus prepared can be prepared by laminating one layer at a time or a plurality of layers at a desired angle configuration, and then performing a preforming step to prepare a preform.

本発明のFRPの成形は、所謂樹脂注入成形によって行われ、RTM(Resin Transfer Molding)成形やVaRTM(Vacuum assisted Resin Transfer Molding)成形が好ましく適用される。本発明における強化繊維基材の少なくとも片面に配置されたポーラス状の樹脂材料は、強化繊維基材内部の空気を排出する際の流路(エアパス)としての機能や、樹脂拡散媒体としての機能を発揮する。したがって成形品内部品質の向上や、樹脂注入工程の高速化が実現できる。また本発明における強化繊維基材の少なくとも片面に配置されたポーラス状の樹脂材料は平面方向の繋がりがあるため、高圧で樹脂を注入した際の強化繊維基材の変形を防ぐことができる。 The molding of FRP of the present invention is carried out by so-called resin injection molding, and RTM (Resin Transfer Molding) molding and VaRTM (Vacum assisted Resin Transfer Molding) molding are preferably applied. The porous resin material arranged on at least one side of the reinforcing fiber base material in the present invention functions as a flow path (air path) when the air inside the reinforcing fiber base material is discharged and as a resin diffusion medium. Demonstrate. Therefore, it is possible to improve the internal quality of the molded product and speed up the resin injection process. Further, since the porous resin material arranged on at least one surface of the reinforcing fiber base material in the present invention has a connection in the plane direction, it is possible to prevent the reinforcing fiber base material from being deformed when the resin is injected at a high pressure.

本発明のFRPは、強化繊維体積含有率(Vf)が53~65%の範囲であり、SACMA-SRM-2R-94に記載されている衝撃付与後の常温圧縮強度が240MPa以上であることが好ましい。なお、Vf(単位はvol%)とは、繊維強化樹脂において強化繊維が占める体積比率のことを指し、具体的には次式によって定義され、ここで用いた記号は下記に示すとおりである。
Vf=(W×100)/(ρ×T)
W:強化繊維基材1cm当たりの強化繊維の重量(g/cm
ρ:強化繊維の密度(g/cm
T:繊維強化樹脂の厚さ(cm)
The FRP of the present invention has a reinforcing fiber volume content (Vf) in the range of 53 to 65%, and the room temperature compressive strength after impact application described in SACMA-SRM-2R-94 is 240 MPa or more. preferable. Note that Vf (unit is vol%) refers to the volume ratio occupied by the reinforcing fibers in the fiber reinforced resin, and is specifically defined by the following equation, and the symbols used here are as shown below.
Vf = (W × 100) / (ρ × T)
W: Weight of reinforcing fiber per 1 cm 2 of reinforcing fiber base material (g / cm 2 )
ρ: Reinforcing fiber density (g / cm 3 )
T: Thickness of fiber reinforced plastic (cm)

繊維強化樹脂のVfが53~65%の範囲であると、繊維強化樹脂の優れた力学特性を最大限に発現することができる。Vfが53%未満であると、軽量化効果に劣り、65%を超えると、上述の樹脂注入成形での成形が困難となるほか、力学特性(特に耐衝撃性)が低下する場合がある。すなわち、かかるVf範囲において、繊維強化樹脂のSACMA-SRM-2R-94に記載されている衝撃付与後の常温圧縮強度が240MPa以上であると、軽量化効果と力学特性とを共に満足する材料とすることができる。かかる要件を満たす繊維強化樹脂においては、その優れた力学特性と軽量化効果から、多岐の用途にわたって利用される。特に限定されないが、航空機、自動車、または、船舶等の輸送機器における一次構造部材、二次構造部材、外装部材、内装部材もしくはそれらの部品等に用いられ、その効果を最大限に発現する。 When the Vf of the fiber reinforced resin is in the range of 53 to 65%, the excellent mechanical properties of the fiber reinforced resin can be maximized. If Vf is less than 53%, the weight reduction effect is inferior, and if it exceeds 65%, molding by the above-mentioned resin injection molding becomes difficult and mechanical properties (particularly impact resistance) may be deteriorated. That is, in such a Vf range, when the room temperature compressive strength after impact application described in SACMA-SRM-2R-94 of the fiber reinforced resin is 240 MPa or more, the material satisfies both the weight reduction effect and the mechanical properties. can do. Fiber reinforced plastics that meet these requirements are used in a wide variety of applications due to their excellent mechanical properties and weight reduction effect. Although not particularly limited, it is used for a primary structural member, a secondary structural member, an exterior member, an interior member, or parts thereof in transportation equipment such as an aircraft, an automobile, or a ship, and exerts its effect to the maximum extent.

なお、SACMAとは、Suppliers of Advanced Composite Materials Associationの略であり、SACMA-SRM-2R-94とは、ここが定める試験法の規格である。衝撃付与後の常温圧縮強度とは、SACMA-SRM-2R-94に従って、Dry条件にて270インチポンドの衝撃エネルギーにおいて測定されたものである。 In addition, SACMA is an abbreviation for Supporters of Advanced Composites Association, and SACMA-SRM-2R-94 is a standard of the test method defined here. The room temperature compressive strength after impact is measured at 270 inch pounds of impact energy under Dry conditions according to SACMA-SRM-2R-94.

以下、実施例を用いて本発明を更に説明する。実施例および比較例に用いた原材料および成形方法は、次の通りである。なお、本発明はこれら実施例および比較例に限定されるものではない。 Hereinafter, the present invention will be further described with reference to examples. The raw materials and molding methods used in the examples and comparative examples are as follows. The present invention is not limited to these Examples and Comparative Examples.

<高温・吸水時圧縮強度>
SACMA-SRM-1R-94に従って試験片を作成し、70℃温水に14日間浸漬したのち、70℃雰囲気下にて圧縮試験を実施した。
<Compressive strength at high temperature and water absorption>
A test piece was prepared according to SACMA-SRM-1R-94, immersed in warm water at 70 ° C. for 14 days, and then subjected to a compression test in an atmosphere of 70 ° C.

〔実施例1〕
<強化繊維糸条>
炭素繊維糸条として、PAN系炭素繊維、24,000フィラメント、引張強度:6.0GPa、引張弾性率:294GPaのものを用いた。
[Example 1]
<Reinforcing fiber thread>
As the carbon fiber threads, PAN-based carbon fibers, 24,000 filaments, tensile strength: 6.0 GPa, and tensile elastic modulus: 294 GPa were used.

<樹脂材料>
ヘキサメチレンジアミンとテレフタル酸を等モル比重合し、ポリアミド6Tを調製した。
<Resin material>
Hexamethylenediamine and terephthalic acid were polymerized in an equimolar ratio to prepare a polyamide 6T.

<ポーラス状樹脂材料>
上記樹脂材料をスパンボンド装置により不織布化した。目付は10g/mであった。
<Porous resin material>
The above resin material was made into a non-woven fabric by a spunbond device. The basis weight was 10 g / m 2 .

<マトリックス樹脂>
次の主液100重量部に、次の硬化液を39重量部加え、80℃にて均一に様に撹拌したエポキシ樹脂組成物とした。
主液:エポキシとして、テトラグリシジルジアミノジフェニルメタン型エポキシ(“アラルダイト”(登録商標)MY-721、ハンツマン・ジャパン(株)製)40重量部、液状ビスフェノールA型エポキシ樹脂(“EPON”(登録商標)825、三菱化学(株)製)35重量部、ジグリシジルアニリン(GAN、日本化薬(株)製)15重量部、および、トリグリシジルアミノフェノール型エポキシ樹脂(“jER”(登録商標)630、三菱化学(株)製)10重量部をそれぞれ計り取り、70℃で1時間攪拌して均一溶解させた。
<Matrix resin>
39 parts by weight of the following curing liquid was added to 100 parts by weight of the next main liquid, and the mixture was uniformly stirred at 80 ° C. to obtain an epoxy resin composition.
Main liquid: As epoxy, tetraglycidyldiaminodiphenylmethane type epoxy ("Araldite" (registered trademark) MY-721, manufactured by Huntsman Japan Co., Ltd.) 40 parts by weight, liquid bisphenol A type epoxy resin ("EPON" (registered trademark)) 825, 35 parts by weight of Mitsubishi Chemical Co., Ltd., 15 parts by weight of diglycidyl aniline (GAN, manufactured by Nippon Kayaku Co., Ltd.), and triglycidyl aminophenol type epoxy resin (“jER” (registered trademark) 630, 10 parts by weight (manufactured by Mitsubishi Chemical Corporation) were weighed and stirred at 70 ° C. for 1 hour to uniformly dissolve them.

硬化液:変性芳香族ポリアミン(“jERキュア”(登録商標)W、三菱化学(株)製)70重量部、3,3’-ジアミノジフェニルスルホン(三井化学ファイン(株)製)20重量部、および、4,4’-ジアミノジフェニルスルホン(“セイカキュア”S、セイカ(株)製)10重量部、それぞれ計り取り、100℃で1時間攪拌して均一にした後に70℃に降温して、硬化促進剤として、t-ブチルカテコール(DIC-TBC、DIC(株)製)2重量部計り取り、更に70℃で30分間攪拌して均一溶解させた。 Curing solution: 70 parts by weight of modified aromatic polyamine (“jER Cure” (registered trademark) W, manufactured by Mitsubishi Chemical Corporation), 20 parts by weight of 3,3'-diaminodiphenyl sulfone (manufactured by Mitsui Chemicals Fine Co., Ltd.), Then, weigh 10 parts by weight of 4,4'-diaminodiphenyl sulfone ("Seika Cure" S, manufactured by Seika Co., Ltd.), stir at 100 ° C for 1 hour to make it uniform, and then lower the temperature to 70 ° C to cure. As an accelerator, 2 parts by weight of t-butyl catechol (DIC-TBC, manufactured by DIC Co., Ltd.) was weighed and further stirred at 70 ° C. for 30 minutes to uniformly dissolve.

<強化繊維基材>
図2に示す装置を使用して、幅1/4インチのテープ状強化繊維基材を作成した。強化繊維基材の目付は162g/mであった。
<Reinforcing fiber base material>
Using the apparatus shown in FIG. 2, a tape-shaped reinforcing fiber base material having a width of 1/4 inch was prepared. The basis weight of the reinforcing fiber base material was 162 g / m 2 .

<強化繊維積層体>
かかる強化繊維基材は、CAI測定用にはAFP装置で擬似等方積層[45/0/-45/90]3S(24層:ここで「3S」とは、[ ]内に示す配向角度順に積層したものと対称〔Symmetry〕配置となるように積層したものとを合わせて1組(4層×2=8層)とし、これを3組積層(8層×3=24層)した態様を示す。以下同じ。)の構成で平面状のプリフォーム型上に積層した後、バッグフィルムとシーラントにて密閉して真空に減圧した状態で、140℃のオーブンで1時間加熱した。その後、オーブンから取り出し、プリフォーム型を室温まで冷却した後に放圧して強化繊維積層体を得た。また高温時圧縮強度測定用にはAFP装置で0度方向に6層の構成で平面状のプリフォーム型上に積層した後、バッグフィルムとシーラントにて密閉して真空に減圧した状態で、140℃のオーブンで1時間加熱した。その後、オーブンから取り出し、プリフォーム型を室温まで冷却した後に放圧して強化繊維積層体を得た。
<Reinforcing fiber laminate>
Such a reinforcing fiber base material is pseudo-isotropically laminated [45/0 / -45/90] 3S (24 layers: where "3S" is used in the order of orientation angles shown in []) for CAI measurement using an AFP device. One set (4 layers x 2 = 8 layers) was formed by combining the stacked ones and the ones laminated so as to have a symmetrical arrangement, and three sets of these were laminated (8 layers x 3 = 24 layers). After laminating on a flat preform mold having the same structure as shown below), the mixture was sealed with a bag film and a sealant and depressurized to a vacuum, and then heated in an oven at 140 ° C. for 1 hour. Then, it was taken out from an oven, the preform mold was cooled to room temperature, and then the pressure was released to obtain a reinforcing fiber laminate. For high-temperature compressive strength measurement, the AFP device is used to stack 6 layers in the 0-degree direction on a flat preform mold, which is then sealed with a bag film and sealant and depressurized to vacuum. It was heated in an oven at ° C for 1 hour. Then, it was taken out from an oven, the preform mold was cooled to room temperature, and then the pressure was released to obtain a reinforcing fiber laminate.

<繊維強化樹脂>
得られた強化繊維積層体上に樹脂拡散媒体(アルミ金網)を積層し、平面状の成形金型とバッグ材とでシーラントを用いて密閉することによりキャビティを形成し、100℃のオーブン中に入れた。強化繊維積層体の温度が100℃に達した後に密閉したキャビティを真空に減圧して、マトリックス樹脂を100℃に保ちながら大気圧との差圧のみで注入した。樹脂が含浸した後、減圧を続けながら180℃に昇温し、2時間放置して硬化させて脱型し、CAI測定用FRP平板1aおよび高温時圧縮強度測定用FRP平板1bを得た。得られたFRP平板1aのVfは57%、CAIは140MPa、FRP平板1bの高温・吸水時圧縮強度は1100MPaであった。
<Fiber reinforced plastic>
A resin diffusion medium (aluminum wire mesh) is laminated on the obtained reinforcing fiber laminate, and a cavity is formed by sealing the flat molded mold and the bag material with a sealant, and the cavity is formed in an oven at 100 ° C. I put it in. After the temperature of the reinforcing fiber laminate reached 100 ° C., the closed cavity was reduced to vacuum, and the matrix resin was injected only by the differential pressure from the atmospheric pressure while keeping the temperature at 100 ° C. After the resin was impregnated, the temperature was raised to 180 ° C. while continuing to reduce the pressure, and the mixture was allowed to stand for 2 hours to be cured and demolded to obtain an FRP flat plate 1a for CAI measurement and an FRP flat plate 1b for measuring compressive strength at high temperature. The Vf of the obtained FRP flat plate 1a was 57%, the CAI was 140 MPa, and the compressive strength of the FRP flat plate 1b at high temperature and water absorption was 1100 MPa.

〔比較例1〕
図2に示す装置を使用して、幅1/4インチのテープ状強化繊維基材を作成する際に、樹脂材料を導入しなかった以外は実施例1と同様にして、CAI測定用FRP平板2aおよび高温・吸水時圧縮強度測定用FRP平板2bを得た。得られたFRP平板1aのVfは62%、CAIは100MPa、FRP平板1bの高温・吸水時圧縮強度は1190MPaであった。
[Comparative Example 1]
Using the apparatus shown in FIG. 2, the FRP flat plate for CAI measurement was prepared in the same manner as in Example 1 except that the resin material was not introduced when the tape-shaped reinforcing fiber base material having a width of 1/4 inch was prepared. 2a and FRP flat plate 2b for measuring compressive strength at high temperature and water absorption were obtained. The Vf of the obtained FRP flat plate 1a was 62%, the CAI was 100 MPa, and the compressive strength of the FRP flat plate 1b at high temperature and water absorption was 1190 MPa.

本発明のFRPは優れた力学特性を有し、かつ軽量であるため、その用途が航空機、自動車、船舶の輸送機器のいずれかにおける一次構造部材、二次構造部材、外装部材または内装部材に限らず、風車ブレード、ロボットアームやX線天板といった医療機器等の一般産業用途の部材にも好適である。 Since the FRP of the present invention has excellent mechanical properties and is lightweight, its use is limited to primary structural members, secondary structural members, exterior members or interior members in any of the transportation equipment of aircraft, automobiles and ships. It is also suitable for general industrial use members such as windmill blades, robot arms and X-ray top plates for medical equipment.

11:強化繊維基材
12:強化繊維集合体
13:樹脂材料
20:ボビン
21:強化繊維基材
22:強化繊維糸条
23:樹脂材料
201:開繊ユニット
202:幅規制ローラ
203:ヒーター
204:プレスロール
31:強化繊維糸条群
32:強化繊維糸条
300:AFPヘッド
41:一方向性織物
42:強化繊維糸条(経糸)
43:補助糸(経糸)
44:補助糸(緯糸)
51:二方向性織物
52:強化繊維糸条(経糸)
53:強化繊維糸条(緯糸)
61:ステッチ布帛
62:強化布帛を形成する+α°の強化繊維層
63:強化布帛を形成する90°の強化繊維層
64:強化布帛を形成する-α°の強化繊維層
65:強化布帛を形成する0°の強化繊維層
66:ステッチ糸
11: Reinforcing fiber base material 12: Reinforcing fiber aggregate 13: Resin material 20: Bobin 21: Reinforcing fiber base material 22: Reinforcing fiber thread 23: Resin material 201: Fiber opening unit 202: Width regulation roller 203: Heater 204: Press roll 31: Reinforcing fiber thread group 32: Reinforcing fiber thread 300: AFP head 41: One-way fabric 42: Reinforcing fiber thread (warp)
43: Auxiliary thread (warp)
44: Auxiliary thread (warp and weft)
51: Bidirectional woven fabric 52: Reinforcing fiber threads (warps)
53: Reinforcing fiber threads (warp and weft)
61: Stitched fabric 62: + α ° reinforcing fiber layer forming the reinforcing fabric 63: 90 ° reinforcing fiber layer forming the reinforcing fabric 64: Forming the reinforcing fabric-α ° reinforcing fiber layer 65: Forming the reinforcing fabric 0 ° Reinforcing Fiber Layer 66: Stitch Thread

Claims (11)

[1]:強化繊維糸条、[2]:強化繊維糸条を並行に引き揃えてなる強化繊維糸条群、[3]:[1]または[2]で構成される強化繊維布帛、のうちいずれかより選ばれる強化繊維集合体の少なくとも片側表面に樹脂材料が配置された強化繊維基材であって、前記樹脂材料は、テレフタル酸成分を含む半芳香族ポリアミドであることを特徴とする樹脂注入成形用強化繊維基材。 [1]: Reinforcing fiber thread, [2]: Reinforcing fiber thread group formed by arranging reinforcing fiber threads in parallel, [3]: Reinforcing fiber cloth composed of [1] or [2]. A reinforcing fiber base material in which a resin material is arranged on at least one surface of a reinforcing fiber aggregate selected from any of the above, wherein the resin material is a semi-aromatic polyamide containing a terephthalic acid component. Reinforcing fiber base material for resin injection molding. 前記樹脂材料の形状がポーラス状である、請求項1に記載の樹脂注入成形用強化繊維基材。 The reinforcing fiber base material for resin injection molding according to claim 1, wherein the resin material has a porous shape. 前記樹脂材料を、強化繊維基材に対して1~20重量%の範囲で有している、請求項1または2に記載の樹脂注入成形用強化繊維基材。 The reinforcing fiber base material for resin injection molding according to claim 1 or 2, wherein the resin material is contained in the range of 1 to 20% by weight with respect to the reinforcing fiber base material. 前記強化繊維糸条群が、複数の強化繊維糸条が並行に引き揃えられたシート状のものである、請求項1~3のいずれかに記載の樹脂注入成形用強化繊維基材。 The reinforcing fiber base material for resin injection molding according to any one of claims 1 to 3, wherein the reinforcing fiber thread group is in the form of a sheet in which a plurality of reinforcing fiber threads are arranged in parallel. 前記強化繊維糸条群が、オートメーテッドファイバープレイスメント装置により並行に引き揃え配置されたシート状のものである、請求項1~3のいずれかに記載の樹脂注入成形用強化繊維基材。 The reinforcing fiber base material for resin injection molding according to any one of claims 1 to 3, wherein the reinforcing fiber thread group is in the form of a sheet arranged and arranged in parallel by an automated fiber placement device. 前記強化繊維集合体が、強化繊維糸条を一方向に並行に引き揃えてなる強化繊維糸条群と、強化繊維糸条と交差する方向に延在する、繊度が強化繊維糸条の繊度の1/5以下である補助繊維糸条群とから構成される一方向性織物である、請求項1~3のいずれかに記載の樹脂注入成形用強化繊維基材。 The fineness of the reinforcing fiber thread is such that the reinforcing fiber aggregate extends in a direction intersecting the reinforcing fiber thread group formed by aligning the reinforcing fiber threads in parallel in one direction and the reinforcing fiber thread. The reinforcing fiber base material for resin injection molding according to any one of claims 1 to 3, which is a unidirectional fabric composed of a group of auxiliary fiber threads having a size of 1/5 or less. 前記強化繊維集合体が、一方向に配列された前記強化繊維糸条群と、異なる方向に一方向に配列された強化繊維糸条群とから構成される二方向性織物である、請求項1~3のいずれかに記載の樹脂注入成形用強化繊維基材。 Claim 1 is a bidirectional woven fabric in which the reinforcing fiber aggregate is composed of the reinforcing fiber thread group arranged in one direction and the reinforcing fiber thread group arranged in one direction in different directions. The reinforcing fiber base material for resin injection molding according to any one of 3 to 3. 前記強化繊維布帛が、一方向に配列された前記強化繊維糸条群と、異なる方向に一方向に配列された強化繊維糸条群との少なくとも2層以上が交差積層され、繊度が強化繊維糸条の1/5以下である補助繊維糸条群により縫合一体化されたステッチ布帛である、請求項1~3のいずれかに記載の樹脂注入成形用強化繊維基材。 At least two or more layers of the reinforcing fiber yarn group arranged in one direction and the reinforcing fiber yarn group arranged in one direction in different directions are cross-laminated, and the fineness of the reinforcing fiber fabric is increased. The reinforcing fiber base material for resin injection molding according to any one of claims 1 to 3, which is a stitch fabric stitched and integrated by a group of auxiliary fiber threads having 1/5 or less of the threads. 強化繊維として請求項1~8のいずれかに記載の樹脂注入成形用強化繊維基材を含む樹脂注入成形用強化繊維積層体。 A reinforcing fiber laminate for resin injection molding containing the reinforcing fiber base material for resin injection molding according to any one of claims 1 to 8 as a reinforcing fiber. 熱融着またはステッチにより一体化されてなる請求項9に記載の樹脂注入成形用強化繊維積層体。 The reinforcing fiber laminate for resin injection molding according to claim 9, which is integrated by heat fusion or stitching. 強化繊維として請求項1~8のいずれかに記載の樹脂注入成形用強化繊維基材または請求項9または10に記載の樹脂注入成形用強化繊維積層体を含む繊維強化樹脂。
A fiber-reinforced resin containing the reinforcing fiber base material for resin injection molding according to any one of claims 1 to 8 or the reinforcing fiber laminate for resin injection molding according to claim 9 or 10.
JP2020177391A 2020-10-22 2020-10-22 Reinforced fiber base material for resin injection molding, reinforced fiber laminate for resin injection molding and fiber reinforced resin Pending JP2022068616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020177391A JP2022068616A (en) 2020-10-22 2020-10-22 Reinforced fiber base material for resin injection molding, reinforced fiber laminate for resin injection molding and fiber reinforced resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020177391A JP2022068616A (en) 2020-10-22 2020-10-22 Reinforced fiber base material for resin injection molding, reinforced fiber laminate for resin injection molding and fiber reinforced resin

Publications (1)

Publication Number Publication Date
JP2022068616A true JP2022068616A (en) 2022-05-10

Family

ID=81459803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020177391A Pending JP2022068616A (en) 2020-10-22 2020-10-22 Reinforced fiber base material for resin injection molding, reinforced fiber laminate for resin injection molding and fiber reinforced resin

Country Status (1)

Country Link
JP (1) JP2022068616A (en)

Similar Documents

Publication Publication Date Title
US9770844B2 (en) Fibre reinforced composites
US11421089B2 (en) Prepreg sheet, method for manufacturing same, unit layer with a covering material, method for manufacturing fiber-reinforced composite, and fiber-reinforced composite
US20150047780A1 (en) Stabilizable preform precursors and stabilized preforms for composite materials and processes for stabilizing and debulking preforms
JP7087337B2 (en) Reinforced fiber base material, reinforcing fiber laminate and fiber reinforced resin
JP2003080607A (en) Preform, frp comprising the same and method for manufacturing them
JP2013189634A (en) Fiber-reinforced composite material and manufacturing method therefor
JP2003136550A (en) Method for manufacturing carbon fiber base material, method for manufacturing preform, and method for manufacturing composite material
WO2000061363A1 (en) Preform for composite material and composite material
JP2017159652A (en) Reinforced fiber laminated sheet and fiber-reinforced resin molded body
US11926719B2 (en) Materials comprising shape memory alloy wires and methods of making these materials
JP2010196176A (en) Multiaxially stitched base and preform using the same
JP2019099987A (en) Reinforced-fiber substrate, reinforced-fiber laminate and fiber-reinforced resin
JP7467840B2 (en) Reinforced fiber substrate, reinforced fiber laminate, and fiber reinforced resin
JP5134568B2 (en) Bias stitch base material and preform and prepreg using the same
AU2021228414A1 (en) Stitched reinforcing fiber base material, preform material, fiber reinforced composite material, and manufacturing methods for same
JP2022068616A (en) Reinforced fiber base material for resin injection molding, reinforced fiber laminate for resin injection molding and fiber reinforced resin
JPWO2020031771A1 (en) Reinforcing fiber tape material and its manufacturing method, reinforcing fiber laminate using reinforcing fiber tape material and fiber reinforced resin molded body
WO2022149591A1 (en) Reinforcing fiber base material for resin transfer molding, method for producing same, reinforcing fiber laminate for resin transfer molding, and fiber-reinforced resin
GB2508078A (en) Non-woven moulding reinforcement material
JP7352850B2 (en) fiber reinforced resin
JP2023050344A (en) Reinforcing fiber base material for resin injection molding
JP2022055598A (en) Fiber-reinforced resin
CN114616090B (en) Carbon fiber tape material, and reinforcing fiber laminate and molded body using same
JP6650296B2 (en) Substrate for fiber reinforced plastic, multilayer substrate for fiber reinforced plastic, preform for fiber reinforced plastic, and method for producing the same
JP2006138031A (en) Reinforcing fiber substrate, preform and method for producing them