JP2022064255A - Lithium-ion secondary battery using mixture of silicon monoxide and graphite as negative electrode active material and manufacturing method thereof - Google Patents

Lithium-ion secondary battery using mixture of silicon monoxide and graphite as negative electrode active material and manufacturing method thereof Download PDF

Info

Publication number
JP2022064255A
JP2022064255A JP2020181898A JP2020181898A JP2022064255A JP 2022064255 A JP2022064255 A JP 2022064255A JP 2020181898 A JP2020181898 A JP 2020181898A JP 2020181898 A JP2020181898 A JP 2020181898A JP 2022064255 A JP2022064255 A JP 2022064255A
Authority
JP
Japan
Prior art keywords
graphite
negative electrode
lithium
mass
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020181898A
Other languages
Japanese (ja)
Inventor
功 栗林
Isao Kuribayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KEE KK
Kee KK
Original Assignee
KEE KK
Kee KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KEE KK, Kee KK filed Critical KEE KK
Priority to JP2020181898A priority Critical patent/JP2022064255A/en
Publication of JP2022064255A publication Critical patent/JP2022064255A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

To provide a lithium-ion secondary battery that has improved safety and a high battery capacity, and can suppress rapid capacity deterioration in a charge/discharge cycle of the mixture of silicon monoxide and graphite used as a negative electrode active material, and a manufacturing method of a lithium ion secondary battery that can use the current coating method.SOLUTION: In a lithium-ion secondary battery, and a manufacturing method thereof, a positive electrode current collector is changed from an aluminum foil of a positive electrode current collector to stainless steel 316L foil. In addition, a nano-level fibrous carbonaceous material is added to a mixture of silicon monoxide of a negative electrode active materials and graphite. Specific graphite is selected and used, and a lithium source consumed in the irreversible reaction is not used as an active material of the positive electrode, but a metallic lithium foil is attached to the surface of the negative electrode to perform electrochemical pretreatment charging. As thin a film as possible is used as a positive electrode current collector and a negative electrode current collector having through-hole pores. In this electrochemical pretreatment and the subsequent charge/discharge cycle, the retort pack type battery shape is used to suppress expansion, and mechanical treatment such as jigs is added to suppress dimensional changes in the thickness direction as much as possible. A higher capacity than that of a battery using graphite alone is exhibited, and a combination of complex operating factors is achieved such that the battery capacity can be maintained up to 300 cycles.

Description

本発明は、リチウムイオン二次電池及びその製造方法に関する。
具体的には、リチウムイオン二次電池の安全性を高めた高容量のリチウムイオン二次電池に関する。
The present invention relates to a lithium ion secondary battery and a method for manufacturing the same.
Specifically, the present invention relates to a high-capacity lithium-ion secondary battery that enhances the safety of the lithium-ion secondary battery.

リチウムイオン二次電池は、近年、例えばノートブックパソコン、携帯電話、一体型カムコーダー等の携帯用電子機器の主電源として広範に普及している。EVシフトに向かって電池安全性が高く高容量の(電気自動車(EV)走行距離の伸びる)の大型リチウムイオン二次電池が市場で求められている。In recent years, lithium-ion secondary batteries have become widespread as a main power source for portable electronic devices such as notebook personal computers, mobile phones, and integrated camcoders. There is a demand in the market for large lithium-ion secondary batteries with high battery safety and high capacity (increasing the mileage of electric vehicles (EV)) toward the EV shift.

リチウムイオン二次電池容量を高めるのに負極活物質にシリコン金属ナノ粒子、一酸化珪素が提案されているが、リチウムイオン二次電池として工業化するには、それぞれに、難が見られ、問題解決にはなっていないのが現状である。Silicon metal nanoparticles and silicon monoxide have been proposed as negative electrode active materials to increase the capacity of lithium-ion secondary batteries, but there are difficulties in industrializing them as lithium-ion secondary batteries, and problems have been solved. The current situation is that it has not become.

特開2017-69118号公報 特開2017-147247号公報 特許文献1には、初期電池容量の低下防止に電解液にアスコルビン酸、ビニレンカーボネ-トを含有することを提案している。一酸化珪素50質量%を超えての含有量は示されておらず、容量劣化が一酸化珪素に起因していることには、言及していない。
特許文献2には、負極活物質に一酸化珪素と炭素との混合物85:ポリイミド15の質量比で負極をつくり、STEM-ADF測定で珪素を高濃度に含む珪素ネットワークを形成することを提案している。
Japanese Unexamined Patent Publication No. 2017-69118 Japanese Unexamined Patent Publication No. 2017-147247 Patent Document 1 proposes that the electrolytic solution contains ascorbic acid and vinylene carbonate in order to prevent a decrease in the initial battery capacity. The content of silicon monoxide in excess of 50% by mass has not been shown, and it is not mentioned that the capacity deterioration is caused by silicon monoxide.
Patent Document 2 proposes that a negative electrode is formed in a negative electrode active material with a mass ratio of a mixture of silicon monoxide and carbon 85: polyimide 15, and a silicon network containing a high concentration of silicon is formed by STEM-ADF measurement. ing.

GS Yuasa Technical Report、第15巻 第1号(2018年6月) 株式会社 大阪チタニウムテクノロジーズ 講演 木崎 信吾、2018年2月2日 産業技術総合研究所 新技術説明会資料2019年7月2日 非特許文献1には、一酸化珪素の熱処理の有無による容量劣化挙動が示され、充放電50サイクル以降の著しい容量劣化が一酸化ケイ素の構造変化に起因していることを示している。
非特許文献2には、カーボン被覆のアモルファス一酸化珪素の微粒子が、負極活物質として紹介されているが、充放電サイクルにおいて容量保持率を良好にできない原因としてリチウム吸蔵に伴う体積変化(膨張)に対処できていないことを指摘している。
非特許文献3には、一酸化珪素膜を集電体箔に蒸着させて一酸化珪素自体は、高容量を保持する負極活物質であることを示している。
GS Yuasa Technical Report, Vol. 15, No. 1 (June 2018) Lecture by Osaka Titanium Technologies Co., Ltd. Shingo Kizaki, February 2, 2018 National Institute of Advanced Industrial Science and Technology New Technology Briefing Material July 2, 2019 Non-Patent Document 1 shows the capacity deterioration behavior depending on the presence or absence of heat treatment of silicon monoxide, and shows that the remarkable capacity deterioration after 50 cycles of charge / discharge is caused by the structural change of silicon monoxide.
Non-Patent Document 2 introduces carbon-coated amorphous silicon monoxide fine particles as a negative electrode active material, but the volume change (expansion) associated with lithium occlusion is one of the reasons why the capacity retention rate cannot be improved in the charge / discharge cycle. It is pointed out that it has not been able to deal with.
Non-Patent Document 3 shows that silicon monoxide itself is a negative electrode active material that retains a high capacity by depositing a silicon monoxide film on a current collector foil.

高容量電池にして安全性を高めておき、従来の塗工法で製作できる負極として一酸化珪素と黒鉛混合物の充放電サイクル時の急激な電池容量劣化を解消し、良好な容量保持ができる大型リチウムイオン二次電池とその製造方法を提供することである。 As a negative electrode that can be manufactured by the conventional coating method by using a high-capacity battery to improve safety, large lithium that can eliminate sudden deterioration of battery capacity during the charge / discharge cycle of silicon monoxide and graphite mixture and maintain good capacity. It is to provide an ion secondary battery and a method for manufacturing the same.

本発明者は、現行リチウムイオン二次電池の正極集電体を400℃付近で正極活物質のリチウム遷移金属酸化物から酸素を奪い、高温を発するアルミニウム箔を使用せずに4.4V付近まで電気化学的に安定なモリブデンを含有するステンレス316L箔を見出したので変更する。また負極を一酸化珪素と黒鉛との混合物とし、充放電サイクル中に著しく塗工膜の膨張・収縮を繰り返すのに対処して繊維状の黒鉛を添加する。更に電子伝導性の悪い一酸化珪素に対してナノレベルの繊維状の導電助剤を添加し、水溶性で乾燥後架橋するバインダーを用いて導電性のネットワーク中に一酸化珪素粒子を存在させる。負極活物質の黒鉛には、丸みを帯びた黒鉛あるいは球状の黒鉛、球状の黒鉛のコアーにコークス質炭素を被覆したシェルからなるコアーシェルカーボン、多数の細孔を有する球塊状の黒鉛を選択・使用し、かつ不可逆反応で消費されるリチウム源を現行リチウムイオン二次電池のような正極のリチウムを利用するのでなくごく薄いリチウム金属箔を負極表面に不活性ガス下で貼り合わせておいて電池に前処理充電を行う。できるだけ利用可能な薄膜のステンレス316L箔を正極集電体に負極集電体には銅箔を使用し、充放電サイクル寿命に好ましい貫通孔の細孔をパンチング等でつけて重量も軽くしておく。初回の充電で一酸化珪素と黒鉛とへ金属リチウムからポテンシャルの違いで電解液を介してリチウムイオンとしてドープされるので以降の充電を経てリチウム金属箔は溶解して消失する。リチウム金属箔膜分の空隙と水の乾燥後の空隙は、一酸化珪素の放電時の体積膨張を一部吸収できることになる。この電気化学的前処理と以降の充放電サイクルで収縮・膨張を抑止するためにレトルトパック型電池形状にして、厚み方向の寸法変化を極力小さくする目的で治具を用意し、機械的な処理を加える。(モジュールにする際にこの治具を外す。)黒鉛単独負極より1.5倍以上の高容量を発現し、50サイクル以降でも突然の容量劣化のなく少なくとも300サイクルまで70%以上の電池容量保持をできるように複合的な操作因子を組み合わせたリチウム二次電池とその製造方法を見出して本発明に到達した。 The present inventor deprives the positive electrode current collector of the current lithium ion secondary battery of oxygen from the lithium transition metal oxide of the positive electrode active material at around 400 ° C, and reaches around 4.4 V without using an aluminum foil that emits high temperature. Since we have found a stainless steel 316L foil containing electrochemically stable molybdenum, we will change it. Further, the negative electrode is a mixture of silicon monoxide and graphite, and fibrous graphite is added in response to the remarkably repeated expansion and contraction of the coating film during the charge / discharge cycle. Further, a nano-level fibrous conductive auxiliary agent is added to silicon monoxide having poor electron conductivity, and silicon monoxide particles are present in the conductive network using a water-soluble binder that crosslinks after drying. For the graphite of the negative electrode active material, select rounded graphite or spherical graphite, core-shell carbon consisting of a shell in which a core of spherical graphite is coated with coke-carbon, and spherical graphite having a large number of pores. Instead of using the lithium of the positive electrode as in the current lithium ion secondary battery, the lithium source that is used and consumed by the irreversible reaction is a battery in which a very thin lithium metal foil is attached to the surface of the negative electrode under an inert gas. Pretreatment charging is performed. Use a thin-film stainless steel 316L foil that can be used as much as possible for the positive electrode current collector. Use a copper foil for the negative electrode current collector. .. In the first charge, silicon monoxide, graphite, and lithium metal are doped as lithium ions through the electrolytic solution due to the difference in potential, so the lithium metal foil dissolves and disappears after the subsequent charge. The voids of the lithium metal foil film and the voids after drying of water can partially absorb the volume expansion during discharge of silicon monoxide. In order to suppress shrinkage and expansion in this electrochemical pretreatment and the subsequent charge / discharge cycle, a retort pack type battery is formed, and a jig is prepared for the purpose of minimizing the dimensional change in the thickness direction, and mechanical treatment is performed. Add. (Remove this jig when making a module.) It develops a capacity 1.5 times or more higher than that of a graphite-only negative electrode, and retains a battery capacity of 70% or more up to at least 300 cycles without sudden capacity deterioration even after 50 cycles. We have found a lithium secondary battery in which a complex operating factor is combined and a method for manufacturing the same, and arrived at the present invention.

本発明の電池及び製造方法により、黒鉛負極の現行電池同じ電池内容積あたり電池容量が1.3倍以上にすることができて電気動車の走行距離を大幅に伸ばすことができる。従来の正極集電体のアルミニウム箔を耐電圧が十分あるモリブデン含有するステンレススチール316L箔に置換し、電池安全性を高めることができる。一方、負極活物質に一酸化珪素と繊維状の黒鉛類を使用すると共に、リチウム金属箔を負極活物質に貼り付けて電池不可逆的反応副生成物を生成させることにより正極の活物質を電池容量により有効に利用できる。電池重量の負担となる正極活物質のリチウム源を使用しない工業的製造が可能となる。またレトルトパック型電池外装にして、両極の集電体に細孔の貫通孔を施しておき、充放電サイクル寿命を延ばしながら電池の厚み方向の寸法変化を充放電中に機械的圧下操作を加えて制御しておくことにより急激な電池容量劣化を抑制することができる。 According to the battery and the manufacturing method of the present invention, the battery capacity can be increased by 1.3 times or more per the same internal volume of the current battery of the graphite negative electrode, and the mileage of the electric railcar can be significantly extended. The aluminum foil of the conventional positive electrode current collector can be replaced with a molybdenum-containing stainless steel 316L foil having a sufficient withstand voltage to improve battery safety. On the other hand, silicon monoxide and fibrous graphite are used as the negative electrode active material, and a lithium metal foil is attached to the negative electrode active material to generate a battery irreversible reaction by-product, so that the positive electrode active material has a battery capacity. Can be used more effectively. It enables industrial manufacturing that does not use the lithium source of the positive electrode active material, which is a burden on the battery weight. In addition, the exterior of the retort-pack type battery is provided with through-holes in the current collectors of both poles, and the dimensional change in the thickness direction of the battery is applied during charging / discharging while extending the charge / discharge cycle life. It is possible to suppress sudden deterioration of battery capacity by controlling the battery capacity.

次に本発明リチウムイオン二次電池及びその製造方法について詳細に説明する。はじめに使用する主要物質について述べる。 Next, the lithium ion secondary battery of the present invention and a method for manufacturing the same will be described in detail. First, the main substances used will be described.

[1]一酸化珪素
珪素粉末と二酸化珪素粉末との混合物を真空凝集装置で一酸化珪素を析出して製造される。粉砕機により所望の粒子径にしたものを使用する。粒子径は、1μmから10μmの範囲にあれば特に限定されないが、好ましくは、導電性助剤との良好な分散をするうえで1μm~2μm以下の微細アモルファス粒子を使用する。熱処理あるいはカーボンの表面被覆を施しておく。
[1] A mixture of silicon monoxide silicon powder and silicon dioxide powder is produced by precipitating silicon monoxide with a vacuum aggregator. Use a crusher to obtain the desired particle size. The particle size is not particularly limited as long as it is in the range of 1 μm to 10 μm, but preferably, fine amorphous particles of 1 μm to 2 μm or less are used for good dispersion with the conductive auxiliary agent. Heat-treated or carbon surface coated.

[2]正極用集電体
誤用により万一400℃にまで電池温度が上昇した場合、正極活物質のリチウム遷移金属酸化物の酸素を奪って急激な発熱(挙動は爆発的燃焼)をもたらすアルミニウム箔は、使用はしない。かかる爆発的燃焼の心配のない薄い金属箔に4.4V付近まで電解液との電気化学的腐食がほとんどないモリブデン含有のステンレススチール箔を集電体材料として使用する。例えばステンレススチール316L箔の3μmから10μmの厚みの箔に更に0.1mmから0.5mmの細孔をパンチング方法か電蝕か酸による溶解・細孔生成により得られた箔に貫通孔を有しており空隙率1%以上から30%にする。15μmアルミニウム箔と同じ質量かそれ以下であり、空隙率3-10%の範囲にある5μm以下の厚みが好ましい。空隙率1%未満であると充放電サイクルでの電池容量保持の著しい改良が困難となる。30%を超えると箔の電池組み立て操作に必要な剛直さを失い、作業スピードがさがり、好ましくない。
[2] If the battery temperature rises to 400 ° C due to misuse of the current collector for the positive electrode, aluminum that deprives the oxygen of the lithium transition metal oxide of the positive electrode active material and causes rapid heat generation (behavior is explosive combustion). Foil is not used. A molybdenum-containing stainless steel foil that has almost no electrochemical corrosion with the electrolytic solution up to around 4.4 V is used as the collector material for the thin metal foil that does not have to worry about explosive combustion. For example, a stainless steel 316L foil having a thickness of 3 μm to 10 μm is further punched with pores of 0.1 mm to 0.5 mm, or the foil obtained by dissolution by electrolytic corrosion or acid and pore formation has through holes. The porosity is increased from 1% or more to 30%. A thickness of 5 μm or less, which has the same mass as or less than that of the 15 μm aluminum foil and is in the range of 3-10% porosity, is preferable. If the porosity is less than 1%, it becomes difficult to significantly improve the battery capacity retention in the charge / discharge cycle. If it exceeds 30%, the rigidity required for the foil battery assembly operation is lost, and the work speed is reduced, which is not preferable.

[3]負極用集電体
20~4μmの銅箔、好ましくは13~6μmに貫通細孔を有するのが好ましい。あるいは、20~5μmのステンレススチール箔、例えばステンレススチール304の10~5μmに貫通細孔を有するのが好ましい。
[3] The current collector for the negative electrode preferably has a copper foil of 20 to 4 μm, preferably 13 to 6 μm with through pores. Alternatively, it is preferable to have through pores in 10 to 5 μm of a stainless steel foil of 20 to 5 μm, for example, stainless steel 304.

[4]バインダー(結着剤)
フルオロアルキルエチレンとフルオロビニルエーテルの交互共重合体ラテックスをイソシアネート基により乾燥時に架橋することにより電極活物質粒子と金属集電体との密着力、結着力を発現するバインダー(結着剤)とことを見出したので本発明に使用する。正極活物質粒子と金属集電体との結着に6質量%以下好ましくは3~2質量%である。また負極活物質と金属集電体との結着に6質量%以下、好ましくは4~3質量%で使用する。例えばAGC社製ルミフロンラッテクスの1液型FE4300,2液型4400が使用できる。ラテックスであり、有機溶剤を使用しないので塗工液として環境にやさしい特徴を有している。ポリマーのエーテル結合部分に電解液の解離したリチウムカチオンが局在化して高いリチウムイオン電導性が期待されることとラテックスから電極塗工することにより水が乾燥・除去された空隙が電解液の含浸・保液を容易にする。正極、負極に共通して使用できるバインダーであり乾燥するとイソシアネート基により架橋するために3次元で空隙とナノレベルの導電性の黒鉛繊維の網目構造(ネットワーク構造)が固定されて充放電を繰り返している間の膨張・収縮による正極と負極の塗布膜の寸法変化に対応して電子電導性ネットワークとしての電導回路の断絶を極力なくすること、電池容量の充放電サイクル中に起こる突然の低下はなくなることを期待して使用する。乾燥時に架橋するポリマーラッテクスが使用できる。例えば、フルオロアルキルポリマーに2から4官能基のアクリル基を有するアクリレート、2から4官能基のメタル基を有するアクリレート、ポリフッ化ビニリデンポリマーラテックス、ポリにイソシアネート基で編成したラテックス、、4フッ化エチレンラテックス、エチレン・4フッ化エチレン(ETFE)コポリマーラテックス、エチレン・クロロトリフルオロエチレン(ECTFE)コポリマーラテックス、4フッ化エチレン・6フッ化プロピレン(FEP)コポリマーラテックス、ペルフルオロアルコキシフッ素ポリマーラテックス等にイソシアネート基で変性編成したラテックスを使用できる。カルボキシ変性SBRラテックスとCMC(カルボキシメチルセルロースナトリウム)の併用系、カルボキシ変性ポリブタジエンラテックスとCMC(カルボキシメチルセルロースナトリウム塩の併用系も使用しても構わない。
[4] Binder (binder)
An alternating copolymer of fluoroalkylethylene and fluorovinyl ether A binder (binding agent) that develops adhesion and binding force between electrode active material particles and a metal current collector by cross-linking the latex with an isocyanate group during drying. Since it was found, it is used in the present invention. The bond between the positive electrode active material particles and the metal current collector is 6% by mass or less, preferably 3 to 2% by mass. Further, it is used in an amount of 6% by mass or less, preferably 4 to 3% by mass, for binding the negative electrode active material and the metal current collector. For example, AGC's Lumiflon Latex one-component FE4300 and two-component 4400 can be used. Since it is a latex and does not use an organic solvent, it has environmentally friendly characteristics as a coating liquid. The dissociated lithium cations of the electrolytic solution are localized in the ether bond portion of the polymer, and high lithium ion conductivity is expected.・ Facilitates liquid retention. It is a binder that can be used in common for both positive and negative electrodes. When dried, it is cross-linked by isocyanate groups, so voids and nano-level conductive graphite fiber network structure (network structure) are fixed in three dimensions, and charging and discharging are repeated. By minimizing the disconnection of the conductive circuit as an electronic conductive network in response to the dimensional change of the coating film of the positive electrode and the negative electrode due to expansion and contraction during the period, the sudden decrease in battery capacity during the charge / discharge cycle is eliminated. Use in anticipation of that. Polymer latex that crosslinks during drying can be used. For example, an acrylate having an acrylic group of 2 to 4 functional groups in a fluoroalkyl polymer, an acrylate having a metal group of 2 to 4 functional groups, a polyvinylidene polyfluoride polymer latex, a latex knitted with an isocyanate group in poly, ethylene tetrafluoride. Isocyanate groups on latex, ethylene / tetrafluoroethylene (ETFE) copolymer latex, ethylene / chlorotrifluoroethylene (ECTFE) copolymer latex, tetrafluoroethylene / hexafluoropropylene (FEP) copolymer latex, perfluoroalkoxyfluoropolymer latex, etc. You can use the latex modified and knitted in. A combination system of carboxy-modified SBR latex and CMC (sodium carboxymethyl cellulose) and a combination system of carboxy-modified polybutadiene latex and CMC (sodium carboxymethyl cellulose salt) may also be used.

[5]負極活物質
本発明では、一酸化珪素単品を使用する場合の蒸着(スパッタリング)装置をリチウムイオン二次電池負極の製造に新規な設備投資をすることなく、適度に高い電池容量を発現する負極活物質として一酸化珪素と黒鉛との混合物を使用し、既設の塗布・乾燥設備を用いて従来の塗工法で負極を製造できるようにする。黒鉛活物資は、リチウムイオン二次電池に使用されていたものが使用できるが、本発明の目的である高電池容量保持率と高い電池容量を保持する上で、一酸化珪素30質量%~95質量%と黒鉛70質量%~5質量%との混合物に使用するに好ましい特定の黒鉛は、2600℃から2800℃の不活性ガス下に高温処理された黒鉛繊維、(旧ペトカマテリアル社製)、丸みを帯びた天然黒鉛(日本黒鉛社製)あるいは球晶の人工黒鉛(JFEケミカル社製)、多数の細孔を有する球塊状の人工黒鉛(現昭和電工マテリアルズ社製、旧日立化成社製)、球状の黒鉛粒子のコアーにトルエン等を吹き付けて炭化したコークス質のシェルを有するコアーシェルカーボン(三井鉱山社製)とか球状の黒鉛粒子のコアーに硬化性のフェノール樹脂を被覆し、炭化したコークス質のシェルを有するコアーシェルカーボン(旭有機材社製)が使用される。塗工液から乾燥して得られる塗工膜が、高い塗布膜密度となることを生かす。充放電サイクル寿命(電池容量の保持率)を改善することができる。負極活物質塗工膜として少ないバインダー量で集電体箔と結着でき、塗布膜の密度を高めることのできる活物質粒子の形状の選択も電極容量の保持には肝要である。ナノレベルの繊維径のカーボン、例えば、昭和電工社製のVGCF、ナノチューブのVGCF-Hを黒鉛の活物質粒子に添加しておくと銅箔集電体との接触抵抗を小さくできる。
[5] Negative Electrode Active Material In the present invention, a moderately high battery capacity is exhibited without making a new capital investment in the production of a negative electrode of a lithium ion secondary battery for a vapor deposition (blasting) device when a single silicon monoxide is used. A mixture of silicon monoxide and graphite is used as the negative electrode active material, and the negative electrode can be manufactured by the conventional coating method using the existing coating / drying equipment. As the graphite active material, those used for the lithium ion secondary battery can be used, but in order to maintain the high battery capacity retention rate and the high battery capacity, which is the object of the present invention, silicon monoxide is 30% by mass to 95% by mass. The specific graphite preferable for use in the mixture of% by mass and 70% by mass to 5% by mass of graphite is graphite fiber treated at a high temperature under an inert gas at 2600 ° C to 2800 ° C (formerly manufactured by Petka Material Co., Ltd.). , Rounded natural graphite (manufactured by Nippon Graphite Co., Ltd.) or spherical artificial graphite (manufactured by JFE Chemical Co., Ltd.), Spherical massive artificial graphite with many pores (currently manufactured by Showa Denko Materials Co., Ltd., former Hitachi Kasei Co., Ltd.) Co., Ltd.), core-shell carbon (manufactured by Mitsui Mining Co., Ltd.) having a coke-like shell carbonized by spraying toluene or the like on the core of spherical graphite particles, or the core of spherical graphite particles coated with a curable phenol resin and carbonized. Core shell carbon (manufactured by Asahi Organic Materials Co., Ltd.) having a graphite-quality shell is used. Taking advantage of the high coating film density of the coating film obtained by drying from the coating liquid. The charge / discharge cycle life (retention rate of battery capacity) can be improved. It is also important to select the shape of the active material particles that can be bonded to the collector foil as the negative electrode active material coating film with a small amount of binder and can increase the density of the coating film in order to maintain the electrode capacity. If carbon having a fiber diameter at the nano level, for example, VGCF manufactured by Showa Denko Corporation or VGCF-H of nanotubes, is added to the active material particles of graphite, the contact resistance with the copper foil collector can be reduced.

[6]正極活物質
本発明には、コバルト酸リチウム、マンガン、ニッケル、コバルトの3元系のリチウム遷移金属酸化物等が使用される。リン酸第一鉄等のオリビン型も使用できるが、高容量電池とするには、コバルト酸リチウムはじめ遷移金属リチウム酸化物を使用することが好ましい。正極活物質としては、リチウムイオン二次電池の正極活物質として用いることができる材料であれば特に限定されないが、例えばLiNi1/3Mn1/3Co1/3、LiCoO、LiNiMgMO
Li(MnM)、Li(NiMnCo)O等のリチウム金属酸化物、又はLiFePO、LiMnPO、LiNiPO、LiCoPO、LiFe(PO、及びLi(PO等のリン酸金属リチウムがある。正極活物質の形態は、好ましくは粉体である。正極活物質の平均粒径としては、例えば1μm~20μm、好ましくは1μm~10μm、より好ましくは1μm~6μmの範囲である。
[6] Positive Electrode Active Material In the present invention, a ternary lithium transition metal oxide of lithium cobalt oxide, manganese, nickel, and cobalt is used. An olivine type such as ferrous phosphate can also be used, but in order to obtain a high-capacity battery, it is preferable to use a transition metal lithium oxide such as lithium cobalt oxide. The positive electrode active material is not particularly limited as long as it can be used as the positive electrode active material of the lithium ion secondary battery, but for example, LiNi 1/3 Mn 1/3 Co 1/3 O 2 , LiCoO 2 , LiNiMgMO 2 ,
Lithium metal oxides such as Li (MnM) 2 O 4 , Li 2 (NiMnCo) O 3 , or LiFePO 4 , LiMnPO 4 , LiNiPO 4 , LiCoPO 4 , Li 3 Fe 2 (PO 4 ) 3 , and Li 3 V 2 (PO 4 ) There is lithium metal phosphate such as 3 . The form of the positive electrode active material is preferably powder. The average particle size of the positive electrode active material is, for example, in the range of 1 μm to 20 μm, preferably 1 μm to 10 μm, and more preferably 1 μm to 6 μm.

[7]電解液
本発明には、リチウムイオン二次電池に使用されている電解液を使用することができる。電池容量保持率の観点から1.5M~0.8MのLiBF、好ましくは1.2M~1.0MのLiBFとγ―ブチロラクトンを非水有機溶媒中50容積%とポリエチレンカーボーネート10容積%以上含有する組成が好ましい(例えば富山薬品工業社製)あるいは、1.5M~0.8MのLiPF、好ましくは1.2M~1.0MのLiPFと非水有機溶媒中10容積%~20容積%のエチレンカーボネートと10容積%~20容積%のプロピレンエチレンカーボネートとメチルエチルカーボネート(エチルメチルカーボネート)80~20容積%を含有する組成が好ましい(例えば富山薬品工業社製)。
[7] Electrolytic solution In the present invention, an electrolytic solution used in a lithium ion secondary battery can be used. From the viewpoint of battery capacity retention, LiBF 4 of 1.5M to 0.8M, preferably LiBF 4 of 1.2M to 1.0M and γ-butyrolactone were added in 50% by volume in a non-aqueous organic solvent and 10 volumes of polyethylene carbonate. A composition containing% or more is preferable (for example, manufactured by Toyama Yakuhin Kogyo Co., Ltd.), or 1.5 M to 0.8 M LiPF 6 , preferably 1.2 M to 1.0 M LiPF 6 and 10% by volume in a non-aqueous organic solvent. A composition containing 20% by volume of ethylene carbonate, 10% by volume to 20% by volume of propylene ethylene carbonate and 80 to 20% by volume of methyl ethyl carbonate (ethylmethyl carbonate) is preferable (for example, manufactured by Toyama Yakuhin Kogyo Co., Ltd.).

[8]金属リチウム箔
正極のリチウム源を使用しないで本電池の負極の不可逆的副生物のリチウム源とするために金属リチウム金属箔を使用する。一酸化珪素4モルのうち1モルが不可逆的副生物のLiSiOになり3モルが可逆的負極活物質のLi4.25Siとなる。リチウム金属の分子量を6.941g、密度を0.534g/cmとして99.9から99.0%のリチウム金属純度の箔厚みを計算して使用する。使用する金属リチウム箔は、市販箔の約30μmから10μmをアルゴンガス等の不活性ガス雰囲気でポリアセタール製ロールプレスないしポリアセタール製シートに挟んでラボ小型圧縮成型機で圧下して膜厚を微調整する。所定の寸法に切断して必要重量であることも確認の上、負極乾燥塗工膜上に貼り合わせる。好ましくは、金属リチウムをガスデポジション法でポリプロピレンフィルム上に蒸着して所望の厚み(質量)にしておいて乾燥負極塗工膜に転写する。また使用する黒鉛類の不可逆的副生物として黒鉛粒子表面に生成するパシベーション膜になるリチウムを、黒鉛の理論容量372mAh/gに対して52mAh/g相当、不可逆的リチウムとして消費されるとみなして負極塗装膜に圧着するリチウム箔厚みに加える。
[8] Metallic Lithium Foil A metallic lithium metal foil is used to serve as a lithium source for irreversible by-products of the negative electrode of the present battery without using the lithium source of the positive electrode. Of the 4 mol of silicon monoxide, 1 mol becomes the irreversible by-product Li 4 SiO 4 and 3 mol becomes the reversible negative electrode active material Li 4.25 Si. Assuming that the molecular weight of the lithium metal is 6.941 g and the density is 0.534 g / cm 3 , the foil thickness of the lithium metal purity of 99.9 to 99.0% is calculated and used. For the metallic lithium foil to be used, about 30 μm to 10 μm of the commercially available foil is sandwiched between a polyacetal roll press or a polyacetal sheet in an inert gas atmosphere such as argon gas, and the film is pressed down with a small lab compression molding machine to finely adjust the film thickness. .. After cutting to the specified size and confirming that it is the required weight, it is attached on the negative electrode dry coating film. Preferably, metallic lithium is deposited on a polypropylene film by a gas deposition method to have a desired thickness (mass) and transferred to a dry negative electrode coating film. In addition, lithium, which is a passivation film formed on the surface of graphite particles as an irreversible by-product of the graphite used, is considered to be consumed as irreversible lithium, which is equivalent to 52 mAh / g with respect to the theoretical capacity of graphite of 372 mAh / g. Add to the thickness of the lithium foil that is crimped to the coating film.

[9]導電助剤
負極活物質に使用する一酸化珪素と黒鉛との混合物では、電子電導性の悪い一酸化珪素単独よりは良電子電導性の黒鉛と一酸化珪素の混合物の方が電子電導性から見て良くなるはずであるが、混合効果を上回るように黒鉛粒子と一酸化珪素粒子間の接触抵抗を小さくし、かつ一酸化珪素粒子の充放電時での体積膨張による電導性ネットワークの切断を極力抑えるためにする目的でナノレベルの繊維状黒鉛を多量に添加しておく。
正極活物質に電子電導性をするために、微粉砕黒鉛、粉砕炭素繊維、気相法で作られるVGCF、VGCF-H、カーボンナノファイバー(CNF)、カーボンナノチューブ(CNT)、ケチェンブラック、スーパーS、スーパーP、スーパーC45、スーパーC65、アセチレンブラック等を使用することができる。
好ましくは、ナノレベルの繊維状炭素質、ナノレベルの繊維状黒鉛である。特に好ましいのはナノチューブ黒鉛のVGCF-Hである。特に一酸化珪素粒子に付着し充電初期の電子電導性付与を補うとともに放電時に急激な体積膨張し、充電時の急激な収縮に対して負極塗布膜内に空隙が発生しても添加量が多ければ、電導性ネットワークの切断が起きにくいと考えられる。負極の寸法変化を機械的に抑制手段と合わせて負極活物質粒子間に網目構造を形成して集電体からの電子電導性を確保できると推定している。一酸化珪素粒子100質量部に対して10質量部から100質量部を添加することができる。好ましくは、30質量部から80質量部を使用する。
[9] Conductive Auxiliary Agent In the mixture of silicon monoxide and graphite used for the negative electrode active material, the mixture of silicon monoxide and silicon monoxide with good electron conductivity is more electron-conducting than the silicon monoxide alone with poor electron conductivity. Although it should be better in terms of properties, the contact resistance between the graphite particles and the silicon monoxide particles is reduced so as to exceed the mixing effect, and the conductive network due to volume expansion during charging and discharging of the silicon monoxide particles. A large amount of nano-level fibrous graphite is added for the purpose of suppressing cutting as much as possible.
Finely pulverized graphite, pulverized carbon fiber, VGCF, VGCF-H, carbon nanofiber (CNF), carbon nanotube (CNT), kechen black, super made by the gas phase method to make the positive electrode active material electronically conductive. S, Super P, Super C45, Super C65, acetylene black and the like can be used.
Preferred are nano-level fibrous carbonaceous and nano-level fibrous graphite. Particularly preferred is VGCF-H of nanotube graphite. In particular, it adheres to silicon monoxide particles to supplement the electron conductivity imparted at the initial stage of charging, and at the same time, the volume expands rapidly during discharge, and even if voids are generated in the negative electrode coating film due to rapid shrinkage during charging, the amount added is large. If so, it is considered that the disconnection of the conductive network is unlikely to occur. It is presumed that the electron conductivity from the current collector can be ensured by forming a network structure between the negative electrode active material particles by mechanically suppressing the dimensional change of the negative electrode together with the negative electrode active material particles. From 10 parts by mass to 100 parts by mass can be added to 100 parts by mass of silicon monoxide particles. Preferably, 30 to 80 parts by mass is used.

[10]セパレータ
電子絶縁性を有しており且つリチウムイオン電導性もあることが、必須要件である。本発明の高容量化には、薄い膜が好ましい。例えば12μm厚みのセラミック塗布ポリエチレンセパレータも9μmくらいに膜厚を低減することは、商品改良技術として可能と思われる。しかしながら基材がポリエチレンセパレータであり、バインダーのポリイミドとセラミック塗布膜が、ポリエチレンの耐熱性改善の目的に使用されており、塗布膜厚を小さくしようとすると耐熱性の低下を招くことになり、膜厚を下げるのも限界がある。好ましくは、膜厚を薄くしても基材が、ポリメチルペンテンを30質量%以上60質量%を含有する耐熱性ポリオレフィンセパレータであれば、セラミックス塗布を不用として厚み12μm以下現在の製造可能下限の厚みの3μmの膜厚範囲の間で、適宜使用できる。好ましくは4-5μmの膜厚である。本発明の高電池容量と繰り返して使用するための充放電サイクルにおいて適度に良好な容量保持率を有するリチウムイオン二次電池は、下記の工程を含む製造方法により好適に製造される。以下各工程を順次詳しく説明する。
(工程1)一酸化珪素95質量%~30質量%と黒鉛類5質量%~70質量%をバインダーラテックスと適当量の脱イオン水を加えて均一に攪拌・混合し、負極塗エスラリーを調整する。貫通した細孔を有する銅箔上に塗布して130℃を超えない温度で残留水分を除去・乾燥する。これを所望の寸法に切り出して、乾燥アルゴンガス等の不活性ガス雰囲気下でロールプレスあるいはローラーを使用して所望の厚みの金属リチウム箔を貼り付けて空隙率が制御された負極塗布膜の負極を製造する工程;
(工程2)リチウム遷移金属複合酸化物粒子粉末を導電助剤粉末と粉末同士で攪拌・混合した後にバインダーラテックス均一に攪拌・混合し、正極塗工液を調整する。例えば5μm厚みの貫通した細孔を有するステンレススチール316L箔上に塗布して130℃を超えない温度で残留水分を除去・乾燥する。これを所望の寸法に切り出して、ロールプレスして表面が滑らかになっている空隙率を制御した正極塗布膜の正極を製造する工程;
(工程3)工程1と工程2で得られた電極間に4-メチルペンテン-1を30質量%以上60質量%範囲の無塗装(無垢)の耐熱性ポリオレフィンセパレータを9μmから3μmの厚みから適宜選択し、当該セパレータを挟み、電池を組み立てる工程;
(工程4)工程3で得られた電池をアルミ二ウム箔あるいはステンレススチール304等の金属箔薄膜とナイロン、ポリエステルフィルムと最内装がポリプロピレンからなるラミネート多層膜のレトルトパック型の外装袋に挿入する工程。
(工程5)レトルトパックの電解液注入孔以外を熱シールして封口する工程。
(工程6)レトルトパックの電解液注入孔から電解液を注入し、注入孔を仮封口しておく工程。
(工程7)初回の充電(前処理充電)において0.05C~0.1Cの充電レートで正極活物質の構造崩壊をしない充電電位と負極下限電位0.047Vから決めた充電・放電電位で前処理充放電する工程。
(工程8)工程7を終えたレトルトパックから初期(前処理充電)で発生したガスを排気した後に電解液注入孔を完全に封口する。またレトルトパックを金属板で固定して4つ角を圧下して厚み方向の変化を抑制する(寸法変化をさせない)機械的手段を施してから充放電操作に付す工程。例えば、金属板の4角に蝶ねじをつけておき寸法変化しにくくする。あるいは、篏合性の高く厚み方向の変化を押さえることのできる容器に入れてモジュールにしてもよい。あるいは金属板にゲージ圧検知できるようにしておいて厚み方向の変化を圧下操作で調整・制御を機械的に行う工程。なお工程7でガス発生がほとんどみられずにレトルトパック袋に膨れが見られない場合は、直ちに電解液注入孔を完全に封口してもよい。
(工程9)充放電サイクルをCCCVモードで充電し放電するにあたり放電電圧を2.7V以下にはしない放電工程。
本発明では、通常行われる操作に対して工程1と工程7に変更するとともにバインダーラッテックスにエーテル基を有するフッ素系ポリマーを使用し、しかもイソシアネートで乾燥時に塗布物を架橋させて3次元的に固定する。まだ当該電池の負極活物質の電位を0.047V(対Li/Li)以下にしない等の複合的な総合的な工程を構成することにある。
[10] Separator It is an essential requirement that the separator has electronic insulation and lithium ion conductivity. A thin film is preferable for increasing the capacity of the present invention. For example, it seems possible as a product improvement technique to reduce the film thickness of a 12 μm-thick ceramic-coated polyethylene separator to about 9 μm. However, the base material is a polyethylene separator, and the polyimide of the binder and the ceramic coating film are used for the purpose of improving the heat resistance of polyethylene, and if an attempt is made to reduce the coating film thickness, the heat resistance will be lowered, and the film. There is a limit to reducing the thickness. Preferably, if the base material is a heat-resistant polyolefin separator containing 30% by mass or more and 60% by mass of polymethylpentene even if the film thickness is reduced, the thickness is 12 μm or less without the need for ceramic coating, which is the current lower limit of manufactureability. It can be appropriately used within a film thickness range of 3 μm in thickness. The film thickness is preferably 4-5 μm. The lithium ion secondary battery having a high battery capacity of the present invention and a moderately good capacity retention rate in a charge / discharge cycle for repeated use is suitably manufactured by a manufacturing method including the following steps. Hereinafter, each step will be described in detail in sequence.
(Step 1) 95% by mass to 30% by mass of silicon monoxide and 5% by mass to 70% by mass of graphite are added with a binder latex and an appropriate amount of deionized water, and the mixture is uniformly stirred and mixed to prepare a negative electrode coated esly slurry. .. It is applied on a copper foil having penetrating pores to remove and dry residual moisture at a temperature not exceeding 130 ° C. This is cut out to the desired size, and a metal lithium foil of the desired thickness is attached using a roll press or a roller in an atmosphere of an inert gas such as dry argon gas to control the porosity of the negative electrode. The process of manufacturing;
(Step 2) After stirring and mixing the lithium transition metal composite oxide particle powder with the conductive additive powder and the powder, the binder latex is uniformly stirred and mixed to adjust the positive electrode coating liquid. For example, it is applied on a stainless steel 316L foil having a penetrating pore with a thickness of 5 μm to remove and dry residual moisture at a temperature not exceeding 130 ° C. A step of cutting this into a desired size and rolling it to produce a positive electrode of a positive electrode coating film having a controlled porosity with a smooth surface;
(Step 3) An unpainted (solid) heat-resistant polyolefin separator in the range of 30% by mass or more and 60% by mass of 4-methylpentene-1 between the electrodes obtained in Step 1 and Step 2 is appropriately provided from a thickness of 9 μm to 3 μm. The process of selecting, sandwiching the separator, and assembling the battery;
(Step 4) The battery obtained in Step 3 is inserted into a retort pack type outer bag of a laminated multilayer film made of a metal foil thin film such as aluminum foil or stainless steel 304, nylon, a polyester film and polypropylene as the innermost interior. Process.
(Step 5) A step of heat-sealing and sealing a part other than the electrolytic solution injection hole of the retort pack.
(Step 6) A step of injecting an electrolytic solution from an electrolytic solution injection hole of a retort pack and temporarily sealing the injection hole.
(Step 7) In the first charge (pretreatment charge), the charge potential does not cause structural collapse of the positive electrode active material at a charge rate of 0.05 C to 0.1 C, and the charge / discharge potential determined from the negative electrode lower limit potential of 0.047 V is used. Processing charge / discharge process.
(Step 8) After exhausting the gas generated in the initial stage (pretreatment charge) from the retort pack that has completed step 7, the electrolytic solution injection hole is completely closed. In addition, the process of fixing the retort pack with a metal plate and pressing down the four corners to suppress the change in the thickness direction (do not change the dimensions) and then subject it to the charge / discharge operation. For example, thumbscrews are attached to the four corners of a metal plate to prevent dimensional changes. Alternatively, the module may be placed in a container having high consistency and capable of suppressing changes in the thickness direction. Alternatively, the process of mechanically adjusting and controlling changes in the thickness direction by reducing the pressure on a metal plate so that the gauge pressure can be detected. If gas is hardly generated in step 7 and no swelling is observed in the retort pack bag, the electrolytic solution injection hole may be completely closed immediately.
(Step 9) A discharge step in which the discharge voltage is not reduced to 2.7 V or less when the charge / discharge cycle is charged and discharged in the CCCV mode.
In the present invention, the operation is changed to step 1 and step 7 for the operation normally performed, a fluoropolymer having an ether group is used for the binder lattice, and the coating material is crosslinked with isocyanate when it is dried to make it three-dimensional. Fix it. The purpose is to constitute a complex comprehensive process such that the potential of the negative electrode active material of the battery is not set to 0.047 V (vs. Li / Li + ) or less.

本発明の機械的手段とは、電池の厚み方向の変化を抑制する、好ましくはほとんど寸法変化をさせない手段を意味する。例えば、レトルトパック電池を金属板で固定して4角に蝶ねじをつけて締めておき厚み方向の変化を抑制する。あるいは、篏合性の高い厚み方向の変化を押さえつけておける容器に入れる。あるいは金属板にゲージ圧検知できるようにしておいて厚み方向の変化をプレス等の圧下操作で調整・制御を機械的に行う。
前処理の充放電操作で、一酸化珪素は、充放電可能なLi4.25Siと不可逆的に生成したLiSiOに変化していると推定しており、前処理第2回目の放電での電池厚みからそれ以降、充放電時の寸法変動は、小さいと期待される。
The mechanical means of the present invention means a means for suppressing a change in the thickness direction of a battery, preferably hardly changing the dimensions. For example, the retort pack battery is fixed with a metal plate and tightened with thumbscrews at the four corners to suppress the change in the thickness direction. Alternatively, put it in a container that can suppress the change in the thickness direction with high consistency. Alternatively, the gauge pressure can be detected on the metal plate, and the change in the thickness direction is mechanically adjusted and controlled by a reduction operation such as a press.
It is estimated that the silicon monoxide is changed to Li 4.25 Si, which can be charged and discharged, and Li 4 SiO 4 , which is irreversibly generated, by the charge / discharge operation of the pretreatment, and the second discharge of the pretreatment. From the thickness of the battery in the above, it is expected that the dimensional fluctuation during charging and discharging will be small.

本発明でのリチウムイオン二次電池の充放電方法には、従来採用されているリチウムイオン二次電池の方法を使用して良い。特に本発明にはレトルトパック型電池構成の電池を充放電するのが好ましい。正極活物質が塗布された正極と負極活物質を塗布した負極と対峙させて、その間にセパレータを挟み電解液を含浸する。正極寸法よりやや大きい負極寸法、電子絶縁性を確保するためにさらに大きい寸法のセパレータとする。正極に正確に重なるようにセパレータと負極を重ねて両最外側の正極には、セパレータを介して片面塗布の負極があるように積層しておく。本発明では、負極活物質に一酸化珪素と黒鉛との混合物を高電池容量にするために、前処理に充放電を少なくとも一度、好ましくは二度の充放電を実施する。ここでは、電池容量の基準は、第3回目の充電を初回の充電容量とし第3回目の放電容量を初回の電池容量とする。正極活物質のリチウム源を使用せずに充放電時不活性な不可逆的副生成物のLiSiOと黒鉛粒子の表面に電解液とからできたパシベーション膜の形成に金属リチウム箔を貼り付けておく。パシベーション膜形成とLiSiOとリチウム珪素合金の形成が安定するまでの第1回目と第2回目との充放電を負極挙動安定化の前処理操作として採用する。また機械的操作を充放電時に電池の体積変化を極力強制的に抑制する工夫として施す。充放電時の電池体積変化に対処できるように機械的操作、例えばレトルトパック電池外装を金属板で挟んで蝶ねじ等で締め付ける。厚み方向の寸法変化を極力抑制することにより、金属リチウム箔は、黒鉛粒子類へ電解液を通してドープするとともにLiSiOに変化して消失し、当該薄膜分は一酸化珪素珪素の体積膨張を吸収するのに寄与すると考える。好ましくは、前処理としての第2回目の充電を終えた時点で、仮封口していた電解液注入孔を開けてやや減圧にして電池内に発生したガスを吸引除去した後に熱シールして封口してから締め付ける。レトルトパック外装には、ラミネート多層シートロピレンは、金属箔、例えばアルミニウム箔、ステンレススチール304箔とナイロンフィルム、最内装にはポリプロピレンフィルムを含む。充電中に一酸化珪素は、LiSi(0<x≦4.4)に変化するが、例えば、Li4.25Siに負極中で変化した後は、Li3.25-4.4Siのポテンシャル(V)は、0.047V対Li/Liとのことであり、黒鉛のLiCを0.01Vとしていることから負極を一酸化珪素-黒鉛を使用する場合は、好ましくは充電電圧を黒鉛単独負極の場合より0.047V低くすることが好ましい。他の正極活物質の正極の場合も黒鉛単独負極との組み合せの充電電位より0.047Vあるいは若干それより低く設定することが好ましい。第1回と第2回目の充放電は、電池工場内で実施すると想定して前処理として扱う。0.2Cの電流値でCCCV(定電流-定電圧充放電)モードで正極がコバルト酸リチウムを活物質とする場合は、充放電サイクルを4.15V~2.75Vの充放電電圧範囲で行う。好ましくは、4.10V~2.90Vの充放電電圧範囲である。収れん電流を0.01mAとし、レスト時間(充電と放電の切り替え時に充放電回路に電流が流れない時間)を15分間とする。充放電サイクル300回目での電池容量保持率が70%以上、80%以上であることが好ましい。As the charging / discharging method of the lithium ion secondary battery in the present invention, the conventionally adopted method of the lithium ion secondary battery may be used. In particular, in the present invention, it is preferable to charge and discharge a battery having a retort pack type battery configuration. The positive electrode coated with the positive electrode active material and the negative electrode coated with the negative electrode active material are confronted with each other, and a separator is sandwiched between them to impregnate the electrolytic solution. The negative electrode size is slightly larger than the positive electrode size, and the separator is larger in size to ensure electronic insulation. The separator and the negative electrode are overlapped so as to be exactly overlapped with the positive electrode, and the outermost positive electrodes are laminated so that the negative electrode coated on one side is provided via the separator. In the present invention, in order to increase the battery capacity of a mixture of silicon monoxide and graphite as the negative electrode active material, charge / discharge is performed at least once, preferably twice in the pretreatment. Here, the standard of the battery capacity is that the third charge is the first charge capacity and the third discharge capacity is the first battery capacity. A metallic lithium foil is attached to the surface of Li 4 SiO 4 , which is an irreversible by-product that is inactive during charging and discharging without using the lithium source of the positive electrode active material, and to form a passivation film made of an electrolytic solution on the surface of the graphite particles. Keep it. The first and second charge / discharge operations until the formation of the passivation film and the formation of Li 4 SiO 4 and the lithium-silicon alloy are stabilized are adopted as the pretreatment operation for stabilizing the negative electrode behavior. In addition, mechanical operation is applied as a device to forcibly suppress the volume change of the battery during charging and discharging. Mechanical operation, for example, the exterior of the retort pack battery is sandwiched between metal plates and tightened with thumbscrews or the like so as to cope with the change in battery volume during charging and discharging. By suppressing the dimensional change in the thickness direction as much as possible, the metallic lithium foil is doped into the graphite particles by passing the electrolytic solution, and at the same time, it changes to Li 4 SiO 4 and disappears, and the thin film component causes volume expansion of silicon monoxide. I think it will contribute to absorption. Preferably, when the second charge as the pretreatment is completed, the electrolytic solution injection hole that was temporarily sealed is opened, the pressure is slightly reduced, the gas generated in the battery is sucked and removed, and then the seal is heat-sealed. Then tighten. For the exterior of the retort pack, the laminated multilayer sheet ropylene contains metal foils such as aluminum foil, stainless steel 304 foil and nylon film, and the interior is polypropylene film. During charging, silicon monoxide changes to Li x Si (0 <x ≤ 4.4), but after changing to Li 4.25 Si in the negative electrode, for example, Li 325-4.4 Si. The potential (V) of is 0.047V vs. Li / Li + , and since the LiC 6 of graphite is 0.01V, when silicon monoxide-graphite is used for the negative electrode, the charging voltage is preferable. Is preferably 0.047 V lower than that of the graphite-only negative electrode. In the case of the positive electrode of another positive electrode active material, it is preferable to set 0.047 V or slightly lower than the charging potential in combination with the graphite-only negative electrode. The first and second charges and discharges are treated as pretreatment assuming that they are carried out in the battery factory. When the positive electrode uses lithium cobalt oxide as the active material in the CCCV (constant current-constant voltage charge / discharge) mode with a current value of 0.2 C, the charge / discharge cycle is performed in the charge / discharge voltage range of 4.15 V to 2.75 V. .. The charge / discharge voltage range is preferably 4.10V to 2.90V. The astringent current is 0.01 mA, and the rest time (the time when no current flows in the charge / discharge circuit when switching between charging and discharging) is 15 minutes. It is preferable that the battery capacity retention rate at the 300th charge / discharge cycle is 70% or more and 80% or more.

本発明を以下の実施例によりさらに詳細に説明するが、本発明はこれらの例に限定されるものではない。 The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

負極塗布膜は、被覆一酸化珪素と炭素類との質量比率が90:10の負極活物質から以下のように作製する。カーボン被覆の一酸化珪素粒子(大阪チタニウムテクノロジーズ社製)を205.6g、ナノレベルの繊維状の黒鉛ナノチューブ、VGCF-H(昭和電工社製)を88.3gとを密閉したミキサーで混合する。黒鉛繊維(旧ペトカマテリアル社製)11.0g、コアー(黒鉛)-シェル(コークス質炭素)カーボン(三井鉱山社製)11.0gを高速ミキサーで粉末を混合する。バインダーにAGC社製ルミフロンFE4300ラテックスを39.1g(固形分25%)に脱イオン水で薄めて当該黒鉛類粉末混合物を加えて6.0μm厚みの銅箔(0.3mmφのパンチング孔を開けて空隙率9.1%にしたもの)上に塗布して乾燥する。アルゴン雰囲気下、金属リチウム箔23.7μmを銅箔塗膜上にロールプレスで圧着した。両面塗布品は、91.6μm、片面塗布品は、48.8μmの膜厚にした。両面塗工膜14枚と片面塗工膜2枚を縦10.4cm、横20.4cmの寸法に切り出す。正極は、コバルト酸リチウム(LiCoO)粒子粉末を930.0g、導電助剤としてスーパーP27.5g、微粉砕黒鉛(日本黒鉛社製SP270)10.0gを高速ミキサーで混合する。バインダーであるルミフロンラテックスFE4300(固形分50%から25%に希釈しておく)90.0gを加えてスラリー状にする。所望の塗工膜になるように5.0μmの貫通細孔のあるステンレススチール316L箔上に塗布乾燥する。ロールプレス後の両面塗工膜厚みは、176.8μmであった。これを15枚、縦10.0cm、横20.0cmの寸法に切り出す。セパレータを介して負極と対峙させる。重ねる負極は、正確に位置決めをして正極上に重ねる。4端面が0.5mm大きいKEE社製の無塗装耐熱性ポリオレフィンセパレータの厚さ5.0μmを30枚を正極と負極の間に介在させて、かつ、正極と負極は、正確に対峙しているように積層型レトルトパックとしてアルミニウムラミネート袋に挿入する。電解液を注入して注入口を仮閉鎖しておく。第1回と第2回目の充放電は、電池工場内で実施することを想定して0.1Cの電流値で4.10V-2.90VのCCCV(定電流-定電圧充放電)モードで収れん電流を0.01mAとする。第3回目以降は、0.2Cの電流値で4.10V-2.90VのCCCV(定電流-定電圧充放電)モードで収れん電流を0.01mAにする。第3回目以降は、0.2Cの電流値での4.10V-2.90VのCCCV(定電流-定電圧充放電)モード、収れん電流を0.01mAとし、レスト時間(充電と放電の切り替え時に充放電回路に電流が流れない時間)を15分間とする。第1回と第2回目の充電を終えてレスト時間の間にレトルトパック内電解液注入口を開けてやや減圧にしてレトルトパック内から発生したガスを吸引除去する。第3回目の充電に入る前のレスト時間に電解液注入口を熱シールして封口する。また金属板に挟んだレトルトパック電池の金属板の4角に蝶ねじをつけて締める。この機械的操作の導入により充放電中に発生する負極電極内の空隙変化を抑制し、良好な電子伝導性を保持するべく固定・拘束する。電池容量の基準は、第3回目の充電を初回充電とみなし、これに対応しての初回放電時の放電容量を電池容量とする。初回(第3回目の充電)の電池放電容量は、24.0Ahであった。比較例1の黒鉛を負極活物質とする16.0Ahの電池に比して、ほぼ同じ体積で1.5倍の電池容量になった。1回のチャージ(充電で)500km走行できる電気自動車は、750kmまで走行できることになる。現行の電池製造設備に材料を電気化学的に処理した電極と、充電する際の体積変化を機械的に抑制することにより高電池容量で一酸化珪素と黒鉛系で従来のような突然の容量劣化がなく、黒鉛のみの負極の容量保持率を凌駕する結果(表1)を得られた。充放電300サイクル目の電池容量保持率は、90%であった。また50サイクル目付近からの突然の電池容量低下は全く見られなかった。The negative electrode coating film is prepared from a negative electrode active material having a mass ratio of coated silicon monoxide and carbons of 90:10 as follows. 205.6 g of carbon-coated silicon monoxide particles (manufactured by Osaka Titanium Technologies Co., Ltd.) and 88.3 g of nano-level fibrous graphite nanotubes, VGCF-H (manufactured by Showa Denko KK) are mixed with a sealed mixer. 11.0 g of graphite fiber (formerly manufactured by Petka Material Co., Ltd.) and 11.0 g of core (graphite) -shell (coke carbon) carbon (manufactured by Mitsui Mining Co., Ltd.) are mixed with a high-speed mixer. AGC Lumiflon FE4300 latex is diluted with 39.1 g (solid content 25%) with deionized water, the graphite powder mixture is added to the binder, and a 6.0 μm thick copper foil (0.3 mmφ punching hole is made). (With a porosity of 9.1%), apply on top and dry. Under an argon atmosphere, 23.7 μm of a metallic lithium foil was pressure-bonded onto a copper foil coating film by a roll press. The film thickness of the double-sided coating product was 91.6 μm, and that of the single-sided coating product was 48.8 μm. 14 double-sided coating films and 2 single-sided coating films are cut into dimensions of 10.4 cm in length and 20.4 cm in width. For the positive electrode, 930.0 g of lithium cobalt oxide (LiCoO 2 ) particle powder, 27.5 g of Super P as a conductive auxiliary agent, and 10.0 g of finely pulverized graphite (SP270 manufactured by Nippon Graphite Co., Ltd.) are mixed with a high-speed mixer. Add 90.0 g of Lumiflon Latex FE4300 (diluted from 50% to 25% solid content) as a binder to form a slurry. It is applied and dried on a stainless steel 316L foil having 5.0 μm through pores so as to obtain a desired coating film. The thickness of the double-sided coating film after roll pressing was 176.8 μm. Cut 15 pieces into dimensions of 10.0 cm in length and 20.0 cm in width. It faces the negative electrode through the separator. The negative electrodes to be stacked are accurately positioned and stacked on the positive electrode. 4 30 pieces of 5.0 μm thick unpainted heat-resistant polyolefin separator manufactured by KEE, whose end face is 0.5 mm larger, are interposed between the positive electrode and the negative electrode, and the positive electrode and the negative electrode face each other accurately. Insert it into an aluminum laminated bag as a laminated retort pack. Inject the electrolyte and temporarily close the injection port. The first and second charge / discharge are assumed to be carried out in the battery factory in the CCCV (constant current-constant voltage charge / discharge) mode with a current value of 0.1C and 4.10V-2.90V. The convergence current is 0.01 mA. From the third time onward, the converging current is set to 0.01 mA in the CCCV (constant current-constant voltage charge / discharge) mode of 4.10V-2.90V with a current value of 0.2C. From the third time onward, the CCCV (constant current-constant voltage charge / discharge) mode with a current value of 0.2C, the convergence current is 0.01mA, and the rest time (switching between charging and discharging). The time during which no current sometimes flows through the charge / discharge circuit) is set to 15 minutes. During the rest time after the first and second charges are completed, the electrolytic solution injection port in the retort pack is opened and the pressure is slightly reduced to suck and remove the gas generated from the inside of the retort pack. During the rest time before starting the third charge, the electrolyte inlet is heat-sealed and sealed. Also, attach thumbscrews to the four corners of the metal plate of the retort pack battery sandwiched between the metal plates and tighten. By introducing this mechanical operation, the change in the void in the negative electrode generated during charging and discharging is suppressed, and it is fixed and restrained in order to maintain good electronic conductivity. The standard of the battery capacity is that the third charge is regarded as the first charge, and the corresponding discharge capacity at the time of the first discharge is the battery capacity. The battery discharge capacity for the first time (third charge) was 24.0 Ah. Compared to the 16.0 Ah battery using graphite as the negative electrode active material in Comparative Example 1, the battery capacity was 1.5 times that of the battery having almost the same volume. An electric vehicle that can travel 500 km on a single charge can travel up to 750 km. Electrodes obtained by electrochemically treating the material in the current battery manufacturing equipment, and by mechanically suppressing the volume change during charging, the silicon monoxide and graphite system have a high battery capacity and sudden capacity deterioration as in the past. The result (Table 1) was obtained that exceeded the capacity retention rate of the negative electrode of graphite alone. The battery capacity retention rate in the 300th charge / discharge cycle was 90%. In addition, no sudden decrease in battery capacity was observed from around the 50th cycle.

負極塗布膜は、被覆一酸化珪素と炭素類との質量比率が70:30の負極活物質から作製する。カーボン被覆の一酸化珪素粒子(大阪チタニウムテクノロジーズ社製)を195.7g、ナノレベルの繊維状の黒鉛、VGCF-H(昭和電工社製)を108.1gとを密閉したミキサーで混合する。黒鉛繊維(旧ペトカマテリアル社製)40.5g、コアー(黒鉛)-シェル(コークス質炭素)カーボン(三井鉱山社製)40.5gを高速ミキサーで粉末を混合する。バインダーにAGC社製ルミフロンFE4300ラテックスを47.6g(固形分50%を25%に希釈使用。)に脱イオン水で薄めて当該黒鉛類粉末混合物を加えて6.0μm厚みの銅箔(0.3mmφのパにしてンチング孔を開けて空隙率9.1%にしたもの)上に塗布して乾燥する。アルゴン気流中で金属リチウム箔22.8μmを銅箔塗布膜上にロールプレスで圧着した。両面塗布品は、96.5μm、片面塗布品は、51.3μmにした。両面塗工膜14枚と片面塗工膜2枚を縦10.4cm、横20.4cmの寸法に切り出す。正極は、実施例1と同じ組成で、膜厚176.8μmものを15枚使用した。重ねる負極は、正確に位置決めをして正極上に重ねる。
4端面が0.5mm大きいKEE社製の無塗装耐熱性ポリオレフィンセパレータの厚さ5.0μmを30枚を正極と負極の間に介在させて、かつ、正極と負極は、正確に対峙しているように積層型レトルトパックとしてアルミニウムラミネート袋に挿入する。、電解液を注入して注入口を仮閉鎖しておく。第1回と第2回目の充放電は、前処理として0.1Cの電流値での4.10V-2.90VのCCCV(定電流-定電圧充)収れん電流を0.01mAとし、レスト時間(充電と放電の切り替え時に充放電回路に電流が流れない時間)を15分間とする。第1回と第2回目の充電を終えてレスト時間の間にレトルトパック内電解液注入口を開けてやや減圧にしてレトルトパック内から発生したガスを吸引除去する。第3回目の0.2Cの電流値で充電に入る前のレスト時間に電解液注入口を熱シールして封口する。また金属板に挟んだレトルトパック電池の金属板の4角に蝶ねじをつけて置き、0.2Cの電流値で充放電を繰り返す間、厚み方向の寸法変化がほとんど起きないように固定・拘束する。この機械的操作の導入により充電中に発生する負極電極内の体積変化を抑制し、良好な電子伝導性を保持しようとした。電池容量の基準は、第3回目の充電を初回充電とみなし、これに対応しての初回放電時の放電容量を電池容量とする。初回(第3回目の充電)の電池放電容量は、24.0Ahであった。比較例1の黒鉛を負極活物質とする電池に比して、ほぼ同じ体積で16.0Ahなので1.5倍の電池容量になった。1回のチャージ(充電で)500km走行できる電気自動車は、750kmまで走行できることになる。現行の電池製造設備に電気化学的材料を変更した電極とし、充電する際の体積膨張を機械的に抑制することにより高電池容量で一酸化珪素と黒鉛系で従来のような突然の容量劣化がなく、黒鉛のみの負極の容量保持率を凌駕する結果(表1)を得られた。充放電300サイクル目の電池容量保持率は、89%であった。また50サイクル目付近からの突然の電池容量低下は全く見られなかった。
The negative electrode coating film is prepared from a negative electrode active material having a mass ratio of coated silicon monoxide to carbons of 70:30. 195.7 g of carbon-coated silicon monoxide particles (manufactured by Osaka Titanium Technologies Co., Ltd.) and 108.1 g of nano-level fibrous graphite and VGCF-H (manufactured by Showa Denko KK) are mixed with a sealed mixer. 40.5 g of graphite fiber (formerly manufactured by Petka Material Co., Ltd.) and 40.5 g of core (graphite) -shell (coke carbon) carbon (manufactured by Mitsui Mining Co., Ltd.) are mixed with a high-speed mixer. AGC Lumiflon FE4300 latex was diluted with 47.6 g (50% solid content was diluted to 25%) in a binder, diluted with deionized water, and the graphite powder mixture was added to make a 6.0 μm thick copper foil (0. It is made into a 3 mmφ pad, has a punching hole, and has a porosity of 9.1%.) It is applied on top and dried. A metal lithium foil of 22.8 μm was pressure-bonded onto a copper foil coating film by a roll press in an argon stream. The double-sided coating was 96.5 μm, and the single-sided coating was 51.3 μm. 14 double-sided coating films and 2 single-sided coating films are cut into dimensions of 10.4 cm in length and 20.4 cm in width. Fifteen positive electrodes having the same composition as in Example 1 and having a film thickness of 176.8 μm were used. The negative electrodes to be stacked are accurately positioned and stacked on the positive electrode.
4 30 pieces of 5.0 μm thick unpainted heat-resistant polyolefin separator manufactured by KEE, whose end face is 0.5 mm larger, are interposed between the positive electrode and the negative electrode, and the positive electrode and the negative electrode face each other accurately. Insert it into an aluminum laminated bag as a laminated retort pack. , Inject the electrolyte and temporarily close the injection port. In the first and second charge / discharge, as a pretreatment, the CCCV (constant current-constant voltage charge) convergence current of 4.10V-2.90V at a current value of 0.1C is set to 0.01mA, and the rest time. (Time during which no current flows through the charge / discharge circuit when switching between charging and discharging) is set to 15 minutes. During the rest time after the first and second charges are completed, the electrolytic solution injection port in the retort pack is opened and the pressure is slightly reduced to suck and remove the gas generated from the inside of the retort pack. The electrolytic solution injection port is heat-sealed and sealed at the rest time before charging is started at the third current value of 0.2 C. In addition, a thumbscrew is attached to the four corners of the metal plate of the retort pack battery sandwiched between the metal plates, and it is fixed and restrained so that there is almost no dimensional change in the thickness direction while charging and discharging are repeated at a current value of 0.2C. do. By introducing this mechanical operation, we tried to suppress the volume change in the negative electrode generated during charging and maintain good electron conductivity. The standard of the battery capacity is that the third charge is regarded as the first charge, and the corresponding discharge capacity at the time of the first discharge is the battery capacity. The battery discharge capacity for the first time (third charge) was 24.0 Ah. Compared with the battery using graphite as the negative electrode active material of Comparative Example 1, the battery capacity was 1.5 times as large as 16.0 Ah in almost the same volume. An electric vehicle that can travel 500 km on a single charge can travel up to 750 km. By using electrodes with an electrochemical material changed to the current battery manufacturing equipment and mechanically suppressing volume expansion during charging, silicon monoxide and graphite-based batteries with high battery capacity can undergo sudden capacity deterioration as in the past. The result (Table 1) was obtained that exceeded the capacity retention rate of the negative electrode of graphite alone. The battery capacity retention rate in the 300th charge / discharge cycle was 89%. In addition, no sudden decrease in battery capacity was observed from around the 50th cycle.

負極塗布膜は、被覆一酸化珪素と炭素類との質量比率が50:50の負極活物質から作製する。カーボン被覆の一酸化珪素粒子(大阪チタニウムテクノロジーズ社製)を180.1g、ナノレベルの繊維状の黒鉛、VGCF-H(昭和電工社製)を139.3gとを密閉したミキサーで混合する。黒鉛繊維(旧ペトカマテリアル社製)87.0g、コアー(黒鉛)-シェル(コークス質炭素)カーボン(三井鉱山社製)87.0gを高速ミキサーで粉末を混合する。バインダーにAGC社製ルミフロンFE4300ラテックスを60.3g(固形分を50%から25%に希釈)イオン水で薄めて当該黒鉛類粉末混合物を加えて6.0μm厚みの銅箔(0.3mmφのパンチング孔を開けて空隙率9.1%にしたもの)上に塗布して乾燥する。金属リチウム箔21.32μmをアルゴン気流中で銅箔塗膜上にロールプレスで圧着した。両面塗布品は、108.4μm、片面塗布品は、57.2μmにした。両面塗工膜13枚と片面塗工膜2枚を縦10.4cm、横20.4cmの寸法に切り出す。重ねる負極は、正確に位置決めをして正極上に重ねる。正極は、実施例1と同じ組成で、膜厚176.8μmものを14枚使用した。4端面が0.5mm大きいKEE社製の無塗装耐熱性ポリオレフィンセパレータの厚さ5.0μmを28枚を正極と負極の間に介在させて、かつ、正極と負極は、正確に対峙しているように積層型レトルトパックとしてアルミニウムラミネート袋に挿入する。、電解液を注入して注入口を仮閉鎖しておく。第1回と第2回目の0.1Cの電流値の充放電は、電池工場内で実施を想定して扱う。4.15V-2.80VのCCCV(定電流-定電圧充)収れん電流を0.01mAとし、レスト時間(充電と放電の切り替え時に充放電回路に電流が流れない時間)を15分間とする。第1回と第2回目の充電を終えてレスト時間の間にレトルトパック内電解液注入口を開けてやや減圧にしてレトルトパック内から発生したガスを吸引除去する。第3回目の充電に入る前のレスト時間に電解液注入口を熱シールして封口する。また金属板に挟んだレトルトパック電池の金属板の4角に蝶ねじをつけて置き、充放電を繰り返す間、厚み方向の寸法変化がほとんど起きないように固定・拘束する。この機械的操作の導入により充電中に発生する負極電極内の体積変化を抑制し、良好な電子伝導性を保持しようとした。電池容量の基準は、第3回目の充電を初回充電とみなし、これに対応しての初回放電時の放電容量を電池容量とする。初回(第3回目の充電)の電池放電容量は、22.4Ahであった。比較例1の黒鉛を負極活物質とする電池に比して、ほぼ同じ体積で16.0Ahなので1.4倍の電池容量になった。1回のチャージ(充電で)500km走行できる電気自動車は、700kmまで走行できることになる。現行の電池製造設備に電気化学的材料を変更した電極とし、充電する際の体積膨張を機械的に抑制することにより高電池容量で一酸化珪素と黒鉛系で従来のような突然の容量劣化がなく、黒鉛のみの負極の容量保持率を凌駕する結果(表1)を得られた。充放電300サイクル目の電池容量保持率は、88%であった。また50サイクル目付近からの突然の電池容量低下は全く見られなかった。The negative electrode coating film is prepared from a negative electrode active material having a mass ratio of coated silicon monoxide and carbons of 50:50. 180.1 g of carbon-coated silicon monoxide particles (manufactured by Osaka Titanium Technologies Co., Ltd.) and 139.3 g of nano-level fibrous graphite and VGCF-H (manufactured by Showa Denko KK) are mixed with a sealed mixer. 87.0 g of graphite fiber (formerly manufactured by Petka Material Co., Ltd.) and 87.0 g of core (graphite) -shell (coke carbon) carbon (manufactured by Mitsui Mining Co., Ltd.) are mixed with a high-speed mixer. AGC Lumiflon FE4300 latex was diluted with 60.3 g (diluted solid content from 50% to 25%) with ionized water, and the graphite powder mixture was added to the binder to make a 6.0 μm thick copper foil (0.3 mmφ punching). A hole is made to make the void ratio 9.1%), and the mixture is applied and dried. A metal lithium foil of 21.32 μm was pressure-bonded onto a copper foil coating film in an argon air stream by a roll press. The double-sided coating was 108.4 μm, and the single-sided coating was 57.2 μm. Cut out 13 double-sided coating films and 2 single-sided coating films to a length of 10.4 cm and a width of 20.4 cm. The negative electrodes to be stacked are accurately positioned and stacked on the positive electrode. As the positive electrode, 14 sheets having the same composition as in Example 1 and having a film thickness of 176.8 μm were used. 4 KEE's unpainted heat-resistant polyolefin separator with a large end face of 0.5 mm has 28 sheets with a thickness of 5.0 μm interposed between the positive electrode and the negative electrode, and the positive electrode and the negative electrode face each other accurately. Insert it into an aluminum laminated bag as a laminated retort pack. , Inject the electrolyte and temporarily close the injection port. The first and second charges and discharges of the current value of 0.1 C are handled assuming implementation in the battery factory. The CCCV (constant current-constant voltage charge) convergence current of 4.15V-2.80V is 0.01mA, and the rest time (time when no current flows in the charge / discharge circuit when switching between charging and discharging) is 15 minutes. During the rest time after the first and second charges are completed, the electrolytic solution injection port in the retort pack is opened and the pressure is slightly reduced to suck and remove the gas generated from the inside of the retort pack. During the rest time before starting the third charge, the electrolyte inlet is heat-sealed and sealed. In addition, a thumbscrew is attached to the four corners of the metal plate of the retort pack battery sandwiched between the metal plates, and fixed and restrained so that the dimensional change in the thickness direction hardly occurs while charging and discharging are repeated. By introducing this mechanical operation, we tried to suppress the volume change in the negative electrode generated during charging and maintain good electron conductivity. The standard of the battery capacity is that the third charge is regarded as the first charge, and the corresponding discharge capacity at the time of the first discharge is the battery capacity. The battery discharge capacity for the first time (third charge) was 22.4 Ah. Compared to the battery using graphite as the negative electrode active material in Comparative Example 1, the battery capacity was 1.4 times that of the battery having almost the same volume and 16.0 Ah. An electric vehicle that can travel 500 km on a single charge can travel up to 700 km. By using electrodes with an electrochemical material changed to the current battery manufacturing equipment and mechanically suppressing volume expansion during charging, silicon monoxide and graphite-based batteries with high battery capacity can undergo sudden capacity deterioration as in the past. The result (Table 1) was obtained that exceeded the capacity retention rate of the negative electrode of graphite alone. The battery capacity retention rate in the 300th charge / discharge cycle was 88%. In addition, no sudden decrease in battery capacity was observed from around the 50th cycle.

負極塗布膜は、被覆一酸化珪素と炭素類との質量比率が30:70の負極活物質から作製する。カーボン被覆の一酸化珪素粒子(大阪チタニウムテクノロジーズ社製)を151.9g、ナノレベルの繊維状の黒鉛、VGCF-H(昭和電工社製)を73.4gとを密閉したミキサーで混合する。黒鉛繊維(旧ペトカマテリアル社製)171.3g、コアー(黒鉛)-シェル(コークス質炭素)カーボン(三井鉱山社製)171.3gを高速ミキサーで粉末を混合する。バインダーにAGC社製ルミフロンFE4300ラテックスを65.4g(固形分50%から25%に希釈。)に脱イオン水で薄めて当該黒鉛類粉末混合物を加えて6.0μm厚みの銅箔(0.3mmφのパンチング孔を開けて空隙率9.1%にしたもの)上に塗布して乾燥する。アルゴン雰囲気下ポリアセタール製ローラーで金属リチウム箔18.36μmを銅箔塗膜上にロールプレスで圧着した。両面塗布品は、127.3μm、片面塗布品は、66.7μmにした。両面塗工膜12枚と片面塗工膜2枚を縦10.4cm、横20.4cmの寸法に切り出す。重ねる負極は、正確に位置決めをして正極上に重ねる。正極は、実施例1と同じ組成で、膜厚176.8μmものを13枚使用した。
4端面が0.5mm大きいKEE社製の無塗装耐熱性ポリオレフィンセパレータの厚さ5.0μmを26枚を正極と負極の間に介在させて、かつ、正極と負極は、正確に対峙しているように積層型レトルトパックとしてアルミニウムラミネート袋に挿入する。、電解液を注入して注入口を仮閉鎖しておく。第1回と第2回目の0.1Cの電流値の充放電は、前処理として扱う。第1回と第2回目の充電を終えてレスト時間の間にレトルトパック内電解液注入口を開けてやや減圧にしてレトルトパック内から発生したガスを吸引除去する。0.2Cの電流値で4.15V-2.80VのCCCV(定電流-定電圧充)収れん電流を0.01mAとし、レスト時間(充電と放電の切り替え時に充放電回路に電流が流れない時間)を15分間とする。第3回目の充電に入る前のレスト時間に電解液注入口を熱シールして封口する。また金属板に挟んだレトルトパック電池の金属板の4角に蝶ねじをつけて置き、充放電を繰り返す間、厚み方向の寸法変化がほとんど起きないように固定・拘束する。この機械的操作の導入により充電中に発生する負極電極内の体積増加を抑制し、良好な電子伝導性を保持しようとした。電池容量の基準は、第3回目の充電を初回充電とみなし、これに対応しての初回放電時の放電容量を初回の電池容量とする。初回(第3回目の充電)の電池放電容量は、20.8Ahであった。比較例1の黒鉛を負極活物質とする電池に比して、ほぼ同じ体積で16.0Ahなので1.3倍の電池容量になった。1回のチャージ(充電で)500km走行できる電気自動車は、650kmまで走行できることになる。現行の電池製造設備に電気化学的材料を変更した電極とし、充電する際の体積膨張を機械的に抑制することにより高電池容量で一酸化珪素と黒鉛系で従来のような突然の容量劣化がなく、黒鉛のみの負極の容量保持率を凌駕する結果(表1)を得られた。充放電300サイクル目の電池容量保持率は、84%であった。また50サイクル目付近からの突然の電池容量低下は全く見られなかった。
The negative electrode coating film is prepared from a negative electrode active material having a mass ratio of coated silicon monoxide to carbons of 30:70. 151.9 g of carbon-coated silicon monoxide particles (manufactured by Osaka Titanium Technologies Co., Ltd.) and 73.4 g of nano-level fibrous graphite and VGCF-H (manufactured by Showa Denko KK) are mixed with a sealed mixer. 171.3 g of graphite fiber (formerly manufactured by Petka Material Co., Ltd.) and 171.3 g of core (graphite) -shell (coke carbon) carbon (manufactured by Mitsui Mining Co., Ltd.) are mixed with a high-speed mixer. AGC Lumiflon FE4300 latex was diluted with 65.4 g (diluted from 50% solid content to 25% solid content) with deionized water, and the graphite powder mixture was added to the binder to make a 6.0 μm thick copper foil (0.3 mmφ). (Punching holes are made to make the void ratio 9.1%), and the mixture is applied and dried. A metal lithium foil of 18.36 μm was pressure-bonded onto a copper foil coating film by a roll press using a polyacetal roller under an argon atmosphere. The double-sided coating was 127.3 μm, and the single-sided coating was 66.7 μm. Twelve double-sided coating films and two single-sided coating films are cut into dimensions of 10.4 cm in length and 20.4 cm in width. The negative electrodes to be stacked are accurately positioned and stacked on the positive electrode. Thirteen positive electrodes having the same composition as in Example 1 and having a film thickness of 176.8 μm were used.
4 KEE's unpainted heat-resistant polyolefin separator with a large end face of 0.5 mm is sandwiched between 26 sheets of 5.0 μm between the positive electrode and the negative electrode, and the positive electrode and the negative electrode face each other accurately. Insert it into an aluminum laminated bag as a laminated retort pack. , Inject the electrolyte and temporarily close the injection port. The first and second charges and discharges of the current value of 0.1 C are treated as pretreatment. During the rest time after the first and second charges are completed, the electrolytic solution injection port in the retort pack is opened and the pressure is slightly reduced to suck and remove the gas generated from the inside of the retort pack. CCCV (constant current-constant voltage charge) convergence current of 4.15V-2.80V with a current value of 0.2C is 0.01mA, and rest time (time when no current flows in the charge / discharge circuit when switching between charging and discharging). ) Is 15 minutes. During the rest time before starting the third charge, the electrolyte inlet is heat-sealed and sealed. In addition, a thumbscrew is attached to the four corners of the metal plate of the retort pack battery sandwiched between the metal plates, and fixed and restrained so that the dimensional change in the thickness direction hardly occurs while charging and discharging are repeated. By introducing this mechanical operation, we tried to suppress the volume increase in the negative electrode generated during charging and maintain good electron conductivity. As for the standard of battery capacity, the third charge is regarded as the first charge, and the corresponding discharge capacity at the time of the first discharge is regarded as the first battery capacity. The battery discharge capacity for the first time (third charge) was 20.8 Ah. Compared with the battery using graphite as the negative electrode active material in Comparative Example 1, the battery capacity was 1.3 times as large as 16.0 Ah in almost the same volume. An electric vehicle that can travel 500 km on a single charge can travel up to 650 km. By using electrodes with an electrochemical material changed to the current battery manufacturing equipment and mechanically suppressing volume expansion during charging, silicon monoxide and graphite-based batteries with high battery capacity can undergo sudden capacity deterioration as in the past. The result (Table 1) was obtained that exceeded the capacity retention rate of the negative electrode of graphite alone. The battery capacity retention rate in the 300th charge / discharge cycle was 84%. In addition, no sudden decrease in battery capacity was observed from around the 50th cycle.

カーボン被覆の一酸化珪素粒子(大阪チタニウムテクノロジーズ社製)と黒鉛類との質量比が95:5の負極活物質の水溶性塗工ペーストを作製し、パンチング銅箔に塗布する。カーボン被覆の一酸化珪素粒子(大阪チタニウムテクノロジーズ社製)207.5gとナノレベルの繊維状の黒鉛ナノチューブ、VGCF-H(昭和電工社製)95.0gとを密閉したミキサーで混合する。黒鉛繊維(旧ペトカマテリアル社製)5.3g、コアー(黒鉛)-シェル(コークス質炭素)カーボン(三井鉱山社製)5.3gを高速ミキサーで粉末を混合する。バインダーにAGC社製ルミフロンFE4300ラテックスを38.7g(固形分50%から25%に希釈)に脱イオン水で薄めて当該黒鉛類粉末混合物を加えて6.0μm厚みの銅箔(0.3mmφのパンチング孔を開けて空隙率9.1%にしたもの)上に塗布して乾燥する。金属リチウム箔23.7μmを銅箔塗膜上に圧着した。両面塗布品は、89.9μm、片面塗布品は、48.0μmにした。両面塗工膜14枚と片面塗工膜2枚を縦10.4cm、横20.4cmの寸法に切り出す。重ねる負極は、正確に位置決めをし実施例1と同じ正極上に重ねる。正極は、両面塗布品15枚を使用した。4端面が0.5mm大きいKEE社製の無塗装耐熱性ポリオレフィンセパレータの厚さ5.0μmを30枚を正極と負極の間に介在させて、かつ、正極と負極は、正確に対峙しているように積層型レトルトパックとしてアルミニウムラミネート袋に挿入する。、電解液を注入して注入口を仮閉鎖しておく。第1回と第2回目の0.1Cの電流値で4.10V-2.90VのCCCV(定電流-定電圧充放電)モードで収れん電流を0.01mAとし、前処理として扱う。第3回目以降は、0.2Cの電流値にしておなじ電圧範囲の4.10V-2.90VのCCCV(定電流-定電圧充放電)モードで収れん電流を0.01mAとし充放電を繰り返す。レスト時間(充電と放電の切り替え時に充放電回路に電流が流れない時間)を15分間とする。第1回と第2回目の充電を終えてレスト時間の間にレトルトパック内電解液注入口を開けてやや減圧にしてレトルトパック内から発生したガスを吸引除去する。第3回目の充電に入る前のレスト時間に電解液注入口を熱シールして封口する。また金属板に挟んだレトルトパック電池の金属板の4角に蝶ねじをつけて置き、充放電を繰り返す間、厚み方向の寸法変化がほとんど起きないように固定・拘束する。この機械的操作の導入により充電中に発生する負極電極内の体積変化を抑制し、良好な電子伝導性を保持しようとした。電池容量の基準は、第3回目の充電を初回充電とみなし、これに対応しての初回放電時の放電容量を初回電池容量とする。初回(第3回目の充電)の電池放電容量は、24.0Ahであった。比較例1の黒鉛を負極活物質とする電池に比して、ほぼ同じ体積で16.0Ahなので1.5倍の電池容量になる。1回のチャージ(充電で)500km走行できる電気自動車は、750kmまで走行できることになる。現行の電池製造設備に電気化学的材料を変更した電極とし、充電する際の体積膨張を機械的に抑制することにより高電池容量で一酸化珪素と黒鉛系で従来のような突然の容量劣化がなく、黒鉛のみの負極の容量保持率を凌駕する結果(表1)を得られた。充放電300サイクル目の電池容量保持率は、90%であった。また50サイクル目付近からの突然の電池容量低下は全く見られなかった。A water-soluble coated paste of a negative electrode active material having a mass ratio of carbon-coated silicon monoxide particles (manufactured by Osaka Titanium Technologies Co., Ltd.) and graphite of 95: 5 is prepared and applied to a punching copper foil. 207.5 g of carbon-coated silicon monoxide particles (manufactured by Osaka Titanium Technologies Co., Ltd.) and 95.0 g of nano-level fibrous graphite nanotubes, VGCF-H (manufactured by Showa Denko KK) are mixed in a closed mixer. Mix the powder with 5.3 g of graphite fiber (formerly manufactured by Petka Material Co., Ltd.) and 5.3 g of core (graphite) -shell (coke carbon) carbon (manufactured by Mitsui Mining Co., Ltd.) with a high-speed mixer. AGC Lumiflon FE4300 latex was diluted with 38.7 g (diluted from 50% solid content to 25% solid content) with deionized water, and the graphite powder mixture was added to the binder to make a 6.0 μm thick copper foil (0.3 mmφ). Punching holes are made to make the porosity 9.1%), and the mixture is applied and dried. A metal lithium foil of 23.7 μm was pressure-bonded onto the copper foil coating film. The double-sided coating was 89.9 μm, and the single-sided coating was 48.0 μm. 14 double-sided coating films and 2 single-sided coating films are cut into dimensions of 10.4 cm in length and 20.4 cm in width. The negative electrodes to be stacked are accurately positioned and stacked on the same positive electrode as in the first embodiment. As the positive electrode, 15 double-sided coated products were used. 4 30 pieces of 5.0 μm thick unpainted heat-resistant polyolefin separator manufactured by KEE, whose end face is 0.5 mm larger, are interposed between the positive electrode and the negative electrode, and the positive electrode and the negative electrode face each other accurately. Insert it into an aluminum laminated bag as a laminated retort pack. , Inject the electrolyte and temporarily close the injection port. The convergence current is set to 0.01 mA in the CCCV (constant current-constant voltage charge / discharge) mode of 4.10V-2.90V with the current value of 0.1C in the first and second times, and it is treated as a pretreatment. From the third time onward, charging / discharging is repeated with a converging current of 0.01 mA in a CCCV (constant current-constant voltage charge / discharge) mode of 4.10 V-2.90 V with a current value of 0.2 C and the same voltage range. The rest time (the time during which no current flows through the charge / discharge circuit when switching between charging and discharging) is set to 15 minutes. During the rest time after the first and second charges are completed, the electrolytic solution injection port in the retort pack is opened and the pressure is slightly reduced to suck and remove the gas generated from the inside of the retort pack. During the rest time before starting the third charge, the electrolyte inlet is heat-sealed and sealed. In addition, a thumbscrew is attached to the four corners of the metal plate of the retort pack battery sandwiched between the metal plates, and fixed and restrained so that the dimensional change in the thickness direction hardly occurs while charging and discharging are repeated. By introducing this mechanical operation, we tried to suppress the volume change in the negative electrode generated during charging and maintain good electron conductivity. As for the standard of battery capacity, the third charge is regarded as the first charge, and the corresponding discharge capacity at the time of the first discharge is regarded as the first battery capacity. The battery discharge capacity for the first time (third charge) was 24.0 Ah. Compared to the battery using graphite as the negative electrode active material in Comparative Example 1, the battery capacity is 1.5 times that of the battery having almost the same volume and 16.0 Ah. An electric vehicle that can travel 500 km on a single charge can travel up to 750 km. By using electrodes with an electrochemical material changed to the current battery manufacturing equipment and mechanically suppressing volume expansion during charging, silicon monoxide and graphite-based batteries with high battery capacity can undergo sudden capacity deterioration as in the past. The result (Table 1) was obtained that exceeded the capacity retention rate of the negative electrode of graphite alone. The battery capacity retention rate in the 300th charge / discharge cycle was 90%. In addition, no sudden decrease in battery capacity was observed from around the 50th cycle.

カーボン被覆をしていない一酸化珪素粒子(大阪チタニウムテクノロジーズ社製)と黒鉛類との質量比が80:20の負極活物質の水溶性塗工ペーストを作製し、パンチング銅箔に塗布する。カーボン被覆をしていない純一酸化珪素粒子(大阪チタニウムテクノロジーズ社製)194.4gとナノレベルの繊維状の黒鉛、VGCF-H(昭和電工社製)97.2gとを密閉したミキサーで混合する。黒鉛繊維(旧ペトカマテリアル社製)24.30g、コアー(黒鉛)-シェル(コークス質炭素)カーボン(三井鉱山社製)23.30gを高速ミキサーで粉末を混合する。バインダーにAGC社製ルミフロンFE4300ラテックスを42.1g(固形分50%を25%に希釈)に脱イオン水で薄めて当該黒鉛類粉末混合物を加えて6.0μm厚みの銅箔(0.3mmφのパンチング孔を開けて空隙率9.1%にしたもの)上に塗布して乾燥する。アルゴン気流中、金属リチウム箔23.13μmを銅箔塗膜上にロールプレスで圧着した。両面塗布品は、94.2μm、片面塗布品は、47.1μmにした。両面塗工膜14枚と片面塗工膜2枚を縦10.4cm、横20.4cmの寸法に切り出す。重ねる負極は、正確に位置決めをし実施例1と同じ正極上に重ねる。正極は、両面塗布品15枚を使用した。4端面が0.5mm大きいKEE社製の無塗装耐熱性ポリオレフィンセパレータの厚さ5.0μmを30枚を正極と負極の間に介在させて、かつ、正極と負極は、正確に対峙しているように積層型レトルトパックとしてアルミニウムラミネート袋に挿入する。、電解液を注入して注入口を仮閉鎖しておく。第1回と第2回目の0.1Cの電流値での充放電は、4.10V-2.90VのCCCV(定電流-定電圧充放電)、収れん電流を0.01mAとし、レスト時間(充電と放電の切り替え時に充放電回路に電流が流れない時間)を15分間とする。前処理として扱う。第3回目以降は0.2Cの電流値での同じ電圧範囲での充放電とした。第1回と第2回目の充電を終えてレスト時間の間にレトルトパック内電解液注入口を開けてやや減圧にしてレトルトパック内から発生したガスを吸引除去する。第3回目の充電に入る前のレスト時間に電解液注入口を熱シールして封口する。また金属板に挟んだレトルトパック電池の金属板の4角に蝶ねじをつけて置き、充放電を繰り返す間、厚み方向の寸法変化がほとんど起きないように固定・拘束する。この機械的操作の導入により充電中に発生する負極電極内の体積変化を抑制し、良好な電子伝導性を保持しようとした。電池容量の基準は、第3回目の充電を初回充電とみなし、これに対応しての初回放電時の放電容量を初回電池容量とする。初回(第3回目の充電)の電池放電容量は、24.0Ahであった。比較例1の黒鉛を負極活物質とする電池に比して、ほぼ同じ体積で16.0Ahなので1.5倍の電池容量になった。1回のチャージ(充電で)500km走行できる電気自動車は、750kmまで走行できることになる。現行の電池製造設備に電気化学的材料を変更した電極とし、充電する際の体積膨張を機械的に抑制することにより高電池容量で一酸化珪素と黒鉛系で従来のような突然の容量劣化がなく、黒鉛のみの負極の容量保持率を凌駕する結果(表1)を得られた。充放電300サイクル目の電池容量保持率は、89%であった。また50サイクル目付近からの突然の電池容量低下は全く見られなかった。A water-soluble coated paste of a negative electrode active material having a mass ratio of 80:20 between uncoated silicon monoxide particles (manufactured by Osaka Titanium Technologies Co., Ltd.) and graphite is prepared and applied to a punching copper foil. 194.4 g of pure silicon monoxide particles (manufactured by Osaka Titanium Technologies Co., Ltd.) without carbon coating and 97.2 g of nano-level fibrous graphite, VGCF-H (manufactured by Showa Denko KK) are mixed in a closed mixer. 24.30 g of graphite fiber (formerly manufactured by Petka Material Co., Ltd.) and 23.30 g of core (graphite) -shell (coke carbon) carbon (manufactured by Mitsui Mining Co., Ltd.) are mixed with a high-speed mixer. AGC Lumiflon FE4300 latex was diluted with 42.1 g (diluted 50% solid content to 25%) with deionized water, and the graphite powder mixture was added to the binder to make a 6.0 μm thick copper foil (0.3 mmφ). Punching holes are made to make the porosity 9.1%), and the mixture is applied and dried. A metal lithium foil of 23.13 μm was pressure-bonded onto the copper foil coating film by a roll press in an argon stream. The double-sided coating was 94.2 μm, and the single-sided coating was 47.1 μm. 14 double-sided coating films and 2 single-sided coating films are cut into dimensions of 10.4 cm in length and 20.4 cm in width. The negative electrodes to be stacked are accurately positioned and stacked on the same positive electrode as in the first embodiment. As the positive electrode, 15 double-sided coated products were used. 4 30 pieces of 5.0 μm thick unpainted heat-resistant polyolefin separator manufactured by KEE, whose end face is 0.5 mm larger, are interposed between the positive electrode and the negative electrode, and the positive electrode and the negative electrode face each other accurately. Insert it into an aluminum laminated bag as a laminated retort pack. , Inject the electrolyte and temporarily close the injection port. For the first and second charge / discharge at a current value of 0.1 C, CCCV (constant current-constant voltage charge / discharge) of 4.10 V-2.90 V, the convergence current is 0.01 mA, and the rest time (rest time ( The time during which no current flows through the charge / discharge circuit when switching between charging and discharging) is set to 15 minutes. Treat as preprocessing. From the third time onward, charging and discharging were performed in the same voltage range with a current value of 0.2C. During the rest time after the first and second charges are completed, the electrolytic solution injection port in the retort pack is opened and the pressure is slightly reduced to suck and remove the gas generated from the inside of the retort pack. During the rest time before starting the third charge, the electrolyte inlet is heat-sealed and sealed. In addition, a thumbscrew is attached to the four corners of the metal plate of the retort pack battery sandwiched between the metal plates, and fixed and restrained so that the dimensional change in the thickness direction hardly occurs while charging and discharging are repeated. By introducing this mechanical operation, we tried to suppress the volume change in the negative electrode generated during charging and maintain good electron conductivity. As for the standard of battery capacity, the third charge is regarded as the first charge, and the corresponding discharge capacity at the time of the first discharge is regarded as the first battery capacity. The battery discharge capacity for the first time (third charge) was 24.0 Ah. Compared with the battery using graphite as the negative electrode active material of Comparative Example 1, the battery capacity was 1.5 times as large as 16.0 Ah in almost the same volume. An electric vehicle that can travel 500 km on a single charge can travel up to 750 km. By using electrodes with an electrochemical material changed to the current battery manufacturing equipment and mechanically suppressing volume expansion during charging, silicon monoxide and graphite-based batteries with high battery capacity can undergo sudden capacity deterioration as in the past. The result (Table 1) was obtained that exceeded the capacity retention rate of the negative electrode of graphite alone. The battery capacity retention rate in the 300th charge / discharge cycle was 89%. In addition, no sudden decrease in battery capacity was observed from around the 50th cycle.

カーボン被覆をしてある一酸化珪素粒子(大阪チタニウムテクノロジーズ社製)と黒鉛類との質量比が95:5の負極活物質の水溶性塗工ペーストを作製し、パンチング銅箔に塗布する。カーボン被覆をしてある一酸化珪素粒子(大阪チタニウムテクノロジーズ社製)207.5gとナノレベルの繊維状の黒鉛、VGCF-H(昭和電工社製)95.0g、を高速ミキサーで混合し、更に人工黒鉛(現昭和電工マテリアル社製、旧日立化成社製)10.6gを加えて混合した。バインダーとしてAGC社製ルミフロンFE4300ラテックス38.7g(固形分を50%から25%に希釈しておく)を当該黒鉛類粉末混合物に加えて攪拌混合し、脱イオン水を加えてスラリー濃度を調整する。6.0μm厚みの銅箔(0.3mmφのパンチング孔を開けて空隙率9.1%にしたもの)上に塗布して乾燥する。ポリプロピレンフィルムにガスデポジション法で蒸着した金属リチウム箔23.13μmを銅箔上にロールプレスで転写しながら圧下する。両面塗布品は、90.4μm、片面塗布品は、48.2μmにした。両面塗工膜14枚と片面塗工膜2枚を縦10.4cm、横20.4cmの寸法に切り出す。重ねる負極は、正確に位置決めをし実施例1と同じ正極上に重ねる。正極は、両面塗布品15枚を使用した。4端面が0.5mm大きいKEE社製の無塗装耐熱性ポリオレフィンセパレータの厚さ5.0μmを30枚を正極と負極の間に介在させて、かつ、正極と負極は、正確に対峙しているように積層型レトルトパックとしてアルミニウムラミネート袋に挿入する。電解液を注入して注入口を仮閉鎖しておく。第1回と第2回目の充放電は、0.1Cの電流値で4.10-2.90VのCCCV(定電流-定電圧充放電)モードの前処理として扱う。第3回目の充放電とそれ以降は、0.2Cの電流値での4.10-2.90VのCCCV(定電流-定電圧充放電)モードの収れん電流を0.01mAとし、レスト時間(充電と放電の切り替え時に充放電回路に電流が流れない時間)を15分間とする。第1回と第2回目の充電を終えてレスト時間の間にレトルトパック内電解液注入口を開けてやや減圧にしてレトルトパック内から発生したガスを吸引除去する。第3回目の充電に入る前のレスト時間に電解液注入口を熱シールして封口する。更に金属板に挟んだレトルトパック電池の金属板の4角に蝶ねじをつけて置き、充放電を繰り返す間、厚み方向の寸法変化がほとんど起きないように固定・拘束する。この機械的操作の導入により充電中に発生する負極電極内の空隙増加を抑制し、良好な電子伝導性を保持しようとした。電池容量の基準は、第3回目の充電を初回充電として充電容量とし、これに対応しての初回放電容量を初回電池容量とする。初回(第3回目の充電)の電池容量は、24.0Ahであった。比較例1の黒鉛を負極活物質とする電池に比して、ほぼ同じ体積で16.0Ahなので1.5倍の電池容量になった。1回のチャージ(充電で)500km走行できる電気自動車は、750kmまで走行できることになる。現行の電池製造設備に電気化学的材料を変更した電極とし、充電する際の体積膨張を機械的に抑制することにより高電池容量で一酸化珪素と黒鉛系で従来のような突然の容量劣化がなく、黒鉛のみの負極の容量保持率を凌駕する結果(表1)を得られた。充放電300サイクル目の電池容量保持率は、90%であった。また50サイクル目付近からの突然の電池容量低下は全く見られなかった。A water-soluble coated paste of a negative electrode active material having a mass ratio of carbon-coated silicon monoxide particles (manufactured by Osaka Titanium Technologies Co., Ltd.) and graphite of 95: 5 is prepared and applied to a punching copper foil. 207.5 g of carbon-coated silicon monoxide particles (manufactured by Osaka Titanium Technologies) and 95.0 g of nano-level fibrous graphite, VGCF-H (manufactured by Showa Denko) are mixed with a high-speed mixer, and further. 10.6 g of artificial graphite (currently manufactured by Showa Denko Materials Co., Ltd., formerly manufactured by Hitachi Kasei Co., Ltd.) was added and mixed. As a binder, 38.7 g of AGC Lumiflon FE4300 latex (diluted solid content from 50% to 25%) is added to the graphite powder mixture and mixed by stirring, and deionized water is added to adjust the slurry concentration. .. It is applied on a copper foil having a thickness of 6.0 μm (a punching hole of 0.3 mmφ is formed to have a porosity of 9.1%) and dried. A 23.13 μm metallic lithium foil deposited on a polypropylene film by a gas deposition method is pressed down while being transferred onto a copper foil by a roll press. The double-sided coating was 90.4 μm, and the single-sided coating was 48.2 μm. 14 double-sided coating films and 2 single-sided coating films are cut into dimensions of 10.4 cm in length and 20.4 cm in width. The negative electrodes to be stacked are accurately positioned and stacked on the same positive electrode as in the first embodiment. As the positive electrode, 15 double-sided coated products were used. 4 30 pieces of 5.0 μm thick unpainted heat-resistant polyolefin separator manufactured by KEE, whose end face is 0.5 mm larger, are interposed between the positive electrode and the negative electrode, and the positive electrode and the negative electrode face each other accurately. Insert it into an aluminum laminated bag as a laminated retort pack. Inject the electrolyte and temporarily close the injection port. The first and second charge / discharge are treated as pretreatment in the CCCV (constant current-constant voltage charge / discharge) mode of 4.10-2.90V with a current value of 0.1C. After the third charge / discharge, the convergence current of 4.10-2.90V CCCV (constant current-constant voltage charge / discharge) mode at a current value of 0.2C is set to 0.01mA, and the rest time (rest time ( The time during which no current flows through the charge / discharge circuit when switching between charging and discharging) is set to 15 minutes. During the rest time after the first and second charges are completed, the electrolytic solution injection port in the retort pack is opened and the pressure is slightly reduced to suck and remove the gas generated from the inside of the retort pack. During the rest time before starting the third charge, the electrolyte inlet is heat-sealed and sealed. Furthermore, a thumbscrew is attached to the four corners of the metal plate of the retort pack battery sandwiched between the metal plates, and fixed and restrained so that the dimensional change in the thickness direction hardly occurs while charging and discharging are repeated. By introducing this mechanical operation, we tried to suppress the increase of voids in the negative electrode generated during charging and maintain good electron conductivity. The standard of the battery capacity is that the third charge is the initial charge and the charge capacity is set, and the corresponding initial discharge capacity is the initial battery capacity. The battery capacity for the first time (third charge) was 24.0 Ah. Compared with the battery using graphite as the negative electrode active material of Comparative Example 1, the battery capacity was 1.5 times as large as 16.0 Ah in almost the same volume. An electric vehicle that can travel 500 km on a single charge can travel up to 750 km. By using electrodes with an electrochemical material changed to the current battery manufacturing equipment and mechanically suppressing volume expansion during charging, silicon monoxide and graphite-based batteries with high battery capacity can undergo sudden capacity deterioration as in the past. The result (Table 1) was obtained that exceeded the capacity retention rate of the negative electrode of graphite alone. The battery capacity retention rate in the 300th charge / discharge cycle was 90%. In addition, no sudden decrease in battery capacity was observed from around the 50th cycle.

比較例1Comparative Example 1

正極塗布膜は、平均粒子径5μmのコバルト酸リチウム(LiCoO)(ユミコアー社製)450.0gと導電助剤のSuperP、25.0gにあらかじめNMP(N-メチルピロリドン)に溶解してあるバインダーポリマーPVDF25.0gと混合・攪拌する。正極集電体の15μmのアルミニウム箔の両面に塗布し、ロールプレスして圧下した。1cmあたりの正極塗膜厚みは、94.9μmであった。縦10.0cm、横20.0cmの寸法で 法で10枚切り出す。負極塗布膜は、活物質の平均粒子径10μmの天然黒鉛粉砕粒子485.0gをCMC(カルボキシメチルセルロースナトリウム)5.0gとカルボン酸変性ポリスチレン-ブタジエンコポリマーラテックス(固形分48%)20.8gと脱イオン水とに混合し、スラリーとする。パンチングなしの銅箔13μmに両面塗布し、乾燥後ロールプレスで圧下し、200μmの膜厚みとし、片面塗布は、106.5μmとした。両面塗工膜9枚と片面塗工膜2枚を縦10.4cm、横20.4cmの寸法に切り出す。重ねる負極は、正確に位置決めをし正極上に重ねる。正極は、両面塗布品10枚を使用した。
4端面が0.5mm大きいアルミナ塗布・ポリイミドバインダーのポリエチレンセパレータ、膜厚12mを20枚を正極と負極の間に介在させて、かつ、正極と負極は、正確に対峙しているように積層型レトルトパックとしてアルミニウムラミネート袋に挿入する。電解液を注入して注入口を仮閉鎖しておく。前処理第1回目の充放電は、前処理として扱う。0.2Cの電流値での4.20V2.75VのCCCV(定電流-定電圧充放電)モードで収れん電流を0.01mAとし、レスト時間(充電と放電の切り替え時に充放電回路に電流が流れない時間)を15分間とする。第1回目の充電を終えてレスト時間の間にレトルトパック内電解液注入口を開けてやや減圧にしてレトルトパック内から発生したガスを吸引除去した後、封口した。2.75Vまで放電を実施し、15分間のレスト後、第2回目の充電容量と放電容量を測定する。第2回目の充電を初回充電とみなし、これに対応しての初回放電時の放電容量を電池容量とした。初回(第2回目の放電)の電池容量は、16.0Ahであった。比較例1の電池を電気自動車(EV)に組電池として電源に使用した場合に1回の充電で初期に500km走行する基準とした。
The positive electrode coating film is a binder previously dissolved in NMP (N-methylpyrrolidone) in 450.0 g of lithium cobalt oxide (LiCoO 2 ) (manufactured by Yumicoa) having an average particle diameter of 5 μm and SuperP, 25.0 g of a conductive auxiliary agent. Mix and stir with 25.0 g of polymer PVDF. It was applied to both sides of a 15 μm aluminum foil of a positive electrode current collector, and rolled and pressed. The thickness of the positive electrode coating film per 1 cm 2 was 94.9 μm. Cut out 10 sheets by the method with dimensions of 10.0 cm in length and 20.0 cm in width. For the negative electrode coating film, 485.0 g of natural graphite pulverized particles having an average particle diameter of 10 μm of the active material were removed from 5.0 g of CMC (sodium carboxymethyl cellulose) and 20.8 g of carboxylic acid-modified polystyrene-butadiene copolymer latex (solid content 48%). Mix with ionized water to make a slurry. Double-sided coating was applied to 13 μm of copper foil without punching, and after drying, the film was pressed down with a roll press to a film thickness of 200 μm, and single-sided coating was 106.5 μm. Nine double-sided coating films and two single-sided coating films are cut into dimensions of 10.4 cm in length and 20.4 cm in width. The negative electrodes to be stacked are accurately positioned and stacked on the positive electrode. As the positive electrode, 10 double-sided coated products were used.
4 Alumina-coated polyimide binder polyethylene separator with an end face 0.5 mm larger, 20 sheets with a thickness of 12 m are interposed between the positive and negative electrodes, and the positive and negative electrodes are laminated so that they face each other exactly. Insert it into an aluminum laminate bag as a retort pack. Inject the electrolyte and temporarily close the injection port. Pretreatment The first charge / discharge is treated as pretreatment. In the CCCV (constant current-constant voltage charge / discharge) mode of 4.20V 2.75V with a current value of 0.2C, the convergence current is set to 0.01mA, and the rest time (current flows in the charge / discharge circuit when switching between charging and discharging). No time) is 15 minutes. After the first charge was completed, the electrolyte injection port in the retort pack was opened during the rest time, the pressure was slightly reduced, and the gas generated from the inside of the retort pack was sucked off and then sealed. Discharge to 2.75V, rest for 15 minutes, and then measure the second charge and discharge capacity. The second charge was regarded as the first charge, and the corresponding discharge capacity at the time of the first discharge was taken as the battery capacity. The battery capacity for the first time (second discharge) was 16.0 Ah. When the battery of Comparative Example 1 was used as a built-in battery in an electric vehicle (EV) as a power source, it was used as a standard for initially traveling 500 km on a single charge.

比較例2Comparative Example 2

負極塗布膜は、被覆一酸化珪素と炭素類との質量比率が30:70の負極活物質を以下のように作製する。カーボン被覆の一酸化珪素粒子(大阪チタニウムテクノロジーズ社製)を151.9g、平均粒子径20μmの天然黒鉛342.5gを高速ミキサーで粉末を混合する。バインダーCMC(カルボキシメチルセルロースナトリウム)5.1gとカルボン酸変性ポリスチレン-ブタジエンコポリマーラテックス(固形分48%)40.8gと脱イオン水とに混合し、スラリーとする。パンチング細孔のない銅箔13μmに両面塗布し、乾燥後ロールプレスで圧下し、両面塗布83.9μmの膜厚みとし、片面塗布は、46.2μmとした。両面塗工膜9枚と片面塗工膜2枚を縦10.4cm、横20.4cmの寸法に切り出す。重ねる負極は、正確に位置決めをし正極上に重ねる。正極は、比較例1と同じ両面塗布品10枚を使用した。4端面が0.5mm大きいアルミナ粒子塗布・ポリイミドバインダーのポリエチレンセパレータ(セラミックス塗布ポリエチレンセパレータ)の12μm厚みを20枚を正極と負極の間に介在させて、かつ、正極と負極は、正確に対峙しているように積層型レトルトパックとしてアルミニウムラミネート袋に挿入する。、電解液を注入して注入口を仮閉鎖しておく。第1回と第2回目の充放電は、0.1Cの電流値での4.20V-2.50VのCCCV(定電流-定電圧充放電)モード、収れん電流を0.01mAとし、レスト時間(充電と放電の切り替え時に充放電回路に電流が流れない時間)を115分間とし、前処理として扱った。第1回目の充電を終えてレスト時間の間にレトルトパック内電解液注入口を開けてやや減圧にしてレトルトパック内から発生したガスを吸引除去する。第2回目の充電に入る前のレスト時間に電解液注入口を熱シールして封口する。電池容量の基準は、第2回目の充電を初回充電とみなし、これに対応しての初回放電時の放電容量を電池容量とした。初回(第2回目の充電)の電池容量は、19.2Ahであったが充放電サイクル20回目の電池容量保持率が30%を切ったので充放電を終了とした。As the negative electrode coating film, a negative electrode active material having a mass ratio of coated silicon monoxide and carbons of 30:70 is prepared as follows. 151.9 g of carbon-coated silicon monoxide particles (manufactured by Osaka Titanium Technologies Co., Ltd.) and 342.5 g of natural graphite having an average particle diameter of 20 μm are mixed with a high-speed mixer. Mix 5.1 g of binder CMC (sodium carboxymethyl cellulose), 40.8 g of carboxylic acid-modified polystyrene-butadiene copolymer latex (solid content 48%) and deionized water to make a slurry. A copper foil having no punching pores was coated on both sides of 13 μm, dried, and then pressed down with a roll press to obtain a film thickness of 83.9 μm for double-sided coating and 46.2 μm for single-sided coating. Nine double-sided coating films and two single-sided coating films are cut into dimensions of 10.4 cm in length and 20.4 cm in width. The negative electrodes to be stacked are accurately positioned and stacked on the positive electrode. As the positive electrode, 10 double-sided coated products as in Comparative Example 1 were used. 4. 20 sheets of 12 μm thickness of polyethylene separator (ceramic coated polyethylene separator) coated with alumina particles whose end face is 0.5 mm larger are interposed between the positive electrode and the negative electrode, and the positive electrode and the negative electrode face each other accurately. Insert it into an aluminum laminated bag as a laminated retort pack. , Inject the electrolyte and temporarily close the injection port. The first and second charge / discharge are 4.20V-2.50V CCCV (constant current-constant voltage charging / discharging) mode with a current value of 0.1C, the convergence current is 0.01mA, and the rest time. (Time during which no current flows through the charging / discharging circuit when switching between charging and discharging) was set to 115 minutes and treated as pretreatment. After the first charge is completed and during the rest time, the electrolytic solution injection port in the retort pack is opened and the pressure is slightly reduced to suck and remove the gas generated from the inside of the retort pack. During the rest time before starting the second charge, the electrolyte inlet is heat-sealed and sealed. As the standard of the battery capacity, the second charge was regarded as the first charge, and the corresponding discharge capacity at the time of the first discharge was taken as the battery capacity. The battery capacity for the first time (second charge) was 19.2 Ah, but the battery capacity retention rate for the 20th charge / discharge cycle was less than 30%, so the charge / discharge was terminated.

Figure 2022064255000001
Figure 2022064255000001

本発明によれば、負極に一酸化珪素と黒鉛を使用し、正極集電体をアルミニウム箔から貫通孔を有するステンレススチール316L箔に変更し、セパレータを無塗装の耐熱性ポリオレフィンセパレータの薄膜を用いて電池容量を飛躍的に高めることによりエネルギー密度化・大型化した高性能なリチウムイオン二次電池に望まれる安全性より高く、一酸化珪素と黒鉛との混合物を負極活物質に観察されたという50サイクル目付近から突然の電池容量低下もないリチウムイオン二次電池の製造方法を見出して本発明に至った。特に電気自動車用電源に有用である。According to the present invention, silicon monoxide and graphite are used for the negative electrode, the positive electrode current collector is changed from an aluminum foil to a stainless steel 316L foil having through holes, and the separator is a thin film of an unpainted heat-resistant polyolefin separator. It is said that a mixture of silicon monoxide and graphite was observed as the negative electrode active material, which is higher than the safety desired for a high-performance lithium-ion secondary battery with increased energy density and size by dramatically increasing the battery capacity. We have found a method for manufacturing a lithium ion secondary battery that does not cause a sudden decrease in battery capacity from around the 50th cycle, and have reached the present invention. It is especially useful as a power source for electric vehicles.

Claims (10)

負極が、一酸化珪素95質量%~30質量%と黒鉛類5質量%~70質量%とナノレベルの繊維状の炭素質あるいはナノレベルの繊維状黒鉛からなり、正極がリチウム遷移金属酸化物であり、セパレータ、電解液を含有することを特徴とするリチウムイオン二次電池。The negative electrode is composed of 95% by mass to 30% by mass of silicon monoxide, 5% by mass to 70% by mass of graphite, and nano-level fibrous carbonaceous material or nano-level fibrous graphite, and the positive electrode is a lithium transition metal oxide. A lithium-ion secondary battery characterized by containing a separator and an electrolytic solution. 負極の活物質の一酸化珪素100質量部あたりナノレベルの繊維状の炭素質あるいはナノレベルの繊維状黒鉛を10質量部~100質量部を含有することを特徴とする請求項1のリチウムイオン二次電池。The lithium ion II according to claim 1, wherein the active material of the negative electrode contains 10 parts by mass to 100 parts by mass of nano-level fibrous carbonaceous material or nano-level fibrous graphite per 100 parts by mass of silicon monoxide. Next battery. 負極に黒鉛繊維と丸みを帯びた黒鉛の混合物を5質量%から70質量%の範囲で含むことを特徴とする請求項1のリチウムイオン二次電池。The lithium ion secondary battery according to claim 1, wherein the negative electrode contains a mixture of graphite fibers and rounded graphite in the range of 5% by mass to 70% by mass. 負極に黒鉛繊維と球状のコークス質を被覆した黒鉛の混合物を5質量%から70質量%の範囲で含むことを特徴とする請求項1のリチウムイオン二次電池。The lithium ion secondary battery according to claim 1, wherein the negative electrode contains a mixture of graphite fibers and graphite coated with spherical coke in the range of 5% by mass to 70% by mass. 負極に多数の細孔を有する球塊状の人工黒鉛を5質量%から70質量%の範囲で含むことを特徴とする請求項1のリチウムイオン二次電池。The lithium ion secondary battery according to claim 1, further comprising spherical artificial graphite having a large number of pores in the negative electrode in the range of 5% by mass to 70% by mass. 正極集電体に10μm以下3μmまでの厚みと空孔率1~30%のステンレススチール316L箔と負極集電体に15~5μmの厚みと空孔率1~30%を有する銅箔あるいはステンレススチール304箔とセパレータにポリ4メチル-1-ペンテンを30質量~60質量%を含有する3~15μmの厚みの耐熱性ポリオレフィン微多孔膜からなることを特徴とする請求項1~5のリチウムイオン二次電池。Stainless steel 316L foil with a thickness of 10 μm or less and up to 3 μm and a porosity of 1 to 30% for the positive electrode collector and copper foil or stainless steel with a thickness of 15 to 5 μm and a porosity of 1 to 30% for the negative electrode collector. Lithium ion di of claims 1 to 5, which comprises a heat-resistant polyolefin microporous film having a thickness of 3 to 15 μm containing 30 to 60% by mass of poly 4-methyl-1-pentene in a 304 foil and a separator. Next battery. 請求項1~6において負極膜に金属リチウム箔を貼り付けておいて前処理の充放電を行うことを特徴とするリチウムイオン二次電池の製造方法。A method for manufacturing a lithium ion secondary battery according to claim 1 to 6, wherein a metallic lithium foil is attached to a negative electrode film and charging / discharging of the pretreatment is performed. 金属箔とナイロン、ポリプロピレン等からなるプラスチックラミネート外装袋を使用してのレトルトパック型リチウムイオン二次電池の製造方法において請求項7の前処理の放電後に電池の全体を機械的方法で厚み方向の増加を抑制することを特徴とするリチウムイオン二次電池の製造方法。In a method for manufacturing a retort-pack type lithium-ion secondary battery using a metal foil and a plastic laminated outer bag made of nylon, polypropylene, etc., the entire battery is mechanically formed in the thickness direction after the pretreatment discharge according to claim 7. A method for manufacturing a lithium ion secondary battery, which is characterized by suppressing an increase. 請求項1~8において電極バインダーに、架橋性のフルオロアルキルポリマーのラテックスを使用することを特徴とするリチウムイオン二次電池の製造方法。A method for producing a lithium ion secondary battery according to claims 1 to 8, wherein a latex of a crosslinkable fluoroalkyl polymer is used as an electrode binder. 請求項1~9に記載の電池を電気自動車の電源としての使用することを特徴とするリチウムイオン二次電池。A lithium ion secondary battery, wherein the battery according to any one of claims 1 to 9 is used as a power source for an electric vehicle.
JP2020181898A 2020-10-13 2020-10-13 Lithium-ion secondary battery using mixture of silicon monoxide and graphite as negative electrode active material and manufacturing method thereof Pending JP2022064255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020181898A JP2022064255A (en) 2020-10-13 2020-10-13 Lithium-ion secondary battery using mixture of silicon monoxide and graphite as negative electrode active material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020181898A JP2022064255A (en) 2020-10-13 2020-10-13 Lithium-ion secondary battery using mixture of silicon monoxide and graphite as negative electrode active material and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2022064255A true JP2022064255A (en) 2022-04-25

Family

ID=81378575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020181898A Pending JP2022064255A (en) 2020-10-13 2020-10-13 Lithium-ion secondary battery using mixture of silicon monoxide and graphite as negative electrode active material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2022064255A (en)

Similar Documents

Publication Publication Date Title
US9843045B2 (en) Negative electrode active material and method for producing the same
TWI458154B (en) Lithium secondary battery
JP5462445B2 (en) Lithium ion secondary battery
WO2013183530A1 (en) Negative electrode for lithium ion secondary cell, negative electrode slurry for lithium ion secondary cell, and lithium ion secondary cell
KR102256479B1 (en) Negative electrode active material for lithium secondary battery, and preparing method therof
WO2015015548A1 (en) Negative electrode material for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, lithium ion secondary battery, and method for producing negative electrode material for lithium ion secondary batteries
JP6808948B2 (en) Negative electrode for non-aqueous lithium-ion secondary battery, its manufacturing method and non-aqueous lithium-ion secondary battery
KR102088858B1 (en) Electrode for lithium secondary battery comprising hygroscopic materials and lithium secondary battery comprising the same
CN114342148A (en) Method for manufacturing secondary battery
JP6237777B2 (en) Negative electrode active material, negative electrode using the same, and lithium ion secondary battery
JP2015018775A (en) Negative electrode for secondary battery and manufacturing method therefor, and secondary battery using the same
JP6083289B2 (en) Lithium ion secondary battery
JP2014011093A (en) Negative electrode material, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method for manufacturing them
JP2017152122A (en) Negative electrode active material for lithium ion secondary batteries, negative electrode for lithium ion secondary battery and lithium ion secondary battery
KR101396847B1 (en) Anode active material comprising natural graphite particle with improved strength and litium secondary battery employed with the same
US11349125B2 (en) Spacer included electrodes structure and its application for high energy density and fast chargeable lithium ion batteries
JP2022064255A (en) Lithium-ion secondary battery using mixture of silicon monoxide and graphite as negative electrode active material and manufacturing method thereof
WO2014128844A1 (en) Lithium ion secondary battery
CN114051666A (en) Method for manufacturing secondary battery
JP6128228B2 (en) Negative electrode active material, negative electrode using the same, and lithium ion secondary battery
JP2023048949A (en) High capacity lithium ion secondary battery
JP2023048950A (en) High capacity lithium ion secondary battery
KR102634269B1 (en) Separator for lithium-sulfur battery and an lithium-sulfur battery comprising the same
JP6992580B2 (en) Active material and lithium-ion secondary battery using it
US20230378441A1 (en) Positive Electrode Active Material for Secondary Battery, Manufacturing Method Thereof, Freestanding Film Comprising the Same, Dry Electrode and Secondary Battery Comprising Dry Electrode