JP2022063073A - Coating film evaluation system - Google Patents

Coating film evaluation system Download PDF

Info

Publication number
JP2022063073A
JP2022063073A JP2020171410A JP2020171410A JP2022063073A JP 2022063073 A JP2022063073 A JP 2022063073A JP 2020171410 A JP2020171410 A JP 2020171410A JP 2020171410 A JP2020171410 A JP 2020171410A JP 2022063073 A JP2022063073 A JP 2022063073A
Authority
JP
Japan
Prior art keywords
coating film
frequency
logging
electrode
characteristic value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020171410A
Other languages
Japanese (ja)
Other versions
JP7307713B2 (en
Inventor
俊男 堀江
Toshio Horie
学 北原
Manabu Kitahara
龍幸 尼子
Tatsuyuki Amako
広行 森
Hiroyuki Mori
幹雄 浅井
Mikio Asai
裕司 小野
Yuji Ono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2020171410A priority Critical patent/JP7307713B2/en
Publication of JP2022063073A publication Critical patent/JP2022063073A/en
Application granted granted Critical
Publication of JP7307713B2 publication Critical patent/JP7307713B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

To provide a system with which it is possible to appropriately evaluate the degradation of a coating film.SOLUTION: Provided is a system for evaluating the degradation of a coating film that covers a base substance (e1). The system comprises: a sensor unit (d) having a first electrode (e1) being in contact with one surface of the test layer (p1) to be evaluated which is at least a portion of a coating film (p), and a second electrode (e2) being in contact with the other surface of the test layer; a measurement unit for applying an alternating current of specific frequency between the first and the second electrodes and finding a characteristic value that reflects the dielectric property of the test layer; and an evaluation unit for comparing the characteristic value with a prescribed value and evaluating the degradation degree of the test layer. The characteristic value is, for example, a dielectric loss tangent (tanδ). For the specific frequency, for example, a first frequency on the high frequency side and a second frequency on the low frequency side may be adopted. The degradation of the coating film which could not be grasped by the conventional AC impedance method can now be appropriately grasped.SELECTED DRAWING: Figure 2A

Description

本発明は、塗膜の劣化度を評価できるシステム等に関する。 The present invention relates to a system or the like capable of evaluating the degree of deterioration of a coating film.

意匠性や防食性等を確保するため、部材や構造物等は塗膜で被覆される。塗膜は、外環境の影響を受けて、初期状態から経時的に変化(いわゆる劣化)し得る。特に、屋外に曝される塗膜は、太陽光、風雨、腐食性ガス等の影響を受けて劣化が進行し易い。 Members and structures are coated with a coating film to ensure design and corrosion resistance. The coating film may change over time (so-called deterioration) from the initial state due to the influence of the external environment. In particular, the coating film exposed to the outdoors is easily deteriorated due to the influence of sunlight, wind and rain, corrosive gas and the like.

塗膜の劣化具合(「劣化度」という。)や劣化傾向を評価(分析)できれば、塗膜の補修・保全、塗料や塗装等の開発研究に役立つ。そこで、塗膜の劣化評価に関連する提案がなされており、下記の文献に関連する記載がある。 If the degree of deterioration (referred to as "deterioration degree") and deterioration tendency of the coating film can be evaluated (analyzed), it will be useful for repair and maintenance of the coating film and development research of paints and paints. Therefore, a proposal related to the deterioration evaluation of the coating film has been made, and there is a description related to the following documents.

特開平3-160354号公報Japanese Unexamined Patent Publication No. 3-160354 特開2004-53474号公報Japanese Unexamined Patent Publication No. 2004-53474 特開2007-101184号公報Japanese Unexamined Patent Publication No. 2007-101184

久保田ら,”交流インピーダンス測定による鉄鋼面塗装材の劣化予測”,大成建設技術センター報,Vol.43(2010),no.17,PP.1-5Kubota et al., "Prediction of Deterioration of Steel Surface Coating Material by AC Impedance Measurement", Taisei Corporation Bulletin, Vol.43 (2010), no.17, PP.1-5

いずれの文献も、交流インピーダンス法により、インピーダンスの変化に基づいて塗膜の劣化を評価(診断、監視等)している。しかし、塗膜のインピーダンスは、塗膜の劣化がかなり進行した後に顕著な変化を示す。このため、従来の評価手法では、寿命到達前の塗膜の劣化(例えば外観変化が殆ど生じていない段階での劣化)を適切に評価できなかった。 In each document, the deterioration of the coating film is evaluated (diagnosis, monitoring, etc.) based on the change in impedance by the AC impedance method. However, the impedance of the coating film shows a remarkable change after the deterioration of the coating film has progressed considerably. For this reason, the conventional evaluation method cannot appropriately evaluate the deterioration of the coating film before the end of its life (for example, the deterioration at the stage where almost no change in appearance occurs).

本発明は、このような事情に鑑みてなされたものであり、従来とは異なる手法により、塗膜の劣化を評価できる塗膜評価システム等を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a coating film evaluation system or the like capable of evaluating deterioration of a coating film by a method different from the conventional method.

本発明者はこの課題を解決すべく鋭意研究した結果、塗膜の誘電特性またはそれに関連する指標値を用いて、塗膜の劣化度を評価することを着想すると共に具現化した。この成果を発展させることにより、以降に述べる本発明を完成するに至った。 As a result of diligent research to solve this problem, the present inventor has conceived and embodied the evaluation of the degree of deterioration of the coating film using the dielectric property of the coating film or the index value related thereto. By developing this result, the present invention described below was completed.

《塗膜評価システム》
(1)本発明は、基体を覆う塗膜の劣化を評価するシステムであって、該塗膜の少なくとも一部で評価対象である被検層の一面側に接する第1電極と該被検層の他面側に接する第2電極とを有するセンサ部と、該第1電極と該第2電極の間に特定周波数の交流を通電して、該被検層の誘電特性を反映した特性値を求める測定部と、該特性値を所定値と比較して該被検層の劣化度を評価する評価部と、を備える塗膜評価システムである。
<< Coating film evaluation system >>
(1) The present invention is a system for evaluating deterioration of a coating film covering a substrate, and is a first electrode in contact with one side of a logging object to be evaluated in at least a part of the coating film and the logging object. A sensor unit having a second electrode in contact with the other surface side and an AC of a specific frequency are energized between the first electrode and the second electrode to obtain characteristic values reflecting the dielectric characteristics of the logging. It is a coating film evaluation system including a measuring unit to be obtained and an evaluation unit for evaluating the degree of deterioration of the logging subject by comparing the characteristic value with a predetermined value.

(2)本発明の塗膜評価システム(単に「システム」ともいう。)では、塗膜の誘電特性を反映した特性値を用いて塗膜の劣化度を評価するため、従来よりも塗膜の劣化を適切に評価できる。例えば、塗膜の寿命前(劣化が外観に表出してインピーダンスが大きく変化する以前等)でも、本発明のシステムによれば、塗膜の状態変化を把握でき、塗膜の残存寿命(「余寿命」ともいう。)を予測できる。 (2) In the coating film evaluation system of the present invention (also simply referred to as "system"), the degree of deterioration of the coating film is evaluated using the characteristic value reflecting the dielectric property of the coating film. Deterioration can be evaluated appropriately. For example, according to the system of the present invention, even before the life of the coating film (before deterioration appears on the appearance and the impedance changes significantly), the state change of the coating film can be grasped and the remaining life of the coating film (“remaining life”). Also called "lifetime") can be predicted.

《塗膜評価方法等》
(1)本発明は、塗膜評価方法としても把握できる。例えば、本発明は、基体を覆う塗膜の少なくとも一部を構成する評価対象である被検層に特定周波数の交流を通電して、該被検層の誘電特性を反映した特性値を求める測定工程(ステップ)と、 該特性値を所定値と比較して該被検層の劣化度を評価する評価工程(ステップ)と、を備える塗膜評価方法でもよい。
<< Coating film evaluation method, etc. >>
(1) The present invention can also be grasped as a coating film evaluation method. For example, the present invention is a measurement in which a logging subject to be evaluated, which constitutes at least a part of a coating film covering a substrate, is energized with an AC of a specific frequency to obtain a characteristic value reflecting the dielectric characteristics of the logging subject. A coating film evaluation method comprising a step (step) and an evaluation step (step) for evaluating the degree of deterioration of the logging subject by comparing the characteristic value with a predetermined value may be used.

(2)本発明は、塗膜の劣化を評価するシステムや方法に使用できるセンサとしても把握される。例えば、本発明は、塗膜の少なくとも一部で評価対象である被検層に接する電極対(第1電極と第2電極)を備え、被検層に特定周波数の交流を通電して、被検層の誘電特性または特性値の検出または測定に用いることができるセンサでもよい。 (2) The present invention is also understood as a sensor that can be used in a system or method for evaluating deterioration of a coating film. For example, the present invention comprises an electrode pair (first electrode and second electrode) in contact with a logging object to be evaluated at least a part of the coating film, and the logging subject is subjected to alternating current of a specific frequency. It may be a sensor that can be used to detect or measure the dielectric properties or characteristic values of logging.

電極の一方(第1電極)は、塗膜が形成される基体を利用してもよい。塗膜は、基体(部材や構造物等の一部)に直接形成されたものでもよいし、センサ専用の基体(第1電極)に形成されたものでもよい。前者なら、部材や構造物等に実際に形成されている塗膜(単に「実塗膜」という。)そのものを評価できる。後者なら、センサの後付け等により、実塗膜と同様な環境下において、高い自由度で塗膜の劣化評価を行える。なお、いずれの場合でも、その場(in-situ)観察・測定が可能となる。 As one of the electrodes (first electrode), a substrate on which a coating film is formed may be used. The coating film may be directly formed on a substrate (a part of a member, a structure, or the like), or may be formed on a substrate (first electrode) dedicated to the sensor. In the former case, the coating film (simply referred to as "actual coating film") actually formed on a member or a structure can be evaluated. In the latter case, deterioration of the coating film can be evaluated with a high degree of freedom in the same environment as the actual coating film by retrofitting a sensor or the like. In any case, in-situ observation / measurement is possible.

《その他》
(1)本明細書でいう「~部」、「~手段」、「~工程」または「~ステップ」は、相互に読み替えることができる。これにより、本発明は、物の発明(塗膜評価システム、塗膜評価プログラム、塗膜評価装置(センサを含む)等)としても、方法の発明(塗膜評価方法等)としても把握される。なお、プログラムは、各手段や各ステップがコンピュータにより実行される。
"others"
(1) The "-part", "-means", "-process" or "-step" referred to in the present specification can be interchangeably read. Thereby, the present invention can be grasped as both an invention of a product (coating film evaluation system, a coating film evaluation program, a coating film evaluation device (including a sensor), etc.) and an invention of a method (coating film evaluation method, etc.). .. In the program, each means and each step is executed by a computer.

(2)特に断らない限り本明細書でいう「x~y」は、下限値xおよび上限値yを含む。本明細書に記載した種々の数値または数値範囲に含まれる任意の数値を新たな下限値または上限値として、「a~b」のような範囲を新設し得る。 (2) Unless otherwise specified, "x to y" in the present specification includes a lower limit value x and an upper limit value y. A range such as "a to b" may be newly established by using any numerical value included in the various numerical values or numerical ranges described in the present specification as a new lower limit value or upper limit value.

塗膜の誘電正接の経時変化を示すデータベース(一例)である。This is a database (example) showing changes in the dielectric loss tangent of a coating film over time. 塗膜の評価システムの構成例を示す模式図である。It is a schematic diagram which shows the structural example of the evaluation system of a coating film. 塗膜に接する第2電極(一例)を模式的に示す平面図である。It is a top view which shows typically the 2nd electrode (one example) in contact with a coating film. 塗膜の劣化に係るデータ群を構成する処理フロー(一例)である。It is a processing flow (example) which constitutes the data group which concerns on the deterioration of a coating film. 塗膜の評価システムの応用例を示す模式図である。It is a schematic diagram which shows the application example of the evaluation system of a coating film. 鋼板上に形成した塗膜の誘電正接の周波数特性(一例)を示す散布図である。It is a scatter diagram which shows the frequency characteristic (example) of the dielectric loss tangent of the coating film formed on the steel sheet. その塗膜のインピーダンスの周波数特性(一例)を示す散布図である。It is a scatter diagram which shows the frequency characteristic (example) of the impedance of the coating film. 亜鉛めっき鋼板上に形成した塗膜の誘電正接の周波数特性(一例)を示す散布図である。It is a scatter diagram which shows the frequency characteristic (example) of the dielectric loss tangent of the coating film formed on the galvanized steel sheet. その塗膜のインピーダンスの周波数特性(一例)を示す散布図である。It is a scatter diagram which shows the frequency characteristic (example) of the impedance of the coating film.

上述した本発明の構成要素に、本明細書中から任意に選択した一つまたは二つ以上の構成要素を付加し得る。本明細書で説明する内容は、塗膜評価システムのみならず、塗膜評価方法、塗膜評価用センサ等にも適宜該当し得る。いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。 One or more components arbitrarily selected from the present specification may be added to the components of the present invention described above. The contents described in the present specification may be appropriately applied not only to the coating film evaluation system but also to the coating film evaluation method, the coating film evaluation sensor and the like. Which embodiment is the best depends on the target, required performance, and the like.

《基体》
塗膜(被検層)により被覆される基体は、金属製でも非金属製でもよい。金属は、例えば、鉄系、アルミニウム系、マグネシウム系、チタン系等のいずれでもよい。本明細書でいう「~系」は、純金属または合金を意味する。基体の代表例は、部材や構造物を構成する鋼板(めっき鋼板を含む)、アルミニウム合金板等である。
<< Hypokeimenon >>
The substrate coated with the coating film (logger) may be made of metal or non-metal. The metal may be, for example, iron-based, aluminum-based, magnesium-based, titanium-based, or the like. As used herein, the term "~ system" means a pure metal or alloy. Typical examples of the substrate are steel plates (including plated steel plates) and aluminum alloy plates that constitute members and structures.

《塗膜》
塗膜は、主に非導電材(絶縁材、誘電材等)からなる。非導電材は、例えば、樹脂、油脂、セラミックス等である。塗膜は、粒子状または繊維状の充填材(顔料、添加剤等を含む)を含んでもよい。塗膜を形成する塗料の種類(溶剤の有無、溶剤の種類等)は問わない。
《Painting film》
The coating film is mainly composed of a non-conductive material (insulating material, dielectric material, etc.). The non-conductive material is, for example, a resin, an oil or fat, a ceramic or the like. The coating film may contain a particulate or fibrous filler (including pigments, additives, etc.). The type of paint that forms the coating film (presence or absence of solvent, type of solvent, etc.) does not matter.

塗膜は、単層でも複層(多層)でもよい。複層は、通常、種類または成分の異なる塗料を塗り重ねて形成される。例えば、自動車のボディを被覆する塗膜は、通常、少なくとも3層からなる。具体的にいうと、鋼板等を成形したパネル(基体)に、防食性を確保するための電着塗装、耐ピッチング性・遮光性・平滑性等を確保するための中塗り塗装、意匠性・耐候性等を確保するための上塗り塗装等が順になされて、多層の塗膜が形成される。ちなみに、電着塗装前のパネルは、化成処理等の前処理がなされていてもよい。また、上塗り塗装は、通常、有色なベース塗装と、透明なクリア塗装とがなされる。 The coating film may be a single layer or a plurality of layers (multilayer). The multi-layer is usually formed by applying paints of different types or components. For example, the coating film that covers the body of an automobile usually consists of at least three layers. Specifically, the panel (base) formed from a steel plate or the like is electrodeposited to ensure corrosion resistance, intermediate coating to ensure pitching resistance, light shielding, smoothness, etc., and designability. Topcoating and the like for ensuring weather resistance and the like are applied in order to form a multi-layered coating film. Incidentally, the panel before electrodeposition coating may be subjected to pretreatment such as chemical conversion treatment. In addition, the topcoat coating is usually a colored base coating and a transparent clear coating.

評価対象である被検層は、単層でも複層でもよい。塗膜が複層でも、被検層は、その一層だけでもよいし、二層以上(全層を含む)でもよい。評価目的に応じて被検層が選択される。 The logging subject to be evaluated may be a single layer or a plurality of layers. The coating film may be a plurality of layers, or the logging may be only one layer thereof, or two or more layers (including all layers). Logging is selected according to the purpose of evaluation.

《電極》
電極は、被検層の各面側にそれぞれ設けられる。導電材からなる基体(一部)は、一方の電極(第1電極)を兼ねてもよい。なお、本明細書では、被検層に関して、基体側を「第1」、その反対側(外環境側)を「第2」という。
"electrode"
Electrodes are provided on each surface side of the logging layer. The substrate (part) made of a conductive material may also serve as one electrode (first electrode). In the present specification, the substrate side is referred to as "first" and the opposite side (external environment side) is referred to as "second" with respect to the logging subject.

電極は、被検層の誘電特性や導電性(インピーダンス等)に及ぼす影響が少ない材質からなるとよい。例えば、電極は、高耐食性(不溶性、難溶性)または標準電極電位が貴な導電材からなるとよい。具体的な電極材として、ステンレス、Ti系、貴金属(Pt、Au、Ag)、酸化物半導体、ニクタイド導電材(TiP、FeTiP、XTiP(X:金属元素)等)などがある。 The electrode should be made of a material that has little effect on the dielectric properties and conductivity (impedance, etc.) of the logging subject. For example, the electrode may be made of a conductive material that is highly corrosion resistant (insoluble, sparingly soluble) or has a noble standard electrode potential. Specific electrode materials include stainless steel, Ti-based materials, noble metals (Pt, Au, Ag), oxide semiconductors, nictide conductive materials (Ti 3P , FeTiP, XTiP (X: metal element), etc.).

但し、外環境に露出していない電極は、鉄系、アルミニウム系等でもよい。塗膜(被検層)で被覆されている基体を第1電極とする場合や、被検層(下層)上に配設された第2電極に上塗り(上層)を形成する場合等である。 However, the electrodes not exposed to the external environment may be iron-based, aluminum-based, or the like. This is the case where the substrate covered with the coating film (logger) is used as the first electrode, or the topcoat (upper layer) is formed on the second electrode arranged on the logging (lower layer).

電極は、その形態を問わないが、例えば、箔状または薄板状であればよい。外環境側となる第2電極は、通気性または通液性を有するとよい。これにより、外環境が被検層へ及ぼす作用(影響)が、第2電極より遮断されることが抑止される。つまり、第2電極下の被検層について、その劣化を適切に評価できる。このような第2電極は、例えば、多孔状(パンチングメタル(箔)、焼結体等)、網目状等であるとよい。 The electrode may be in any form, but may be, for example, foil-shaped or thin plate-shaped. The second electrode on the external environment side is preferably breathable or liquid-permeable. As a result, the action (effect) of the external environment on the logging layer is suppressed from being blocked by the second electrode. That is, the deterioration of the logging under the second electrode can be appropriately evaluated. Such a second electrode may be, for example, porous (punching metal (foil), sintered body, etc.), mesh-like, or the like.

《測定》
電極間に特定周波数の交流を通電して、その特定周波数に応じた被検層の誘電特性またはそれを反映した特性値が測定(算出または解析される場合を含む)される。
"measurement"
An alternating current of a specific frequency is applied between the electrodes, and the dielectric characteristics of the logging subject or the characteristic values that reflect the characteristics are measured (including when calculated or analyzed) according to the specific frequency.

(1)誘電特性として、被検層を誘電体とみたときの誘電率(ε)、被検層とその両側にある電極対とをコンデンサとみたときの静電容量(C)等がある。誘電率や静電容量等は、通常、周波数特性(依存性)を有し、通電される交流(電界)の周波数により変動し得る。これは誘電体を構成する分子の配向(分極)遅れや熱振動、コンデンサの電極間に生じる漏れ電流(誘電損)等に起因する。 (1) Dielectric characteristics include the permittivity (ε) when the logging object is regarded as a dielectric, and the capacitance (C) when the logging object and the electrode pairs on both sides thereof are regarded as a capacitor. The permittivity, capacitance, and the like usually have frequency characteristics (dependency) and may fluctuate depending on the frequency of the alternating current (electric field) to be energized. This is due to the delay in orientation (polarization) of the molecules constituting the dielectric, thermal vibration, leakage current (dielectric loss) generated between the electrodes of the capacitor, and the like.

誘電特性の代表例である誘電率に着目すると、交流通電下における誘電率(ε)は、一般的に複素誘電率(ε=ε'-iε" 、i:虚数単位、ε':実部、ε":虚部)で表現される。また、その誘電特性を反映した特性値として、例えば、誘電正接(tanδ)、電気的モジョラス(M=jwCo・Z/MとZ:複素数、Z:複素インピーダンス、Co:真空の電気容量)等がある。 Focusing on the permittivity, which is a typical example of the permittivity, the permittivity (ε) under AC energization is generally a complex permittivity (ε = ε'-iε ", i: imaginary unit, ε': real part, It is expressed by ε ": imaginary part). In addition, as characteristic values that reflect the dielectric characteristics, for example, dielectric loss tangent (tanδ), electrical modulus (M * = jwCo · Z * / M * and Z * : complex number, Z * : complex impedance, Co: vacuum Electric capacity) etc.

誘電正接は、実部(ε')に対する虚部(ε")の比率(ε"/ε')として求まる。ここで虚部(ε")は分極遅れ等に起因した誘電損率を示す。コンデンサとしてみれば、コンデンサ(静電容量:C)に流れる電流:Ic、寄生抵抗(抵抗値:r)に流れる電流:Ir、角周波数:ω=2πf(f:交流周波数)として、tanδ=Ir/Ic=1/ωrCとしても求まる。このように誘電正接は、供給される電気エネルギーに対して損失される熱エネルギーの割合を示す。換言すれば、誘電正接は、誘電体の絶縁性の低下ひいては塗膜の劣化を指標するといえる。 The dielectric loss tangent is obtained as the ratio (ε "/ ε') of the imaginary part (ε") to the real part (ε'). Here, the imaginary part (ε ") indicates the dielectric loss rate due to the polarization delay or the like. When viewed as a capacitor, the current flowing through the capacitor (capacitance: C) is Ic, and the current flows through the parasitic resistance (resistance value: r). The current: Ir, the angular frequency: ω = 2πf (f: AC frequency), and tan δ = Ir / Ic = 1 / ωrC can also be obtained. Thus, the dielectric positive contact is the heat lost with respect to the supplied electric energy. It indicates the ratio of energy. In other words, the dielectric density can be said to be an index of the deterioration of the insulating property of the dielectric and the deterioration of the coating film.

ちなみに、誘電率の測定には(平行電極)容量法、反射伝送法、共振法等がある。周波数に応じた測定方法が適宜選択されるが、本発明の場合なら、通常、容量法で足る。 Incidentally, the measurement of the dielectric constant includes a (parallel electrode) capacitance method, a reflection transmission method, a resonance method and the like. A measuring method according to the frequency is appropriately selected, but in the case of the present invention, the capacitive method is usually sufficient.

(2)被検層の評価指標は、誘電特性(誘電率、静電容量等)そのものでもよいし、その誘電特性を反映した特性値(誘電正接等)でもよい。つまり、本明細書でいう「特性値」には、誘電特性自体も含まれる。 (2) The evaluation index of the logging subject may be the dielectric property (dielectric constant, capacitance, etc.) itself, or the characteristic value (dielectric loss tangent, etc.) reflecting the dielectric property. That is, the "characteristic value" referred to in the present specification includes the dielectric property itself.

塗膜の少なくとも一部である被検層は、経時(経年)により分子構造、形態(例えば厚み)等が変化(劣化)し、それを反映して、被検層の特性値も変化し得る。特性値を指標とすれば、従来のようにインピーダンスのみを指標とする場合よりも、被検層(ひいては塗膜)の経時変化を早期から把握することが可能となる。 The molecular structure, morphology (for example, thickness), etc. of the logging test layer, which is at least a part of the coating film, changes (deteriorates) with time (aging), and the characteristic values of the logging test layer may also change reflecting this. .. If the characteristic value is used as an index, it is possible to grasp the change with time of the logging layer (and thus the coating film) from an early stage, as compared with the case where only the impedance is used as an index as in the conventional case.

この際、少なく2つの周波数の交流通電により得られた各特性値を評価指標とすると、被検層の変化をより適確に把握し得る。例えば、特定周波数は高周波数側の第1周波数と低周波数側の第2周波数とを含むと共に、第1周波数に対応した第1特性値と第2周波数に対応した第2特性値とにより、またはそれらを反映した第3特性値により、被検層の劣化が評価されるとよい。 At this time, if each characteristic value obtained by alternating current energization of at least two frequencies is used as an evaluation index, changes in the logging layer can be grasped more accurately. For example, the specific frequency includes the first frequency on the high frequency side and the second frequency on the low frequency side, and by the first characteristic value corresponding to the first frequency and the second characteristic value corresponding to the second frequency, or. Deterioration of the logging subject should be evaluated by the third characteristic value reflecting them.

特定周波数は、被検層の成分、厚さ、塗装方法等を考慮して選択されるとよい。特定周波数が過小では、測定毎に長時間を要する。特定周波数が過大では、被検層の変化に対する特性値の変化が小さくなり得る。特定周波数は、例えば、0.01~10000Hz、0.1~1000Hzさらには0.5~500Hzの範囲内で選択されるとよい。 The specific frequency may be selected in consideration of the composition, thickness, coating method, etc. of the logging object. If the specific frequency is too small, it takes a long time for each measurement. If the specific frequency is excessive, the change in characteristic values with respect to changes in logging can be small. The specific frequency may be selected, for example, in the range of 0.01 to 10000 Hz, 0.1 to 1000 Hz, and even 0.5 to 500 Hz.

第1周波数なら、例えば、10~1000Hz、30~500Hzさらには50~200Hzの範囲内で選択されるとよい。第2周波数なら、例えば、0.1~100Hz、1~50Hzさらには5~30Hzの範囲内で選択されるとよい。 The first frequency may be selected, for example, in the range of 10 to 1000 Hz, 30 to 500 Hz, and further 50 to 200 Hz. The second frequency may be selected, for example, in the range of 0.1 to 100 Hz, 1 to 50 Hz, and further 5 to 30 Hz.

第2周波数(f2)に対する第1周波数(f1)の比(f1/f2)が、例えば、1~100さらには5~50程度とされてもよい。また、第1周波数(f1)と第2周波数(f2)の差(|f1-f2|)が、例えば、10~1000さらには50~500程度とされてもよい。 The ratio (f1 / f2) of the first frequency (f1) to the second frequency (f2) may be, for example, about 1 to 100 or even about 5 to 50. Further, the difference (| f1-f2 |) between the first frequency (f1) and the second frequency (f2) may be, for example, about 10 to 1000 or even about 50 to 500.

《評価》
(1)被検層の劣化度は、例えば、特定周波数に対して得られた特性値を、所定値と比較して評価される。所定値との比較は、特性値の取得(測定)毎になされてもよいし、複数の特性値の平均値等となされてもよい。
"evaluation"
(1) The degree of deterioration of a logging subject is evaluated, for example, by comparing a characteristic value obtained for a specific frequency with a predetermined value. The comparison with the predetermined value may be made for each acquisition (measurement) of the characteristic value, or may be made as an average value of a plurality of characteristic values.

劣化度は、例えば、被検層の状態や形態の変化度合でもよいし、被検層(ひいては塗膜)が機能し得る残存寿命(余寿命)でもよい。 The degree of deterioration may be, for example, the degree of change in the state or morphology of the logging subject, or the remaining life (remaining life) in which the logging subject (and thus the coating film) can function.

(2)特定周波数に対応して得られた誘電正接(tanδ/特性値)に基づいて、被検層の劣化度を評価する場合を図1に模式的に例示した。図1において、a(t)は、例えば、高周波数(第1周波数)側の第1特性値の経時変化を示し、b(t)は、例えば、低周波数(第2周波数)側の第2特性値の経時変化を示す。さらにc(t)は、a(t)とb(t)から導出した関数c(a、b)であり、両者を統合した第3特性値の経時変化を示す。c(t)は、例えば、k・a(t)×b(t)、m・a(t)+n・b(t)のようにして求まる(k、m、n:係数)。 (2) FIG. 1 schematically illustrates a case where the degree of deterioration of a logging is evaluated based on the dielectric loss tangent (tan δ / characteristic value) obtained corresponding to a specific frequency. In FIG. 1, a (t) indicates, for example, the change with time of the first characteristic value on the high frequency (first frequency) side, and b (t) indicates, for example, the second on the low frequency (second frequency) side. The change over time of the characteristic value is shown. Further, c (t) is a function c (a, b) derived from a (t) and b (t), and shows the change with time of the third characteristic value in which both are integrated. c (t) can be obtained, for example, as k · a (t) × b (t), m · a (t) + n · b (t) (k, m, n: coefficient).

このようなa(t)、b(t)は、次のような塗膜の経時変化を反映していると考えられる。一例として、大気中に曝される塗膜を考えると、その塗膜は経時により、水分を徐々に吸収した後、塗膜内におけるイオン伝導度を増す。通電したときに伝導されるイオンとして、例えば、塗膜成分、H+、OH-、外界から取り込まれる成分(Cl等)等がある。 It is considered that such a (t) and b (t) reflect the following changes with time of the coating film. As an example, considering a coating film exposed to the atmosphere, the coating film gradually absorbs moisture over time and then increases ionic conductivity in the coating film. Examples of ions conducted when energized include coating film components, H + , OH , components taken in from the outside world (Cl, etc.) and the like.

a(t)は、ある時点(t1)まで単調に増加して、その後、飽和状態となっていることから、被検層に吸収された水分量(含水率)を反映していると考えられる。このような傾向が高周波数側の特性値に観られる理由として、樹脂内部への水分の侵入に伴う樹脂の自由体積の増加等が考えられる。ちなみに、通常、t1付近において、被検層(塗膜)の外観変化やインピーダンス変化は殆どない。 Since a (t) monotonically increases until a certain point in time (t1) and then becomes saturated, it is considered that a (t) reflects the amount of water (moisture content) absorbed by the logging. .. The reason why such a tendency can be seen in the characteristic values on the high frequency side is considered to be an increase in the free volume of the resin due to the intrusion of water into the resin. Incidentally, usually, there is almost no change in appearance or impedance of the logging layer (coating film) near t1.

b(t)は、ある時点(t2)で極大(ピーク)となっていることから、被検層内のイオン伝導度を反映していると考えられる。イオン伝導度は、被検層内に水分があり、被検層内におけるイオンの束縛(拘束)が経時的に低下して増すからである。このような傾向が低周波数側の特性値に観られる理由は、樹脂中の水分量や自由体積が一定以上となり、イオンのモビリティの増加等が考えられる。ちなみに、通常、t2付近において、被検層のインピーダンスの減少が顕著になり始める。例えば、被検層のインピーダンスは、初期値の1/10~1/100程度、または10Ω以下さらには10Ω以下になり得る。このような塗膜は、意匠性が低下(外観変化)しているのみならず、環境遮断能力(防食性等)が限界(つまり寿命)を迎えていると考えられる。それ以降、塗膜の下地(基体)に、浸食(例えば、錆さらには孔食)が発生するようになると考えられる。 Since b (t) reaches its maximum (peak) at a certain point in time (t2), it is considered that it reflects the ionic conductivity in the logging. This is because the ion conductivity has water in the logging layer, and the binding (constraint) of the ions in the logging test layer decreases and increases with time. The reason why such a tendency can be seen in the characteristic values on the low frequency side is considered to be that the water content and the free volume in the resin are above a certain level, and the mobility of ions is increased. By the way, usually, the decrease in the impedance of the logging body begins to be remarkable in the vicinity of t2. For example, the impedance of the logging layer can be about 1/10 to 1/100 of the initial value, or 109 Ω or less, and even 108 Ω or less. It is considered that such a coating film not only has a deteriorated design (change in appearance) but also has a limit (that is, a life) in its environmental blocking ability (corrosion resistance, etc.). After that, it is considered that erosion (for example, rust and pitting corrosion) will occur on the substrate of the coating film.

図1に示すように、予め用意したa(t)とb(t)の一方または両方、またはそれらから導出したc(t)等に基づいて求まる所定値と、実測した特性値とを比較すると、被検層(塗膜)の劣化度を評価できる。例えば、実測された特性値(x)に対応する時間(tx)を、データベース(c(t)等)から求めると、t2-tx=Jとして、塗膜の余寿命が求まる。 As shown in FIG. 1, comparing a predetermined value obtained based on one or both of a (t) and b (t) prepared in advance, or c (t) derived from them, and an actually measured characteristic value. , The degree of deterioration of the logging (coating film) can be evaluated. For example, when the time (tx) corresponding to the actually measured characteristic value (x) is obtained from a database (c (t) or the like), the remaining life of the coating film can be obtained with t2-tx = J.

なお、データベースとなるa(t)、b(t)、c(t)の選択は、塗膜の評価目的に応じてなされるとよい。また、被検層の成分、形態等に応じて、上述したa(t)が低周波数(第2周波数)側の第2特性値の経時変化を示し、b(t)が高周波数(第1周波数)側の第1特性値の経時変化を示すことがあってもよい。 The selection of a (t), b (t), and c (t) to be used as a database may be made according to the purpose of evaluating the coating film. Further, depending on the components, morphology, etc. of the logging subject, a (t) described above indicates a change over time in the second characteristic value on the low frequency (second frequency) side, and b (t) indicates a high frequency (first frequency). It may show a change with time of the first characteristic value on the frequency) side.

《データ処理》
特性値は、測定時期(時刻)、劣化度、測定環境を示す環境情報等と共にデータ群を構成しているとよい。これにより、塗膜の劣化傾向の分析等も可能となる。そこで本発明のシステムは、データ群に基づいて被検層の劣化傾向を分析する分析部をさらに備えるとよい。劣化傾向は、例えば、劣化の進行速度の経時変化等である。
"Data processing"
It is preferable that the characteristic value constitutes a data group together with the measurement time (time), the degree of deterioration, the environmental information indicating the measurement environment, and the like. This makes it possible to analyze the deterioration tendency of the coating film. Therefore, the system of the present invention may further include an analysis unit that analyzes the deterioration tendency of the logging subject based on the data group. The deterioration tendency is, for example, a change over time in the rate of progress of deterioration.

なお、環境情報には、塗膜が曝される雰囲気(温度、湿度等)情報の他、測定される場所や地域等を示す位置情報が含まれるとよい。位置情報は、例えば、全地球測位システム(GPS:Global Positioning System)等から得られる。移動体(自動車等)に設けられた塗膜の劣化を評価する場合なら、カーナビゲーションの軌跡情報等を位置情報として利用してもよい。 The environmental information may include information on the atmosphere (temperature, humidity, etc.) to which the coating film is exposed, as well as location information indicating the place or area to be measured. The position information is obtained from, for example, a Global Positioning System (GPS) or the like. When evaluating the deterioration of the coating film provided on a moving body (automobile or the like), the locus information of the car navigation may be used as the position information.

データ群の保存や分析は、センサ部がある基体側でなされる他、基体に対して遠隔地でなされてもよい。そこで本発明のシステムは、遠隔地へデータ群を無線送信する送信部をさらに備えるとよい。データ群に基づく分析結果は、塗膜の開発研究に活用されてもよいし、基体側へ塗膜の余寿命または補修案内等として返信されてもよい。 The storage and analysis of the data group may be performed on the substrate side where the sensor unit is located, or may be performed at a remote location with respect to the substrate. Therefore, the system of the present invention may further include a transmission unit that wirelessly transmits a data group to a remote location. The analysis result based on the data group may be utilized for the development research of the coating film, or may be returned to the substrate side as the remaining life of the coating film or the repair guidance.

交流を通電して測定された塗膜の誘電特性と塗膜の劣化との関係を明らかにした。このような具体例に基づいて、本発明をさらに詳しく説明する。 The relationship between the dielectric properties of the coating film measured by applying alternating current and the deterioration of the coating film was clarified. The present invention will be described in more detail based on such a specific example.

《構成》
塗膜評価システムS(単に「システムS」という。)の概要を図2Aに示した。システムSは、センサ部dと、センサ部dに接続された測定装置(測定部)と、測定装置から得られたデータを解析する評価装置(評価部)とを備える。
"Constitution"
An outline of the coating film evaluation system S (simply referred to as “system S”) is shown in FIG. 2A. The system S includes a sensor unit d, a measuring device (measuring unit) connected to the sensor unit d, and an evaluation device (evaluation unit) for analyzing data obtained from the measuring device.

(1)センサ部dは、基体e1(第1電極)の上面全体に塗装された被検層p1と、その反対面側に設けられた電極e2(第2電極)と、被検層p1および電極e2の上面全体(基体e1の反対面側)に上塗り塗装された上層p2とを有する。基体e1と電極e2は、それぞれ配線w1、w2により測定装置と接続されている。被検層p1と上層p2を併せて塗膜pという。電極e2は、例えば、図2Bに模式的に示すように、多数の貫通した小孔hが形成された金属箔からなる。 (1) The sensor unit d includes a logging layer p1 coated on the entire upper surface of the substrate e1 (first electrode), an electrode e2 (second electrode) provided on the opposite surface side thereof, a logging layer p1 and a logging layer p1. It has an upper layer p2 coated on the entire upper surface of the electrode e2 (the opposite surface side of the substrate e1). The substrate e1 and the electrode e2 are connected to the measuring device by wirings w1 and w2, respectively. The logging layer p1 and the upper layer p2 are collectively referred to as a coating film p. The electrode e2 is made of, for example, a metal foil in which a large number of penetrating small holes h are formed, as schematically shown in FIG. 2B.

本実施例では、基体e1として、自動車ボディに用いられる冷間圧延鋼板(SPCC)または溶融亜鉛めっき鋼板(SGCC)を用いた。基体e1はいずれも10cm×10cm×t3mmとした。なお、基体e1の下面(被検層p1の反対面側)は、配線w1のはんだ接合後、未塗装のままとした。 In this embodiment, a cold-rolled steel sheet (SPCC) or a hot-dip galvanized steel sheet (SGCC) used for an automobile body was used as the substrate e1. The substrate e1 was 10 cm × 10 cm × t3 mm. The lower surface of the substrate e1 (the side opposite to the logging layer p1) was left unpainted after the wiring w1 was soldered.

電極e2には白金(Pt)からなるパンチングメタル箔を用いた。電極e2は、例えば、幅:1~2cm、長さ:15~20cm、厚さ:0.1~5μm、孔径:0.2~0.5cm、孔密度:3~9個/cmとした。 A punching metal foil made of platinum (Pt) was used for the electrode e2. The electrode e2 has, for example, a width of 1 to 2 cm, a length of 15 to 20 cm, a thickness of 0.1 to 5 μm, a hole diameter of 0.2 to 0.5 cm, and a hole density of 3 to 9 pieces / cm 2 . ..

被検層p1は、自動車ボディの防食塗装に用いられる電着塗料を焼き付け塗装して形成した。電着塗料には樹脂系(エポキシ)を用いた。被検層p1の膜厚は15~25μmとした。 The logging test layer p1 was formed by baking and painting an electrodeposition paint used for anticorrosion coating of an automobile body. A resin-based (epoxy) was used as the electrodeposition paint. The film thickness of logging p1 was 15 to 25 μm.

上層p2は、自動車ボディのクリア塗料を上塗りして形成した。クリア塗料には樹脂系(アクリル)を用いた。上層p2の膜厚は50~100μmとした。 The upper layer p2 was formed by overcoating with a clear paint of an automobile body. A resin-based (acrylic) was used as the clear paint. The film thickness of the upper layer p2 was 50 to 100 μm.

(2)測定装置には、被検層p1の誘電正接(tanδ)と被検層p1のインピーダンス(Z)を周波数毎に測定できるLCRメータ(ソーラトロンアナリティカル社製ModuLab)を用いた。 (2) As a measuring device, an LCR meter (ModuLab manufactured by Solartron Analytical Co., Ltd.) capable of measuring the dielectric loss tangent (tan δ) of logging p1 and the impedance (Z) of logging p1 for each frequency was used.

本実施例では、tanδの周波数特性を1Hz~10Hzの範囲で測定し、|Z|の周波数特性を10-2Hz~10Hzの範囲で測定した。 In this example, the frequency characteristic of tan δ was measured in the range of 1 Hz to 103 Hz, and the frequency characteristic of | Z | was measured in the range of 10-2 Hz to 10 Hz.

劣化評価を行う際の特定周波数の一例として、f1:100Hz(第1周波数)とf2:10Hz(第2周波数)を選択した。これらの周波数を選択した理由は後述する。測定開始からの経過時間tにおいて、f1で得られたtanδの実測値(第1特性値):α(t)、f2で得られたtanδの実測値(第2特性値):β(t)とする。測定は、一定期間の経過毎に行った。 As an example of the specific frequency at the time of deterioration evaluation, f1: 100Hz (first frequency) and f2: 10Hz (second frequency) were selected. The reasons for selecting these frequencies will be described later. Measured value of tan δ obtained at f1 (first characteristic value): α (t), measured value of tan δ obtained at f2 (second characteristic value): β (t) at the elapsed time t from the start of measurement. And. The measurement was performed after a certain period of time.

(3)評価装置は、コンピュータ(パソコン、車載制御装置(ECU)等)からなり、測定装置から取得したα(t)、β(t)を、データベースa(t)、b(t)と比較する。a(t)、b(t)は、被検層p1と同様な塗膜について、それぞれf1、f2におけるtanδの経時変化を示すデータベース(関数)である。a(t)、b(t)は、α(t)、β(t)と同様な測定により、予め用意しておいた。なお、図1に示したように、α(t)とβ(t)から定まる特性値γ(t)と、a(t)、b(t)から定まるデータベースc(t)とを比較してもよい。 (3) The evaluation device consists of a computer (personal computer, in-vehicle control device (ECU), etc.), and α (t) and β (t) acquired from the measuring device are compared with the databases a (t) and b (t). do. a (t) and b (t) are databases (functions) showing changes over time in tan δ at f1 and f2, respectively, for a coating film similar to logging p1. a (t) and b (t) were prepared in advance by the same measurement as α (t) and β (t). As shown in FIG. 1, the characteristic value γ (t) determined from α (t) and β (t) is compared with the database c (t) determined from a (t) and b (t). May be good.

実測値とデータベースから求まる所定値とを比較して、実測時点における経過寿命(tx)が予測できる。その経過寿命(tx)と、データベース上の限界寿命(t2)との差分から、余寿命(J=t2-tx)が算出される。こうして、被検層p1の劣化評価が可能となる。 The elapsed life (tx) at the time of actual measurement can be predicted by comparing the actually measured value with a predetermined value obtained from the database. The remaining life (J = t2-tx) is calculated from the difference between the elapsed life (tx) and the critical life (t2) on the database. In this way, deterioration evaluation of logging p1 becomes possible.

(4)余寿命(J)を含むデータ群を構成する一連の処理フロー例を図3に示した。ステップS1で、ある時点(t)におけるα(t)、β(t)を測定する。ステップS2では、α(t)、β(t)から劣化パラメータγ(t)をさらに算出する。ステップS3では、γ(t)と、その劣化パラメータに対応する予め用意したデータベースc(t)とを比較して、塗膜の余寿命(J)を算出する。ステップS4では、測定時点(t)と余寿命(J)を対応させたデータ群が構成される。データ群には、測定時点(t)と余寿命(J)に加えて、特性値または劣化パラメータγ(t)、測定環境を示す環境情報(温度、湿度、光量、濡れ乾き状態等)、位置情報等が含まれるとよい。 (4) FIG. 3 shows an example of a series of processing flows constituting the data group including the remaining life (J). In step S1, α (t) and β (t) at a certain time point (t) are measured. In step S2, the deterioration parameter γ (t) is further calculated from α (t) and β (t). In step S3, the remaining life (J) of the coating film is calculated by comparing γ (t) with the database c (t) prepared in advance corresponding to the deterioration parameter thereof. In step S4, a data group corresponding to the measurement time point (t) and the remaining life (J) is configured. In addition to the measurement time point (t) and remaining life (J), the data group includes characteristic values or deterioration parameters γ (t), environmental information indicating the measurement environment (temperature, humidity, light intensity, wet / dry state, etc.), and position. Information etc. should be included.

(5)自動車(移動体)にセンサ部を取り付けた塗膜評価システム例を模式的に図4に示した。自動車側で構成されたデータ群は、例えば、自動車から遠隔地にある格納部(クラウドストレージ等)へ送信される。遠隔地にある分析部(解析センター等)では、格納部から読み出した一連のデータ群(ビッグデータ)を分析して、自動車の使用環境と塗膜の劣化傾向との相関を明らかにしたり、塗膜の寿命や補修に関する情報を自動車へ無線で返信したりする。 (5) An example of a coating film evaluation system in which a sensor unit is attached to an automobile (moving body) is schematically shown in FIG. The data group configured on the automobile side is transmitted from the automobile to a storage unit (cloud storage or the like) in a remote place, for example. An analysis unit (analysis center, etc.) in a remote location analyzes a series of data groups (big data) read from the storage unit to clarify the correlation between the usage environment of the automobile and the deterioration tendency of the coating film, and paints. Information on membrane life and repair is sent wirelessly to the car.

《周波数特性》
(1)測定
上述したセンサ部dを用いて、被検層p1の誘電正接(tanδ)とインピーダンス(|Z|)の周波数特性を測定した。測定は、上層p2を食塩水(濃度1mol/L)に接触させた状態で、初期(経過日数0日)、42日経過後、84日経過後にそれぞれ行った。第1電極を兼ねる基体e1を冷間圧延鋼板(SPCC)としたときのtanδ、|Z|をそれぞれ図5A、図5Bに示した。その基体e1を溶融亜鉛めっき鋼板(SGCC)としたときのtanδ、|Z|をそれぞれ図6A、図6Bに示した。
"Frequency characteristic"
(1) Measurement Using the sensor unit d described above, the frequency characteristics of the dielectric loss tangent (tan δ) and impedance (| Z |) of the logging layer p1 were measured. The measurement was carried out in a state where the upper layer p2 was in contact with a saline solution (concentration 1 mol / L), and the measurement was carried out at the initial stage (elapsed days 0 days), after 42 days, and after 84 days, respectively. When the substrate e1 also serving as the first electrode is a cold-rolled steel sheet (SPCC), tan δ and | Z | are shown in FIGS. 5A and 5B, respectively. When the substrate e1 is a hot-dip galvanized steel sheet (SGCC), tan δ and | Z | are shown in FIGS. 6A and 6B, respectively.

(2)評価
図5A、図6Aからわかるように、42日経過したときを観ると、10~100Hzの間にtanδのピーク(極値)があることがわかった。このピークは初期には観られない。また、84日経過したときを観ると、そのピークは衰退さらには消滅し、tanδは高周波数側である100Hz(第1周波数)付近で飽和状態となることもわかった。
(2) Evaluation As can be seen from FIGS. 5A and 6A, it was found that there was a peak (extreme value) of tan δ between 10 and 100 Hz when 42 days had passed. This peak is not seen early. It was also found that when 84 days had passed, the peak declined and disappeared, and tan δ became saturated near 100 Hz (first frequency) on the high frequency side.

塗膜の劣化過程を考慮すると、100Hz付近のtanδは、被検層p1への水分の吸収度合(含水率)を反映していると考えられる。 Considering the deterioration process of the coating film, tan δ near 100 Hz is considered to reflect the degree of water absorption (moisture content) into the logging layer p1.

次に、84日経過後のtanδを観ると、低周波数側でtanδが急増している。このような傾向は、初期や42日経過後には観られない。塗膜の劣化過程を考慮すると、低周波数側におけるtanδの増加は、含水後のイオン伝導度の増加を反映していると考えられる。このような状態は、塗膜(被検層p1)の劣化がかなり進行した段階と考えられる。このことは、図5B、図6Bに示すように、84日経過後に|Z|の低下が顕著になることからも裏付けられる。 Next, looking at tan δ after 84 days, tan δ rapidly increases on the low frequency side. Such a tendency is not seen at the beginning or after 42 days. Considering the deterioration process of the coating film, the increase in tan δ on the low frequency side is considered to reflect the increase in ionic conductivity after water content. Such a state is considered to be a stage where the deterioration of the coating film (logger p1) has progressed considerably. This is supported by the fact that the decrease in | Z | becomes remarkable after 84 days, as shown in FIGS. 5B and 6B.

また、塗膜の劣化に伴うtanδの急増は、例えば、10Hz(第2周波数)付近を境にして生じている。その周波数付近のtanδを観れば、|Z|から把握できない基体e1の材質の影響も把握できる。そこで本実施例の場合でいえば、イオン伝導度が塗膜の特性に支配的な影響を及ぼす低周波数域の一指標値として、10Hzを挙げることができる。 Further, the rapid increase in tan δ due to the deterioration of the coating film occurs, for example, around 10 Hz (second frequency). By observing the tan δ near that frequency, the influence of the material of the substrate e1 that cannot be grasped from | Z | can be grasped. Therefore, in the case of this embodiment, 10 Hz can be mentioned as an index value in the low frequency range in which the ionic conductivity has a dominant influence on the characteristics of the coating film.

このように、本発明によれば、従来の交流インピーダンス法では把握できかなった塗膜の劣化度(余寿命等)を適切に把握できることがわかった。 As described above, according to the present invention, it was found that the degree of deterioration (remaining life, etc.) of the coating film, which could not be grasped by the conventional AC impedance method, can be appropriately grasped.

S 塗膜評価システム
d センサ部
p 塗膜
p1 被検層
p2 上層
e1 基体(第1電極)
e2 第2電極
S coating film evaluation system d sensor part p coating film p1 logging layer p2 upper layer e1 substrate (first electrode)
e2 2nd electrode

Claims (9)

基体を覆う塗膜の劣化を評価するシステムであって、
該塗膜の少なくとも一部で評価対象である被検層の一面側に接する第1電極と該被検層の他面側に接する第2電極とを有するセンサ部と、
該第1電極と該第2電極の間に特定周波数の交流を通電して、該被検層の誘電特性を反映した特性値を求める測定部と、
該特性値を所定値と比較して該被検層の劣化度を評価する評価部と、
を備える塗膜評価システム。
A system that evaluates the deterioration of the coating film that covers the substrate.
A sensor unit having a first electrode in contact with one surface side of the logging object to be evaluated in at least a part of the coating film and a second electrode in contact with the other surface side of the logging object.
A measuring unit that applies an alternating current of a specific frequency between the first electrode and the second electrode to obtain a characteristic value that reflects the dielectric characteristics of the logging subject.
An evaluation unit that evaluates the degree of deterioration of the logging by comparing the characteristic value with a predetermined value,
A coating film evaluation system.
前記特定周波数は、高周波数側の第1周波数と低周波数側の第2周波数とを少なくとも含み、
前記特性値は、該第1周波数に対応した第1特性値と該第2周波数に対応した第2特性値とを反映している請求項1に記載の塗膜評価システム。
The specific frequency includes at least a first frequency on the high frequency side and a second frequency on the low frequency side.
The coating film evaluation system according to claim 1, wherein the characteristic value reflects a first characteristic value corresponding to the first frequency and a second characteristic value corresponding to the second frequency.
前記特性値は、誘電正接である請求項1または2に記載の塗膜評価システム。 The coating film evaluation system according to claim 1 or 2, wherein the characteristic value is a dielectric loss tangent. 前記基体は、導電材からなり、
前記第1電極は、該基材からなる請求項1~3のいずれかに記載の塗膜評価システム。
The substrate is made of a conductive material and is made of a conductive material.
The coating film evaluation system according to any one of claims 1 to 3, wherein the first electrode is made of the base material.
前記第2電極は、通気性または通液性を有する請求項1~4のいずれかに記載の塗膜評価システム。 The coating film evaluation system according to any one of claims 1 to 4, wherein the second electrode has air permeability or liquid permeability. 前記被検層と前記第2電極は、上塗りされている請求項1~5のいずれかに記載の塗膜評価システム。 The coating film evaluation system according to any one of claims 1 to 5, wherein the logging test layer and the second electrode are overcoated. 前記特性値および/または前記劣化度と、該特性値の測定環境を示す環境情報とを含むデータ群が構成される請求項1~6のいずれかに記載の塗膜評価システム。 The coating film evaluation system according to any one of claims 1 to 6, wherein a data group including the characteristic value and / or the deterioration degree and environmental information indicating the measurement environment of the characteristic value is configured. 前記データ群を無線送信する送信部をさらに備える請求項7に記載の塗膜評価システム。 The coating film evaluation system according to claim 7, further comprising a transmission unit that wirelessly transmits the data group. 前記データ群に基づいて、前記被検層の劣化傾向を分析する分析部をさらに備える請求項7または8に記載の塗膜評価システム。 The coating film evaluation system according to claim 7 or 8, further comprising an analysis unit for analyzing the deterioration tendency of the logging subject based on the data group.
JP2020171410A 2020-10-09 2020-10-09 Paint film evaluation system Active JP7307713B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020171410A JP7307713B2 (en) 2020-10-09 2020-10-09 Paint film evaluation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020171410A JP7307713B2 (en) 2020-10-09 2020-10-09 Paint film evaluation system

Publications (2)

Publication Number Publication Date
JP2022063073A true JP2022063073A (en) 2022-04-21
JP7307713B2 JP7307713B2 (en) 2023-07-12

Family

ID=81212366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020171410A Active JP7307713B2 (en) 2020-10-09 2020-10-09 Paint film evaluation system

Country Status (1)

Country Link
JP (1) JP7307713B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62102148A (en) * 1985-10-29 1987-05-12 Toshiba Corp Method for diagnosing deterioration of coating film
JPS63179973A (en) * 1987-01-22 1988-07-23 Chugoku Toryo Kk Underwater curable paint composition
JP2000097896A (en) * 1998-09-18 2000-04-07 Toshiba Corp Coating film deterioration diagnosing device
JP2001183328A (en) * 1999-12-27 2001-07-06 Railway Technical Res Inst Apparatus and method for measuring ac impedance of coating film
JP2014190761A (en) * 2013-03-26 2014-10-06 Railway Technical Research Institute Crack monitoring element and crack monitoring apparatus
US20160003734A1 (en) * 2013-02-25 2016-01-07 Subterandt Limited Detection system and method of detecting corrosion under an outer protective layer
JP2020003417A (en) * 2018-06-29 2020-01-09 太平洋セメント株式会社 Corrosion sensor and method for detecting corrosion

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62102148A (en) * 1985-10-29 1987-05-12 Toshiba Corp Method for diagnosing deterioration of coating film
JPS63179973A (en) * 1987-01-22 1988-07-23 Chugoku Toryo Kk Underwater curable paint composition
JP2000097896A (en) * 1998-09-18 2000-04-07 Toshiba Corp Coating film deterioration diagnosing device
JP2001183328A (en) * 1999-12-27 2001-07-06 Railway Technical Res Inst Apparatus and method for measuring ac impedance of coating film
US20160003734A1 (en) * 2013-02-25 2016-01-07 Subterandt Limited Detection system and method of detecting corrosion under an outer protective layer
JP2014190761A (en) * 2013-03-26 2014-10-06 Railway Technical Research Institute Crack monitoring element and crack monitoring apparatus
JP2020003417A (en) * 2018-06-29 2020-01-09 太平洋セメント株式会社 Corrosion sensor and method for detecting corrosion

Also Published As

Publication number Publication date
JP7307713B2 (en) 2023-07-12

Similar Documents

Publication Publication Date Title
Tsai et al. Determination of coating deterioration with EIS: Part II. Development of a method for field testing of protective coatings
Kendig et al. Basic aspects of electrochemical impedance application for the life prediction of organic coatings on metals
Zhang et al. Determination of instantaneous corrosion rates and runoff rates of copper from naturally patinated copper during continuous rain events
Bierwagen et al. Choice and measurement of crucial aircraft coatings system properties
US5859537A (en) Electrochemical sensors for evaluating corrosion and adhesion on painted metal structures
US6054038A (en) Portable, hand-held, in-situ electrochemical sensor for evaluating corrosion and adhesion on coated or uncoated metal structures
JP6213426B2 (en) Corrosion resistance evaluation method and corrosion resistance evaluation apparatus for painted metal
Razin et al. Detecting and estimating the extent of automotive coating delamination and damage indexes after stone chipping using electrochemical impedance spectroscopy
Miszczyk et al. Electrochemical approach to evaluate the interlayer adhesion of organic coatings
US6328878B1 (en) Adhesive tape sensor for detecting and evaluating coating and substrate degradation utilizing electrochemical processes
Caldona et al. Surface electroanalytical approaches to organic polymeric coatings
CN104076079A (en) Method for rapidly evaluating critical corrosion damage of multilayer coating system
JP4375492B2 (en) Corrosion environment measurement method for mobile object, its design method, corrosion test method for mobile material and selection method
Nazir et al. A novel non-destructive sensing technology for on-site corrosion failure evaluation of coatings
Diler et al. Real‐time monitoring of the degradation of metallic and organic coatings using electrical resistance sensors
Cai et al. Impedance sensor for the early failure diagnosis of organic coatings
Valentini et al. A comparison between electrochemical noise and electrochemical impedance measurements performed on a coal tar epoxy coated steel in 3% NaCl
Nazir et al. Electrochemical corrosion failure analysis of large complex engineering structures by using micro-LPR sensors
Prosek et al. Evaluation of the tendency of coil-coated materials to blistering: Field exposure, accelerated tests and electrochemical measurements
JP2022063073A (en) Coating film evaluation system
Gonzalez-Garcia et al. Electrochemical techniques for the study of self healing coatings
Davis et al. EIS-based in-situ sensor for the early detection of coatings degradation and substrate corrosion
JP4258352B2 (en) Corrosion environment measurement method and design method for mobile body, and corrosion test method and selection method for mobile body material
Bedoya et al. Electrochemical impedance study for modeling the anticorrosive performance of coatings based on accelerated tests and outdoor exposures
Akbarinezhad et al. Different approaches in evaluating organic paint coatings with electrochemical impedance spectroscopy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230630

R150 Certificate of patent or registration of utility model

Ref document number: 7307713

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150