JP4258352B2 - Corrosion environment measurement method and design method for mobile body, and corrosion test method and selection method for mobile body material - Google Patents
Corrosion environment measurement method and design method for mobile body, and corrosion test method and selection method for mobile body material Download PDFInfo
- Publication number
- JP4258352B2 JP4258352B2 JP2003368078A JP2003368078A JP4258352B2 JP 4258352 B2 JP4258352 B2 JP 4258352B2 JP 2003368078 A JP2003368078 A JP 2003368078A JP 2003368078 A JP2003368078 A JP 2003368078A JP 4258352 B2 JP4258352 B2 JP 4258352B2
- Authority
- JP
- Japan
- Prior art keywords
- metal
- corrosion
- moving body
- electrodes
- moving
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000005260 corrosion Methods 0.000 title claims description 176
- 230000007797 corrosion Effects 0.000 title claims description 176
- 239000000463 material Substances 0.000 title claims description 74
- 238000000034 method Methods 0.000 title claims description 29
- 238000013461 design Methods 0.000 title claims description 11
- 238000000691 measurement method Methods 0.000 title claims description 10
- 238000010998 test method Methods 0.000 title claims description 6
- 238000010187 selection method Methods 0.000 title description 2
- 229910052751 metal Inorganic materials 0.000 claims description 65
- 239000002184 metal Substances 0.000 claims description 65
- 238000005259 measurement Methods 0.000 claims description 48
- 239000007769 metal material Substances 0.000 claims description 43
- 239000000470 constituent Substances 0.000 claims description 21
- 238000012360 testing method Methods 0.000 claims description 19
- 239000000203 mixture Substances 0.000 claims description 15
- 238000010586 diagram Methods 0.000 claims description 14
- 229910000510 noble metal Inorganic materials 0.000 claims description 13
- 239000012212 insulator Substances 0.000 claims description 11
- 230000007613 environmental effect Effects 0.000 description 15
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 10
- 230000002265 prevention Effects 0.000 description 8
- 238000009736 wetting Methods 0.000 description 8
- 150000003839 salts Chemical class 0.000 description 7
- 230000008859 change Effects 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 238000009833 condensation Methods 0.000 description 3
- 230000005494 condensation Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 238000003380 quartz crystal microbalance Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000005413 snowmelt Substances 0.000 description 2
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000002847 impedance measurement Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
Landscapes
- Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
Description
本発明は、自動車、船舶、航空機などの移動体の金属材料を使用した各部位が実際の使用状態で曝される腐食環境について、腐食センサーを用いた移動体の腐食環境計測方法および設計方法ならびに移動体材料の腐食試験方法および選定方法に関するものである。 The present invention relates to a corrosive environment measurement method and a design method for a mobile object using a corrosion sensor, and a corrosive environment in which each part using a metal material of a mobile object such as an automobile, a ship, and an aircraft is exposed in an actual use state, and those related to the corrosion test method and method for selecting a moving material.
移動しない構造体の腐食環境の計測は、従来、橋梁や住宅での計測に代表されるようにガルバニック型腐食センサー、QCMや交流インピーダンス型腐食センサーなど各種原理による連続的な腐食環境計測手法が報告されている。これらの手法は、いずれも対象構造体の設置された地勢的な特定位置の腐食環境について情報を得る手法である。計測して得られる情報は、電流値やインピーダンス等の断続または連続的な変化である。これらの腐食環境計測では、腐食センサーの他に環境センサーによる温湿度などの計測も同時に行われ、腐食センサーと環境センサーの計測から腐食に関わる濡れ時間や飛来塩分量を求めている。さらに、あらかじめ飛来塩分量が既知の地勢的な特定位置での金属材料の暴露データを腐食センサーおよび環境センサーの計測結果と比較し、腐食速度や腐食寿命を求める方法が知られている。 Corrosion environment measurement of non-moving structures has been reported in the past by continuous corrosion environment measurement methods based on various principles such as galvanic corrosion sensors, QCMs and AC impedance corrosion sensors, as represented by measurements in bridges and houses. Has been. Each of these methods is a method for obtaining information on the corrosive environment at a specific geographical location where the target structure is installed. Information obtained by measurement is intermittent or continuous change of current value, impedance, and the like. In these corrosive environment measurements, temperature and humidity are also measured at the same time in addition to the corrosive sensor, and the wetting time and the amount of incoming salt are determined from the corrosive and environmental sensor measurements. Furthermore, a method is known in which the exposure rate of a metal material at a specific topographical location where the amount of incoming salt is known is compared with the measurement results of a corrosion sensor and an environmental sensor to determine the corrosion rate and corrosion life.
移動体の腐食環境の計測には、例えば以下が知られている。 For example, the following is known for measuring the corrosive environment of a moving object.
石油タンカーの甲板裏における交流インピーダンス式の一個の腐食センサーを用いた腐食環境計測が示されている。インピーダンス式の腐食センサーの構成は、同一の2種の金属電極を用いている。石油タンカー航海中の腐食センサーのインピーダンス変化を外部電源から交流信号を印加して断続的に計測している。(例えば、非特許文献1参照。)。 Corrosion environment measurement using a single AC impedance type corrosion sensor on the back of an oil tanker deck is shown. The configuration of the impedance type corrosion sensor uses the same two types of metal electrodes. Changes in impedance of corrosion sensors during oil tanker voyages are measured intermittently by applying an AC signal from an external power source. (For example, refer nonpatent literature 1.).
停車して移動することなしに自動車の各部位の腐食環境を、温湿度計により連続的に計測した例が示されている。この例では、濡れ状態のみの計測が行われている。(例えば、非特許文献2参照。)。 An example is shown in which a corrosive environment of each part of an automobile is continuously measured by a thermohygrometer without stopping and moving. In this example, only the wet state is measured. (For example, refer nonpatent literature 2.).
実走行車での腐食試験として、試験片を暴露架台に取り付ける代わりに、実際の自動車に取り付け自動車を走行させて実施する暴露試験(On Vehicle Test)も行われている。これらは試験前後の試験片の腐食状態変化から、材料の耐食性や腐食環境についての情報を得ることができる。
近年、ライフサイクルコストなどの環境負荷低減意識の高まりに伴い、橋梁や住宅などの長寿命社会資本のみならず、自動車、飛行機などの消費資産となる移動体についても防錆寿命などを最適に考慮したものが求められている。しかしながら、これらの移動体の防錆寿命は、同一地域にあっても使用状態や移動体の移動中の環境(移動環境)の影響を強く受ける。また、一つの移動体においても、例えば、外部露出部位や鋼板が重なり合った部位など構造は様々であり、それぞれ曝される腐食環境が異なる。このため、各部位の移動時を含めた腐食環境を連続または断続的に計測し、材料選定や構造設計の最適化を可能にする腐食環境計測方法が求められている。 In recent years, with the growing awareness of reducing environmental impacts such as life cycle costs, not only long-lived social capital such as bridges and houses, but also rust-proof life is optimally considered for mobile objects such as automobiles and airplanes What is done is required. However, the rust-preventing life of these moving bodies is strongly influenced by the use state and the environment (moving environment) during movement of the moving body even in the same region. Further, even in a single moving body, for example, there are various structures such as an externally exposed part and a part where steel plates overlap each other, and the corrosive environment to be exposed is different. For this reason, there is a need for a corrosive environment measuring method that continuously or intermittently measures the corrosive environment including when each part is moved, and enables optimization of material selection and structural design.
従来の構造体の腐食環境計測では、構造体の移動がないため、飛来塩分、温度、相対湿度などいずれも地勢的な特定環境と結びついた環境因子であった。これに対して、移動体は移動することにより地勢的な環境が変化し、さらに物理的要因(例えば振動、塵埃堆積/脱落、水・泥跳ね付着/乾燥など)により極端に環境が変化する場合がある。しかし、このように振動や移動に伴う激しい環境の変化がある移動体について、定量的な腐食環境計測を実施した知見はない。 In the conventional measurement of the corrosive environment of the structure, since there is no movement of the structure, the incoming salinity, temperature, relative humidity, etc. were all environmental factors associated with the topographic specific environment. On the other hand, when the moving body moves, the terrain environment changes, and when the environment changes extremely due to physical factors (for example, vibration, dust accumulation / dropping, water / mud splash adhesion / drying, etc.) There is. However, there is no knowledge that quantitative corrosion environment measurement has been carried out on a moving body that has a severe environmental change accompanying vibration and movement.
更に、非特許文献1に示された石油タンカーにおいて、交流インピーダンス式の腐食センサーを用いた腐食環境計測では、同じ種類の2つの金属電極を用いている。ところが、交流インピーダンス式の腐食センサーは金属電極間が十分に液絡されなければ出力が得られないため、結露現象など微小な濡れに伴う微量な腐食をモニタリングできない恐れがある。また、計測にはポテンショスタットや周波数応答解析器などのインピーダンス測定のための外部入力機器の搭載が必要なため、自動車など振動の激しい移動体に対しては機器の耐久性やノイズ発生の恐れなどの問題がある。 Furthermore, in the oil tanker shown in Non-Patent Document 1, two metal electrodes of the same type are used in the corrosion environment measurement using an AC impedance type corrosion sensor. However, since the AC impedance type corrosion sensor cannot obtain an output unless there is sufficient liquid junction between the metal electrodes, there is a possibility that a minute amount of corrosion due to minute wetting such as a dew condensation phenomenon cannot be monitored. In addition, measurement requires the installation of external input devices for impedance measurement such as potentiostats and frequency response analyzers, so the durability of the devices and the risk of noise generation for moving bodies such as automobiles There is a problem.
非特許文献2に示された自動車の環境計測では、自動車の移動に伴う地勢的な腐食環境の変化と物理的要因による腐食環境の変化が明記されていない。また、設置している濡れセンサーは構造が不明瞭な上、その出力である濡れがON、OFFのみで評価されており、センサーの出力に対する濡れや腐食との関係が全く不明である。 In the environmental measurement of the automobile shown in Non-Patent Document 2, the change in the terrain corrosive environment accompanying the movement of the automobile and the change in the corrosive environment due to physical factors are not specified. In addition, the wetting sensor installed has an unclear structure and its output is evaluated only for ON and OFF, and the relationship between the sensor output and wetting and corrosion is completely unknown.
また、On Vehicle Testは実際の使用環境において直接環境の腐食性を測定できる手法であるが、試験片が十分に腐食し、耐食性の優劣を評価するまでに長時間を要する。さらに、試験片の腐食を連続的にモニタリングすることができないので、腐食を支配する環境因子(例えば付着塩分や濡れ)を捉えることが困難である。そのため、試験結果は試験を実施した特定地域に限定される評価となる。 On Vehicle Test is a technique that can directly measure the corrosivity of the environment in the actual use environment, but it takes a long time for the test piece to corrode sufficiently and to evaluate the superiority or inferiority of the corrosion resistance. Furthermore, since corrosion of the test piece cannot be continuously monitored, it is difficult to capture environmental factors that govern the corrosion (for example, adhering salt content and wetting). Therefore, the test result is an evaluation limited to the specific area where the test was conducted.
したがって本発明の目的は、激しい環境の変化がある移動体について、定量的な腐食環境計測方法を行い、移動体の防錆構造・防錆設計のための設計方法を提供する。さらに、本発明の他の目的は、腐食センサーによる腐食環境の計測結果に基づいて、移動体材料の耐食性を適切に評価する腐食試験方法および移動体材料の最適な選定方法を提供することにある。 Therefore, an object of the present invention is to provide a design method for a rust prevention structure and a rust prevention design of a mobile body by performing a quantitative corrosion environment measurement method for a mobile body having a severe environmental change. Furthermore, another object of the present invention is to provide a corrosion test method for appropriately evaluating the corrosion resistance of a mobile material based on the measurement result of the corrosive environment by a corrosion sensor and an optimal selection method for the mobile material. .
このような目的を達成するための本発明の特徴は以下の通りである。 The features of the present invention for achieving such an object are as follows.
(1)少なくともその一部が金属材料で構成される移動体の1以上の部位に、成分および/または組成が異なる2種の金属電極を有し、その内の1種は移動体材料の構成成分の選定すべき金属材料とし、他の1種はこれとは異なる同一の金属からなりかつこれに対して電気化学的序列が貴となる金属からなり、少なくとも1組の電極の間隙が絶縁体を隔てて0.1〜5mmとなるように配置され、前記移動体材料の構成成分の選定すべき金属材料からなる金属をベースとして、該ベース上に絶縁層を介して前記貴となる金属を設けた腐食センサーを1個以上設置し、腐食環境において電極が電気的に短絡することによる電極間の電流または電位差を、移動時を含んで連続的または断続的に計測し、かつ、前記腐食センサーの設置位置として移動体の外部から隔離された内部または、移動体の構成部位の内側を含むものとすることを特徴とする移動体の腐食環境計測方法。 (1) At least one part of a moving body, at least part of which is made of a metal material, has two kinds of metal electrodes having different components and / or compositions , and one of them is the structure of the moving body material. The metal material to be selected as a component, and the other one is made of the same metal different from the above, and the metal is electrochemically noble, and at least one electrode gap is an insulator. The base metal is made of a metal material to be selected as a constituent component of the moving body material, and the noble metal is placed on the base via an insulating layer. corrosion sensor provided installed one or more of a current or potential difference between the electrodes by the electrode in the corrosive environment is electrically short-circuited, continuously or intermittently measures include time movement, and wherein the corrosion sensor Move as installation location Corrosive environment measurement method for a mobile body, wherein the internal or isolated from the outside, is intended to include an inner construction site of the mobile.
(2)少なくともその一部が金属材料で構成される移動体の外部から隔離された内部または、移動体の構成部位の内側を含む1以上の部位に、成分および/または組成が異なる2種の金属電極を有し、その内の1種は移動体材料の構成成分の選定すべき金属材料とし、他の1種はこれとは異なる同一の金属からなりかつこれに対して電気化学的序列が貴となる金属からなり、少なくとも1組の電極の間隙が絶縁体を隔てて0.1〜5mmとなるように配置され、前記移動体材料の構成成分の選定すべき金属材料からなる金属をベースとして、該ベース上に絶縁層を介して前記貴となる金属を設けた腐食センサーを1個以上設置し、移動体の移動時のデータを含む腐食環境において電極が電気的に短絡することによる電極間の電流または電位差からなる腐食センサー出力、または該出力から算出される数値が、所定範囲になるように移動体の構造を設計することを特徴とする移動体の設計方法。 (2) at least partially or internally isolated from the outside of the moving body composed of a metal material, in one or more sites including the inner component parts of the moving body, two of components and / or different compositions It has a metal electrode, and one of them is a metal material to be selected as a component of the mobile material, and the other one is made of the same metal different from this and has an electrochemical order. It is made of a noble metal and is arranged so that a gap between at least one pair of electrodes is 0.1 to 5 mm across the insulator, and is based on a metal made of a metal material to be selected as a component of the moving body material As a result, one or more corrosion sensors provided with the noble metal are provided on the base via an insulating layer , and the electrodes are electrically short-circuited in a corrosive environment including data when the moving body is moved. Current or potential difference between Design method of the moving body, characterized in that value calculated from the corrosion sensor output, or output becomes is to design the structure of the vehicle so as to have a predetermined range.
(3)少なくともその一部が金属材料で構成される移動体の外部から隔離された内部または、移動体の構成部位の内側を含む1以上の部位に、成分および/または組成が異なる2種の金属電極を有し、その内の1種は移動体材料の構成成分の選定すべき金属材料とし、他の1種はこれとは異なる同一の金属からなりかつこれに対して電気化学的序列が貴となる金属からなり、少なくとも1組の電極の間隙が絶縁体を隔てて0.1〜5mmとなるように配置され、前記移動体材料の構成成分の選定すべき金属材料からなる金属をベースとして、該ベース上に絶縁層を介して前記貴となる金属を設けた腐食センサーを1個以上設置し、移動体の移動時のデータを含む腐食環境において電極が電気的に短絡することによる電極間の電流または電位差からなる腐食センサー出力、または該出力から算出される数値が、所定範囲になるように移動環境を設定して、移動体あるいは移動体に取り付けられた試験片材料の耐食性を評価する腐食試験を行うことを特徴とする移動体材料の腐食試験方法。 (3) Two kinds of components and / or compositions different in at least one part including the inside of the movable body, which is isolated from the outside of the movable body, at least part of which is made of a metal material It has a metal electrode, and one of them is a metal material to be selected as a component of the mobile material, and the other one is made of the same metal different from this and has an electrochemical order. It is made of a noble metal and is arranged so that a gap between at least one pair of electrodes is 0.1 to 5 mm across the insulator, and is based on a metal made of a metal material to be selected as a component of the moving body material As a result, one or more corrosion sensors provided with the noble metal are provided on the base via an insulating layer , and the electrodes are electrically short-circuited in a corrosive environment including data when the moving body is moved. Current or potential difference between Corrosion test to evaluate the corrosion resistance of the moving body or the test piece material attached to the moving body by setting the moving environment so that the output of the corrosion sensor or the numerical value calculated from the output falls within a predetermined range A corrosion test method for mobile materials characterized by
(4)少なくともその一部が金属材料で構成される移動体の外部から隔離された内部または、移動体の構成部位の内側を含む1以上の部位に、成分および/または組成が異なる2種の金属電極を有し、その内の1種は移動体材料の構成成分の選定対象金属材料とし、他の1種はこれとは異なる同一の金属からなりかつこれに対して電気化学的序列が貴となる金属からなり、その電極の間隙が絶縁体を隔てて0.1〜5mmとなるように配置され、前記移動体材料の構成成分の選定すべき金属材料からなる金属をベースとして、該ベース上に絶縁層を介して前記貴となる金属を設けた1種類または2種類以上の腐食センサーを設置し、移動体の移動時のデータを含む該腐食センサーの出力または該出力から算出される数値を比較することにより、移動体の当該部位における金属材料を選定することを特徴とする移動体材料の選定方法。 (4) Two types having different components and / or compositions in an interior isolated from the outside of the moving body, at least a part of which is made of a metal material, or in one or more parts including the inside of a constituent part of the moving body It has a metal electrode, one of which is a metal material to be selected as a component of the mobile material, and the other one is made of the same metal different from this and has a high electrochemical order. a metal serving as a gap of the electrodes are arranged so as to 0.1~5mm spaced insulators, a metal made of a metal material selected to be constituents of the moving material as a base, said base One or two or more types of corrosion sensors with the noble metal provided thereon via an insulating layer are installed, and the output of the corrosion sensor including data at the time of movement of the moving body or a numerical value calculated from the output By comparing Selection of moving material characterized by selecting a metal material in that portion of the moving body.
(5)少なくともその一部が金属材料で構成される移動体の外部から隔離された内部または、移動体の構成部位の内側を含む1以上の部位に、成分および/または組成が異なる2種の金属電極を有し、その内の1種は移動体材料の構成成分の選定すべき金属材料とし、他の1種はこれとは異なる同一の金属からなりかつこれに対して電気化学的序列が貴となる金属からなり、少なくとも1組の電極の間隙が絶縁体を隔てて0.1〜5mmとなるように配置され、前記移動体材料の構成成分の選定すべき金属材料からなる金属をベースとして、該ベース上に絶縁層を介して前記貴となる金属を設けた腐食センサーを1個以上設置し、腐食環境において電極が電気的に短絡することによる電極間の電流または電位差を、移動時を含んで連続的または断続的に計測する、腐食センサーによる腐食環境の計測結果に基づいた移動体材料の選定方法であって、複数の地域において移動体の複数の部位における腐食環境を1種類の腐食センサーによって計測する腐食環境計測工程と、計測した複数の地域において、ある年数使用した移動体について同一の複数部位の腐食量を測定する工程と、前記2つの工程から得られた腐食センサー出力と腐食量の相関図を作製する工程とを備え、移動体が使用される新規の環境および/または新規の地域において、移動体各部位の腐食環境計測を実施した結果を前記相関図と比較し、移動体の複数の部位における金属材料を選定する工程を有することを特徴とする移動体材料の選定方法。 (5) Two kinds of components and / or compositions different in at least one part including the inside of the movable body, which is isolated from the outside of the movable body, at least part of which is made of a metal material It has a metal electrode, and one of them is a metal material to be selected as a component of the mobile material, and the other one is made of the same metal different from this and has an electrochemical order. It is made of a noble metal and is arranged so that a gap between at least one pair of electrodes is 0.1 to 5 mm across the insulator, and is based on a metal made of a metal material to be selected as a component of the moving body material One or more corrosion sensors provided with the noble metal via an insulating layer are installed on the base, and the current or potential difference between the electrodes due to an electrical short circuit in the corrosive environment is Including continuous or A method for selecting a moving body material based on the measurement results of a corrosive environment by a corrosion sensor, which measures continuously the corrosive environment at a plurality of locations of the moving body with a single type of corrosion sensor in a plurality of areas. In the environmental measurement process, in the measured multiple areas, the process of measuring the corrosion amount of the same multiple parts for a moving body used for a certain number of years, and the correlation diagram between the corrosion sensor output and the corrosion amount obtained from the two processes A plurality of parts of the moving body by comparing the results of the corrosion environment measurement of each part of the moving body with the correlation diagram in a new environment and / or a new area where the moving body is used. A method for selecting a mobile material, comprising a step of selecting a metal material.
本発明によれば、実使用環境における移動体の各部位の局所的な腐食を評価できることから、移動体各部位への材料選定の適正化、あるいは移動体の防錆構造・防錆設計への反映が期待できる。 According to the present invention, it is possible to evaluate local corrosion of each part of a moving body in an actual use environment. Therefore, appropriate selection of materials for each part of the moving body, or rust prevention structure and rust prevention design of the moving body. Reflection can be expected.
本発明は自動車、自動二輪車、鉄道など各種車両、船舶、航空機など自力で移動可能な移動体のすべてに適用可能な技術である。以下には自動車を代表例として実施の形態について詳細に説明する。 The present invention is a technique applicable to all movable bodies such as automobiles, motorcycles, railways, and other vehicles, ships, airplanes, and the like that can move by themselves. In the following, embodiments will be described in detail by taking an automobile as a representative example.
本発明において、効果が期待される移動体への腐食センサーの設置部位は、新規に材料を適用する部位、および地勢環境とは異なる腐食に曝される可能性がある部位で、一箇所あるいは複数の部位である。地勢環境と異なる腐食環境となる部位としては、移動体の外部から隔離された内部、または移動体の構成部位の内側、金属同士の合わせ構造部など乾燥しにくい部位、逆に、通気性が良く移動することにより乾燥が促進される部位等が挙げられる。 In the present invention, the location where the corrosion sensor is installed on the moving body expected to be effective is a portion where a material is newly applied and a portion which may be exposed to corrosion different from the terrain environment. It is a part of. The corrosive environment that is different from the terrain environment includes the inside isolated from the outside of the moving body, the inside of the constituent parts of the moving body, the parts that are difficult to dry, such as the metal-matching structure, and conversely, the air permeability is good The site | part etc. where drying is accelerated | stimulated by moving are mentioned.
また、腐食環境計測を実施する際、温度、相対湿度、濡れ、各種ガス濃度、振動などの環境因子を測定するための環境センサーを各腐食センサーの周辺に同時に取り付け、環境因子を計測することが望ましい。 In addition, when performing a corrosive environment measurement, an environmental sensor for measuring environmental factors such as temperature, relative humidity, wetting, various gas concentrations, and vibrations can be installed around each corrosion sensor simultaneously to measure the environmental factors. desirable.
本発明において使用する腐食センサーの金属電極は、ガルバニック電流を計測するため、成分および/または組成が異なる2種以上の電極を使用する。ここで、ガルバニック電流とは異種金属が溶液または薄い水膜を介して電池を形成することにより発生する電流であり、このような原理にもとづく腐食センサーをガルバニック型腐食センサーという。ここで、図3は、腐食センサーの金属電極間の間隙と相対湿度100%における腐食センサー出力の関係の一例を示すグラフである。図3より本発明に用いる腐食センサーは少なくとも1組の金属電極間の間隙を5mm以下に配置することにより、有効な出力を安定して得ることができた。また、5mmを超える間隙では結露する環境においても電極間の導通が得られず計測が不安定であった。一方、この間隙が0.1mm未満では乾燥時においても電極間の短絡現象が生じた。また、表面の結露や濡れにより確実に電極が電気的に短絡するように、電極間の間隙の一部または全部を、樹脂やセラミックなどの絶縁性物質で充填するとよい。これより、本発明に用いる腐食センサーは少なくとも1組の電極の間隙が絶縁体を隔てて0.1〜5mmとなるように配置する。 The metal electrode of the corrosion sensor used in the present invention uses two or more kinds of electrodes having different components and / or compositions in order to measure the galvanic current. Here, the galvanic current is a current generated when a different metal forms a battery through a solution or a thin water film, and a corrosion sensor based on such a principle is called a galvanic corrosion sensor. Here, FIG. 3 is a graph showing an example of the relationship between the gap between the metal electrodes of the corrosion sensor and the output of the corrosion sensor at a relative humidity of 100%. From FIG. 3, the corrosion sensor used in the present invention was able to stably obtain an effective output by arranging the gap between at least one pair of metal electrodes to be 5 mm or less. In addition, when the gap exceeds 5 mm, conduction between the electrodes cannot be obtained even in an environment where condensation occurs, and measurement is unstable. On the other hand, when the gap is less than 0.1 mm, a short circuit phenomenon between the electrodes occurred even during drying. In addition, part or all of the gaps between the electrodes may be filled with an insulating material such as resin or ceramic so that the electrodes are electrically short-circuited due to dew condensation or wetting on the surface. Accordingly, the corrosion sensor used in the present invention is arranged so that the gap between at least one pair of electrodes is 0.1 to 5 mm across the insulator.
また、電流の検出のため電極間に内部抵抗0.1Ωを超える電流計を接続すると、特に大気開放部位において検出感度が著しく低下することが判明した。よって、電極間に内部抵抗0.1Ω以下の電流計を接続することが好ましい。 It has also been found that when an ammeter with an internal resistance of 0.1Ω or more is connected between the electrodes for detecting the current, the detection sensitivity is remarkably reduced, particularly in the open area. Therefore, it is preferable to connect an ammeter having an internal resistance of 0.1Ω or less between the electrodes.
本発明者等の検討では、腐食センサーの少なくとも1種の金属電極は、実際の移動体の構成材料若しくは適用予定の材料と、同じ規格の材料であることが計測に適していることが判った。また、同じ規格の材料でない場合は、移動体材料の構成成分を考慮して、移動体材料に近い成分および/または組成の金属材料、あるいはめっき材料を適用することが好ましい。腐食センサーの出力が金属電極の腐食に基づく出力であるため、全ての金属電極を移動体の構成材料や適用予定の材料に含まれない金属成分で構成した腐食センサーは適正な出力が得られない。更に腐食センサーを構成する2種以上の電極の組み合わせとして、移動体構成材料を主成分とし腐食により出力を検出する金属電極と、これに対して電気化学序列が貴となる金属を組み合わせることが望ましい。 According to the study by the present inventors, it has been found that at least one metal electrode of the corrosion sensor is suitable for measurement if it is a material having the same standard as the constituent material of the actual moving body or the material to be applied. . In addition, when the materials are not of the same standard, it is preferable to apply a metal material or a plating material having a component and / or composition close to that of the mobile material in consideration of the constituent components of the mobile material. Since the output of the corrosion sensor is an output based on the corrosion of the metal electrode, the corrosion sensor in which all the metal electrodes are composed of metal components that are not included in the constituent materials of the moving body or the material to be applied cannot obtain an appropriate output. . Further, as a combination of two or more kinds of electrodes constituting the corrosion sensor, it is desirable to combine a metal electrode whose main component is a moving body constituent material and detecting an output by corrosion, and a metal having a noble electrochemical order. .
本腐食センサーは、腐食センサーへの外部からの入力は不要で、複数の電極間で発生する電流または電位差を直接または間接的に計測する方式に限定される。交流インピーダンス法や水晶振動子微小天秤法などのように外部からセンサーに対して入力が必要な計測方式は、移動体に特有の計測条件である寒暖の環境変化、電気的外乱、移動時の振動に起因して計測機器の安定作動性や信号の検出に問題があり、適用が難しかった。 This corrosion sensor does not require an external input to the corrosion sensor, and is limited to a method for directly or indirectly measuring a current or potential difference generated between a plurality of electrodes. Measurement methods that require external input to the sensor, such as the AC impedance method and the quartz crystal microbalance method, are the measurement conditions unique to the moving object, such as changes in the environment, electrical disturbance, and vibration during movement. Due to this, there was a problem in the stable operation of the measuring instrument and the detection of the signal, and it was difficult to apply.
図1は、自動車における腐食環境計測システムの構成の一例を示している。 FIG. 1 shows an example of the configuration of a corrosive environment measuring system in an automobile.
図1に示すように、本発明において、腐食センサーの出力は、移動体の移動の妨げにならないように配線した計測システムによりデータの測定または測定・保存または測定・転送される。腐食センサーによる計測は移動体の移動時を含めた出力が得られるように実施する。腐食センサーの出力は金属電極間の電流または電圧で与えられるが、解析の対象となるデータは、少なくとも移動体の移動時のデータを含むものであることが必要である。記録、保存または転送された出力データは定期的に回収し、データ解析システムにより解析される。 As shown in FIG. 1, in the present invention, the output of the corrosion sensor is measured or measured / stored or measured / transferred by a measurement system wired so as not to hinder the movement of the moving body. The measurement with the corrosion sensor is carried out so that the output including the movement of the moving body can be obtained. The output of the corrosion sensor is given by the current or voltage between the metal electrodes, but the data to be analyzed needs to include at least data when the moving body moves. Recorded, stored or transferred output data is periodically collected and analyzed by a data analysis system.
図4は、自動車ボデー外面、ドア内部およびフロア下の腐食センサー出力を比較した図である。ボデー外面は自動車の走行、非走行にかかわらず外部環境に対応して腐食センサーの出力が変化している。しかし、ドア内部では自動車の走行、非走行にかかわらず外部環境に対応せずに、雨天後も腐食センサーの出力が高い状態が長く続いている。また、フロア下は雨天であっても非走行時には腐食センサーの出力は小さいが、走行することにより出力が高くなり、その後雨が止んでも比較的高い出力の状態が続いている。移動体では、外部から隔離された内部や移動時を含んだ各部位の腐食環境計測が特に重要であることを示している。 FIG. 4 is a diagram comparing corrosion sensor outputs on the outer surface of the automobile body, inside the door, and below the floor. Corrosion sensor output changes on the outer surface of the body in response to the external environment regardless of whether the vehicle is running or not. However, the inside of the door does not respond to the external environment regardless of whether the vehicle is running or not running, and the output of the corrosion sensor continues to be high even after rain. In addition, even if it is raining under the floor, the output of the corrosion sensor is small when the vehicle is not driven, but the output increases as the vehicle travels, and a relatively high output continues even after the rain stops. For mobile objects, it is shown that the measurement of the corrosive environment of each part including the inside isolated from the outside and the time of movement is particularly important.
本発明の移動体または移動体部品の設計方法について説明する。移動体の構造を新しく設計または改良する際、新設計または改良の候補となる構造体を移動体に組み入れてこの構造体の腐食環境計測を実施する。このときの腐食センサーの出力またはこの出力から算出される数値(電流密度などの出力値または電流の時間積分などの換算値)が、防錆上問題ないと見なせる所定の範囲内になるように構造を設計または改良することにより、適正な防錆構造を設計することができる。 A method for designing a moving body or moving body part of the present invention will be described. When a structure of a moving body is newly designed or improved, a structure that is a candidate for the new design or improvement is incorporated into the moving body, and the corrosive environment of the structure is measured. Structure so that the output of the corrosion sensor at this time or the value calculated from this output (output value such as current density or converted value such as time integral of current) is within a predetermined range that can be regarded as no problem in rust prevention. By designing or improving the above, it is possible to design an appropriate rust prevention structure.
次に、本発明の移動体材料の腐食試験方法について説明する。ここで、移動体材料の腐食試験とは、ある決められた腐食促進環境で移動体を実際に使用し、移動体そのものあるいは移動体に取り付けられた試験片の耐食性を評価する腐食試験のことであり、移動体の実際の使用環境における腐食を短期間で効率的に発現させることが要求される。 Next, the corrosion test method for the mobile material of the present invention will be described. Here, the corrosion test of moving body materials is a corrosion test that evaluates the corrosion resistance of the moving body itself or a test piece attached to the moving body by actually using the moving body in a predetermined corrosion-promoting environment. In addition, it is required to efficiently develop corrosion in an actual use environment of the mobile body in a short period of time.
腐食促進環境を決定するために、まず実際の使用環境において移動体の腐食環境計測を実施する。計測結果の中で、腐食センサーの出力または出力から算出される数値がある所定範囲となる外部環境(例えば、雨天、融雪塩散布道路の走行など)と腐食を支配する腐食環境因子(例えば、降雨や水跳ねによる濡れ、融雪塩の付着、相対湿度など)を予想する。このような外部環境または腐食環境因子は複数あっても構わない。つぎに想定された腐食を支配する外部環境または腐食環境因子により腐食が促進されるように、移動体の移動環境を人工的に設定する。例えば、冬季の融雪塩散布を模擬した融雪塩散布道路、降雨時を模擬したシャワーや温水を散布した道路を設定するなどが挙げられる。腐食を支配する外部環境や腐食環境因子が複数あれば、異なる移動環境を組み合わせて設定しても構わない。このようにして設定した腐食促進環境において移動体を使用することで、効率的に移動体の耐食性を評価することができる。一度設定した移動環境に対して、腐食環境計測を実施して移動体のある基準部位に設置した腐食センサーの出力または出力から算出される数値がある所定範囲になるように移動環境を再調整してもよい。 In order to determine the corrosion-promoting environment, first, the corrosive environment of the moving object is measured in the actual use environment. Among the measurement results, the output of the corrosion sensor or the external environment where the numerical value calculated from the output falls within a certain range (for example, running on rainy weather, snowmelt salt spreading roads) and the corrosion environment factors that govern the corrosion (for example, rainfall) And wetting due to water splashing, snowmelt salt adhesion, relative humidity, etc.). There may be a plurality of such external environment or corrosion environment factors. Next, the moving environment of the moving body is artificially set so that the corrosion is accelerated by an external environment or a corrosive environment factor that controls the assumed corrosion. For example, it is possible to set a snow melting salt spraying road that simulates the melting of snow melting salt in winter, and a road that sprays showers and warm water that simulates raining. If there are a plurality of external environments or corrosive environmental factors that control corrosion, different mobile environments may be set in combination. By using the moving body in the corrosion promotion environment set as described above, the corrosion resistance of the moving body can be efficiently evaluated. Once the mobile environment has been set, measure the corrosive environment and readjust the mobile environment so that the output from the corrosion sensor installed at the reference site where the mobile object is located or the value calculated from the output is within a certain range May be.
次に、本発明の移動体の腐食環境計測により最適な金属材料を選定する方法について説明する。同一計測部位に、成分および/または組成が異なる2種の金属電極を有し、その内の1種は移動体材料の構成成分の選定すべき金属材料とし、他の1種はこれとは異なる同一の金属からなる1種類または2種類以上の腐食センサーを設置する。設置された腐食センサーの出力またはこの出力から算出される数値を比較し、より小さい出力を与える電極の金属材料またはそれに成分および/または組成が類似した金属材料を移動体の構成材料として適用する。腐食センサーの出力が小さい金属電極ほど、その環境においてより高い防錆性能を有していると考えられるからである。耐食性以外の条件、例えばコストなどの条件を満足する材料の中から、最も耐食性が優れた材料を選定することができる。 Next, a method for selecting an optimum metal material by measuring the corrosive environment of the moving body of the present invention will be described. There are two types of metal electrodes having different components and / or compositions at the same measurement site, one of which is a metal material to be selected as a component of the mobile material, and the other one is different from this. Install one or more corrosion sensors of the same metal. The output of the installed corrosion sensor or a numerical value calculated from this output is compared, and a metal material of an electrode that gives a smaller output or a metal material having a similar component and / or composition is applied as a constituent material of the moving body. This is because a metal electrode having a smaller output of the corrosion sensor is considered to have higher rust prevention performance in that environment. A material having the most excellent corrosion resistance can be selected from materials satisfying conditions other than corrosion resistance, for example, conditions such as cost.
さらに高い精度で移動体への適正な材料選定を行うための方法を以下に説明する。ある地域において移動体の複数の部位について腐食環境計測を実施する(腐食環境計測工程)とともに、同地域において、使用期間が既知の移動体について上記環境計測を実施した各部位の腐食量を定量化し(腐食量を測定する工程)、これより計測出力と腐食量の相関関係を求める(腐食センサー出力と腐食量の相関図を作製する工程)。またこれらの相関関係を集めたデータベースを構築する。ここで、腐食環境計測を実施する移動体と腐食量を定量化する移動体は同一である必要はないが、類似した構造であることが望ましい。移動体の腐食量としては、金属材料の腐食減量、腐食穴深さ、塗膜膨れ幅、錆発生面積が挙げられる。計測出力と腐食量の相関関係は材料の種類毎に整理し、腐食センサー調査地域、調査移動体数を多くすることで精度を高くすることが望ましい。 A method for selecting an appropriate material for the moving body with higher accuracy will be described below. Corrosion environment measurement is performed for several parts of a moving body in a certain area (corrosion environment measurement process), and the corrosion amount of each part where the above environmental measurement is performed for a moving body whose use period is known in the same area is quantified. (Step of measuring the corrosion amount), and the correlation between the measurement output and the corrosion amount is obtained from this (step of creating a correlation diagram between the corrosion sensor output and the corrosion amount). A database that collects these correlations is constructed. Here, the moving body for measuring the corrosive environment and the moving body for quantifying the amount of corrosion do not have to be the same, but it is desirable that they have a similar structure. Examples of the corrosion amount of the moving body include corrosion reduction of metal materials, corrosion hole depth, coating film swelling width, and rust generation area. It is desirable that the correlation between the measurement output and the amount of corrosion be organized for each type of material, and that the accuracy should be increased by increasing the number of corrosion sensor survey areas and the number of mobile units surveyed.
そして移動体の使用が見込まれる新規の環境および/または新規の地域において腐食環境計測を実施する。この計測結果をあらかじめ求めた移動体の材料毎の計測出力と腐食量の相関関係またはデータベースと比較し、出力に対して耐食性を満足する材料を精度よく適切に選定することができる。本手法は鋼板やめっきの種類だけでなく、化成処理や塗装の種類、厚さなどについても適正に選定をすることができる。 Then, the corrosive environment measurement is performed in a new environment and / or a new area where the mobile body is expected to be used. The measurement result is compared with the correlation between the measurement output for each material of the movable body obtained in advance and the amount of corrosion or a database, and a material satisfying the corrosion resistance for the output can be selected accurately and appropriately. In this method, not only the type of steel plate and plating, but also the chemical conversion treatment, the type of coating, and the thickness can be selected appropriately.
次に、本発明の移動体や移動体構成材料の付加価値付与や信頼性を向上する方法について説明する。本腐食環境計測方法に基づき選定した移動体の構成金属材料である表面処理鋼板および耐食鋼材に腐食環境計測結果、または選定に利用した腐食センサー出力と腐食量の相関関係、またはそのデータベースから推定した定量的な腐食量のデータを添付する。また、本腐食環境計測方法に基づき設定した移動体腐食試験による耐食性評価結果を移動体または移動体部品に添付する。これらの添付データは電子情報による送付、あるいは同一と見なせる材料、部品、移動体、構造についてはカタログや仕様書のような形式で代表して提示してもよい。添付あるいは提示された情報により防錆品質に関して付加価値や信頼性を付与した金属材料を提供することができる。 Next, a method for adding value and improving the reliability of the mobile body and the mobile body constituent material of the present invention will be described. Estimated from the corrosive environment measurement results for the surface-treated steel plates and corrosion-resistant steel materials that are the constituent metal materials of the moving body selected based on this corrosive environment measurement method, the correlation between the corrosion sensor output used for selection and the corrosion amount, or its database Attach quantitative corrosion data. In addition, the corrosion resistance evaluation result by the moving body corrosion test set based on this corrosion environment measurement method is attached to the moving body or moving body parts. These attached data may be sent by electronic information, or materials, parts, moving bodies, and structures that can be regarded as the same may be presented as representatives in the form of catalogs or specifications. The attached or presented information can provide a metal material with added value and reliability with respect to the antirust quality.
図1は、自動車における腐食環境計測システムの構成の一例を示す。この例では、1.フェンダー、2.ドア内部、3.フロア下面、4.車室内、5.ホイールアーチが示されている。また、腐食センサーの近傍に環境センサーである温度および相対湿度センサーによる測定も同時に実施している。 FIG. 1 shows an example of the configuration of a corrosive environment measurement system in an automobile. In this example, 1. Fender, 2. Inside the door, 3. Floor bottom, 4. Vehicle interior, 5. Wheel arch are shown. In addition, measurement using a temperature and relative humidity sensor, which is an environmental sensor, is also performed in the vicinity of the corrosion sensor.
図2は、本発明及び比較例に用いる腐食センサーの構成の一例を示している。図2の1.および2.に示した腐食センサーは2種の金属を用いる2電極型の腐食センサーである。図2の3.に示した腐食センサーは3種の金属を用いる4電極型の腐食センサーである。3.では、金属A―金属B間、金属B―金属C間、および金属C―金属B間の出力をそれぞれ計測する。出力結果は、周辺環境、センサーの濡れ状態、電極金属の種類により変化する。 FIG. 2 shows an example of the configuration of the corrosion sensor used in the present invention and the comparative example . The corrosion sensor shown in 1 and 2 of Fig. 2 is a two-electrode type corrosion sensor using two kinds of metals. The corrosion sensor shown in 3 of FIG. 2 is a four-electrode type corrosion sensor using three kinds of metals. 3. The metal A- between metal B, metal B- between metal C, and measuring the output between the metal C- metal B, respectively. Output result, the surrounding environment, the sensor wet state, it changes the type of electrode metal.
表1は、図2に記載の腐食センサーについて、計測において有効な出力が得られるか否かを判定した表である。表1には、図2に記載の腐食センサーの番号、計測方式、電極数、電極A、B、Cの成分、計測可否の判定を示している。計測可否の判定は、センサーへの付着塩分量100mg/m2において、本発明1、2は相対湿度90%以上で0.01μA以上の出力が得られる場合で○とした。 Table 1 is a table for determining whether or not an effective output can be obtained in the measurement for the corrosion sensor shown in FIG. Table 1 shows the number of the corrosion sensor shown in FIG. 2, the measurement method, the number of electrodes, the components of electrodes A, B, and C, and the determination of whether or not measurement is possible. Determination of the measurement whether, in the adhesion salinity 100 mg / m 2 to the sensor, the present invention 1, 2 was ○ in the case where the output of the above 0.01μA a relative humidity of 90% or more is obtained.
Feは炭素鋼、Znは純度97%、Al、Mg、Niは純度99%、Pt、Au、Agは純度99.9%の材料を用いた。 Fe was carbon steel, Zn was 97% pure, Al, Mg, and Ni were 99% pure, and Pt, Au, and Ag were 99.9% pure.
本発明と比較例3より腐食センサーは2種の金属電極が必要である。本発明と比較例1より腐食センサーは成分および/または組成の異なる2種の金属電極から構成されることが必要である。本発明と比較例2より腐食センサーの検出方式は、センサーに外部信号を入力しないガルバニック形式が優れる。 According to the present invention and Comparative Example 3, the corrosion sensor requires two types of metal electrodes. Corrosion Sensor Ri good Comparative Example 1 and the present invention should be composed of two metal electrodes of different components and / or composition. From the present invention and Comparative Example 2, the detection method of the corrosion sensor is superior to the galvanic type in which no external signal is input to the sensor.
図5は異なる金属電極を対とする複数の腐食センサーを用いて、移動体の部位1および2について腐食環境計測を実施した結果である。移動体の部位1において、各金属電極を使用した腐食センサーの出力はZn>Fe≫Al>Crとなっており、出力の小さいAlやCrを移動体構成材料として適用することが防錆上望ましいと判断できる。一方部位2のようにいずれの金属電極を使用したセンサーも出力が十分に小さければ、いずれの材料も耐食性は十分であると判断し、耐食性以外の条件により材料を選定する。 FIG. 5 shows a result of the corrosion environment measurement for the parts 1 and 2 of the moving body using a plurality of corrosion sensors having pairs of different metal electrodes. In the moving body part 1, the output of the corrosion sensor using each metal electrode is Zn> Fe >> Al> Cr, and it is desirable in terms of rust prevention to apply Al or Cr having a small output as the moving body constituting material. It can be judged. On the other hand, if the output of a sensor using any metal electrode as in the part 2 is sufficiently small, it is determined that any material has sufficient corrosion resistance, and the material is selected according to conditions other than the corrosion resistance.
図6は各地域a〜cにおいて自動車の腐食環境計測と使用10年の自動車の腐食実態調査から、腐食センサー出力と腐食量の相関図を作成した一例である。 FIG. 6 is an example in which a correlation diagram between the corrosion sensor output and the corrosion amount is created from the measurement of the corrosion environment of the automobile and the actual corrosion survey of the automobile in 10 years of use in each of the areas a to c.
図7は図6に示した各地域a〜cのデータを併せ、使用10年の自動車の腐食センサー出力と腐食量の相関を材料毎にまとめた図である。 FIG. 7 is a diagram summarizing the correlation between the corrosion sensor output and the corrosion amount of automobiles for 10 years in use for each material, together with the data of the respective areas a to c shown in FIG.
図8は図7で作成した相関図中に、地域dにおける腐食環境計測から求めた自動車各部位の腐食センサー出力(図中点線)を示した図である。この図から例えば、地域dではドア内部に材料Aを適用した場合、使用10年で腐食穴あきに至ることが予測される。一方、材料Bを適用した場合は、腐食穴の深さは板厚に対して十分小さいことが予測される。したがって、材料Bではドア内部の腐食は若干の赤錆程度であり、使用期間が10年ならば適用可能である。またフード裏側は材料AおよびBともに腐食穴深さが小さいので、使用期間が10年ならばA、Bどちらの材料も適用できる。なお、この例についても、腐食の観点のみから材料の適用可否を判断しており、コスト等他の条件は考慮していない。 FIG. 8 is a diagram showing the corrosion sensor output (dotted line in the figure) of each part of the vehicle obtained from the corrosion environment measurement in the area d in the correlation diagram created in FIG. From this figure, for example, in the region d, when the material A is applied to the inside of the door, it is predicted that corrosion will be perforated after 10 years of use. On the other hand, when the material B is applied, it is predicted that the depth of the corrosion hole is sufficiently small with respect to the plate thickness. Therefore, in the material B, the corrosion inside the door is slightly red rust, and can be applied if the usage period is 10 years. Moreover, since the corrosion hole depth is small on both the materials A and B on the back side of the hood, both materials A and B can be applied if the usage period is 10 years. In this example, the applicability of the material is determined only from the viewpoint of corrosion, and other conditions such as cost are not considered.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003368078A JP4258352B2 (en) | 2003-10-28 | 2003-10-28 | Corrosion environment measurement method and design method for mobile body, and corrosion test method and selection method for mobile body material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003368078A JP4258352B2 (en) | 2003-10-28 | 2003-10-28 | Corrosion environment measurement method and design method for mobile body, and corrosion test method and selection method for mobile body material |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008269346A Division JP4375492B2 (en) | 2008-10-20 | 2008-10-20 | Corrosion environment measurement method for mobile object, its design method, corrosion test method for mobile material and selection method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005134162A JP2005134162A (en) | 2005-05-26 |
JP4258352B2 true JP4258352B2 (en) | 2009-04-30 |
Family
ID=34645887
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003368078A Expired - Lifetime JP4258352B2 (en) | 2003-10-28 | 2003-10-28 | Corrosion environment measurement method and design method for mobile body, and corrosion test method and selection method for mobile body material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4258352B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4724649B2 (en) * | 2006-12-21 | 2011-07-13 | 東京電力株式会社 | Method for estimating corrosion rate of structures using ACM sensor |
JP5357709B2 (en) * | 2009-11-13 | 2013-12-04 | 三菱重工業株式会社 | Hydrogen fluoride-containing gas detection device, processing device, and detection method |
JP5331155B2 (en) * | 2011-04-28 | 2013-10-30 | 三菱重工業株式会社 | Battery system |
JP5768502B2 (en) * | 2011-05-26 | 2015-08-26 | トヨタ自動車株式会社 | Corrosion detection system for fluid flow components |
JP5964147B2 (en) | 2012-06-08 | 2016-08-03 | スズキ株式会社 | Method and apparatus for measuring corrosion of moving object |
CN103018299B (en) * | 2012-12-07 | 2014-07-16 | 国家电网公司 | Couple corrosion sensor |
CN105004770A (en) * | 2015-07-02 | 2015-10-28 | 国家电网公司 | Electrochemical sensor used for atmosphere corrosive monitoring, and application method thereof |
JP6246270B2 (en) * | 2016-06-29 | 2017-12-13 | スズキ株式会社 | Method and apparatus for measuring corrosion of moving object |
-
2003
- 2003-10-28 JP JP2003368078A patent/JP4258352B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2005134162A (en) | 2005-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4375492B2 (en) | Corrosion environment measurement method for mobile object, its design method, corrosion test method for mobile material and selection method | |
Mizuno et al. | Corrosion monitoring and materials selection for automotive environments by using Atmospheric Corrosion Monitor (ACM) sensor | |
JP5066955B2 (en) | Corrosion rate evaluation method | |
JP4724649B2 (en) | Method for estimating corrosion rate of structures using ACM sensor | |
JP6058442B2 (en) | Corrosion sensor, corrosion rate measuring method and corrosion rate measuring apparatus using the same | |
JP4258352B2 (en) | Corrosion environment measurement method and design method for mobile body, and corrosion test method and selection method for mobile body material | |
Diler et al. | Real‐time monitoring of the degradation of metallic and organic coatings using electrical resistance sensors | |
CN109983329B (en) | Corrosion evaluation method | |
US20230108997A1 (en) | Corrosion-resistance testing method for coated metal member, corrosion-resistance testing apparatus for coated metal member, corrosion-resistance testing program for coated metal member, and storage medium | |
Sagüés | Corrosion measurement techniques for steel in concrete | |
Nazir et al. | Electrochemical corrosion failure analysis of large complex engineering structures by using micro-LPR sensors | |
Davis et al. | Coating evaluation and validation of accelerated test conditions using an in-situ corrosion sensor | |
JP6631593B2 (en) | Method of predicting corrosion of weathering steel and method of predicting corrosion of steel structures | |
JP2019158377A (en) | Measurement method of corrosion rate using acm sensor | |
US5045775A (en) | Environmental corrosion monitor system incorporating deposited contaminants and corrosion products | |
JP2005134161A (en) | Corrosion sensor, method for measuring corrosive environment of overlap structure part, method for designing structure, and method for corrosion test of material used for overlap structure part | |
JP7156481B1 (en) | CORROSION RESISTANCE TEST METHOD FOR COATED METAL MATERIAL, CORROSION RESISTANCE TESTING APPARATUS, CORROSION RESISTANCE TEST PROGRAM AND RECORDING MEDIUM | |
KR20070054860A (en) | Electrochemistry test cell for estimation of corrosion and blazing fire of body and chassis and estimation method using the same | |
JP3797189B2 (en) | Method for estimating corrosion rate and evaluation method for steel | |
Klinghoffer et al. | Smart Structures: Embeddable sensors for use in the integrated monitoring systems of concrete structures | |
JPH07333188A (en) | Polarization resistance measuring method of under-film metal and polarization resistance measuring sensor therefor | |
Friedersdorf et al. | Improved Asset Management Through Corrosion Health Monitoring | |
Simillion et al. | Atmospheric corrosion: A review focussed on modelling | |
JP2023058105A (en) | Corrosion diagnosis method and corrosion diagnosis system | |
Ruedisueli et al. | Evaluation of in-service navy ship hull coating utilizing electrochemical current and impedance measurement techniques |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060825 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20060921 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080123 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080205 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080401 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080507 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080704 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080819 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081020 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20081209 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090113 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090126 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120220 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4258352 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120220 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130220 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130220 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |