JP2022061671A - Resonator characteristic measurement method - Google Patents

Resonator characteristic measurement method Download PDF

Info

Publication number
JP2022061671A
JP2022061671A JP2020169744A JP2020169744A JP2022061671A JP 2022061671 A JP2022061671 A JP 2022061671A JP 2020169744 A JP2020169744 A JP 2020169744A JP 2020169744 A JP2020169744 A JP 2020169744A JP 2022061671 A JP2022061671 A JP 2022061671A
Authority
JP
Japan
Prior art keywords
resonator
value
load
wall surface
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020169744A
Other languages
Japanese (ja)
Inventor
崇 戸村
Takashi Tomura
二郎 廣川
Jiro Hirokawa
修 加賀谷
Osamu Kagaya
信隆 木寺
Nobutaka Kidera
大輔 山中
Daisuke Yamanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Institute of Technology NUC
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd, Tokyo Institute of Technology NUC filed Critical Asahi Glass Co Ltd
Priority to JP2020169744A priority Critical patent/JP2022061671A/en
Publication of JP2022061671A publication Critical patent/JP2022061671A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Waveguides (AREA)

Abstract

To provide a resonator characteristic measurement method capable of easily obtaining characteristics of a resonator.SOLUTION: A resonator characteristic measurement method includes: a first step of evaluating a sensitivity coefficient and uncertainty relative to resonator dimensions and determining resonator dimensions such that the sensitivity coefficient becomes small; a second step of measuring passage characteristics of a resonator having resonator dimensions determined in the first step and calculating a resonance frequency of the resonator and a non-load Q value; a third step of calculating a relative dielectric constant of the resonator by a resonance frequency calculated in the second step and an actual measurement value of resonator dimensions; and a fourth step of calculating a conductivity of a wide wall surface of the resonator, a conductivity of a narrow wall surface, and a dielectric tangent by the non-load Q value calculated in the second step, the relative dielectric constant calculated in the third step, and the actual measurement value of resonator dimensions.SELECTED DRAWING: Figure 4

Description

本発明は共振器特性測定方法に関する。 The present invention relates to a method for measuring resonator characteristics.

ミリ波帯などの高周波帯で用いられる共振器の一つとして導波管励振共振器がある。導波管励振共振器は、例えば、高周波帯におけるアンテナや導波路として使用できる。特許文献1には、積層型導波管線路に関する技術が開示されている。また、特許文献2には、被測定導体板の導電率を容易に測定できる高周波導電率測定装置に関する技術が開示されている。 There is a waveguide excitation resonator as one of the resonators used in the high frequency band such as the millimeter wave band. The waveguide excitation resonator can be used, for example, as an antenna or a waveguide in a high frequency band. Patent Document 1 discloses a technique relating to a laminated waveguide line. Further, Patent Document 2 discloses a technique relating to a high-frequency conductivity measuring device capable of easily measuring the conductivity of a conductor plate to be measured.

特開2010-34826号公報Japanese Unexamined Patent Publication No. 2010-34826 特開2015-227850号公報Japanese Unexamined Patent Publication No. 2015-227850

所定のデバイスに適用可能な共振器を設計する際は、高周波帯における共振器の導電率や誘電正接を求める必要がある。例えば、直方体状の共振器の場合は、広壁面の導電率、狭壁面の導電率、及び誘電正接を求める必要がある。しかしながら、特許文献2に開示されている技術では、これらの値を一度に求めることができないため、共振器の特性を求める際に煩雑になるという問題がある。 When designing a resonator applicable to a given device, it is necessary to determine the conductivity and dielectric loss tangent of the resonator in the high frequency band. For example, in the case of a rectangular parallelepiped resonator, it is necessary to obtain the conductivity of a wide wall surface, the conductivity of a narrow wall surface, and the dielectric loss tangent. However, in the technique disclosed in Patent Document 2, since these values cannot be obtained at once, there is a problem that it becomes complicated when obtaining the characteristics of the resonator.

上記課題に鑑み本発明の目的は、共振器の特性を容易に求められる共振器特性測定方法を提供することである。 In view of the above problems, an object of the present invention is to provide a resonator characteristic measuring method in which the characteristics of the resonator can be easily obtained.

本発明の一態様にかかる共振器特性測定方法は、
共振器寸法に対する感度係数および不確かさを評価し、前記感度係数が小さくなるような共振器寸法を決定する第1のステップと、
前記第1のステップで決定された前記共振器寸法を有する共振器の通過特性を測定し、前記共振器の共振周波数と無負荷Q値を算出する第2のステップと、
前記第2のステップで算出された前記共振周波数と前記共振器寸法の実測値とを用いて、前記共振器の比誘電率を算出する第3のステップと、
前記第2のステップで算出された前記無負荷Q値と、前記第3のステップで算出された前記比誘電率と、前記共振器寸法の実測値と、を用いて、前記共振器の広壁面の導電率、狭壁面の導電率、及び誘電正接を算出する第4のステップと、を備える。
The resonator characteristic measuring method according to one aspect of the present invention is
The first step of evaluating the sensitivity factor and uncertainty with respect to the resonator size and determining the resonator size such that the sensitivity factor becomes smaller.
The second step of measuring the passage characteristics of the resonator having the resonator dimension determined in the first step and calculating the resonance frequency and the no-load Q value of the resonator.
The third step of calculating the relative permittivity of the resonator using the resonance frequency calculated in the second step and the measured value of the resonator dimensions,
Using the no-load Q value calculated in the second step, the relative permittivity calculated in the third step, and the measured value of the resonator size, the wide wall surface of the resonator is used. A fourth step of calculating the conductivity of the narrow wall surface, the conductivity of the narrow wall surface, and the dielectric loss tangent.

上述の共振器特性測定方法において、
前記共振器は直方体状の共振器でもよく、前記共振器の幅方向の寸法をa、厚さ方向の寸法をb、長手方向の寸法をdとした場合、
前記第1のステップにおいて、比誘電率と寸法aの感度係数式、比誘電率と共振周波数の感度係数式、寸法dと寸法aの感度係数式、及び寸法dと共振周波数の感度係数式を作成し、
前記無負荷Q値の標準不確かさ、前記寸法a、b、dの標準不確かさ、前記共振周波数の標準不確かさ、及び前記比誘電率の標準不確かさを仮定し、
前記寸法a、b、dを変化させたときの感度係数を算出してもよい。
In the above-mentioned resonator characteristic measurement method,
The resonator may be a rectangular parallelepiped resonator, and when the width direction dimension of the resonator is a, the thickness direction dimension is b, and the longitudinal dimension is d.
In the first step, the sensitivity coefficient formula of the relative permittivity and the dimension a, the sensitivity coefficient formula of the relative permittivity and the resonance frequency, the sensitivity coefficient formula of the dimension d and the dimension a, and the sensitivity coefficient formula of the dimension d and the resonance frequency are obtained. make,
Assuming the standard uncertainty of the no-load Q value, the standard uncertainty of the dimensions a, b, d, the standard uncertainty of the resonance frequency, and the standard uncertainty of the relative permittivity.
The sensitivity coefficient when the dimensions a, b, and d are changed may be calculated.

前記第1のステップにおいて、前記無負荷Q値の誤差が所定の値以下になるように隣接共振周波数の間隔を設定した後、前記感度係数が小さくなるような共振器寸法を決定してもよい。 In the first step, after setting the interval of the adjacent resonance frequencies so that the error of the no-load Q value is equal to or less than a predetermined value, the resonator size may be determined so that the sensitivity coefficient becomes small. ..

前記第1のステップにおいて、
二共振器以上の共振器並列回路を仮定し、
共振周波数と無負荷Q値Quを与えて通過特性を計算し、
前記通過特性から無負荷Q値Qumを計算し、
前記Quと前記Qumの差が所定の値以下になるように隣接共振周波数の間隔を設定し、
前記感度係数が小さくなるような共振器寸法を決定してもよい。
In the first step,
Assuming a resonator parallel circuit with two or more resonators,
The resonance frequency and the no-load Q value Qu are given to calculate the passing characteristics.
The no-load Q value Qum is calculated from the passage characteristics, and the load Q value is calculated.
The interval between adjacent resonance frequencies is set so that the difference between the Qu and the Qum is equal to or less than a predetermined value.
The resonator size may be determined so that the sensitivity coefficient becomes small.

前記第2のステップにおいて、互いに対向するように配置された第1及び第2の導体基板と、前記第1の導体基板と前記第2の導体基板との間に配置された金属ビアと、を備え、前記第1の導体基板と前記第2の導体基板と前記複数の金属ビアとで囲まれた空間が導波路として機能する共振器の通過特性を測定してもよい。 In the second step, the first and second conductor substrates arranged so as to face each other and the metal vias arranged between the first conductor substrate and the second conductor substrate are formed. The passage characteristic of the resonator in which the space surrounded by the first conductor substrate, the second conductor substrate, and the plurality of metal vias functions as a waveguide may be measured.

前記第3のステップにおいて、
共振器寸法a、b、d、及び比誘電率εを未知数とし、共振周波数fmnl、共振モード次数m、l、透磁率μを既知数とし、
前記共振器寸法の実測値と下記の一次方程式とを用いて前記共振器の比誘電率を算出してもよい(ただし、x、x、x、xを下記のように定義する)。

Figure 2022061671000002
Figure 2022061671000003
In the third step,
Resonator dimensions a, b, d, and relative permittivity ε r are unknown, and resonance frequency f mnl , resonance mode order m, l, and magnetic permeability μ r are known numbers.
The relative permittivity of the resonator may be calculated using the measured value of the resonator dimensions and the following linear equation (however, x 1 , x 2 , x 3 , and x 4 are defined as follows. ).
Figure 2022061671000002
Figure 2022061671000003

前記第4のステップにおいて、
前記共振器の広壁面の導電率σ、狭壁面の導電率σr,t、及び誘電正接tanδを未知数とし、共振器寸法a、b、d、透磁率μ、波数k、角周波数ω、無負荷Q値Qu、及び共振モード次数lを既知数とし、
下記の一次方程式を用いて、前記共振器の広壁面の導電率、狭壁面の導電率、及び誘電正接を算出してもよい(ただし、a=ld+ad、a=2lb+2bdであり、x、x、xを下記のように定義する)。

Figure 2022061671000004
Figure 2022061671000005
In the fourth step,
Resonator dimensions a, b, d, magnetic permeability μ, wave number k, angular frequency ω, with unknowns being the conductivity σ f on the wide wall surface of the resonator, the conductivity σ r, t on the narrow wall surface, and the dielectric tangent tan δ. Let the no-load Q value Qu and the resonance mode order l be known numbers.
The following linear equation may be used to calculate the conductivity of the wide wall, the conductivity of the narrow wall, and the dielectric loss tangent of the resonator (where a 1 = l 2 a 3 d + ad 3 , a 2 = 2l). 2 a 3 b + 2 bd 3 and x 5 , x 6 and x 7 are defined as follows).
Figure 2022061671000004
Figure 2022061671000005

本発明により、共振器の特性を容易に求められる共振器特性測定方法を提供できる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a resonator characteristic measurement method in which the characteristics of a resonator can be easily obtained.

実施の形態にかかる共振器の一例を示す斜視図である。It is a perspective view which shows an example of the resonator which concerns on embodiment. 実施の形態にかかる共振器の構成例を示す斜視図である。It is a perspective view which shows the structural example of the resonator which concerns on embodiment. 実施の形態にかかる共振器の構成例を示す上面図である。It is a top view which shows the structural example of the resonator which concerns on embodiment. 実施の形態にかかる共振器特性測定方法を説明するためのフローチャートである。It is a flowchart for demonstrating the resonator characteristic measuring method which concerns on embodiment. 図4のステップS1の動作の詳細を説明するためのフローチャートである。It is a flowchart for demonstrating the details of the operation of step S1 of FIG. 図4のステップS2における通過特性の測定結果の一例を示すグラフである。It is a graph which shows an example of the measurement result of the passage characteristic in step S2 of FIG. 図4のステップS2におけるQ値の算出方法を説明するためのグラフである。It is a graph for demonstrating the calculation method of the Q value in step S2 of FIG.

以下、図面を参照して本発明の実施の形態について説明する。
まず、本実施の形態にかかる共振器特性測定方法を適用する共振器について説明する。図1は、本実施の形態にかかる共振器の一例を示す斜視図である。図1に示すように、共振器1は直方体状の共振器であり、x軸方向の長さがa、y軸方向の長さがb、z軸方向の長さがdの構造体である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
First, a resonator to which the resonator characteristic measuring method according to the present embodiment is applied will be described. FIG. 1 is a perspective view showing an example of a resonator according to the present embodiment. As shown in FIG. 1, the resonator 1 is a rectangular parallelepiped resonator, and has a structure having a length in the x-axis direction of a, a length in the y-axis direction of b, and a length in the z-axis direction of d. ..

共振器1のxz面には結合スロット11、12が形成されている。具体的には、結合スロット11は、共振器1のz軸方向マイナス側に設けられており、結合スロット12は、共振器1のz軸方向プラス側に設けられている。結合スロット11、12のサイズは、x軸方向の長さがl、z軸方向の長さがwである。例えば、共振器1の内部は空洞であり、結合スロット11から導入された高周波は、共振器1の内部を伝搬した後、結合スロット12から導出される。 Coupling slots 11 and 12 are formed on the xz plane of the resonator 1. Specifically, the coupling slot 11 is provided on the negative side in the z-axis direction of the resonator 1, and the coupling slot 12 is provided on the positive side in the z-axis direction of the resonator 1. The sizes of the coupling slots 11 and 12 are l in the x-axis direction and w in the z-axis direction. For example, the inside of the resonator 1 is hollow, and the high frequency introduced from the coupling slot 11 propagates inside the resonator 1 and then is derived from the coupling slot 12.

図2、図3は、本実施の形態にかかる共振器の構成例を示す斜視図および上面図である。図2、図3に示す共振器2は、導波管励振SIW(Substrate Integrated Waveguide)共振器であり、2枚の導体基板31、32と複数の金属ビア(貫通導体)33とを用いて構成されている。導体基板31は上側(y軸方向プラス側)に配置されており、導体基板32は下側(y軸方向マイナス側)に配置されている。導体基板31と導体基板32との間には、複数の金属ビア33が導波路を形成するように配置されている。つまり、図2、図3に示す共振器2は、導体基板31と導体基板32と複数の金属ビア33とで囲まれた空間が導波路として機能する。なお、2枚の導体基板31、32で挟まれる空間は空洞であってもよく、また誘電体材料が配置されていてもよい。 2 and 3 are a perspective view and a top view showing a configuration example of the resonator according to the present embodiment. The resonator 2 shown in FIGS. 2 and 3 is a waveguide excitation SIW (Substrate Integrated Waveguide) resonator, which is configured by using two conductor substrates 31 and 32 and a plurality of metal vias (through conductors) 33. Has been done. The conductor substrate 31 is arranged on the upper side (plus side in the y-axis direction), and the conductor substrate 32 is arranged on the lower side (minus side in the y-axis direction). A plurality of metal vias 33 are arranged between the conductor substrate 31 and the conductor substrate 32 so as to form a waveguide. That is, in the resonator 2 shown in FIGS. 2 and 3, the space surrounded by the conductor substrate 31, the conductor substrate 32, and the plurality of metal vias 33 functions as a waveguide. The space sandwiched between the two conductor substrates 31 and 32 may be hollow, or a dielectric material may be arranged.

共振器2の導体基板32側の面には結合スロット21、22が形成されている。具体的には、結合スロット21は、共振器2のz軸方向マイナス側に設けられており、結合スロット22は、共振器2のz軸方向プラス側に設けられている。結合スロット21には導波管35が接続されており、結合スロット22には導波管36が接続されている。導波管35、36のy軸方向マイナス側は、ネットワークアナライザ(不図示)と接続されている。例えば、ネットワークアナライザで生成された高周波は、導波管35および結合スロット21を介して共振器2に導入される。共振器2に導入された高周波は、共振器2を通過した後、結合スロット22および導波管36を介してネットワークアナライザへと伝達される。以下で説明する図4のステップS2では、このような構成を備える共振器2を用いて、共振器の通過特性を測定する。 Coupling slots 21 and 22 are formed on the surface of the resonator 2 on the conductor substrate 32 side. Specifically, the coupling slot 21 is provided on the negative side in the z-axis direction of the resonator 2, and the coupling slot 22 is provided on the positive side in the z-axis direction of the resonator 2. A waveguide 35 is connected to the coupling slot 21, and a waveguide 36 is connected to the coupling slot 22. The negative side of the waveguides 35 and 36 in the y-axis direction is connected to a network analyzer (not shown). For example, the high frequency generated by the network analyzer is introduced into the resonator 2 via the waveguide 35 and the coupling slot 21. The high frequency introduced into the resonator 2 passes through the resonator 2 and then is transmitted to the network analyzer via the coupling slot 22 and the waveguide 36. In step S2 of FIG. 4 described below, the passage characteristic of the resonator is measured by using the resonator 2 having such a configuration.

次に、本実施の形態にかかる共振器特性測定方法について説明する。図4は、本実施の形態にかかる共振器特性測定方法を説明するためのフローチャートである。本実施の形態にかかる共振器特性測定方法は、下記の第1のステップから第4のステップを備える。 Next, the resonator characteristic measuring method according to the present embodiment will be described. FIG. 4 is a flowchart for explaining the resonator characteristic measuring method according to the present embodiment. The resonator characteristic measuring method according to the present embodiment includes the following first to fourth steps.

第1のステップは、共振器寸法に対する感度係数および不確かさを評価し、感度係数が小さくなるような共振器寸法を決定するステップである(図4のステップS1)。
第2のステップは、第1のステップで決定された共振器寸法を有する共振器の通過特性を測定し、共振器の共振周波数と無負荷Q値を算出するステップである(図4のステップS2)。
第3のステップは、第2のステップで算出された共振周波数と共振器寸法の実測値とを用いて、共振器の比誘電率を算出するステップである(図4のステップS3)。
第4のステップは、第2のステップで算出された無負荷Q値と、第3のステップで算出された比誘電率と、共振器寸法の実測値と、用いて、共振器の広壁面の導電率、狭壁面の導電率、及び誘電正接を算出するステップである(図4のステップS4)。
The first step is to evaluate the sensitivity coefficient and uncertainty with respect to the resonator size, and determine the resonator size so that the sensitivity coefficient becomes smaller (step S1 in FIG. 4).
The second step is a step of measuring the passing characteristics of the resonator having the resonator dimensions determined in the first step, and calculating the resonance frequency and the no-load Q value of the resonator (step S2 in FIG. 4). ).
The third step is a step of calculating the relative permittivity of the resonator using the resonance frequency calculated in the second step and the measured value of the resonator size (step S3 in FIG. 4).
The fourth step uses the no-load Q value calculated in the second step, the relative permittivity calculated in the third step, and the measured value of the resonator size, and the wide wall surface of the resonator is used. This is a step of calculating the conductivity, the conductivity of the narrow wall surface, and the dielectric loss tangent (step S4 in FIG. 4).

以下、本実施の形態にかかる共振器特性測定方法について、図4に示すフローチャートを用いて詳細に説明する。なお、以下では、図1に示した構造を備える共振器1の特性を測定する方法について説明する。 Hereinafter, the resonator characteristic measurement method according to the present embodiment will be described in detail with reference to the flowchart shown in FIG. In the following, a method of measuring the characteristics of the resonator 1 having the structure shown in FIG. 1 will be described.

図4のステップS1では、共振器寸法に対する感度係数および不確かさを評価し(ステップS1-1)、感度係数が小さくなるような共振器寸法を決定する(ステップS1-2)。具体的には、仮定条件を定めて、図1に示した構造を備える共振器1に対する感度係数および不確かさを評価する。 In step S1 of FIG. 4, the sensitivity coefficient and uncertainty with respect to the resonator size are evaluated (step S1-1), and the resonator size is determined so that the sensitivity coefficient becomes small (step S1-2). Specifically, hypothetical conditions are determined, and the sensitivity coefficient and uncertainty for the resonator 1 having the structure shown in FIG. 1 are evaluated.

図5は、図4のステップS1の動作の詳細を説明するためのフローチャートである。図5に示すように、ステップS1では、まず、感度係数式を作成する(ステップS11)。 FIG. 5 is a flowchart for explaining the details of the operation of step S1 of FIG. As shown in FIG. 5, in step S1, first, a sensitivity coefficient equation is created (step S11).

下記の式は合成不確かさの一般式であり、ufiは、fの合成不確かさであり、uxjは、xの不確かさである。∂f/∂xは感度係数である。また、a、b、dは図1に示した共振器1の寸法であり、εは比誘電率であり、σは広壁面の導電率、σr,tは狭壁面の導電率であり、tanδは誘電正接であり、Qは無負荷Q値である。 The following formula is a general formula of synthetic uncertainty, u fi is the synthetic uncertainty of fi, and u xj is the uncertainty of xj . ∂f i / ∂x j is a sensitivity coefficient. Further, a, b, and d are the dimensions of the resonator 1 shown in FIG. 1, ε r is the relative permittivity, σ f is the conductivity of the wide wall surface, and σ r, t is the conductivity of the narrow wall surface. Yes, tan δ is a dielectric loss tangent, and Qu is a no-load Q value.

Figure 2022061671000006
Figure 2022061671000006

また、下記の式は感度係数の一般式である。 Moreover, the following formula is a general formula of the sensitivity coefficient.

Figure 2022061671000007
Figure 2022061671000007

ステップS11では、上述の合成不確かさの一般式と感度係数の一般式とを用いて、各パラメータの感度係数式を作成する。 In step S11, a sensitivity coefficient formula for each parameter is created using the above-mentioned general formula for synthetic uncertainty and the general formula for the sensitivity coefficient.

具体的には、比誘電率εと寸法aの感度係数式は下記の通りである。

Figure 2022061671000008
Specifically, the sensitivity coefficient equations of the relative permittivity ε r and the dimension a are as follows.
Figure 2022061671000008

また、比誘電率εと共振周波数fの感度係数式は下記の通りである。

Figure 2022061671000009
The sensitivity coefficient equations for the relative permittivity ε r and the resonance frequency f are as follows.
Figure 2022061671000009

また、寸法dと寸法aの感度係数式は下記の通りである。

Figure 2022061671000010
Further, the sensitivity coefficient equations of the dimension d and the dimension a are as follows.
Figure 2022061671000010

また、寸法dと共振周波数fの感度係数式は下記の通りである。

Figure 2022061671000011
The sensitivity coefficient equations for the dimension d and the resonance frequency f are as follows.
Figure 2022061671000011

次に、不確かさを求めるために測定による値の標準不確かさを仮定する(ステップS12)。一例を挙げると、無負荷Q値Qの標準不確かさを0.3%、寸法a、b、dの標準不確かさを0.01%、共振周波数fの標準不確かさを0.01%、比誘電率の標準不確かさを0.3%と仮定する。 Next, the standard uncertainty of the measured value is assumed in order to obtain the uncertainty (step S12). As an example, the standard uncertainty of the no-load Q value Qu is 0.3%, the standard uncertainty of the dimensions a, b, and d is 0.01%, and the standard uncertainty of the resonance frequency f is 0.01%. The standard uncertainty of the relative permittivity is assumed to be 0.3%.

そして、各パラメータを変化させたときの感度係数を算出する(ステップS13)。一例を挙げると、解析条件として、周波数を57~95GHz、比誘電率を2.18、誘電正接を0.001、広壁面の導電率を1.82×10S/m、狭壁面の導電率を1.12×10S/mと設定して感度係数を算出する。 Then, the sensitivity coefficient when each parameter is changed is calculated (step S13). As an example, as analysis conditions, the frequency is 57 to 95 GHz, the relative permittivity is 2.18, the dielectric loss tangent is 0.001, the conductivity of the wide wall surface is 1.82 × 107 S / m, and the conductivity of the narrow wall surface. The sensitivity coefficient is calculated by setting the rate to 1.12 × 107 S / m.

その後、感度係数が小さくなるような共振器寸法を決定する(図4のステップS1-2)。例えば、共振器寸法aは小さく設定する。共振器寸法bは、比誘電率εおよび寸法dには影響しないが、大きくすると狭壁面の導電率と誘電正接の不確かさが減少し、広壁面の導電率の不確かさが増加する。共振器寸法dは、大きくすると全てのパラメータで不確かさが減少する。しかし、共振器寸法dを大きくした場合はモード数が増加するので、共振周波数の差が小さくなり、隣の周波数の影響を受けてQ値が変化する。 After that, the resonator size is determined so that the sensitivity coefficient becomes small (step S1-2 in FIG. 4). For example, the resonator dimension a is set small. The resonator dimension b does not affect the relative permittivity ε r and the dimension d, but when it is increased, the uncertainty of the conductivity of the narrow wall surface and the uncertainty of the dielectric loss tangent decreases, and the uncertainty of the conductivity of the wide wall surface increases. Increasing the resonator dimension d reduces uncertainty at all parameters. However, when the resonator dimension d is increased, the number of modes increases, so that the difference in resonance frequency becomes small, and the Q value changes under the influence of the adjacent frequency.

以下、感度係数が小さくなるような共振器寸法を決定する場合について、図5のステップS14~S19を用いて説明する。ステップS14~S19では、隣接共振周波数の間隔の無負荷Q値への影響を評価する。すなわち、共振器長dを大きくすると共振周波数の差が小さくなり、隣の共振周波数の影響を受けてQ値が変化してしまうため、隣接共振周波数の間隔の無負荷Q値への影響を評価する。 Hereinafter, the case of determining the resonator size so that the sensitivity coefficient becomes small will be described with reference to steps S14 to S19 of FIG. In steps S14 to S19, the influence of the adjacent resonance frequency interval on the no-load Q value is evaluated. That is, when the resonator length d is increased, the difference in resonance frequency becomes smaller and the Q value changes under the influence of the adjacent resonance frequency. Therefore, the influence of the interval between adjacent resonance frequencies on the unloaded Q value is evaluated. do.

まず、二共振器並列回路を仮定する(ステップS14)。次に、共振周波数と無負荷Q値Quを与え、通過特性を計算する(ステップS15)。そして、通過特性から無負荷Q値Qumを計算する(ステップS16)。その後、2つ以上の共振周波数の間隔Δfによる、QuとQumの差を評価する(ステップS17)。そして、所定の誤差範囲を満たすように共振周波数間隔Δfを設定する(ステップS18)。例えば、無負荷Q値Qu、Qumの誤差が0.1%以下になるように、共振周波数間隔Δfを設定する。上記条件では、無負荷Q値の誤差を0.1%以下にするには、共振周波数の間隔ΔfがΔf>0.02を満たすようにする。本実施の形態では、QuとQumの誤差が所定の誤差範囲を満たすように、ステップS15~S18の処理を繰り返す。その後、感度係数が小さくなるような共振器寸法を決定する(ステップS19)。なお、本実施の形態では、隣接共振周波数を評価するために、少なくとも二共振器並列回路を用いればよく、例えば二共振器よりも多い並列数、つまり二共振器以上の共振器並列回路としてもよい。 First, a two resonator parallel circuit is assumed (step S14). Next, the resonance frequency and the no-load Q value Qu are given, and the passing characteristics are calculated (step S15). Then, the no-load Q value Qum is calculated from the passing characteristics (step S16). Then, the difference between Qu and Qum due to the interval Δf between two or more resonance frequencies is evaluated (step S17). Then, the resonance frequency interval Δf is set so as to satisfy a predetermined error range (step S18). For example, the resonance frequency interval Δf is set so that the error of the no-load Q values Qu and Qum is 0.1% or less. Under the above conditions, in order to reduce the error of the no-load Q value to 0.1% or less, the resonance frequency interval Δf is set to satisfy Δf> 0.02. In the present embodiment, the processes of steps S15 to S18 are repeated so that the error between Qu and Qum satisfies a predetermined error range. After that, the resonator size is determined so that the sensitivity coefficient becomes small (step S19). In this embodiment, at least a two-resonator parallel circuit may be used to evaluate the adjacent resonance frequency. For example, a parallel circuit having a larger number of parallels than the two resonators, that is, a resonator parallel circuit having two or more resonators may be used. good.

次に、ステップS1で決定された共振器寸法を有する共振器の通過特性を測定し、共振器の共振周波数と無負荷Q値を算出する(図4のステップS2)。例えば、図2、図3に示した構成を備える共振器2を準備する。このとき、ステップS1で決定された共振器寸法a、b、dを有するように共振器2を構成する。そして、共振器2の通過特性を測定する(ステップS2-1)。 Next, the passage characteristics of the resonator having the resonator dimensions determined in step S1 are measured, and the resonance frequency of the resonator and the no-load Q value are calculated (step S2 in FIG. 4). For example, a resonator 2 having the configurations shown in FIGS. 2 and 3 is prepared. At this time, the resonator 2 is configured to have the resonator dimensions a, b, and d determined in step S1. Then, the passing characteristics of the resonator 2 are measured (step S2-1).

具体的には、共振器2が備える結合スロット21に導波管35を接続し、結合スロット22に導波管36を接続する。また、導波管35、36のy軸方向マイナス側にネットワークアナライザ(不図示)を接続する。そして、ネットワークアナライザで高周波を生成し、この高周波を導波管35および結合スロット21を介して共振器2に導入する。共振器2に導入された高周波は、共振器2を通過した後、結合スロット22および導波管36を介してネットワークアナライザへと伝達される。このような構成を備える共振器2を用いて、共振器の通過特性を測定する。 Specifically, the waveguide 35 is connected to the coupling slot 21 provided in the resonator 2, and the waveguide 36 is connected to the coupling slot 22. Further, a network analyzer (not shown) is connected to the negative side of the waveguides 35 and 36 in the y-axis direction. Then, a high frequency is generated by a network analyzer, and this high frequency is introduced into the resonator 2 via the waveguide 35 and the coupling slot 21. The high frequency introduced into the resonator 2 passes through the resonator 2 and then is transmitted to the network analyzer via the coupling slot 22 and the waveguide 36. Using the resonator 2 having such a configuration, the passage characteristics of the resonator are measured.

次に、測定した共振器の通過特性を用いて、共振器の共振周波数と無負荷Q値を算出する(ステップS2-2)。図6は、ステップS2における通過特性の測定結果の一例を示すグラフである。図6に示すように、共振周波数は通過量S21がピークになる周波数である。 Next, the resonance frequency of the resonator and the no-load Q value are calculated using the measured passage characteristics of the resonator (step S2-2). FIG. 6 is a graph showing an example of the measurement result of the passage characteristic in step S2. As shown in FIG. 6, the resonance frequency is a frequency at which the passing amount S21 peaks.

図7は、ステップS2におけるQ値の算出方法を説明するためのグラフである。図7に示すように、共振周波数fのピーク値から3dB小さい値における、低周波側の周波数をf、高周波側の周波数をfとすると、負荷Q値Qは下記の式を用いて求められる。換言すると、3dB帯域幅の通過特性を用いて負荷Q値Qを求める。

Figure 2022061671000012
FIG. 7 is a graph for explaining the method of calculating the Q value in step S2. As shown in FIG. 7, when the frequency on the low frequency side is f 1 and the frequency on the high frequency side is f 2 at a value 3 dB smaller than the peak value of the resonance frequency f 0 , the load Q value Q l uses the following equation. Is required. In other words, the load Q value Q l is obtained using the pass characteristic of the 3 dB bandwidth.
Figure 2022061671000012

また、結合スロット21、22と導波管35、36の挿入損失ILは下記の式を用いて求められる。

Figure 2022061671000013
Further, the insertion loss IL 0 of the coupling slots 21 and 22 and the waveguides 35 and 36 is obtained by using the following equation.
Figure 2022061671000013

そして、無負荷Q値Qu,mは、負荷Q値Qと挿入損失ILを用いて、下記の式のように表せる。

Figure 2022061671000014
Then, the no-load Q value Q u, m can be expressed by the following equation using the load Q value Q l and the insertion loss IL 0 .
Figure 2022061671000014

無負荷Q値Qu,mは、共振の鋭さを示す値であり、Qu,mが大きいほど損失が少ない。 The no-load Q value Q u, m is a value indicating the sharpness of resonance, and the larger the Q u, m, the smaller the loss.

次に、ステップS2で算出された共振周波数と共振器寸法の実測値とを用いて、共振器の比誘電率を算出する(図4のステップS3)。具体的には、以下の方法を用いて共振器の比誘電率を算出する。 Next, the relative permittivity of the resonator is calculated using the resonance frequency calculated in step S2 and the measured value of the resonator dimensions (step S3 in FIG. 4). Specifically, the relative permittivity of the resonator is calculated using the following method.

前提条件として、共振器寸法a、b、d、及び比誘電率εを未知数とする。また、共振周波数fmnl、共振モード次数m、l、透磁率μを既知数とする。 As a precondition, the resonator dimensions a, b, d, and the relative permittivity ε r are unknown. Further, the resonance frequency f mnl , the resonance mode order m, l, and the magnetic permeability μ r are set as known numbers.

図1に示した構成の共振器1において、共振周波数fmnlは、下記の式で表される。なお、cは光速である。

Figure 2022061671000015
In the resonator 1 having the configuration shown in FIG. 1, the resonance frequency fmnl is expressed by the following equation. In addition, c is the speed of light.
Figure 2022061671000015

上記式を下記の式のように変形する。

Figure 2022061671000016
The above equation is modified as the following equation.
Figure 2022061671000016

そして、x、x、x、xを次のように定義する。

Figure 2022061671000017
Then, x 1 , x 2 , x 3 , and x 4 are defined as follows.
Figure 2022061671000017

すると、上記式は、x、x、x、xを用いて次のように表される。

Figure 2022061671000018
Then, the above equation is expressed as follows using x 1 , x 2 , x 3 , and x 4 .
Figure 2022061671000018

ここで、n=0であるので上記式は下記のように表される。

Figure 2022061671000019
Here, since n = 0, the above equation is expressed as follows.
Figure 2022061671000019

ここで、共振器寸法a、b、dは、ステップS2で用いた共振器の寸法を機械的に測定することで求められる。よって、x、xは既知の値となる。したがって、上記式は連立一次方程式に帰着するので、N=2で厳密解を、N>2で最小二乗解を算出することができる。このようにステップS3では、共振器寸法の実測値と上述の一次方程式とを用いて共振器の比誘電率εを算出できる。 Here, the resonator dimensions a, b, and d are obtained by mechanically measuring the dimensions of the resonator used in step S2. Therefore, x 1 and x 3 are known values. Therefore, since the above equations result in simultaneous linear equations, an exact solution can be calculated when N = 2 and a least squares solution can be calculated when N> 2. As described above, in step S3, the relative permittivity ε r of the resonator can be calculated by using the measured value of the resonator dimension and the above-mentioned linear equation.

次に、ステップS2で算出された無負荷Q値と、ステップS3で算出された比誘電率と、共振器寸法の実測値と、用いて、共振器の広壁面の導電率、狭壁面の導電率、及び誘電正接を算出する(図4のステップS4)。具体的には、以下の方法を用いて共振器の広壁面の導電率、狭壁面の導電率、及び誘電正接を算出する。 Next, using the no-load Q value calculated in step S2, the relative permittivity calculated in step S3, and the measured value of the resonator size, the conductivity of the wide wall surface and the conductivity of the narrow wall surface of the resonator are used. The rate and the dielectric loss tangent are calculated (step S4 in FIG. 4). Specifically, the conductivity of the wide wall surface of the resonator, the conductivity of the narrow wall surface, and the dielectric loss tangent are calculated using the following methods.

前提条件として、共振器の広壁面の導電率σ、狭壁面の導電率σr,t、及び誘電正接tanδを未知数とする。また、共振器寸法a、b、d、透磁率μ、波数k、角周波数ω、無負荷Q値Qu、共振モード次数(z軸方向)lを既知数とする。 As preconditions, the conductivity σ f of the wide wall surface of the resonator, the conductivity σ r, t of the narrow wall surface, and the dielectric loss tangent tan δ are unknown. Further, the resonator dimensions a, b, d, magnetic permeability μ, wave number k, angular frequency ω, no-load Q value Qu, and resonance mode order (z-axis direction) l are known numbers.

図1に示した構成の共振器1において、無負荷Q値Qu、aは、下記の式で表される。下記の式より、共振器の壁面を流れる電流に応じて無負荷Q値が決定されるといえる。なお、kは波数、ηは自由空間のインピーダンスであり、Ri,j、σi,jは、i面内におけるj方向に流れる電流に対する表皮抵抗および導電率である。

Figure 2022061671000020
In the resonator 1 having the configuration shown in FIG. 1, the no-load Q values Q u and a are expressed by the following equations. From the following equation, it can be said that the no-load Q value is determined according to the current flowing on the wall surface of the resonator. Note that k is the wave number, η is the impedance in free space, and Ri, j , σ i, and j are the skin resistance and conductivity with respect to the current flowing in the j direction in the i-plane.
Figure 2022061671000020

また、無負荷Q値Qは、次の関係を有する。

Figure 2022061671000021
Further, the no-load Q value Qu has the following relationship.
Figure 2022061671000021

また、1/Qは、次のように表される。

Figure 2022061671000022
Further, 1 / Q c is expressed as follows.
Figure 2022061671000022

このとき、下記のようにx、xを定義し、(ld+ad)をaとし、(2lb+2bd)をaとしたので、結果として、1/Q=a+aとなる。

Figure 2022061671000023
At this time, x 5 and x 6 are defined as shown below, (l 2 a 3 d + ad 3 ) is set to a 1 , and (2 l 2 a 3 b + 2 bd 3 ) is set to a 2. As a result, 1 / Q c = a 1 x 5 + a 2 x 6 .
Figure 2022061671000023

また、1/Qは、次のように表される。

Figure 2022061671000024
Further, 1 / Q d is expressed as follows.
Figure 2022061671000024

したがって、1/Qは結果的に次のような一次方程式で表される。

Figure 2022061671000025
Therefore, 1 / Qu is eventually expressed by the following linear equation.
Figure 2022061671000025

N個の共振モードを測定すると、N個の一次方程式が得られる。したがってこの場合は、未知数がx、x、xの3つなので、N=3で厳密解を、N>3で最小二乗解が得られる。また、共振モードを4以上測定して誤差を吸収できる。なお、xは広壁面の導電率σの逆数の平方根、xは狭壁面の導電率σr,tの逆数の平方根、xは誘電正接tanδである。 When N resonance modes are measured, N linear equations are obtained. Therefore, in this case, since there are three unknowns x 5 , x 6 , and x 7 , an exact solution can be obtained when N = 3, and a least squares solution can be obtained when N> 3. Moreover, the error can be absorbed by measuring 4 or more resonance modes. Note that x 5 is the square root of the reciprocal of the conductivity σ f of the wide wall surface, x 6 is the square root of the reciprocal of the conductivity σ r and t of the narrow wall surface, and x 7 is the dielectric loss tangent tan δ.

以上で説明した本実施の形態にかかる共振器特性測定方法では、単一の共振器で、広壁面の導電率、狭壁面の導電率、及び誘電正接を一度に求められるため、共振器の特性を容易に求められる。すなわち、本実施の形態にかかる共振器特性測定方法では、複数の共振器を測定することなく、一度に広壁面の導電率、狭壁面の導電率、及び誘電正接を求められるので、共振器の特性を容易に求められる。また、本実施の形態にかかる共振器特性測定方法では、ステップS2において、図2、図3に示した構成の共振器を用いて共振器の通過特性を測定しているので、実用形態に近い形で電気物性を評価できる。 In the resonator characteristic measurement method according to the present embodiment described above, the characteristics of the resonator can be obtained at once for the conductivity of the wide wall surface, the conductivity of the narrow wall surface, and the dielectric loss tangent with a single resonator. Is easily requested. That is, in the resonator characteristic measuring method according to the present embodiment, the conductivity of the wide wall surface, the conductivity of the narrow wall surface, and the dielectric loss tangent can be obtained at once without measuring a plurality of resonators. Characteristics are easily determined. Further, in the resonator characteristic measurement method according to the present embodiment, since the passage characteristics of the resonator are measured using the resonators having the configurations shown in FIGS. 2 and 3 in step S2, the passage characteristics are close to the practical embodiment. The electrical properties can be evaluated by the shape.

以上、本発明を上記実施の形態に即して説明したが、本発明は上記実施の形態の構成にのみ限定されるものではなく、本願特許請求の範囲の請求項の発明の範囲内で当業者であればなし得る各種変形、修正、組み合わせを含むことは勿論である。 Although the present invention has been described above in accordance with the above-described embodiment, the present invention is not limited to the configuration of the above-described embodiment, and is within the scope of the claimed invention within the scope of the claims of the present application. Of course, it includes various modifications, corrections, and combinations that can be made by a person skilled in the art.

1、2 共振器
11、12 結合スロット
21、22 結合スロット
31、32 導体基板
33 金属ビア(貫通導体)
35、36 導波管
1, 2 Resonator 11, 12 Coupling slot 21, 22 Coupling slot 31, 32 Conductor substrate 33 Metal via (through conductor)
35, 36 Waveguide

Claims (7)

共振器寸法に対する感度係数および不確かさを評価し、前記感度係数が小さくなるような共振器寸法を決定する第1のステップと、
前記第1のステップで決定された前記共振器寸法を有する共振器の通過特性を測定し、前記共振器の共振周波数と無負荷Q値を算出する第2のステップと、
前記第2のステップで算出された前記共振周波数と前記共振器寸法の実測値とを用いて、前記共振器の比誘電率を算出する第3のステップと、
前記第2のステップで算出された前記無負荷Q値と、前記第3のステップで算出された前記比誘電率と、前記共振器寸法の実測値と、を用いて、前記共振器の広壁面の導電率、狭壁面の導電率、及び誘電正接を算出する第4のステップと、を備える、
共振器特性測定方法。
The first step of evaluating the sensitivity factor and uncertainty with respect to the resonator size and determining the resonator size such that the sensitivity factor becomes smaller.
The second step of measuring the passage characteristics of the resonator having the resonator dimension determined in the first step and calculating the resonance frequency and the no-load Q value of the resonator.
The third step of calculating the relative permittivity of the resonator using the resonance frequency calculated in the second step and the measured value of the resonator dimensions,
Using the no-load Q value calculated in the second step, the relative permittivity calculated in the third step, and the measured value of the resonator size, the wide wall surface of the resonator is used. The fourth step of calculating the conductivity of the narrow wall surface, the conductivity of the narrow wall surface, and the dielectric loss tangent.
Resonator characteristic measurement method.
前記共振器は直方体状の共振器であり、前記共振器の幅方向の寸法をa、厚さ方向の寸法をb、長手方向の寸法をdとした場合、
前記第1のステップにおいて、比誘電率と寸法aの感度係数式、比誘電率と共振周波数の感度係数式、寸法dと寸法aの感度係数式、及び寸法dと共振周波数の感度係数式を作成し、
前記無負荷Q値の標準不確かさ、前記寸法a、b、dの標準不確かさ、前記共振周波数の標準不確かさ、及び前記比誘電率の標準不確かさを仮定し、
前記寸法a、b、dを変化させたときの感度係数を算出する、
請求項1に記載の共振器特性測定方法。
The resonator is a rectangular parallelepiped resonator, and when the width direction dimension of the resonator is a, the thickness direction dimension is b, and the longitudinal dimension is d.
In the first step, the sensitivity coefficient formula of the relative permittivity and the dimension a, the sensitivity coefficient formula of the relative permittivity and the resonance frequency, the sensitivity coefficient formula of the dimension d and the dimension a, and the sensitivity coefficient formula of the dimension d and the resonance frequency are obtained. make,
Assuming the standard uncertainty of the no-load Q value, the standard uncertainty of the dimensions a, b, d, the standard uncertainty of the resonance frequency, and the standard uncertainty of the relative permittivity.
Calculate the sensitivity coefficient when the dimensions a, b, and d are changed.
The resonator characteristic measuring method according to claim 1.
前記第1のステップにおいて、前記無負荷Q値の誤差が所定の値以下になるように隣接共振周波数の間隔を設定した後、前記感度係数が小さくなるような共振器寸法を決定する、請求項1または2に記載の共振器特性測定方法。 Claimed in the first step, after setting the interval of adjacent resonance frequencies so that the error of the no-load Q value is equal to or less than a predetermined value, the resonator size is determined so that the sensitivity coefficient becomes small. The resonator characteristic measuring method according to 1 or 2. 前記第1のステップにおいて、
二共振器以上の共振器並列回路を仮定し、
共振周波数と無負荷Q値Quを与えて通過特性を計算し、
前記通過特性から無負荷Q値Qumを計算し、
前記Quと前記Qumの差が所定の値以下になるように隣接共振周波数の間隔を設定し、
前記感度係数が小さくなるような共振器寸法を決定する、
請求項1~3のいずれか一項に記載の共振器特性測定方法。
In the first step,
Assuming a resonator parallel circuit with two or more resonators,
The resonance frequency and the no-load Q value Qu are given to calculate the passing characteristics.
The no-load Q value Qum is calculated from the passage characteristics, and the load Q value is calculated.
The interval between adjacent resonance frequencies is set so that the difference between the Qu and the Qum is equal to or less than a predetermined value.
Determine the resonator dimensions such that the sensitivity coefficient is small.
The resonator characteristic measuring method according to any one of claims 1 to 3.
前記第2のステップにおいて、互いに対向するように配置された第1及び第2の導体基板と、前記第1の導体基板と前記第2の導体基板との間に配置された金属ビアと、を備え、前記第1の導体基板と前記第2の導体基板と前記複数の金属ビアとで囲まれた空間が導波路として機能する共振器の通過特性を測定する、請求項1~4のいずれか一項に記載の共振器特性測定方法。 In the second step, the first and second conductor substrates arranged so as to face each other and the metal vias arranged between the first conductor substrate and the second conductor substrate are formed. One of claims 1 to 4, wherein the space surrounded by the first conductor substrate, the second conductor substrate, and the plurality of metal vias measures the passage characteristics of a resonator that functions as a waveguide. The method for measuring resonator characteristics according to item 1. 前記第3のステップにおいて、
共振器寸法a、b、d、及び比誘電率εを未知数とし、共振周波数fmnl、共振モード次数m、l、透磁率μを既知数とし、
前記共振器寸法の実測値と下記の一次方程式とを用いて前記共振器の比誘電率を算出する、
請求項1~5のいずれか一項に記載の共振器特性測定方法。
Figure 2022061671000026
ただし、x、x、x、xを下記のように定義する。
Figure 2022061671000027
In the third step,
Resonator dimensions a, b, d, and relative permittivity ε r are unknown, and resonance frequency f mnl , resonance mode order m, l, and magnetic permeability μ r are known numbers.
The relative permittivity of the resonator is calculated using the measured value of the resonator dimension and the following linear equation.
The resonator characteristic measuring method according to any one of claims 1 to 5.
Figure 2022061671000026
However, x 1 , x 2 , x 3 , and x 4 are defined as follows.
Figure 2022061671000027
前記第4のステップにおいて、
前記共振器の広壁面の導電率σ、狭壁面の導電率σr,t、及び誘電正接tanδを未知数とし、共振器寸法a、b、d、透磁率μ、波数k、角周波数ω、無負荷Q値Qu、及び共振モード次数lを既知数とし、
下記の一次方程式を用いて、前記共振器の広壁面の導電率、狭壁面の導電率、及び誘電正接を算出する、
請求項1~6のいずれか一項に記載の共振器特性測定方法。
Figure 2022061671000028
ただし、a=ld+ad、a=2lb+2bdであり、x、x、xを下記のように定義する。
Figure 2022061671000029
In the fourth step,
Resonator dimensions a, b, d, magnetic permeability μ, wave number k, angular frequency ω, with unknowns being the conductivity σ f on the wide wall surface of the resonator, the conductivity σ r, t on the narrow wall surface, and the dielectric tangent tan δ. Let the no-load Q value Qu and the resonance mode order l be known numbers.
Using the following linear equation, the conductivity of the wide wall surface, the conductivity of the narrow wall surface, and the dielectric loss tangent of the resonator are calculated.
The resonator characteristic measuring method according to any one of claims 1 to 6.
Figure 2022061671000028
However, a 1 = l 2 a 3 d + ad 3 , a 2 = 2 l 2 a 3 b + 2bd 3 , and x 5 , x 6 , and x 7 are defined as follows.
Figure 2022061671000029
JP2020169744A 2020-10-07 2020-10-07 Resonator characteristic measurement method Pending JP2022061671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020169744A JP2022061671A (en) 2020-10-07 2020-10-07 Resonator characteristic measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020169744A JP2022061671A (en) 2020-10-07 2020-10-07 Resonator characteristic measurement method

Publications (1)

Publication Number Publication Date
JP2022061671A true JP2022061671A (en) 2022-04-19

Family

ID=81210650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020169744A Pending JP2022061671A (en) 2020-10-07 2020-10-07 Resonator characteristic measurement method

Country Status (1)

Country Link
JP (1) JP2022061671A (en)

Similar Documents

Publication Publication Date Title
Cohn Slot line on a dielectric substrate
Lobato-Morales et al. Permittivity measurements at microwave frequencies using epsilon-near-zero (ENZ) tunnel structure
Costa et al. Waveguide dielectric permittivity measurement technique based on resonant FSS filters
Namba et al. A simple method for measuring the relative permittivity of printed circuit board materials
JPWO2006101145A1 (en) Resonator, printed circuit board, and method of measuring complex dielectric constant
CN111880012B (en) Method for detecting broadband continuous dielectric characteristic parameters of microwave dielectric substrate
Crowgey et al. Characterization of biaxial anisotropic material using a reduced aperture waveguide
Jafari et al. Frequency-selective surface to determine permittivity of industrial oil and effect of nanoparticle addition in x-band
Sheen A dielectric resonator method of measuring dielectric properties of low loss materials in the microwave region
JP2022061671A (en) Resonator characteristic measurement method
Nakayama et al. Conductivity measurements at the interface between the sintered conductor and dielectric substrate at microwave frequencies
RU2744158C1 (en) Method of measuring complex dielectric and magnetic permeabilities of absorbing materials
Fathoni et al. Characteristic performance of L-band waveguide BPF made of substrate integrated structure
Attari et al. A simplified implementation of substrate integrated non-radiative dielectric waveguide at millimeter-wave frequencies
JP2008241468A (en) Electromagnetic characteristics measuring method
Kato D-band material characterization using a balanced-type circular disk resonator with waveguide interfaces and a modified full-wave modal analysis
McGrath et al. A novel noncontacting waveguide backshort for submillimeter wave frequencies
RU2796206C1 (en) Method for measuring frequency dependence of phase velocities of in-phase and anti-phase waves in coupled lines with unbalanced electromagnetic coupling
Gruszczynski et al. A simple resonance method of measurement of dielectric constant of thin and intermediate thickness microwave laminates
Kukharenko et al. A methodology of metamaterial effective permittivity and permeability value measurement
Kato et al. Broadband conductivity measurement method up to 110 GHz using a balanced-type circular disk resonator
JP3566238B2 (en) Surface resistance measuring device and method
Velasquez et al. A novel method for measuring permittivity using transmission line analysis at microwave frequencies
Shebani et al. Measurement of dielectric constant of some materials using planar technology
Biurrun-Quel et al. On the development of a new coplanar transmission line based on Gap Waveguide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240619