JP2022059441A - Magnetic memory element and magnetic memory device - Google Patents

Magnetic memory element and magnetic memory device Download PDF

Info

Publication number
JP2022059441A
JP2022059441A JP2020167192A JP2020167192A JP2022059441A JP 2022059441 A JP2022059441 A JP 2022059441A JP 2020167192 A JP2020167192 A JP 2020167192A JP 2020167192 A JP2020167192 A JP 2020167192A JP 2022059441 A JP2022059441 A JP 2022059441A
Authority
JP
Japan
Prior art keywords
magnetic
electrode
wire
information
magnetic memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020167192A
Other languages
Japanese (ja)
Inventor
義明 園部
Yoshiaki Sonobe
周太 本多
Shuta Honda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Priority to JP2020167192A priority Critical patent/JP2022059441A/en
Priority to KR1020210084162A priority patent/KR20220044401A/en
Priority to US17/487,557 priority patent/US11922985B2/en
Publication of JP2022059441A publication Critical patent/JP2022059441A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Hall/Mr Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)

Abstract

To provide a high-density, high-capacity, high-reliability magnetic device having a function of a shift register for writing information, moving the information with current, and reading the information by using magnetic tunnel junction (MTJ), a function of a high-capacity non-volatile memory represented by a NAND FLASH memory, and a function of a next-generation VNAND memory.SOLUTION: A magnetic memory element 101 comprises: a spin-orbit torque (SOT) generation source 111 that generates a spin-orbit torque; and a magnetic thin wire 114 whose one end is connected with a principal surface of the SOT generation source 111. The magnetic memory element stores information by using both the spin-orbit torque generated in the SOT generation source 111 and a current flowing in the magnetic thin wire 114. Directions of magnetization that are information are parallel to an extending direction of the magnetic thin wire 114.SELECTED DRAWING: Figure 1

Description

本発明は磁気メモリ素子及び磁気メモリ装置に関し,例えば,シフトレジスタや,大容量不揮発性メモリとして用いる次世代VNAND memoryの機能を備えた高密度,大容量,高信頼性のレーストラック型磁気メモリ素子及び磁気メモリ装置に関する。 The present invention relates to a magnetic memory element and a magnetic memory device, and is a high-density, large-capacity, high-reliability racetrack-type magnetic memory element having the functions of, for example, a shift register and a next-generation VN NAND memory used as a large-capacity non-volatile memory. And magnetic memory devices.

NAND Flash memoryに代表される大容量不揮発性メモリは3次元化の技術開発により,記録容量増加を行っている。しかし,半導体メモリはメモリセルにおける電荷の有無で情報を記録するため,物理的に電子を移動させる時間が必要である。 The recording capacity of large-capacity non-volatile memory represented by NAND Flash memory is increasing due to the development of three-dimensional technology. However, since semiconductor memory records information depending on the presence or absence of electric charge in the memory cell, it takes time to physically move electrons.

一方,磁性体メモリは本質的に数十ピコ秒以内の短時間での記録が実現可能である。純粋な記録時間に限れば,磁性体メモリは半導体メモリに比べて10~20倍高速である。そして近年,磁性材料を数百ナノメートルの直線状に加工した,磁性細線と呼ばれる1次元的な構造において,電流を印加することによる磁壁の駆動現象(磁壁電流駆動現象)が見いだされた。そして,この現象を用いて電気的に磁化情報へアクセスすることが試みられるようになった。 On the other hand, the magnetic memory can essentially record in a short time within several tens of picoseconds. As far as pure recording time is concerned, magnetic memory is 10 to 20 times faster than semiconductor memory. In recent years, a domain wall drive phenomenon (domain wall current drive phenomenon) by applying a current has been found in a one-dimensional structure called a magnetic fine wire, which is made by processing a magnetic material into a linear shape of several hundred nanometers. Then, it has been attempted to electrically access the magnetization information by using this phenomenon.

また,非特許文献1に記載されているように,レーストラックメモリとは磁性細線を基盤に対して垂直方向に延伸させたU字型の3次元構造をもつ独創的なメモリである。このメモリでは書き込みヘッドで磁性細線中に磁区を生成させ,パルス電流を左右の方向に印可して情報を読み出しヘッドへ移動させる。読みたい情報が端部にある場合は多少時間がかかるがランダムアクセスの機能も有する。データの読み出しはMTJ素子で行う。 Further, as described in Non-Patent Document 1, the racetrack memory is an original memory having a U-shaped three-dimensional structure in which a magnetic thin wire is stretched in a direction perpendicular to a substrate. In this memory, a write head creates a magnetic domain in a magnetic wire, and a pulse current is applied in the left-right direction to read information and move it to the head. If the information you want to read is at the end, it will take some time, but it also has a random access function. Data is read out by the MTJ element.

Racetrack memory S.S.P Parkin, M. Hayashi, and L. Thomas, Science, vol. 320 pp.190-194 (2008).Racetrack memory S.S.P Parkin, M. Hayashi, and L. Thomas, Science, vol. 320 pp.190-194 (2008).

しかしながら,情報を書き込み,電流で情報を移動させ,磁気トンネル接合(Magnetic tunnel junction (MTJ))を用いて情報を読み取るシフトレジスタや,NANDFLASHメモリで代表される大容量不揮発性メモリ,次世代VNANDメモリとしての機能を有し,更なる高密度,大容量,高信頼性の磁気デバイスが求められている。 However, shift registers that write information, move information by current, and read information using a magnetic tunnel junction (MTJ), large-capacity non-volatile memory represented by NAND FLASH memory, and next-generation VN NAND memory. There is a demand for a magnetic device with higher density, higher capacity, and higher reliability.

一実施形態の磁気メモリ素子は,スピン軌道トルク(Spin-orbit torque (SOT))を生成するSOT発生源と,一端で,前記SOT発生源の主面と接続する磁性細線と,を備え,前記SOT発生源において生成されるスピン軌道トルクの向きと,前記磁性細線が延伸する方向が垂直であるようにした。 The magnetic memory element of one embodiment includes a SOT generation source that generates a spin-orbit torque (SOT), and a magnetic thin wire that connects to the main surface of the SOT generation source at one end. The direction of the spin-orbit torque generated at the SOT generation source is perpendicular to the direction in which the magnetic wire is stretched.

一実施形態の磁気メモリ素子によれば,情報を書き込み,電流で情報を移動させ,MTJを用いて情報を読み取るシフトレジスタや,NANDFLASHメモリで代表される大容量不揮発性メモリ,次世代VNANDメモリとしての機能を有する高密度,大容量,高信頼性の磁気デバイスを提供することができる。 According to the magnetic memory element of one embodiment, as a shift register that writes information, moves information by an electric current, and reads information using MTJ, a large-capacity non-volatile memory represented by a NAND FLASH memory, and a next-generation V NAND memory. It is possible to provide a high-density, large-capacity, high-reliability magnetic device having the above functions.

一実施形態の磁気メモリ素子は,記磁性細線の他端に積層された絶縁層と,前記絶縁層に積層された固定層と,を備えるようにしてもよい。 The magnetic memory element of one embodiment may include an insulating layer laminated on the other end of the magnetic wire and a fixed layer laminated on the insulating layer.

一実施形態の磁気メモリ素子によれば,情報の読み出しはトンネル磁気抵抗素子(TMR素子)で実現できる。 According to the magnetic memory element of one embodiment, information can be read out by a tunnel magnetoresistive element (TMR element).

一実施形態の磁気メモリ素子は,前記磁性細線の他端に積層された非磁性金属層と,前記非磁性金属層に積層された固定層と,を備えるようにしてもよい。 The magnetic memory element of one embodiment may include a non-magnetic metal layer laminated on the other end of the magnetic wire and a fixed layer laminated on the non-magnetic metal layer.

一実施形態の磁気メモリ素子によれば,情報の読み出しは巨大磁気抵抗素子(GMR素子)で実現できる。 According to the magnetic memory element of one embodiment, information can be read out by a giant magnetoresistive element (GMR element).

一実施形態の磁気メモリ素子は,前記スピン軌道トルクの向きに垂直な方向で前記SOT発生源に電流を流す,第1電極及び第2電極と,前記固定層に接続し,磁性細線に電流を流す第3電極と,を備えるようにしてもよい。 The magnetic memory element of one embodiment is connected to the fixed layer with a first electrode and a second electrode that allow a current to flow to the SOT generation source in a direction perpendicular to the direction of the spin orbit torque, and a current is applied to the magnetic thin wire. A third electrode for flowing may be provided.

一実施形態の磁気メモリ素子によれば,複数の情報を磁性細線に書き込み及び移動させることができる。 According to the magnetic memory element of one embodiment, a plurality of pieces of information can be written and moved on the magnetic thin wire.

一実施形態の磁気メモリ装置は,前記磁気メモリ素子と,前記第1電極と前記第2電極の間に,書き込む情報に対応する向きで電流を流すコントローラを備えるようにした。 The magnetic memory device of one embodiment is provided with a controller for passing a current between the magnetic memory element and the first electrode and the second electrode in a direction corresponding to the information to be written.

一実施形態の磁気メモリ装置によれば,情報を磁化として磁性細線に書き込むことができる。 According to the magnetic memory device of one embodiment, information can be written to a magnetic wire as magnetization.

一実施形態の磁気メモリ装置は,前記コントローラは,前記第1電極と前記第3電極との間に,前記磁性細線中の磁区を移動させる電流を流すようにしてもよい。 In the magnetic memory device of one embodiment, the controller may pass a current for moving a magnetic domain in the magnetic wire between the first electrode and the third electrode.

一実施形態の磁気メモリ装置によれば,複数の情報を磁性細線に記憶及び移動させることができる。 According to the magnetic memory device of one embodiment, a plurality of pieces of information can be stored and moved in a magnetic wire.

本発明の磁気メモリ素子及び磁気メモリ装置によれば,情報を書き込み ,電流で情報を移動させ,MTJを用いて情報を読み取るシフトレジスタや,NANDFLASHメモリで代表される大容量不揮発性メモリ,次世代VNANDメモリとしての機能を有する高密度,大容量,高信頼性の磁気デバイスを提供することができる。 According to the magnetic memory element and the magnetic memory device of the present invention, a shift register that writes information, moves information by electric current, and reads information using MTJ, a large-capacity non-volatile memory represented by NANDFLASH memory, and next-generation It is possible to provide a high-density, large-capacity, high-reliability magnetic device having a function as a VN NAND memory.

実施の形態1にかかる磁気メモリ装置の図である。It is a figure of the magnetic memory apparatus which concerns on Embodiment 1. FIG. 実施の形態1にかかる磁気メモリ装置の動作を説明する図である。It is a figure explaining the operation of the magnetic memory apparatus which concerns on Embodiment 1. FIG. 実施の形態1にかかる磁気メモリ装置の動作を説明する図である。It is a figure explaining the operation of the magnetic memory apparatus which concerns on Embodiment 1. FIG. 実施の形態1にかかる磁気メモリ装置の動作を説明する図である。It is a figure explaining the operation of the magnetic memory apparatus which concerns on Embodiment 1. FIG. 実施の形態1にかかる磁気メモリ装置の動作を説明する図である。It is a figure explaining the operation of the magnetic memory apparatus which concerns on Embodiment 1. FIG. 実施の形態1にかかる磁気メモリ装置の動作を説明する図である。It is a figure explaining the operation of the magnetic memory apparatus which concerns on Embodiment 1. FIG. 実施の形態1にかかる磁気メモリ装置の動作を説明する図である。It is a figure explaining the operation of the magnetic memory apparatus which concerns on Embodiment 1. FIG. LLGを用いた計算結果の一例を示す図である。It is a figure which shows an example of the calculation result using LLG. LLGを用いた計算結果の一例を示す図である。It is a figure which shows an example of the calculation result using LLG. LLGを用いた計算結果の一例を示す図である。It is a figure which shows an example of the calculation result using LLG. LLGを用いた計算結果の一例を示す図である。It is a figure which shows an example of the calculation result using LLG. LLGを用いた計算結果の一例を示す図である。It is a figure which shows an example of the calculation result using LLG. LLGを用いた計算結果の一例を示す図である。It is a figure which shows an example of the calculation result using LLG. LLGを用いた計算結果の一例を示す図である。It is a figure which shows an example of the calculation result using LLG.

実施の形態1
以下,図面を参照して本発明の実施の形態について説明する。図1は,実施の形態1にかかる磁気メモリ装置の図である。図1では,磁気メモリ素子の構造を斜視図,磁気メモリ素子と接続する回路を略図で記載している。
Embodiment 1
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram of a magnetic memory device according to the first embodiment. In FIG. 1, the structure of the magnetic memory element is shown in a perspective view, and the circuit connected to the magnetic memory element is shown in a schematic diagram.

図1において,磁気メモリ装置100は,磁気メモリ素子101と,コントローラ102とを備える。磁気メモリ素子101は,SOT発生源111と,第1電極112と,第2電極113と,磁性細線114と,絶縁層115と,固定層116と,第3電極117を備える。図1に示すように,SOT発生源111,磁性細線114,絶縁層115及び固定層116は,順に積層されている。 In FIG. 1, the magnetic memory device 100 includes a magnetic memory element 101 and a controller 102. The magnetic memory element 101 includes a SOT generation source 111, a first electrode 112, a second electrode 113, a magnetic wire 114, an insulating layer 115, a fixed layer 116, and a third electrode 117. As shown in FIG. 1, the SOT generation source 111, the magnetic thin wire 114, the insulating layer 115, and the fixed layer 116 are laminated in this order.

SOT発生源111は,スピン軌道トルクを生成する電極である。SOT発生源111は,主面に略垂直な方向に磁性細線114を接続する。また,SOT発生源111は,主面に略垂直な方向にスピン軌道トルクを生成する。そして,SOT発生源111は,磁性細線114下部(114b)にスピン軌道トルクを生成する。SOT発生源111から磁性細線114下部(114b)に生成したスピン軌道トルクと磁性細線114を流れる電流とで磁性細線114に書き込まれた磁化の向きが,記憶する情報となる。図1では,スピン軌道トルクの向きがY軸方向であり,それにより磁性細線114下部(114b)の磁化の向きが変化する。すなわちSOT発生源111によって,発生するスピン軌道トルクの向きと磁性細線114に書き込まれる磁化の向き(書き換えられる情報)は垂直であり,磁化の向きと磁性細線114が延伸する方向が平行である。なお,図1において,磁性細線114の下部114bが磁性細線114と異なる径で記載されているが,下部114bの径は,磁性細線114と異なっても,同じであってもよい。 The SOT generation source 111 is an electrode that generates spin-orbit torque. The SOT generation source 111 connects the magnetic thin wire 114 in a direction substantially perpendicular to the main surface. Further, the SOT generation source 111 generates spin-orbit torque in a direction substantially perpendicular to the main surface. Then, the SOT generation source 111 generates a spin-orbit torque in the lower part (114b) of the magnetic thin wire 114. The direction of magnetization written in the magnetic wire 114 by the spin-orbit torque generated from the SOT generation source 111 in the lower part (114b) of the magnetic wire 114 and the current flowing through the magnetic wire 114 is the information to be stored. In FIG. 1, the direction of the spin-orbit torque is the Y-axis direction, which changes the direction of magnetization of the lower part (114b) of the magnetic wire 114. That is, the direction of the spin-orbit torque generated by the SOT generation source 111 and the direction of the magnetization written on the magnetic wire 114 (information to be rewritten) are perpendicular to each other, and the direction of the magnetization and the direction in which the magnetic wire 114 is stretched are parallel. In FIG. 1, the lower portion 114b of the magnetic fine wire 114 is described with a diameter different from that of the magnetic fine wire 114, but the diameter of the lower portion 114b may be different from or the same as that of the magnetic fine wire 114.

具体的には,SOT発生源111は,第1電極112と第2電極113の間に電流を流すことによりスピン軌道トルクを発生させることができる。SOT発生源111は,一般的には非磁性金属である。例えば,SOT発生源111は,トポロジカル絶縁体を含んでも良い。トポロジカル絶縁体は,物質の内部は絶縁体でありながら,表面は電気を通すという物質である。例えば,トポロジカル絶縁体は,半金属ビスマス及びビスマス化合物がある。特にBiTeSbまたはBiSbがトポロジカル絶縁体として好適である。また,トポロジカル絶縁体は,組成を変化させることにより内部が導電性を有するようにしてもよい。また,SOT発生源111は,Rh,Pt,W及びTaの少なくとも1種の金属を含むようにしてもよい Specifically, the SOT generation source 111 can generate spin-orbit torque by passing a current between the first electrode 112 and the second electrode 113. The SOT source 111 is generally a non-magnetic metal. For example, the SOT source 111 may include a topological insulator. A topological insulator is a substance that conducts electricity on the surface while the inside of the substance is an insulator. For example, topological insulators include semimetal bismuths and bismuth compounds. In particular, BiTeSb or BiSb is suitable as a topological insulator. Further, the topological insulator may have a conductive inside by changing the composition. Further, the SOT generation source 111 may contain at least one metal of Rh, Pt, W and Ta.

さらに,SOT発生源111は,強磁性体NiFeやCoFeBなどの磁性材料とTiの組み合わせでも可能である。(S. C. Baek et al., Nat. Mater. 17 (2018) 509) Further, the SOT generation source 111 can also be a combination of Ti and a magnetic material such as the ferromagnet NiFe or CoFeB. (S. C. Baek et al., Nat. Mater. 17 (2018) 509)

第1電極112は,SOT発生源111の一端に接続する電極である。第2電極113は,SOT発生源111の他端に接続する電極である。また第1電極112及び第2電極113はコントローラ102と電気配線で接続されている。 The first electrode 112 is an electrode connected to one end of the SOT generation source 111. The second electrode 113 is an electrode connected to the other end of the SOT generation source 111. Further, the first electrode 112 and the second electrode 113 are connected to the controller 102 by electrical wiring.

磁性細線114は,磁気異方性を有する磁性体である。磁性細線114は,一端でSOT発生源111に接続し,他端で絶縁層115に接続する。図1では,磁性細線114はZ軸方向に延伸する細線である。すなわち,磁性細線114の延伸方向は,SOT発生源111によって生成されるスピン軌道トルクの向きと垂直であり,磁化の向きと平行である。 The magnetic thin wire 114 is a magnetic material having magnetic anisotropy. The thin magnetic wire 114 is connected to the SOT generation source 111 at one end and to the insulating layer 115 at the other end. In FIG. 1, the magnetic thin wire 114 is a thin wire extending in the Z-axis direction. That is, the stretching direction of the magnetic wire 114 is perpendicular to the direction of the spin-orbit torque generated by the SOT generation source 111, and is parallel to the direction of magnetization.

また磁性細線114は,Pillar型磁性細線が好ましい。また磁性細線114は,強磁性金属であることが望ましい。磁性細線114は,細長い形状の磁性体として形成された磁性細線である。そして磁性細線114内を電流が流れ,磁壁(一定の磁化方向を向いた区間の境界)が移動する磁壁移動型メモリとして機能する。具体的には,電流を磁性細線114内に流して,スピントランスファートルク(STT)を発生させる。また,磁性細線114端部下に配置されたSOT発生源111に電流を流して,SOTを磁性細線114下部(114b)に発生させる。このSTTとSOTの併用により磁性細線114内に磁壁や磁区を記録する。 Further, the magnetic thin wire 114 is preferably a Pillar type magnetic fine wire. Further, it is desirable that the magnetic thin wire 114 is a ferromagnetic metal. The magnetic thin wire 114 is a magnetic thin wire formed as an elongated magnetic material. Then, a current flows through the magnetic wire 114, and the domain wall (the boundary of the section facing a certain magnetization direction) moves, which functions as a domain wall moving memory. Specifically, a current is passed through the magnetic wire 114 to generate a spin transfer torque (STT). Further, a current is passed through the SOT generation source 111 arranged under the end of the magnetic thin wire 114 to generate SOT in the lower part (114b) of the magnetic thin wire 114. By using this STT and SOT together, the domain wall and magnetic domain are recorded in the magnetic wire 114.

例えば,磁性細線114は,Co/Ni多層膜,CoNi系合金,Co/Pd多層膜,CoPd合金,Co/Pt多層膜,CoPt合金,Tb/FeCo多層膜,TbFeCo合金,CoFe合金,CoFeB合金,Fe/Ni多層膜またはFeNi合金で構成されることが好適である。 For example, the magnetic thin wire 114 includes a Co / Ni multilayer film, a CoNi alloy, a Co / Pd multilayer film, a CoPd alloy, a Co / Pt multilayer film, a CoPt alloy, a Tb / FeCo multilayer film, a TbFeCo alloy, a CoFe alloy, and a CoFeB alloy. It is preferably composed of a Fe / Ni multilayer film or a FeNi alloy.

磁性細線114は,多種多様な形状をとりえる。図1に示す磁性細線114は,細長い形状の磁性体として形成された磁性細線であり,一直線(ここでは,Z軸)上に延びる。磁性細線114の断面は,多種多様な断面形状を採りうる。例えば,磁性細線114の断面は,円形状や四角形状を有してもよい。 The magnetic thin wire 114 can take a wide variety of shapes. The magnetic thin wire 114 shown in FIG. 1 is a magnetic thin wire formed as an elongated magnetic material, and extends on a straight line (here, the Z axis). The cross section of the magnetic thin wire 114 can take a wide variety of cross-sectional shapes. For example, the cross section of the magnetic thin wire 114 may have a circular shape or a square shape.

絶縁層115は,一端で磁性細線114と構造的に接続する。また,絶縁層115は、非磁性絶縁体である。例えば,絶縁層115は、絶縁物質を主成分とする層である。絶縁層115は、MgO等の絶縁膜から構成されている。なお、絶縁層115を構成する材料としては、NaCl構造を有する酸化物が好ましく、前述したMgOの他、CaO、SrO、TiO、VO、NbO等が挙げられるが、絶縁層115としての機能に支障をきたさない限り、特に限定されるものではない。当該材料として、例えば、スピネル型MgAlなども用いてもよい。実施の形態1では,磁性細線114,絶縁層115及び固定層116でMR素子を構成しているが,また,絶縁層115の代わりにCuなどの金属を用いてGMR素子で構成してよい。 The insulating layer 115 is structurally connected to the magnetic thin wire 114 at one end. The insulating layer 115 is a non-magnetic insulator. For example, the insulating layer 115 is a layer containing an insulating substance as a main component. The insulating layer 115 is made of an insulating film such as MgO. As the material constituting the insulating layer 115, an oxide having a NaCl structure is preferable, and in addition to the above-mentioned MgO, CaO, SrO, TiO, VO, NbO and the like can be mentioned, but the function as the insulating layer 115 is hindered. It is not particularly limited as long as it does not cause a problem. As the material, for example, spinel type MgAl 2 O 4 or the like may be used. In the first embodiment, the MR element is composed of the magnetic thin wire 114, the insulating layer 115, and the fixed layer 116, but the GMR element may be composed of a metal such as Cu instead of the insulating layer 115.

固定層116は,垂直磁気異方性を有する強磁性体である。すなわち固定層116は,磁性細線114の延伸方向と平行な磁気異方性を有する層である。また固定層116は,一端で絶縁層115と構造的に接続する。また,固定層116は,他端で第3電極117と接続する。固定層116は,磁化の向きが固定された強磁性金属層である。たとえば,固定層116は,CoFeB、CoFeなどのFe系材料,Co/Pt多層膜,もしくはそれらを複合させたもので構成されてもよい。これらの磁性細線114,絶縁層115及び固定層116はTMR素子を構成する。 The fixed layer 116 is a ferromagnet having vertical magnetic anisotropy. That is, the fixed layer 116 is a layer having magnetic anisotropy parallel to the stretching direction of the magnetic thin wire 114. Further, the fixed layer 116 is structurally connected to the insulating layer 115 at one end. Further, the fixed layer 116 is connected to the third electrode 117 at the other end. The fixed layer 116 is a ferromagnetic metal layer in which the direction of magnetization is fixed. For example, the fixed layer 116 may be composed of an Fe-based material such as CoFeB or CoFe, a Co / Pt multilayer film, or a composite thereof. These magnetic thin wires 114, the insulating layer 115, and the fixed layer 116 constitute a TMR element.

第3電極117は,固定層116に接続する電極である。また第3電極117はコントローラ102と電気配線で接続されている。 The third electrode 117 is an electrode connected to the fixed layer 116. Further, the third electrode 117 is connected to the controller 102 by electrical wiring.

コントローラ102は,磁気メモリ素子101への情報の書き込み、及び読み出しを行う。また、コントローラ102は,磁性細線114中の情報の移動を行う。これらの動作は,コントローラ102が第1電極112,第2電極113及び第3電極117の間に電圧印加または電流を流すことにより実現される。 The controller 102 writes and reads information from the magnetic memory element 101. Further, the controller 102 moves information in the magnetic thin wire 114. These operations are realized by the controller 102 applying a voltage or passing a current between the first electrode 112, the second electrode 113, and the third electrode 117.

コントローラ102は,書き込む情報により第1電極112と第2電極113の間に流す電流の向きを変える。例えば,2進数の0を磁気メモリ素子101に書き込む場合,コントローラ102は,第1電極112から第2電極113に電流を流す。または2進数の1を磁気メモリ素子101に書き込む場合,コントローラ102は,第2電極113から第1電極112に電流を流す。なお,2進数の値と電流の向きは逆にしてもよい。 The controller 102 changes the direction of the current flowing between the first electrode 112 and the second electrode 113 according to the information to be written. For example, when writing the binary number 0 to the magnetic memory element 101, the controller 102 causes a current to flow from the first electrode 112 to the second electrode 113. Alternatively, when writing the binary number 1 to the magnetic memory element 101, the controller 102 causes a current to flow from the second electrode 113 to the first electrode 112. The binary value and the direction of the current may be reversed.

またコントローラ102は,第1電極112と第3電極117の間に一定の電圧を印加し,第3電極117と第1電極112の間に流れる電流値を測定して,磁性細線114の磁化の向き(すなわち書き込まれた情報の値)を読み出す。 Further, the controller 102 applies a constant voltage between the first electrode 112 and the third electrode 117, measures the current value flowing between the third electrode 117 and the first electrode 112, and magnetizes the magnetic thin wire 114. Read the orientation (ie the value of the written information).

また,コントローラ102は,第1電極112と第3電極117の間に一定の電流(センス電流)を流し,第1電極112と第3電極117の間の電圧(電位差)を測定することにより,磁性細線114の磁化の向き(すなわち書き込まれた情報の値)を読み出すようにしてもよい。 Further, the controller 102 passes a constant current (sense current) between the first electrode 112 and the third electrode 117, and measures the voltage (potential difference) between the first electrode 112 and the third electrode 117. The direction of magnetization of the magnetic wire 114 (that is, the value of the written information) may be read out.

以上の構成により,磁気メモリ装置100はデータを書き込み及び読み出す。次に,コントローラ102が磁気メモリ素子101に情報の書き込みを行う動作,及びコントローラ102が磁性細線114中の情報の移動を行う動作について説明する。図2~図6は実施の形態1にかかる磁気メモリ装置の動作を説明する図である。 With the above configuration, the magnetic memory device 100 writes and reads data. Next, an operation in which the controller 102 writes information to the magnetic memory element 101 and an operation in which the controller 102 moves information in the magnetic wire 114 will be described. 2 to 6 are diagrams illustrating the operation of the magnetic memory device according to the first embodiment.

図2では,1ビット目の情報書き込み開始について説明する。図2において,コントローラ102が,第1電極112と第2電極113の間に,1ビット目の情報に対応する向きの電流Jを流すことにより,SOT発生源111から磁性細線114下部(114b)にY軸方向のスピン軌道トルクが生成される。図2の例では,第2電極113から第1電極112に電流Jが流れ,磁壁が磁性細線114下部(114b)に生成されている。 FIG. 2 describes the start of information writing in the first bit. In FIG. 2, the controller 102 passes a current J 2 in the direction corresponding to the information of the first bit between the first electrode 112 and the second electrode 113, so that the lower part of the magnetic wire 114 (114b) from the SOT generation source 111. ), A spin-orbit torque in the Y-axis direction is generated. In the example of FIG. 2, a current J 2 flows from the second electrode 113 to the first electrode 112, and a domain wall is generated in the lower part (114b) of the magnetic wire 114.

また,コントローラ102が,第3電極117から第1電極112に電流Jを流す事により,生成された磁壁が磁性細線114を上向きに移動する。図3は,1ビット目の情報の書き込みが完了した状態を示す。図3に示すように,下向きの磁化Mが磁性細線114に1ビット分の長さで書き込まれている。 Further, when the controller 102 passes a current J1 from the third electrode 117 to the first electrode 112, the generated domain wall moves upward on the magnetic wire 114. FIG. 3 shows a state in which the writing of the information of the first bit is completed. As shown in FIG. 3, the downward magnetization M1 is written on the magnetic thin wire 114 with a length of one bit.

次に,図4では,2ビット目の情報書き込み開始について説明する。図4において,コントローラ102が,第1電極112と第2電極113の間に,2ビット目の情報に対応する向きの電流Jを流すことにより,SOT発生源111から磁性細線114下部(114b)にスピン軌道トルクが生成される。図4では第1電極112から第2電極113に電流Jが流れ,上記図2の説明とは逆向きのスピン軌道トルクが生成されて,磁壁が磁性細線114下部(114b)に生成されている。 Next, in FIG. 4, the start of information writing in the second bit will be described. In FIG. 4, the controller 102 causes the current J2 in the direction corresponding to the information of the second bit to flow between the first electrode 112 and the second electrode 113, so that the lower part of the magnetic wire 114 (114b) from the SOT generation source 111. ), The spin-orbit torque is generated. In FIG. 4, a current J 2 flows from the first electrode 112 to the second electrode 113, a spin-orbit torque opposite to the explanation in FIG. 2 is generated, and a domain wall is generated in the lower part (114b) of the magnetic wire 114. There is.

また,コントローラ102が,第3電極117から第1電極112に電流Jを流す事により,1ビット目の情報に対応する磁化Mが第3電極117側に移動するとともに,生成された磁壁が磁性細線114に移動する。図5では,1ビット目の下向きの磁化Mが磁性細線114内を第3電極117側に移動するとともに,2ビット目の上向きの磁化Mが磁性細線114内部に移動している。 Further, when the controller 102 passes a current J 1 from the third electrode 117 to the first electrode 112, the magnetization M 1 corresponding to the information of the first bit moves to the third electrode 117 side, and the generated domain wall is generated. Moves to the magnetic wire 114. In FIG. 5, the downward magnetization M 1 of the first bit moves inside the magnetic wire 114 toward the third electrode 117, and the upward magnetization M 2 of the second bit moves inside the magnetic wire 114.

以上のように,コントローラ102が磁気メモリ素子101に情報を書き込み,更に磁性細線114中の情報の移動を行う。 As described above, the controller 102 writes information to the magnetic memory element 101, and further moves the information in the magnetic wire 114.

次に,コントローラ102が磁気メモリ素子101から情報の読み出しを行う動作,及びコントローラ102が磁性細線114中の情報の移動を行う動作について説明する。図7は,実施の形態1にかかる磁気メモリ装置の動作を説明する図である。 Next, an operation in which the controller 102 reads information from the magnetic memory element 101 and an operation in which the controller 102 moves information in the magnetic wire 114 will be described. FIG. 7 is a diagram illustrating the operation of the magnetic memory device according to the first embodiment.

図7に示すように,コントローラ102は,第1電極112と第3電極117の間に一定の電圧を印加し,第3電極117と第1電極112の間に流れる電流値Jを測定することにより,磁性細線114の上端の磁化の向き(すなわち磁性細線114の最も上(115側)に書き込まれた情報の値)を読み出す。 As shown in FIG. 7, the controller 102 applies a constant voltage between the first electrode 112 and the third electrode 117, and measures the current value J3 flowing between the third electrode 117 and the first electrode 112. Thereby, the direction of magnetization of the upper end of the magnetic wire 114 (that is, the value of the information written on the top (115 side) of the magnetic wire 114) is read out.

また,コントローラ102は,第1電極112と第3電極117の間に一定の電流を流し,第1電極112と第3電極117の間の電圧(電位差)を測定することにより,磁性細線114の上端の磁化の向き(すなわち磁性細線114の最も上(115側)に書き込まれた情報の値)を読み出すようにしてもよい。そして,コントローラ102は,一定の電流で磁性細線114の磁化を上方向へ動かし,上から2番目の情報を最も上へと動かすことで,2番目の情報を読み出す。同様に3番目,4番目と順次情報を読み出す。 Further, the controller 102 passes a constant current between the first electrode 112 and the third electrode 117, and measures the voltage (potential difference) between the first electrode 112 and the third electrode 117 to measure the magnetic wire 114. The direction of magnetization at the upper end (that is, the value of the information written at the top (115 side) of the magnetic wire 114) may be read out. Then, the controller 102 reads out the second information by moving the magnetization of the magnetic wire 114 upward with a constant current and moving the second information from the top to the top. Similarly, the third and fourth information is read out in sequence.

なお,読み出し時,コントローラ102は,第1電極112と第2電極113の間に電流を流さない(または電圧を印加しない)。 At the time of reading, the controller 102 does not pass a current (or does not apply a voltage) between the first electrode 112 and the second electrode 113.

このように,磁気メモリ装置100は,STTとSOTを併用して,磁壁(一定の磁化方向を向いた区間の境界)を移動させる。そして磁性細線114が磁壁移動型メモリとして機能する。 In this way, the magnetic memory device 100 uses STT and SOT in combination to move the domain wall (the boundary of the section facing a certain magnetization direction). The magnetic fine wire 114 functions as a domain wall movable memory.

次に,本発明の磁気deviceの記録容量が次世代VNANDと同等以上の可能性に関して調べた。ランダウ-リフシッツ-ギルバート方程式に基づいたマイクロマグネティクスシミュレーション(LLG)にて,磁気細線の長さを200nm,幅10nmとし,10ビットの情報を面直に磁化したストライプ状の磁区構造を初期状態として作成した。磁気パラメータを,飽和磁化(Ms):300 kA/m,交換スティフネス定数:1.0pJ/m,垂直磁気異方性:100kJ/m3,DMI定数0.015mJ/m2としてマイクロマグネティクスシミュレーションを行ったところ,初期状態のビット数を保ったまま状態が安定した。したがって,長さ10μmの磁気細線に500bitの情報が記憶可能である。この記憶容量高さ10μm,直径150nm, 96層のVNANDの記録容量の1~2倍に匹敵する。 Next, we investigated the possibility that the recording capacity of the magnetic device of the present invention is equal to or greater than that of the next-generation VNAND. In a micromagnetic simulation (LLG) based on the Landau-Lifshits-Gilbert equation, the length of the magnetic wire is 200 nm and the width is 10 nm, and the striped magnetic domain structure in which 10-bit information is magnetized in a plane is the initial state. Created. Micromagnetics simulation was performed with magnetic parameters of saturation magnetization (Ms): 300 kA / m, exchange stiffness constant: 1.0 pJ / m, vertical magnetic anisotropy: 100 kJ / m 3 , and DMI constant 0.015 mJ / m 2 . However, the state became stable while maintaining the number of bits in the initial state. Therefore, 500 bits of information can be stored in a magnetic wire with a length of 10 μm. This storage capacity is 10 μm in height, 150 nm in diameter, and is equivalent to 1 to 2 times the recording capacity of 96-layer VN NAND.

また,図1に示す磁気メモリ素子101の動作に関してパーマロイ(FeNi合金)を想定したLLGを用いて,計算機実験を行った。その結果を図8~図14に示す。図8~図14は,LLGを用いた計算結果の一例を示す図である。 In addition, a computer experiment was conducted using an LLG assuming permalloy (FeNi alloy) for the operation of the magnetic memory element 101 shown in FIG. The results are shown in FIGS. 8 to 14. 8 to 14 are diagrams showing an example of a calculation result using LLG.

図8~図10に示すように,SOT発生源111(図では省略)から生成されたスピン軌道トルクにより,磁性細線114の下部(114b)の磁化方向が変化し,磁壁が形成される。そして,図10~図11に示すように磁壁が磁性細線114を移動する。同様に,図12~図14に示すように磁壁が磁性細線114を移動する。このように,磁性細線114の下部114bへSOTを生成し,磁性細線114へ電流を流すことでデータを書き込み,移動ができることがわかる。 As shown in FIGS. 8 to 10, the spin-orbit torque generated from the SOT generation source 111 (omitted in the figure) changes the magnetization direction of the lower portion (114b) of the magnetic wire 114 to form a domain wall. Then, as shown in FIGS. 10 to 11, the domain wall moves on the magnetic wire 114. Similarly, as shown in FIGS. 12 to 14, the domain wall moves on the magnetic wire 114. In this way, it can be seen that data can be written and moved by generating SOT on the lower portion 114b of the magnetic thin wire 114 and passing a current through the magnetic thin wire 114.

従来のレーストラック構造,細線を用いると,データ移動のための電極,データの記録のための記録細線,読み出しのためのMTJ素子などを具備する必要があったが,実施の形態1の磁気メモリ装置によれば,3端子構造によりデータを書き込み,移動させて読みだすことができる。 When the conventional race track structure and thin wire are used, it is necessary to provide an electrode for data movement, a recording thin wire for data recording, an MTJ element for reading, and the like. However, the magnetic memory of the first embodiment is provided. According to the device, data can be written, moved and read by the three-terminal structure.

また,実施の形態1の磁気メモリ装置によれば,SOT配線,Pillar型磁性細線を用いることにより,情報を書き込み,電流で情報を移動させ,MTJを用いて情報を読み取るシフトレジスタや,NANDFLASHメモリで代表される大容量不揮発性メモリ,次世代VNANDメモリとしての機能を有する高密度,大容量,高信頼性の磁気デバイスを提供することができる。 Further, according to the magnetic memory device of the first embodiment, a shift register that writes information by using SOT wiring and a Pillar type magnetic thin wire, moves the information by an electric current, and reads the information by using an MTJ, and a NAND FLASH memory. It is possible to provide a high-density, large-capacity, high-reliability magnetic device having a function as a large-capacity non-volatile memory represented by the above and a next-generation VN NAND memory.

なお,本発明は上記実施の形態に限られたものではなく,趣旨を逸脱しない範囲で適宜変更することが可能である。例えば,上記実施の形態では,磁性細線114,絶縁層115及び固定層116はTMR素子を構成する例について説明したが,絶縁層115の代わりに非磁性金属層を積層し,GMR素子としてもよい。 The present invention is not limited to the above embodiment, and can be appropriately modified without departing from the spirit. For example, in the above embodiment, the example in which the magnetic thin wire 114, the insulating layer 115, and the fixed layer 116 constitute a TMR element has been described, but a non-magnetic metal layer may be laminated instead of the insulating layer 115 to form a GMR element. ..

また,上記実施の形態では,図1において,磁性細線114,114b,絶縁層115及び固定層116が円筒形状で表されているが,積層される形状であればいずれであってもよい。例えば,直方体形状が積層されたものであってもよい。 Further, in the above embodiment, the magnetic fine wires 114 and 114b, the insulating layer 115 and the fixed layer 116 are represented by a cylindrical shape in FIG. 1, but any of them may be used as long as they are laminated. For example, the rectangular parallelepiped shapes may be laminated.

100 磁気メモリ装置
101 磁気メモリ素子
102 コントローラ
111 SOT発生源
112 第1電極
113 第2電極
114 磁性細線
115 絶縁層
116 固定層
117 第3電極
114b 磁性細線114の下部
100 Magnetic memory device 101 Magnetic memory element 102 Controller 111 SOT source 112 First electrode 113 Second electrode 114 Magnetic thin wire 115 Insulation layer 116 Fixed layer 117 Third electrode 114b Lower part of magnetic thin wire 114

Claims (6)

スピン軌道トルクを生成するSOT発生源と,
一端で,前記SOT発生源の主面と接続する磁性細線と,を備え,
前記SOT発生源において生成されるスピン軌道トルクの向きと,前記磁性細線が延伸する方向が垂直であり,前記磁性細線内の磁区と前記磁性細線が延伸する方向が平行な磁気メモリ素子。
SOT generation source that generates spin-orbit torque and
At one end, it is equipped with a magnetic thin wire that connects to the main surface of the SOT generation source.
A magnetic memory element in which the direction of the spin-orbit torque generated in the SOT generation source is perpendicular to the direction in which the magnetic fine wire is stretched, and the magnetic domain in the magnetic fine wire and the direction in which the magnetic fine wire is stretched are parallel.
前記スピン軌道トルクの向きに垂直な方向で前記SOT発生源に電流を流す,第1電極及び第2電極と,
前記固定層に接続し,磁性細線に電流を流す第3電極と,を備える,請求項1の磁気メモリ素子。
The first electrode and the second electrode, which allow a current to flow through the SOT generation source in a direction perpendicular to the direction of the spin-orbit torque,
The magnetic memory element according to claim 1, further comprising a third electrode connected to the fixed layer and allowing a current to flow through a magnetic thin wire.
前記磁性細線の他端に積層された絶縁層と,
前記絶縁層に積層された固定層と,を備える,請求項2に記載の磁気メモリ素子。
The insulating layer laminated on the other end of the magnetic thin wire and
The magnetic memory element according to claim 2, further comprising a fixed layer laminated on the insulating layer.
前記磁性細線の他端に積層された非磁性金属層と,
前記非磁性金属層に積層された固定層と,を備える,請求項2に記載の磁気メモリ素子。
A non-magnetic metal layer laminated on the other end of the thin magnetic wire,
The magnetic memory element according to claim 2, further comprising a fixed layer laminated on the non-magnetic metal layer.
請求項3または4に記載の磁気メモリ素子と,
前記第1電極と前記第2電極の間に,書き込む情報に対応する向きで電流を流すコントローラを備える磁気メモリ装置。
The magnetic memory element according to claim 3 or 4,
A magnetic memory device including a controller for passing a current between the first electrode and the second electrode in a direction corresponding to the information to be written.
前記コントローラは,前記第1電極と前記第3電極との間に,前記磁性細線中の磁区を移動させる電流を流す,請求項5に記載の磁気メモリ装置。 The magnetic memory device according to claim 5, wherein the controller flows a current for moving a magnetic domain in the magnetic wire between the first electrode and the third electrode.
JP2020167192A 2020-10-01 2020-10-01 Magnetic memory element and magnetic memory device Pending JP2022059441A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020167192A JP2022059441A (en) 2020-10-01 2020-10-01 Magnetic memory element and magnetic memory device
KR1020210084162A KR20220044401A (en) 2020-10-01 2021-06-28 Magnetic memory device and magnetic memory apparatus
US17/487,557 US11922985B2 (en) 2020-10-01 2021-09-28 Magnetic memory device and magnetic memory apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020167192A JP2022059441A (en) 2020-10-01 2020-10-01 Magnetic memory element and magnetic memory device

Publications (1)

Publication Number Publication Date
JP2022059441A true JP2022059441A (en) 2022-04-13

Family

ID=81124183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020167192A Pending JP2022059441A (en) 2020-10-01 2020-10-01 Magnetic memory element and magnetic memory device

Country Status (2)

Country Link
JP (1) JP2022059441A (en)
KR (1) KR20220044401A (en)

Also Published As

Publication number Publication date
KR20220044401A (en) 2022-04-08

Similar Documents

Publication Publication Date Title
US8350347B2 (en) Writable magnetic element
US6480411B1 (en) Magnetoresistance effect type memory, and method and device for reproducing information from the memory
JP3942930B2 (en) Tunnel junction memory cell
KR100790886B1 (en) Memory device using magnetic domain wall moving
JP4962889B2 (en) Magnetic memory
US7924593B2 (en) Information storage devices and methods of operating the same
JP2006270069A (en) Magnetoresistance effect element and high-speed magnetic recording device based on domain wall displacement by pulse current
WO2016182085A1 (en) Magnetoresistive effect element and magnetic memory device
JP2007305629A (en) Spin-injection magnetization inverting element
JP2019033166A (en) Magnetic memory
US7924594B2 (en) Data writing and reading method for memory device employing magnetic domain wall movement
US11942127B2 (en) Magnetic memory device and magnetic memory apparatus
JP4040173B2 (en) memory
US20090021866A1 (en) Magnetization state control device and magnetic information recording device
JP5526707B2 (en) Driving method of information storage element
JPWO2009157100A1 (en) Spin valve recording element and storage device
JP2022059441A (en) Magnetic memory element and magnetic memory device
US20070091668A1 (en) Magnetic memory device and methods for making a magnetic memory device
US11922985B2 (en) Magnetic memory device and magnetic memory apparatus
JP2004311513A (en) Magnetic memory device and its manufacturing method
JP2021072318A (en) Magnetic memory element and magnetic memory device
JP3957817B2 (en) Magnetic thin film memory and recording / reproducing method thereof
CN109192232A (en) A kind of magnetic storage device based on separation magnetic tunnel junction and probe magnetic read-write head
JP4331180B2 (en) Recording / playback device
JP5442121B2 (en) Magnetic memory cell and magnetic random access memory

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20210616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210616