JP2022057310A - Sewage treatment apparatus and sewage treatment method - Google Patents

Sewage treatment apparatus and sewage treatment method Download PDF

Info

Publication number
JP2022057310A
JP2022057310A JP2020165493A JP2020165493A JP2022057310A JP 2022057310 A JP2022057310 A JP 2022057310A JP 2020165493 A JP2020165493 A JP 2020165493A JP 2020165493 A JP2020165493 A JP 2020165493A JP 2022057310 A JP2022057310 A JP 2022057310A
Authority
JP
Japan
Prior art keywords
region
partition plate
sewage
sewage treatment
reaction tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020165493A
Other languages
Japanese (ja)
Inventor
進 石田
Susumu Ishida
輝美 円谷
Terumi Tsuburaya
タン フォン グェン
Phong Nguyen Thanh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maezawa Industries Inc
Original Assignee
Maezawa Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maezawa Industries Inc filed Critical Maezawa Industries Inc
Priority to JP2020165493A priority Critical patent/JP2022057310A/en
Publication of JP2022057310A publication Critical patent/JP2022057310A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

To provide a sewage treatment apparatus and a sewage treatment method capable of simultaneously removing nitrogen and phosphorus from sewage and stably performing sewage treatment against a fluctuation in a flow rate of the sewage.SOLUTION: In a sewage treatment apparatus including a membrane separation device 2 and an air diffuser 4 inside a reaction tank 1, the reaction tank 1 includes: a first partition plate 7a that partitions a region where a membrane separation device 2 is arranged and a region where the membrane separation device 2 is not arranged, and a second partition plate 7b that has an upper end higher than an upper end of the first partition plate 7a in a region where the membrane separation device 2 is not arranged.SELECTED DRAWING: Figure 1

Description

本発明は汚水処理装置及び汚水処理方法に関する。 The present invention relates to a sewage treatment apparatus and a sewage treatment method.

従来より、汚水を生物処理するための反応槽と、反応槽に浸漬され且つ生物処理された汚水から固形物を除去するための膜分離装置と、膜分離装置の下部に設置され且つ膜分離装置に対して空気等の気体を供給する散気管とを備える汚水処理装置が知られ、反応槽における汚水の生物処理は、例えば、微生物を含む有機汚泥、すなわち、いわゆる活性汚泥によって汚水が処理される活性汚泥法に基づいて実行される。 Conventionally, a reaction tank for biologically treating sewage, a membrane separation device for removing solid matter from sewage immersed in the reaction tank and biologically treated, and a membrane separation device installed under the membrane separation device. A sewage treatment device including an air diffuser for supplying a gas such as air is known, and in the biological treatment of sewage in a reaction tank, for example, sewage is treated with organic sludge containing microorganisms, that is, so-called activated sludge. It is carried out based on the activated sludge method.

具体的に、活性汚泥法においては、酸素存在下(好気状態)でアンモニアを亜硝酸や硝酸に変換する硝化反応が実行される。さらに、硝化反応によってアンモニアから変換された亜硝酸や硝酸を窒素に変換する脱窒反応が実行される。脱窒反応は酸素存在下(好気状態)で行われる硝化反応と異なり、無酸素状態で行う必要がある。脱窒反応は硝化反応が行われる反応槽と異なる反応槽で行われてもよいが、汚水処理装置の省スペース化を実現するために、単一の反応槽内で硝化反応及び脱窒反応が行われる汚水処理装置が提案されている(例えば、特許文献1~3参照)。 Specifically, in the activated sludge method, a nitrification reaction for converting ammonia into nitrite or nitric acid is carried out in the presence of oxygen (aerobic state). Further, a denitrification reaction is carried out to convert nitrite or nitric acid converted from ammonia into nitrogen by the nitrification reaction. Unlike the nitrification reaction performed in the presence of oxygen (aerobic state), the denitrification reaction must be performed in an oxygen-free state. The denitrification reaction may be carried out in a reaction tank different from the reaction tank in which the nitrification reaction is carried out, but in order to save space in the sewage treatment device, the nitrification reaction and the denitrification reaction are carried out in a single reaction tank. A sewage treatment device to be performed has been proposed (see, for example, Patent Documents 1 to 3).

図8は従来の汚水処理装置を概略的に示す図である。図8の汚水処理装置は、好気状態での硝化反応及び無酸素状態での脱窒反応を行う反応槽1と、汚水を反応槽1に供給するための原水槽9とを備え、反応槽1は、反応槽1内を複数の区画に仕切るための仕切板7を有する。具体的に、反応槽1は、仕切板7で囲まれる汚水領域Aと、仕切板7及び反応槽1の内壁で囲まれる汚水領域Bとに仕切られ、汚水領域Aは膜分離装置2及び散気管4を有する。また、反応槽1は、原水槽9からの汚水の供給を開始するための汚水供給開始水位LWL(Low water level)と、原水槽9からの汚水の供給を停止するための汚水供給停止水位HWL(High water level)とを有し、仕切板7の上端部は汚水供給開始水位LWLと汚水供給停止水位HWLとの間に位置する。 FIG. 8 is a diagram schematically showing a conventional sewage treatment apparatus. The sewage treatment apparatus of FIG. 8 includes a reaction tank 1 for performing a nitrification reaction in an aerobic state and a denitrification reaction in an oxygen-free state, and a raw water tank 9 for supplying sewage to the reaction tank 1. 1 has a partition plate 7 for partitioning the inside of the reaction tank 1 into a plurality of sections. Specifically, the reaction tank 1 is divided into a sewage region A surrounded by a partition plate 7 and a sewage region B surrounded by the partition plate 7 and the inner wall of the reaction tank 1, and the sewage region A is a membrane separation device 2 and a dispersion. It has a trachea 4. Further, the reaction tank 1 has a sewage supply start water level LWL (Low water level) for starting the supply of sewage from the raw water tank 9 and a sewage supply stop water level HWL for stopping the supply of sewage from the raw water tank 9. (High water level), and the upper end of the partition plate 7 is located between the sewage supply start water level LWL and the sewage supply stop water level HWL.

図8の汚水処理装置においては、反応槽1内の水位が汚水供給開始水位LWLになると原水槽9からの汚水の供給が開始され、水位が汚水供給停止水位HWLになると原水槽9からの汚水の供給が停止されるように設定され、汚水の水位が変化するように構成されている。これにより、汚水の水位は仕切板7の上端部より高い位置(以下、「汚水越流位置」という。)と、仕切板7の上端部より低い位置(以下、「汚水非越流位置」という。)とを往来する。
図9は、図8における反応槽1内の汚水の水位が汚水越流位置にあるときの汚水の流れを概略的に示す図である。
In the sewage treatment apparatus of FIG. 8, when the water level in the reaction tank 1 reaches the sewage supply start water level LWL, the sewage supply from the raw water tank 9 is started, and when the water level reaches the sewage supply stop water level HWL, the sewage from the raw water tank 9 is started. The supply of sewage is set to be stopped, and the water level of sewage is configured to change. As a result, the water level of sewage is higher than the upper end of the partition plate 7 (hereinafter referred to as "sewage overflow position") and lower than the upper end of the partition plate 7 (hereinafter referred to as "sewage non-overflow position"). .) And go back and forth.
FIG. 9 is a diagram schematically showing the flow of sewage when the water level of the sewage in the reaction tank 1 in FIG. 8 is at the sewage overflow position.

汚水の水位が汚水越流位置にあるとき、散気管4から膜分離装置2に対して供給される空気により、汚水が仕切板7の上端を越流し、仕切板7の周囲を循環する循環流が形成される。この循環流により、汚水領域Aの亜硝酸や硝酸は汚水領域Bに移行し、汚水領域Aの空気の大半は汚水領域Bに移行することなく反応槽1の外部に放出される。すなわち、循環流が形成されると、汚水領域Aでは酸素存在下でアンモニアを亜硝酸や硝酸に変換する硝化反応が進行し、汚水領域Bでは循環流に乗って汚水領域から移動した亜硝酸や硝酸を窒素に変換する脱窒反応が進行する。 When the water level of the sewage is at the sewage overflow position, the air supplied from the diffuser pipe 4 to the membrane separation device 2 causes the sewage to overflow the upper end of the partition plate 7 and circulate around the partition plate 7. Is formed. Due to this circulating flow, nitrite and nitric acid in the sewage region A are transferred to the sewage region B, and most of the air in the sewage region A is discharged to the outside of the reaction tank 1 without being transferred to the sewage region B. That is, when a circulating flow is formed, the nitrification reaction that converts ammonia into nitrite or nitric acid proceeds in the presence of oxygen in the sewage region A, and in the sewage region B, the nitrite that has moved from the sewage region on the circulating flow The denitrification reaction that converts nitric acid to nitrogen proceeds.

一方、汚水の水位が汚水非越流位置にあるとき、汚水領域Aと汚水領域Bとの間で汚水の流通が分断されるため、散気管4が膜分離装置2に空気を供給しても、仕切板7の周囲を循環する循環流は形成されない。すなわち、汚水領域Aでは酸素存在下でアンモニアを亜硝酸や硝酸に変換する硝化反応が進行し、汚水領域Bでは汚水の流通が分断される前に汚水領域Aから移動した亜硝酸や硝酸を窒素に変換する脱窒反応が進行する。 On the other hand, when the water level of the sewage is in the non-overflow position of the sewage, the flow of the sewage is divided between the sewage region A and the sewage region B, so that even if the air diffuser 4 supplies air to the membrane separation device 2. , A circulating flow circulating around the partition plate 7 is not formed. That is, in the sewage region A, the nitrification reaction for converting ammonia into nitrite or nitric acid proceeds in the presence of oxygen, and in the sewage region B, the nitrite or nitric acid transferred from the sewage region A before the sewage flow is disrupted is nitrogen. The denitrification reaction that converts to nitrite proceeds.

図8のような従来の汚水処理装置では、良好な脱窒効率を達成するために、汚水の越流時間帯と越流停止時間帯はそれぞれ5~10分程度に設定されており、越流時間帯と越流停止時間帯を合わせて10~20分のインターバルで運転が繰り返されていた。また、反応槽1内において、好気ゾーンである汚水領域Aと無酸素ゾーンである汚水領域Bの容積比は1:1~1:2程度に設定され固定されていた。 In the conventional sewage treatment device as shown in FIG. 8, in order to achieve good denitrification efficiency, the overflow time zone and the overflow stop time zone of the sewage are set to about 5 to 10 minutes, respectively, and overflow. The operation was repeated at intervals of 10 to 20 minutes including the time zone and the overflow stop time zone. Further, in the reaction tank 1, the volume ratio of the sewage region A, which is an aerobic zone, and the sewage region B, which is an oxygen-free zone, was set and fixed at about 1: 1 to 1: 2.

さらに、汚水処理場の規模によっては汚水流入量が日間で大きく変動する場合がある。例えば、小規模の汚水処理場では、高負荷時間帯の汚水流入量は平均的な処理時間帯の汚水流入量の2~3倍であり、低負荷時間帯の汚水流入量は大きく低下し、平均的な時間帯の汚水流入量の10~20%程度となる。 Furthermore, depending on the scale of the sewage treatment plant, the amount of sewage inflow may fluctuate significantly from day to day. For example, in a small-scale sewage treatment plant, the inflow of sewage during the high load time is two to three times the inflow of sewage during the average treatment time, and the inflow of sewage during the low load time is greatly reduced. It is about 10 to 20% of the inflow of sewage in the average time zone.

特開2004-261711号公報Japanese Unexamined Patent Publication No. 2004-261711 国際公開公報第2018/123647号公報International Publication No. 2018/123647 国際公開公報第2018/198422号公報International Publication No. 2018/198422

しかしながら、従来の汚水処理装置(図8)では、越流時間帯と越流停止時間帯を合わせたインターバルが短いため、汚水領域Bにおいて無酸素状態からリンの除去に必要な嫌気状態に到達することができず、リンの除去を十分に行うことができないという問題があった。また、従来の汚水処理装置では、好気ゾーンと無酸素ゾーンの容積比が固定されていたため、汚水の越流時間帯と越流停止時間帯の比率や補助曝気手段による送風量を調整したとしても、日間の流量変動(負荷変動)に対して十分に対応できないという問題があった。 However, in the conventional sewage treatment apparatus (FIG. 8), since the interval in which the overflow time zone and the overflow stop time zone are combined is short, the anaerobic state required for phosphorus removal is reached from the anoxic state in the sewage region B. There was a problem that phosphorus could not be sufficiently removed. In addition, in the conventional sewage treatment equipment, the volume ratio of the aerobic zone and the anoxic zone was fixed, so the ratio of the overflow time zone and the overflow stop time zone of the sewage and the amount of air blown by the auxiliary aeration means were adjusted. However, there was a problem that it was not possible to sufficiently cope with daily flow rate fluctuations (load fluctuations).

本発明は、汚水から窒素とリンを同時に除去することができ、汚水の流量変動に対し安定して汚水処理を実行することができる汚水処理装置及び汚水処理方法を提供することを目的とする。 An object of the present invention is to provide a sewage treatment apparatus and a sewage treatment method capable of simultaneously removing nitrogen and phosphorus from sewage and stably performing sewage treatment against fluctuations in the flow rate of sewage.

上記目的を達成するために、本発明の汚水処理装置は、汚水を処理するための反応槽の内部に、前記汚水に含まれる汚染物質を分離する膜分離装置と、前記膜分離装置に気泡を供給する散気管とを備える汚水処理装置において、前記反応槽の内部を前記膜分離装置が配置されている領域と前記膜分離装置が配置されていない領域に仕切る第1の仕切板と、前記膜分離装置が配置されていない領域に、前記第1の仕切板の上端よりも高い上端を有する第2の仕切板と、を備えることを特徴とする。 In order to achieve the above object, the sewage treatment apparatus of the present invention has a membrane separation device for separating contaminants contained in the sewage and bubbles in the membrane separation device inside the reaction tank for treating the sewage. In a sewage treatment device provided with an air diffuser to supply, a first partition plate for partitioning the inside of the reaction tank into a region where the membrane separation device is arranged and a region where the membrane separation device is not arranged, and the membrane. A second partition plate having an upper end higher than the upper end of the first partition plate is provided in a region where the separation device is not arranged.

上記目的を達成するために、本発明の汚水処理方法は、汚水を処理するための反応槽の内部に、前記汚水に含まれる汚染物質を分離する膜分離装置と、前記膜分離装置に気泡を供給する散気管とを備える汚水処理装置であって、前記反応槽の内部を前記膜分離装置が配置されている領域と前記膜分離装置が配置されていない領域に仕切る第1の仕切板と、前記膜分離装置が配置されていない領域に、前記第1の仕切板の上端よりも高い上端を有する第2の仕切板と、を備える汚水処理装置を用いた汚水処理方法において、前記汚水が前記第1の仕切板を越える第1の越流ステップと、前記汚水が前記第1の仕切板を越えない非越流ステップと、前記汚水が前記第2の仕切板を越える第2の越流ステップと、を有することを特徴とする。 In order to achieve the above object, the sewage treatment method of the present invention comprises a membrane separation device for separating contaminants contained in the sewage and bubbles in the membrane separation device inside the reaction tank for treating the sewage. A sewage treatment device including an air diffuser for supplying, and a first partition plate for partitioning the inside of the reaction tank into a region where the membrane separation device is arranged and a region where the membrane separation device is not arranged. In a sewage treatment method using a sewage treatment device including a second partition plate having an upper end higher than the upper end of the first partition plate in a region where the membrane separation device is not arranged, the sewage is said. A first overflow step that crosses the first partition plate, a non-overflow step in which the sewage does not cross the first partition plate, and a second overflow step in which the sewage crosses the second partition plate. And, characterized by having.

本発明によれば、汚水から窒素とリンを同時に除去することができ、汚水の流量変動に対し安定して汚水処理を実行することができる。 According to the present invention, nitrogen and phosphorus can be removed from sewage at the same time, and sewage treatment can be stably performed against fluctuations in the flow rate of sewage.

本発明の第1の実施の形態に係る汚水処理装置を概略的に示す上面図(上図)及び側面図(下図)である。It is the top view (upper figure) and side view (lower figure) which show schematicly the sewage treatment apparatus which concerns on 1st Embodiment of this invention. 図1における反応槽内の汚水の水位が第1の仕切板7aの汚水越流位置にあるときの汚水の流れを概略的に示す側面図である。It is a side view schematically showing the flow of sewage when the water level of sewage in the reaction tank in FIG. 1 is at the sewage overflow position of the first partition plate 7a. 図1における反応槽内の汚水の水位が第2の仕切板7bの汚水越流位置にあるときの汚水の流れを概略的に示す側面図である。It is a side view schematically showing the flow of sewage when the water level of sewage in the reaction tank in FIG. 1 is at the sewage overflow position of the second partition plate 7b. 図1における反応槽内の汚水の水位が第2の仕切板7bの汚水越流位置にあり、且つ、第2の領域Z2において補助曝気装置5bより曝気されるときの汚水の流れを概略的に示す側面図である。The flow of sewage when the water level of the sewage in the reaction tank in FIG. 1 is at the sewage overflow position of the second partition plate 7b and is aerated by the auxiliary aeration device 5b in the second region Z2 is schematically shown. It is a side view which shows. 本発明の第2の実施の形態に係る汚水処理装置を概略的に示す上面図である。It is a top view schematically showing the sewage treatment apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係る汚水処理装置を概略的に示す上面図である。It is a top view which shows schematically the sewage treatment apparatus which concerns on 3rd Embodiment of this invention. 本発明の第4の実施の形態に係る汚水処理装置を概略的に示す上面図である。It is a top view schematically showing the sewage treatment apparatus which concerns on 4th Embodiment of this invention. 従来の汚水処理装置を概略的に示す図である。It is a figure which shows schematically the conventional sewage treatment apparatus. 図8における反応槽内の汚水の水位が汚水越流位置にあるときの汚水の流れを概略的に示す側面図である。FIG. 8 is a side view schematically showing the flow of sewage when the water level of sewage in the reaction tank in FIG. 8 is at the sewage overflow position.

以下、本発明の第1の実施の形態について図面を参照しながら詳述する。 Hereinafter, the first embodiment of the present invention will be described in detail with reference to the drawings.

図1(下図)は、本発明の実施の形態に係る汚水処理装置を概略的に示す側面図である。 FIG. 1 (lower figure) is a side view schematically showing a sewage treatment apparatus according to an embodiment of the present invention.

図1(下図)の汚水処理装置は、汚水を生物処理するための単槽式の反応槽1を備えている。反応槽1は直方体状であり、矩形状の板状部材からなる4枚の槽壁と底面が互いに直交するように接合されて構成されている。反応槽1は、汚水に含まれる汚染物質を分離する膜分離装置2と、膜分離装置2に気泡状の空気を供給する散気管4と、第1の仕切板7aと、第2の仕切板7bとを有する。膜分離装置2は反応槽1の外部の吸引ポンプ3に接続されている。吸引ポンプ3が駆動すると、生物処理された汚水が膜分離装置2によってろ過され、ろ過された水は反応槽1の槽外に取り出される。 The sewage treatment apparatus of FIG. 1 (lower figure) includes a single-tank type reaction tank 1 for biologically treating sewage. The reaction tank 1 has a rectangular parallelepiped shape, and is configured by joining four tank walls made of a rectangular plate-shaped member and a bottom surface so as to be orthogonal to each other. The reaction tank 1 includes a membrane separation device 2 that separates contaminants contained in sewage, an air diffuser 4 that supplies bubble-like air to the membrane separation device 2, a first partition plate 7a, and a second partition plate. Has 7b and. The membrane separation device 2 is connected to a suction pump 3 outside the reaction tank 1. When the suction pump 3 is driven, the biologically treated sewage is filtered by the membrane separation device 2, and the filtered water is taken out of the reaction tank 1.

散気管4は、膜分離装置2の下部に設置されるとともに、反応槽1の外部のブロワ(不図示)に接続され、ブロワは散気管4に空気を供給している。膜分離装置2は汚水をろ過するため、膜分離装置2の膜面には汚水中の汚泥物質等が付着し、膜分離装置2の膜面に付着した汚水中の汚泥物質等を放置すると、膜分離装置2が目詰まりして適切に汚水をろ過することができなくなるが、ブロワから散気管4に供給された空気が膜分離装置2の膜面に供給されることにより、汚泥物質等が膜分離装置2の膜面に付着するのを防止している。 The air diffuser 4 is installed in the lower part of the membrane separation device 2 and is connected to a blower (not shown) outside the reaction tank 1, and the blower supplies air to the air diffuser 4. Since the membrane separation device 2 filters sewage, sludge substances in sewage adhere to the membrane surface of the membrane separation device 2, and if the sludge substances in sewage adhering to the membrane surface of the membrane separation device 2 are left unattended, The membrane separation device 2 is clogged and sewage cannot be properly filtered. However, the air supplied from the blower to the air diffuser tube 4 is supplied to the membrane surface of the membrane separation device 2, so that sludge substances and the like are released. It prevents the film from adhering to the membrane surface of the membrane separation device 2.

第1の仕切板7aにより、反応槽1の内部は膜分離装置2が配置される領域と膜分離装置2が配置されない領域とに仕切られている。第2の仕切板7bは、第1の仕切板7aと反応槽の内壁との間に配置され、第2の仕切板7bにより前記膜分離装置2が配置されない領域は2つの領域に仕切られている。第2の仕切板7bは第1の仕切板7aの上端よりも高い上端を有し、第2の仕切板7bの上端と第1の仕切板7aの上端の差は、通常3~50cmであり、5~30cmが好ましい。本実施の形態の汚水処理装置は、仕切板(バッフル)を2枚有することから、ダブルバッフルド・メンブランバイオリアクター(2B-MBR)とも言う。第1の仕切板7a及び第2の仕切板7bは反応槽1の底部から離間して配置されている。仕切板は耐久性が要求されるため、ステンレス等の金属で構成される。反応槽1において第1の仕切板7aと第2の仕切板7bの配置は、後述する図5~7のように様々な態様を用いることができる。 The inside of the reaction vessel 1 is partitioned by the first partition plate 7a into a region in which the membrane separation device 2 is arranged and a region in which the membrane separation device 2 is not arranged. The second partition plate 7b is arranged between the first partition plate 7a and the inner wall of the reaction tank, and the region where the membrane separation device 2 is not arranged is divided into two regions by the second partition plate 7b. There is. The second partition plate 7b has an upper end higher than the upper end of the first partition plate 7a, and the difference between the upper end of the second partition plate 7b and the upper end of the first partition plate 7a is usually 3 to 50 cm. 5 to 30 cm is preferable. Since the sewage treatment apparatus of the present embodiment has two partition plates (baffles), it is also referred to as a double baffled membrane bioreactor (2B-MBR). The first partition plate 7a and the second partition plate 7b are arranged apart from the bottom of the reaction tank 1. Since the partition plate is required to be durable, it is made of a metal such as stainless steel. As the arrangement of the first partition plate 7a and the second partition plate 7b in the reaction tank 1, various embodiments can be used as shown in FIGS. 5 to 7 described later.

第1の仕切板7a及び第2の仕切板7bは、上端部に高さを調節することが可能な高さ調節手段を有していてもよい。高さ調節手段としては、仕切板の上端部に複数の固定部材を用いて固定された矩形状の板状部材であって、上下方向にスライド可能な可動堰等が挙げられる。また、ヒンジ部材等を介して仕切板の上端部に固定された矩形状の板状部材であって、該板状部材を転倒させることにより仕切板の上端の高さを調節する手段であってもよい。このような高さ調節手段を仕切板に取り付ける場合には、第1の仕切板7aと第2の仕切板7bの間で上端の高さの差を設ける必要はなく、第2の仕切板7bの上端部に設置された高さ調節手段の上端が第1の仕切板7aの上端よりも高い配置となっていればよい。 The first partition plate 7a and the second partition plate 7b may have a height adjusting means capable of adjusting the height at the upper end portion. Examples of the height adjusting means include a rectangular plate-shaped member fixed to the upper end of the partition plate by using a plurality of fixing members, such as a movable weir that can slide in the vertical direction. Further, it is a rectangular plate-shaped member fixed to the upper end portion of the partition plate via a hinge member or the like, and is a means for adjusting the height of the upper end portion of the partition plate by overturning the plate-shaped member. May be good. When such a height adjusting means is attached to the partition plate, it is not necessary to provide a difference in height of the upper end between the first partition plate 7a and the second partition plate 7b, and the second partition plate 7b It suffices that the upper end of the height adjusting means installed at the upper end portion of the first partition plate 7a is arranged higher than the upper end of the first partition plate 7a.

図1(上図)は、図1(下図)の汚水処理装置の上面図である。
第1の仕切板7a及び第2の仕切板7bはそれぞれ4枚の矩形状の板状部材からなる。第1の仕切板7aは膜分離装置2の全周囲を囲包し、第2の仕切板7bは第1の仕切板7aの全周囲を囲包している。第1の仕切板7a及び第2の仕切板7bを設けることにより、反応槽1は、膜分離装置が配置される第1の領域Z1と、第1の仕切板と第2の仕切板とで囲まれる第2の領域Z2と、第2の仕切板と反応槽の内壁とで囲まれる第3の領域Z3とに区画されている。第1の領域と第2の領域と第3の領域の容積比は、流入負荷や処理目標に応じて最適値を選択することができるが、一般的な下水性状では1:1~2:0.2~1とするのが好ましい。
FIG. 1 (upper figure) is a top view of the sewage treatment apparatus of FIG. 1 (lower figure).
The first partition plate 7a and the second partition plate 7b each consist of four rectangular plate-shaped members. The first partition plate 7a surrounds the entire circumference of the membrane separation device 2, and the second partition plate 7b surrounds the entire circumference of the first partition plate 7a. By providing the first partition plate 7a and the second partition plate 7b, the reaction tank 1 has a first region Z1 in which the membrane separation device is arranged, and the first partition plate and the second partition plate. It is divided into a second region Z2 surrounded by a second region Z3 and a third region Z3 surrounded by a second partition plate and an inner wall of the reaction tank. The volume ratio of the first region, the second region and the third region can be selected from the optimum value according to the inflow load and the processing target, but in a general sewage system, it is 1: 1 to 2: 0. It is preferably 2 to 1.

図1(下図)の汚水処理装置は、第3の領域Z3に汚水を供給する汚水供給手段を備えている。反応槽1は原水ポンプ6を介して原水を格納する不図示の原水槽に接続され、原水ポンプ6が駆動すると、処理される汚水は原水槽から汚水供給手段により反応槽1内の第3の領域Z3に供給される。 The sewage treatment device of FIG. 1 (lower figure) includes a sewage supply means for supplying sewage to the third region Z3. The reaction tank 1 is connected to a raw water tank (not shown) for storing raw water via a raw water pump 6, and when the raw water pump 6 is driven, the sewage to be treated is a third in the reaction tank 1 by a sewage supply means from the raw water tank. It is supplied to the region Z3.

第1の領域Z1には膜分離装置の下部の側方に補助曝気手段5aが配置されており(図1(下図))、散気管4による酸素供給では酸素量が不足する場合に、補助曝気手段5aから曝気を行うことにより酸素量を補うことができる。また、第2の領域Z2には補助曝気手段5bが配置されており、補助曝気手段5bから曝気を行うことにより、例えば、後述する高負荷時間帯において第2の領域を好気状態にして好気処理を行うことができる。補助曝気手段5a及び5bは、それぞれブロワ(不図示)に接続され、ブロワからエア(空気)が供給される。 Auxiliary aeration means 5a is arranged on the side of the lower part of the membrane separation device in the first region Z1 (FIG. 1 (lower figure)), and auxiliary aeration is performed when the amount of oxygen is insufficient in the oxygen supply by the diffuser tube 4. The amount of oxygen can be supplemented by aeration from the means 5a. Further, an auxiliary aeration means 5b is arranged in the second region Z2, and by performing aeration from the auxiliary aeration means 5b, for example, the second region is preferably in an aerobic state in a high load time zone described later. Aeration can be performed. The auxiliary aeration means 5a and 5b are connected to blowers (not shown), respectively, and air is supplied from the blowers.

反応槽1内の汚水には、汚水の処理を実行するために、硝化反応を行うための硝化菌と、脱窒反応を行うための脱窒反応実行菌(脱窒菌)と、リンの放出及び摂取を行うためのリン蓄積細菌が含まれる。脱窒反応実行菌は、例えば、シュードモナス・デニトリフィカンスやパラコックス・デニトリフィカンス等の脱窒菌又は好気状態では稼働しないものの無酸素状態では脱窒反応を実行する従属栄養細菌である。リン蓄積細菌は、例えばポリリン酸蓄積細菌である。 In the sewage in the reaction tank 1, nitrifying bacteria for performing a nitrifying reaction, denitrifying reaction executing bacteria (denitrifying bacteria) for performing a denitrification reaction, and phosphorus release and phosphorus are used to carry out the treatment of the sewage. Contains phosphorus-accumulating bacteria for ingestion. The denitrifying reaction executing bacterium is, for example, a denitrifying bacterium such as Pseudomonas denitrificans or Paracoccus denitrificans, or a heterotrophic bacterium that does not operate in an aerobic state but performs a denitrifying reaction in an oxygen-free state. .. The phosphorus-accumulating bacterium is, for example, a polyphosphate-accumulating bacterium.

図2は、図1における反応槽内の水位が第1の仕切板7aの汚水越流位置にあるときの汚水の流れを概略的に示す側面図である。 FIG. 2 is a side view schematically showing the flow of sewage when the water level in the reaction tank in FIG. 1 is at the sewage overflow position of the first partition plate 7a.

反応槽1内の水位が第1の仕切板7aの汚水越流位置(図1(下図)においてWL1(Water Level 1)とWL2(Water Level 2)の間の位置)にあるとき、散気管4から膜分離装置2に空気が供給されることにより、汚水は第1の領域Z1から仕切板7aの上端を越流して仕切板7aの外部の第2の領域Z2に移行する(図2)。その後、汚水は第2の領域Z2内を下降し、仕切板7aよりも下の領域を経て仕切板7aの内部である第1の領域Z1に戻る。すなわち、汚水の水位が第1の仕切板7aの汚水越流位置にあり、汚水が仕切板7aを越流するとき、仕切板7aの周囲を循環する循環流が形成される。循環流が形成されると、例えば、第1の領域Z1の亜硝酸及び硝酸は第2の領域Z2に移行し、第1の領域Z1の空気の大半は第2の領域Z2に移行することなく反応槽1の外部に放出される。このとき、第1の領域Z1(好気区画)では酸素存在下でアンモニアを亜硝酸や硝酸に変換する硝化反応が進行し、第2の領域Z2(無酸素区画)では循環流に乗って第1の領域Z1から移動した亜硝酸や硝酸を窒素に変換する脱窒反応が進行する。 When the water level in the reaction tank 1 is at the sewage overflow position of the first partition plate 7a (the position between WL1 (Water Level 1) and WL2 (Water Level 2) in FIG. 1 (lower figure)), the air diffuser 4 When air is supplied from the membrane separation device 2 to the membrane separation device 2, the sewage overflows from the first region Z1 to the upper end of the partition plate 7a and moves to the second region Z2 outside the partition plate 7a (FIG. 2). After that, the sewage descends in the second region Z2, passes through the region below the partition plate 7a, and returns to the first region Z1 inside the partition plate 7a. That is, when the water level of sewage is at the sewage overflow position of the first partition plate 7a and the sewage overflows the partition plate 7a, a circulating flow circulating around the partition plate 7a is formed. When a circulating flow is formed, for example, nitrite and nitric acid in the first region Z1 migrate to the second region Z2, and most of the air in the first region Z1 does not migrate to the second region Z2. It is released to the outside of the reaction tank 1. At this time, in the first region Z1 (aerobic compartment), the nitrification reaction for converting ammonia into nitrite or nitric acid proceeds in the presence of oxygen, and in the second region Z2 (anoxic compartment), the second region Z2 (anoxic compartment) rides on the circulating flow. A denitrification reaction that converts nitrite or nitric acid transferred from region Z1 of 1 into nitrogen proceeds.

一方、汚水の水位が汚水非越流位置(図1(下図)においてWL1よりも低い位置)にあり、第1の領域Z1と第2の領域Z2との間で汚水の流通が分断されているとき、散気管4が膜分離装置2に空気を供給しても、仕切板7aの周囲を循環する循環流は形成されないので、第1の領域Z1(好気区画)では酸素存在下でアンモニアを亜硝酸や硝酸に変換する硝化反応が進行し、第2の領域Z2(無酸素区画)では汚水の流通が分断される前に第1の領域Z1から移動した亜硝酸や硝酸を窒素に変換する脱窒反応が進行する。 On the other hand, the water level of sewage is at a non-overflow position of sewage (a position lower than WL1 in FIG. 1 (lower figure)), and the flow of sewage is divided between the first region Z1 and the second region Z2. At this time, even if the air diffuser 4 supplies air to the membrane separation device 2, a circulating flow circulating around the partition plate 7a is not formed. Therefore, in the first region Z1 (aerobic compartment), ammonia is introduced in the presence of oxygen. The nitrification reaction to convert to nitrite and nitric acid proceeds, and in the second region Z2 (anoxic section), nitrite and nitric acid transferred from the first region Z1 are converted to nitrogen before the flow of sewage is interrupted. The denitrification reaction proceeds.

図3は、図1における反応槽内の水位が第2の仕切板7bの汚水越流位置にあるときの汚水の流れを概略的に示す側面図である。
反応槽1内の水位が第2の仕切板7bの汚水越流位置(図1(下図)においてWL2よりも高い位置)にあるときは、汚水の水位が第1の仕切板7aの汚水越流位置(WL1とWL2の間)にあるとき(図2)と同様に、仕切板7aの周囲を循環する循環流が形成される。このとき、第1の領域Z1(好気ゾーン)では酸素存在下でアンモニアを亜硝酸や硝酸に変換する硝化反応が進行し、第2の領域Z2(無酸素ゾーン)では循環流に乗って第1の領域Z1から移動した亜硝酸や硝酸を窒素に変換する脱窒反応が進行する。
FIG. 3 is a side view schematically showing the flow of sewage when the water level in the reaction tank in FIG. 1 is at the sewage overflow position of the second partition plate 7b.
When the water level in the reaction tank 1 is at the sewage overflow position of the second partition plate 7b (the position higher than WL2 in FIG. 1 (lower figure)), the water level of the sewage is the sewage overflow position of the first partition plate 7a. As in the case of the position (between WL1 and WL2) (FIG. 2), a circulating flow circulating around the partition plate 7a is formed. At this time, in the first region Z1 (aerobic zone), the nitrification reaction for converting ammonia into nitrite or nitric acid proceeds in the presence of oxygen, and in the second region Z2 (anoxic zone), the second region Z2 (anoxic zone) rides on the circulating flow. A denitrification reaction that converts nitrite or nitric acid transferred from region Z1 of 1 into nitrogen proceeds.

さらに、図3において、第1の領域Z1から仕切板7aの上端を越流した汚水は、仕切板7bの外部の第3の領域Z3にも移行する。その後、第3の領域Z3に移行した汚水は第3の領域Z3内を下降し、仕切板7bよりも下の領域を経て仕切板7aの内部である第1の領域Z1に戻る。すなわち、汚水の水位が第2の仕切板7bの汚水越流位置にあるとき、第1の領域Z1と第2の領域Z2を循環する循環流とともに、第1の領域Z1と第3の領域Z3を循環する循環流が形成される。このとき第3の領域Z3には嫌気状態が形成される。 Further, in FIG. 3, the sewage that has overflowed from the first region Z1 to the upper end of the partition plate 7a also migrates to the third region Z3 outside the partition plate 7b. After that, the sewage that has migrated to the third region Z3 descends in the third region Z3, passes through the region below the partition plate 7b, and returns to the first region Z1 inside the partition plate 7a. That is, when the water level of the sewage is at the sewage overflow position of the second partition plate 7b, the first region Z1 and the third region Z3 are accompanied by the circulating flow circulating in the first region Z1 and the second region Z2. A circulating flow is formed. At this time, an anaerobic state is formed in the third region Z3.

本発明において、好気状態とは汚水に酸素分子が溶解している状態をいい、無酸素状態とは汚水に酸素分子は溶解していないが、硝酸や亜硝酸の形で結合酸素が溶解している状態をいい、嫌気状態とは酸素分子も結合酸素も溶解していない状態をいう。無酸素状態と嫌気状態は、例えば、溶存酸素計や硝酸計などにより汚水中の溶存酸素濃度や硝酸濃度を測定することにより確認又は区別することができる。 In the present invention, the aerobic state means a state in which oxygen molecules are dissolved in sewage, and the anoxic state means that oxygen molecules are not dissolved in sewage, but bound oxygen is dissolved in the form of nitrate or nitrite. The anaerobic state is a state in which neither oxygen molecules nor bound oxygen are dissolved. The anoxic state and the anaerobic state can be confirmed or distinguished by measuring the dissolved oxygen concentration and the nitric acid concentration in the sewage with, for example, a dissolved oxygen meter or a nitric acid meter.

図3において、第3の領域Z3の嫌気区画と第2の領域Z2の無酸素区画は、第3の領域Z3の循環水量と第2の領域Z2の循環水量の比率、すなわち、第2の仕切板7bの越流水量と第1の仕切板7aの越流水量の比率を1:1~1:10、好ましくは1:3~1:5とすることにより形成することができる。仕切板の越流水量は、越流水深(水位と仕切板上端の差)と越流堰長(仕切板の長さ)との積(越流断面積)により決定されるため、反応槽1内の仕切板7a及び7bの上端位置及び長さを適切に設定し、更に反応槽1内の水位を調整することにより、嫌気区画(Z3)と無酸素区画(Z2)を形成することができる。また、汚水供給手段により第3の領域Z3に供給される原水には酸素を消費する有機物やアンモニア等が含まれており、これらの有機物やアンモニアによる酸素の消費も嫌気状態の形成に関与する。 In FIG. 3, the anaerobic compartment of the third region Z3 and the oxygen-free compartment of the second region Z2 are the ratio of the circulating water amount of the third region Z3 to the circulating water amount of the second region Z2, that is, the second partition. It can be formed by setting the ratio of the amount of overflow water of the plate 7b to the amount of overflow water of the first partition plate 7a to 1: 1 to 1:10, preferably 1: 3 to 1: 5. Since the amount of overflow water in the partition plate is determined by the product (overflow cross-sectional area) of the overflow water depth (difference between the water level and the upper end of the partition plate) and the overflow weir length (length of the partition plate), the reaction tank 1 An anaerobic compartment (Z3) and an oxygen-free compartment (Z2) can be formed by appropriately setting the upper end positions and lengths of the partition plates 7a and 7b inside and further adjusting the water level in the reaction tank 1. .. Further, the raw water supplied to the third region Z3 by the sewage supply means contains organic substances and ammonia that consume oxygen, and the consumption of oxygen by these organic substances and ammonia is also involved in the formation of the anaerobic state.

図3において、第3の領域Z3(嫌気区画)では、生物学的にリンを除去するための処理が実行される。具体的に、第3の領域Z3には汚水供給手段により原水が供給され、原水には酸素を消費する有機物やアンモニア、リン等が含まれている。また、仕切板7bの上端を越流して第3の領域Z3に移行した汚水にはリン蓄積細菌を含む活性汚泥が含まれ、嫌気状態である第3の領域Z3において、リン蓄積細菌は有機物を取り込むとともにリンを放出する。第3の領域でリン蓄積細菌の代謝によりリンの溶解量が増大した汚水は、第2の仕切板7bよりも下の領域を経て仕切板7aの内部である第1の領域Z1に戻る。 In FIG. 3, in the third region Z3 (anaerobic compartment), a process for biologically removing phosphorus is performed. Specifically, raw water is supplied to the third region Z3 by a sewage supply means, and the raw water contains organic substances that consume oxygen, ammonia, phosphorus, and the like. Further, the sewage that overflows the upper end of the partition plate 7b and migrates to the third region Z3 contains activated sludge containing phosphorus-accumulating bacteria, and in the anaerobic third region Z3, the phosphorus-accumulating bacteria contain organic substances. It takes in and releases phosphorus. The sewage in which the amount of phosphorus dissolved is increased by the metabolism of the phosphorus-accumulating bacteria in the third region passes through the region below the second partition plate 7b and returns to the first region Z1 inside the partition plate 7a.

第1の領域Z1(好気ゾーン)では、リン蓄積細菌は第3の領域Z3(嫌気ゾーン)で放出した量以上のリンを過剰摂取する。すなわち、リン蓄積細菌は一旦放出した量以上のリンを摂取するため、細菌内のリン含有量が向上する。過剰量のリンが摂取されたリン蓄積細菌を含む汚水は、膜分離装置2によりリン蓄積細菌を含む汚泥を分離することにより、汚水中のリンを除去することができる。 In the first region Z1 (aerobic zone), the phosphorus-accumulating bacteria overdose more than the amount released in the third region Z3 (anaerobic zone). That is, since the phosphorus-accumulating bacterium ingests more phosphorus than once released, the phosphorus content in the bacterium is improved. Phosphorus in the sewage can be removed from the sludge containing the phosphorus-accumulating bacteria in which an excessive amount of phosphorus has been ingested by separating the sludge containing the phosphorus-accumulating bacteria by the membrane separation device 2.

反応槽1内の汚水の水位の変更は、一般的には原水槽から汚水供給手段により反応槽1内に供給される原水の供給量を変更させることにより行うが、膜の吸引量を変更してもよい。さらに、本実施の形態の汚水処理装置は、反応槽1内の水位を調節するための水位制御手段を有していてもよい。水位制御手段としては、例えば、反応槽1内の水位、すなわち、液表面の位置を調べる液面センサーがある。液面センサーが汚水の水位を検出すると、原水ポンプ6が汚水供給手段により反応槽1に供給する原水の水量を自動的に制御する。 The water level of the sewage in the reaction tank 1 is generally changed by changing the supply amount of the raw water supplied from the raw water tank into the reaction tank 1 by the sewage supply means, but the suction amount of the membrane is changed. You may. Further, the sewage treatment apparatus of the present embodiment may have a water level control means for adjusting the water level in the reaction tank 1. As the water level control means, for example, there is a liquid level sensor for checking the water level in the reaction tank 1, that is, the position of the liquid surface. When the liquid level sensor detects the water level of sewage, the raw water pump 6 automatically controls the amount of raw water supplied to the reaction tank 1 by the sewage supply means.

本実施の形態では、汚水処理装置に供給される汚水の日間の流量変動に基づいて、1日の処理時間帯を、例えば、通常負荷時間帯(11:00~18:00、23:00~2:00)、高負荷時間帯(8:00~11:00、18:00~23:00)及び低負荷時間帯(23:00~8:00)に予め区分することができる。 In the present embodiment, the treatment time zone of one day is set to, for example, the normal load time zone (11:00 to 18:00, 23:00 to 23:00) based on the daily flow rate fluctuation of the sewage supplied to the sewage treatment apparatus. It can be divided into a high load time zone (8:00 to 11:00, 18:00 to 23:00) and a low load time zone (23:00 to 8:00) in advance.

高負荷時間帯及び低負荷時間帯は、汚水流入量及び汚水水質から選ばれる測定値又は該測定値から得られた演算値に基づいて設定することができる。具体的に、汚水流入量の1時間値を用いて、例えば日平均汚水量の1時間値に対して、0.5倍以下を低負荷時間帯、0.5~1.5倍を通常負荷時間帯、1.5倍以上を高負荷時間帯とすることが出来る。また、汚水流入量だけでなく汚水水質、例えばBOD(生物学的酸素要求量)、COD(化学的酸素要求量)、SS(懸濁物質)などの濃度データを取得し、汚水流入量と汚水水質(濃度)の積を用いて、前記のように日平均負荷量に対する比率から負荷時間帯を設定することも出来る。 The high load time zone and the low load time zone can be set based on the measured value selected from the sewage inflow amount and the sewage quality or the calculated value obtained from the measured value. Specifically, using the 1-hour value of the inflow of sewage, for example, 0.5 times or less is the low load time zone and 0.5 to 1.5 times the normal load is 0.5 times the 1-hour value of the daily average sewage amount. The time zone, 1.5 times or more, can be set as the high load time zone. In addition, not only the inflow of sewage but also the quality of sewage, for example, concentration data such as BOD (biological oxygen demand), COD (chemical oxygen demand), SS (suspended solids), etc. are acquired, and the inflow of sewage and sewage are obtained. Using the product of water quality (concentration), the load time zone can be set from the ratio to the daily average load as described above.

汚水流入量と汚水水質を自動測定している処理場においては、時々刻々変化する流入負荷量に応じて汚水流入量と汚水水質(濃度)の積により負荷区分を判定しながら、負荷区分に応じた運転を行うことが出来る。先の例では3つの負荷区分を示したが、更に多くの区分を設定して汚水処理を行うことも出来る。 In a treatment plant that automatically measures sewage inflow and sewage quality, the load classification is determined by the product of the sewage inflow and sewage quality (concentration) according to the inflow load that changes from moment to moment, and the load classification is determined. You can drive. In the previous example, three load categories are shown, but more categories can be set for sewage treatment.

次に、本発明の第1の実施の形態に係る汚水処理装置(図1)によって実行される汚水処理方法について説明する。 Next, the sewage treatment method executed by the sewage treatment apparatus (FIG. 1) according to the first embodiment of the present invention will be described.

上述したように、本実施の形態の汚水処理装置は、反応槽1の内部に、膜分離装置2と散気管4と第1の仕切板7aと第2の仕切板7bとを有する。膜分離装置2は、反応槽1の外で吸引ポンプ3に接続されるとともに、散気管4は反応槽1の外部でブロワ(不図示)に接続される(図1(下図))。第1の仕切板7a及び第2の仕切板7bにより、汚水処理装置は、膜分離装置が配置される第1の領域Z1と、第1の仕切板と第2の仕切板とで囲まれる第2の領域Z2と、第2の仕切板と反応槽の内壁とで囲まれる第3の領域Z3とに区画されている。 As described above, the sewage treatment device of the present embodiment has a membrane separation device 2, an air diffuser tube 4, a first partition plate 7a, and a second partition plate 7b inside the reaction tank 1. The membrane separation device 2 is connected to the suction pump 3 outside the reaction tank 1, and the air diffuser 4 is connected to a blower (not shown) outside the reaction tank 1 (FIG. 1 (lower figure)). By the first partition plate 7a and the second partition plate 7b, the sewage treatment device is surrounded by the first region Z1 in which the membrane separation device is arranged, the first partition plate and the second partition plate. It is divided into a second region Z2 and a third region Z3 surrounded by a second partition plate and an inner wall of the reaction tank.

原水ポンプ6が駆動すると、汚水供給手段により原水が反応槽1の第3の領域Z3に供給される。反応槽1の内部に供給された汚水は、硝化菌と脱窒反応実行菌(脱窒菌)とリン蓄積細菌とを含む活性汚泥を含み、汚水はこれらの細菌によって生物処理される。ブロワが駆動すると膜分離装置2の下部に設置された散気管4から気泡状の空気が供給される。吸引ポンプ3が駆動すると、生物処理された汚水が膜分離装置2によってろ過され、ろ過水が吸引ポンプ3により吸引されて反応槽1の外部に取り出される。このとき、散気管4から膜分離装置2に供給される空気が膜分離装置2の膜面に衝突し、その膜面に汚泥物質等が付着するのを防止する。 When the raw water pump 6 is driven, the raw water is supplied to the third region Z3 of the reaction tank 1 by the sewage supply means. The sewage supplied to the inside of the reaction tank 1 contains activated sludge containing nitrifying bacteria, denitrification reaction executing bacteria (denitrification bacteria), and phosphorus-accumulating bacteria, and the sewage is biologically treated by these bacteria. When the blower is driven, air bubbles are supplied from the air diffuser tube 4 installed at the bottom of the membrane separation device 2. When the suction pump 3 is driven, the biologically treated sewage is filtered by the membrane separation device 2, and the filtered water is sucked by the suction pump 3 and taken out of the reaction tank 1. At this time, the air supplied from the air diffuser 4 to the membrane separation device 2 collides with the membrane surface of the membrane separation device 2 and prevents sludge substances and the like from adhering to the membrane surface.

(通常負荷時間帯)
以下に、反応槽1への汚水流入量が平均的な水量である通常負荷時間帯の汚水処理方法を説明する。
まず、反応槽1内の汚水の水位を、第1の仕切板7aの汚水越流位置、すなわち第1の仕切板7aを越流するが第2の仕切板7bを越流しない位置(図1(下図)においてWL1とWL2の間の位置)に設定し、この状態で7.5分間汚水処理を実行する(第1の越流ステップ)。このとき、散気管4から膜分離装置2に空気が供給されることにより、汚水は第1の領域Z1から仕切板7aの上端を越流して仕切板7aの外部の第2の領域Z2に移行する。その後、汚水は第2の領域Z2内を下降し、仕切板7aよりも下の領域を経て仕切板7aの内部である第1の領域Z1に戻り、仕切板7aの周囲を循環する循環流が形成される(図2)。循環流が形成されると、第1の領域Z1(好気区画)では酸素存在下でアンモニアを亜硝酸や硝酸に変換する硝化反応が進行し、第2の領域Z2(無酸素区画)では循環流に乗って第1の領域Z1から移動した亜硝酸や硝酸を窒素に変換する脱窒反応が進行する。
(Normal load time zone)
Hereinafter, a sewage treatment method during a normal load time period in which the amount of sewage flowing into the reaction tank 1 is an average amount will be described.
First, the water level of the sewage in the reaction tank 1 overflows the sewage overflow position of the first partition plate 7a, that is, the position of overflowing the first partition plate 7a but not the second partition plate 7b (FIG. 1). (Position between WL1 and WL2 in the figure below) is set, and sewage treatment is executed for 7.5 minutes in this state (first overflow step). At this time, by supplying air from the air diffuser 4 to the membrane separation device 2, the sewage overflows from the first region Z1 over the upper end of the partition plate 7a and shifts to the second region Z2 outside the partition plate 7a. do. After that, the sewage descends in the second region Z2, passes through the region below the partition plate 7a, returns to the first region Z1 inside the partition plate 7a, and the circulating flow circulating around the partition plate 7a flows. It is formed (Fig. 2). When a circulating flow is formed, the nitrification reaction that converts ammonia into nitrite or nitric acid proceeds in the presence of oxygen in the first region Z1 (aerobic compartment), and circulation occurs in the second region Z2 (anoxic compartment). The denitrification reaction that converts nitrite and nitric acid that have moved from the first region Z1 to nitrogen on the flow proceeds.

次いで、反応槽1内の汚水の水位を、第1の仕切板7aの汚水非越流位置(図1(下図)においてWL1よりも低い位置)に設定し、この状態で7.5分間汚水処理を実行する(非越流ステップ)。このとき、第1の領域Z1と第2の領域Z2との間で汚水の流通が分断され、仕切板7aの周囲を循環する循環流は形成されない。したがって、第1の領域Z1(好気区画)では酸素存在下でアンモニアを亜硝酸や硝酸に変換する硝化反応が進行し、第2の領域Z2(無酸素区画)では汚水の流通が分断される前に第1の領域Z1から移動した亜硝酸や硝酸を窒素に変換する脱窒反応が進行する。 Next, the water level of the sewage in the reaction tank 1 is set to the sewage non-overflow position (position lower than WL1 in FIG. 1 (lower figure)) of the first partition plate 7a, and the sewage treatment is performed in this state for 7.5 minutes. (Non-overflow step). At this time, the flow of sewage is divided between the first region Z1 and the second region Z2, and a circulating flow circulating around the partition plate 7a is not formed. Therefore, in the first region Z1 (aerobic compartment), the nitrification reaction for converting ammonia into nitrite or nitric acid proceeds in the presence of oxygen, and in the second region Z2 (anoxic compartment), the flow of sewage is disrupted. A denitrification reaction that converts nitrite and nitric acid previously transferred from the first region Z1 to nitrogen proceeds.

上記のような第1の仕切板7aの汚水越流位置での運転(7.5分)と第1の仕切板7aの汚水非越流位置での運転(7.5分)を合わせて1インターバル(15分)として、3インターバル(45分)の運転を行う。これにより、第1の領域Z1における硝化反応と第2の領域Z2における脱窒反応を効率的に進行させることができる。 The operation of the first partition plate 7a at the sewage overflow position (7.5 minutes) and the operation of the first partition plate 7a at the sewage non-overflow position (7.5 minutes) are combined as described above. The operation is performed for 3 intervals (45 minutes) as an interval (15 minutes). This makes it possible to efficiently proceed the nitrification reaction in the first region Z1 and the denitrification reaction in the second region Z2.

次いで、反応槽1内の汚水の水位を、第2の仕切板7bの汚水越流位置(図1(下図)においてWL2よりも高い位置)に設定し、この状態で5分間汚水処理を実行する(第2の越流ステップ)。このとき、第1の領域Z1から仕切板7aの上端を越流した汚水は、仕切板7bの外部の第3の領域Z3にも移行する。したがって、第1の領域Z1と第2の領域Z2を循環する循環流とともに、第1の領域Z1と第3の領域Z3を循環する循環流が形成される(図3)。このとき、第3の領域Z3には嫌気区画が形成される。 Next, the water level of the sewage in the reaction tank 1 is set to the sewage overflow position of the second partition plate 7b (the position higher than WL2 in FIG. 1 (lower figure)), and the sewage treatment is executed in this state for 5 minutes. (Second overflow step). At this time, the sewage that has overflowed from the first region Z1 to the upper end of the partition plate 7a also migrates to the third region Z3 outside the partition plate 7b. Therefore, along with the circulating flow circulating in the first region Z1 and the second region Z2, the circulating flow circulating in the first region Z1 and the third region Z3 is formed (FIG. 3). At this time, an anaerobic compartment is formed in the third region Z3.

第3の領域Z3(嫌気区画)では、汚水に含まれるリン蓄積細菌が有機物を取り込むとともにリンを放出する。第3の領域において、リン蓄積細菌の代謝によりリンの溶解量が増大した汚水は、第2の仕切板7bよりも下の領域を経て仕切板7aの内部である第1の領域Z1に戻る。第1の領域Z1(好気区画)では、リン蓄積細菌は第3の領域Z3(嫌気ゾーン)で放出した量以上のリンを過剰摂取する。すなわち、リン蓄積細菌は一旦放出した以上のリンを摂取するため、細菌内のリン含有量が向上する。過剰量のリンが摂取されたリン蓄積細菌を含む汚水は、膜分離装置2によりリン蓄積細菌を含む汚泥を分離することにより、汚水中のリンが除去される。 In the third region Z3 (anaerobic compartment), phosphorus-accumulating bacteria contained in sewage take up organic matter and release phosphorus. In the third region, the sewage in which the amount of phosphorus dissolved is increased by the metabolism of the phosphorus-accumulating bacteria passes through the region below the second partition plate 7b and returns to the first region Z1 inside the partition plate 7a. In the first region Z1 (aerobic compartment), the phosphorus-accumulating bacteria overdose more than the amount released in the third region Z3 (anaerobic zone). That is, since the phosphorus-accumulating bacteria ingest more phosphorus than once released, the phosphorus content in the bacteria is improved. Phosphorus in the sewage containing phosphorus-accumulating bacteria ingested in an excessive amount is removed by separating sludge containing phosphorus-accumulating bacteria by the membrane separation device 2.

以上のように、通常負荷時間帯では、第1の領域を好気区画とし、第2の領域を無酸素区画とし、第3の領域を嫌気区画とすることにより、汚水から窒素とリンを同時に除去することができる。 As described above, in the normal load time zone, the first region is an aerobic compartment, the second region is an oxygen-free compartment, and the third region is an anaerobic compartment, so that nitrogen and phosphorus can be simultaneously produced from the sewage. Can be removed.

(高負荷時間帯)
以下に、反応槽1への汚水流入量が多く流入負荷が大きい高負荷時間帯の汚水処理方法を説明する。
(High load time zone)
Hereinafter, a method for treating sewage during a high load time period in which the amount of sewage flowing into the reaction tank 1 is large and the inflow load is large will be described.

高負荷時間帯には、アンモニアを含む原水の流入量が多いことから、硝化反応を促進するために第2の領域Z2に設置された補助曝気手段5bから曝気を行い、第2の領域Z2を好気区画として使用する(図1(下図))。 Since the inflow of raw water containing ammonia is large during the high load time zone, aeration is performed from the auxiliary aeration means 5b installed in the second region Z2 in order to promote the nitrification reaction, and the second region Z2 is subjected to aeration. It is used as an aerobic compartment (Fig. 1 (lower figure)).

まず、反応槽1内の水位を、第2の仕切板7bの汚水越流位置(図1(下図)においてWL2よりも高い位置)に設定し、この状態で7.5分間汚水処理を実行する。 First, the water level in the reaction tank 1 is set to the sewage overflow position of the second partition plate 7b (the position higher than WL2 in FIG. 1 (lower figure)), and the sewage treatment is executed for 7.5 minutes in this state. ..

図4は、図1における反応槽1内の水位が第2の仕切板7bの汚水越流位置(WL2よりも高い位置)にあり、且つ、第2の領域において補助曝気装置5bより曝気するときの汚水の流れを概略的に示す側面図である。 FIG. 4 shows when the water level in the reaction tank 1 in FIG. 1 is at the sewage overflow position (position higher than WL2) of the second partition plate 7b and is aerated from the auxiliary aeration device 5b in the second region. It is a side view which shows the flow of the sewage of.

反応槽1内の水位が第2の仕切板7bの汚水越流位置にあるとき、第1の領域Z1から仕切板7aの上端を越流した汚水と、補助曝気手段5bからの曝気により第2の領域Z2を上昇した汚水は、7bの上端を越えて仕切板7bの外部の第3の領域Z3に移行する。その後、汚水は第3の領域Z3内を下降し、仕切板7bよりも下の領域を経て仕切板7aの内部である第1の領域Z1と仕切板7bの内部である第2の領域Z2に戻る。すなわち、第1の領域Z1と第3の領域Z3を循環する循環流と、第2の領域Z2と第3の領域Z3を循環する循環流が形成される(図4)。循環流が形成されると、第1の領域Z1(好気区画)と第2の領域Z2(好気区画)では酸素存在下でアンモニアを亜硝酸や硝酸に変換する硝化反応が進行する。第1の領域Z1と第2の領域Z2の空気の大半は第3の領域Z3に移行することなく反応槽1の外部に放出され、第3の領域Z3(無酸素区画)では、循環流に乗って第1の領域Z1及び第2の領域Z2から移動した亜硝酸や硝酸を窒素に変換する脱窒反応が進行する。 When the water level in the reaction tank 1 is at the sewage overflow position of the second partition plate 7b, the second is due to the sewage overflowing from the first region Z1 to the upper end of the partition plate 7a and the aeration from the auxiliary aeration means 5b. The sewage that has risen in the region Z2 of the above is transferred to the third region Z3 outside the partition plate 7b beyond the upper end of the 7b. After that, the sewage descends in the third region Z3, passes through the region below the partition plate 7b, and reaches the first region Z1 inside the partition plate 7a and the second region Z2 inside the partition plate 7b. return. That is, a circulating flow circulating in the first region Z1 and the third region Z3 and a circulating flow circulating in the second region Z2 and the third region Z3 are formed (FIG. 4). When the circulating flow is formed, the nitrification reaction for converting ammonia into nitrite or nitric acid proceeds in the presence of oxygen in the first region Z1 (aerobic compartment) and the second region Z2 (aerobic compartment). Most of the air in the first region Z1 and the second region Z2 is discharged to the outside of the reaction tank 1 without migrating to the third region Z3, and in the third region Z3 (anoxic compartment), it becomes a circulating flow. The denitrification reaction that rides and converts nitrite and nitric acid that have moved from the first region Z1 and the second region Z2 into nitrogen proceeds.

次いで、反応槽1内の汚水の水位を、第1の仕切板7aの汚水越流位置、すなわち第1の仕切板7aを越流するが第2の仕切板7bを越流しない位置(図1(下図)においてWL1とWL2の間の位置)に設定し、この状態で7.5分間汚水処理を実行する。このとき、第1の領域Z1及び第2の領域Z2と第3の領域Z3との間で汚水の流通が分断され、第3の領域Z3を経由する循環流は形成されない。したがって、第1の領域Z1(好気区画)及び第2の領域Z2(好気区画)では酸素存在下でアンモニアを亜硝酸や硝酸に変換する硝化反応が進行し、第3の領域Z3(無酸素区画)では汚水の流通が分断される前に第1の領域Z1及び第2の領域Z2から移動した亜硝酸や硝酸を窒素に変換する脱窒反応が進行する。 Next, the water level of the sewage in the reaction tank 1 overflows the sewage overflow position of the first partition plate 7a, that is, a position that overflows the first partition plate 7a but does not overflow the second partition plate 7b (FIG. 1). (Position between WL1 and WL2 in the figure below)), and sewage treatment is executed for 7.5 minutes in this state. At this time, the flow of sewage is divided between the first region Z1 and the second region Z2 and the third region Z3, and the circulation flow via the third region Z3 is not formed. Therefore, in the first region Z1 (aerobic compartment) and the second region Z2 (aerobic compartment), the nitrification reaction for converting ammonia into nitrite or nitric acid proceeds in the presence of oxygen, and the third region Z3 (absent) In the oxygen section), a denitrification reaction that converts nitrite and nitric acid transferred from the first region Z1 and the second region Z2 into nitrogen proceeds before the flow of sewage is disrupted.

上記のような第1の仕切板7bの汚水越流位置での運転(7.5分)と第1の仕切板7aの汚水越流位置での運転(7.5分)を合わせて1インターバル(15分)として、インターバルを複数回繰り返す運転を行う。これにより、高負荷時間帯でも、第1の領域Z1と第2の領域Z2において硝化反応を促進させつつ、第3の領域Z3において良好な窒素除去を行うことが可能となる。 The operation of the first partition plate 7b at the sewage overflow position (7.5 minutes) and the operation of the first partition plate 7a at the sewage overflow position (7.5 minutes) are combined for one interval as described above. As (15 minutes), the operation of repeating the interval a plurality of times is performed. This makes it possible to perform good nitrogen removal in the third region Z3 while promoting the nitrification reaction in the first region Z1 and the second region Z2 even in the high load time zone.

高負荷時間帯には第1の領域Z1に配置された補助曝気手段5aから曝気することにより、硝化反応に使用される酸素量を補うことができる(図4)。第1の領域Z1に配置された補助曝気手段5aと第2の領域Z2に配置された補助曝気手段5bの両方を用いることにより、汚水への酸素溶存効率を向上させることができるため、同じ必要酸素量を供給する場合に比べ、ブロアからの送風量を低減することができ省エネルギー化を達成することができる。また、高負荷時間帯には、処理水量の増加に伴い膜フラックスを増加した汚水処理が必要となるが、散気管4からの洗浄用空気量を必要最小限に抑えることにより省エネルギーの運転を実現することができる。 By aeration from the auxiliary aeration means 5a arranged in the first region Z1 during the high load time zone, the amount of oxygen used for the nitrification reaction can be supplemented (FIG. 4). By using both the auxiliary aeration means 5a arranged in the first region Z1 and the auxiliary aeration means 5b arranged in the second region Z2, the oxygen dissolution efficiency in the sewage can be improved. Compared with the case of supplying the amount of oxygen, the amount of air blown from the blower can be reduced and energy saving can be achieved. In addition, during high load hours, sewage treatment with increased membrane flux is required as the amount of treated water increases, but energy-saving operation is realized by minimizing the amount of cleaning air from the air diffuser pipe 4. can do.

(低負荷時間帯)
以下に、反応槽1への汚水流入量が少なく流入負荷が小さい低負荷時間帯の汚水処理方法を説明する。
(Low load time zone)
Hereinafter, a sewage treatment method in a low load time zone in which the amount of sewage flowing into the reaction tank 1 is small and the inflow load is small will be described.

低負荷時間帯には、有機物やアンモニアを含む原水の流入量が少ないことから、第3の領域Z3は反応区画としては使用せず原水の導入渠として使用し、補助曝気手段5bを停止して、第2の領域Z2を無酸素区画又は嫌気区画として使用する(図1(下図))。また、流入量が少ないことから水位の上昇速度が遅くなるため、汚水越流時間帯と汚水越流停止時間帯を長くし、インターバル時間を長く設定する。 Since the inflow of raw water containing organic matter and ammonia is small during the low load time period, the third region Z3 is not used as a reaction section but is used as a raw water introduction drain, and the auxiliary aeration means 5b is stopped. , The second region Z2 is used as an oxygen-free compartment or an anaerobic compartment (FIG. 1 (below)). In addition, since the inflow amount is small, the rising speed of the water level becomes slow, so the sewage overflow time zone and the sewage overflow stop time zone are lengthened, and the interval time is set long.

まず、反応槽1内の水位を、第1の仕切板7aの汚水越流位置、すなわち第1の仕切板7aを越流するが第2の仕切板7bを越流しない位置(図1(下図)においてWL1とWL2の間の位置)に設定し、この状態で15分間汚水処理を実行する(図2)(第1の越流ステップ)。このとき、散気管4から膜分離装置2に空気が供給されることにより、汚水は第1の領域Z1から仕切板7aの上端を越流して仕切板7aの外部の第2の領域Z2に移行する。その後、汚水は第2の領域Z2内を下降し、仕切板7aよりも下の領域を経て仕切板7aの内部領域である第1の領域Z1に戻り、仕切板7aの周囲を循環する循環流が形成される(図2)。循環流が形成されると、第1の領域Z1(好気区画)では酸素存在下でアンモニアを亜硝酸や硝酸に変換する硝化反応が進行し、第2の領域Z2(無酸素区画)では循環流に乗って第1の領域Z1から移動した亜硝酸や硝酸を窒素に変換する脱窒反応が進行する。 First, the water level in the reaction tank 1 overflows the sewage overflow position of the first partition plate 7a, that is, a position that overflows the first partition plate 7a but does not overflow the second partition plate 7b (FIG. 1 (lower figure). ) Is set to the position between WL1 and WL2), and the sewage treatment is executed for 15 minutes in this state (FIG. 2) (first overflow step). At this time, by supplying air from the air diffuser 4 to the membrane separation device 2, the sewage overflows from the first region Z1 over the upper end of the partition plate 7a and shifts to the second region Z2 outside the partition plate 7a. do. After that, the sewage descends in the second region Z2, passes through the region below the partition plate 7a, returns to the first region Z1 which is the internal region of the partition plate 7a, and circulates around the partition plate 7a. Is formed (Fig. 2). When a circulating flow is formed, the nitrification reaction that converts ammonia into nitrite or nitric acid proceeds in the presence of oxygen in the first region Z1 (aerobic compartment), and circulation occurs in the second region Z2 (anoxic compartment). A denitrification reaction that converts nitrite and nitric acid that have moved from the first region Z1 to nitrogen on the flow proceeds.

次いで、反応槽1内の汚水の水位を、第1の仕切板7aの汚水非越流位置(図1(下図)においてWL1よりも低い位置)に設定し、この状態で15分間汚水処理を実行する(非越流ステップ)。このとき、第1の領域Z1と第2の領域Z2との間で汚水の流通が分断され、仕切板7aの周囲を循環する循環流は形成されない。したがって、第1の領域Z1(好気区画)では酸素存在下でアンモニアを亜硝酸や硝酸に変換する硝化反応が進行し、第2の領域Z2(無酸素区画)では汚水の流通が分断される前に第1の領域Z1から移動した亜硝酸や硝酸を窒素に変換する脱窒反応が進行する。 Next, the water level of the sewage in the reaction tank 1 was set to the sewage non-overflow position of the first partition plate 7a (the position lower than WL1 in FIG. 1 (lower figure)), and the sewage treatment was executed in this state for 15 minutes. (Non-overflow step). At this time, the flow of sewage is divided between the first region Z1 and the second region Z2, and a circulating flow circulating around the partition plate 7a is not formed. Therefore, in the first region Z1 (aerobic compartment), the nitrification reaction for converting ammonia into nitrite or nitric acid proceeds in the presence of oxygen, and in the second region Z2 (anoxic compartment), the flow of sewage is disrupted. A denitrification reaction that converts nitrite and nitric acid previously transferred from the first region Z1 to nitrogen proceeds.

第2の領域Z2は、無酸素区画として脱窒反応を進行させた後に、嫌気区画に変更することができる。具体的に、第1の越流ステップにおいては、反応槽1内の水位を低くして第1の仕切板7aの越流水量を少なくすることにより、第2の領域Z2を無酸素区画から嫌気区画に変更することができる。非越流ステップでは汚水処理時間長くすることで、第2の領域Z2を無酸素区画から嫌気区画に変更することができる。嫌気区画となった第2の領域Z2では、汚水に含まれるリン蓄積細菌がリンを放出する工程が実行される。このとき、第2の領域においてリン蓄積細菌の代謝によりリンの溶解量が増大した汚水は、第1の仕切板7aよりも下の領域を経て仕切板7aの内部である第1の領域Z1に戻る。第1の領域Z1(好気区画)では、リン蓄積細菌は第2の領域Z2(嫌気区画)で放出した量以上のリンを過剰摂取する。過剰量のリンが摂取されたリン蓄積細菌を含む汚水は、膜分離装置2によりリン蓄積細菌を含む汚泥を分離することにより、汚水中のリンを除去することができる。 The second region Z2 can be changed to an anaerobic compartment after the denitrification reaction has proceeded as an oxygen-free compartment. Specifically, in the first overflow step, the water level in the reaction tank 1 is lowered to reduce the amount of overflow water in the first partition plate 7a, so that the second region Z2 is anaerobic from the oxygen-free section. Can be changed to a parcel. In the non-overflow step, the second region Z2 can be changed from the oxygen-free section to the anaerobic section by lengthening the sewage treatment time. In the second region Z2 which has become an anaerobic compartment, a step of releasing phosphorus by phosphorus-accumulating bacteria contained in sewage is executed. At this time, the sewage in which the amount of phosphorus dissolved increased due to the metabolism of the phosphorus-accumulating bacteria in the second region passes through the region below the first partition plate 7a and enters the first region Z1 inside the partition plate 7a. return. In the first region Z1 (aerobic compartment), the phosphorus-accumulating bacteria overdose more than the amount released in the second region Z2 (anaerobic compartment). Phosphorus in the sewage can be removed from the sludge containing the phosphorus-accumulating bacteria in which an excessive amount of phosphorus has been ingested by separating the sludge containing the phosphorus-accumulating bacteria by the membrane separation device 2.

低負荷時間帯では、上記のような第1の仕切板7aの汚水越流位置での運転(15分)と第1の仕切板7aの汚水非越流位置での運転(15分)を合わせて1インターバル(30分)として、複数回のインターバルの運転を行う。1インターバルの時間を長くすることにより、低い流入負荷に応じて硝化時間と脱窒時間を十分に確保して良好な窒素除去を行うことが可能となる。さらに、インターバル時間を長くすることや越流水量を少なくすることで良好なリン除去を行うこともできる。また、第1の領域Z1に設置した補助曝気装置5aを必要最小限の送風量となるように制御するとともに、膜のフラックスを小さく抑え、散気管4からの膜洗浄用曝気量も必要最小限に制御する。このような運転を行うことにより、省エネルギーの運転を実現することができる。 In the low load time zone, the operation of the first partition plate 7a at the sewage overflow position (15 minutes) and the operation of the first partition plate 7a at the sewage non-overflow position (15 minutes) are combined. The operation is performed at a plurality of intervals as one interval (30 minutes). By lengthening the time of one interval, it is possible to sufficiently secure the nitrification time and the denitrification time according to the low inflow load and perform good nitrogen removal. Furthermore, good phosphorus removal can be achieved by lengthening the interval time and reducing the amount of overflow water. In addition, the auxiliary aeration device 5a installed in the first region Z1 is controlled so that the amount of air blown is the minimum necessary, the flux of the membrane is kept small, and the amount of aeration for cleaning the membrane from the air diffuser 4 is also the minimum necessary. To control. By performing such an operation, energy-saving operation can be realized.

以上のように、汚水処理装置に供給される汚水の日間の流量変動に基づいて、1日の処理時間帯を、通常負荷時間帯、高負荷時間帯及び低負荷時間帯に予め区分し、それぞれの時間帯の第1の領域、第2の領域及び第3の領域において最適な汚水処理を行うことにより、汚水から窒素とリンを同時に除去するとともに、汚水の流量変動に対し安定して汚水処理を実行でき、省エネルギーの運転を実現することができる。 As described above, the daily treatment time zone is divided into a normal load time zone, a high load time zone, and a low load time zone in advance based on the daily flow rate fluctuation of the sewage supplied to the sewage treatment device. By performing optimal sewage treatment in the first region, the second region, and the third region during the above time period, nitrogen and phosphorus are simultaneously removed from the sewage, and the sewage treatment is stable against fluctuations in the flow rate of the sewage. Can be executed and energy-saving operation can be realized.

反応槽1内の硝化反応の進行程度、窒素除去の状況、及びリン除去の状況は、第1の領域、第2の領域及び第3の領域における酸化還元電位(ORP)や各種成分の濃度の測定値から把握することが出来る。 The degree of progress of the nitrification reaction in the reaction vessel 1, the state of nitrogen removal, and the state of phosphorus removal are the redox potentials (ORPs) and the concentrations of various components in the first region, the second region, and the third region. It can be grasped from the measured value.

第1の領域では膜透過水は最終的な処理水となることから、第1の領域の溶存酸素(DO)濃度、酸化還元電位(ORP)、アンモニア性窒素(NH-N)濃度及び硝酸性窒素(NO-N)濃度に基づいて目標の水質が得られているかどうかの判断を行うことが出来る。例えば、第1の領域のNH-N濃度が目標値よりも多くDO濃度が低い場合には、硝化反応の進行が不十分と考えられるため、第1の領域に設けた補助曝気手段5aの曝気量を増やすよう制御する必要がある。一方、第1の領域のNO-N濃度が目標値よりも多くDO濃度が高い場合には、脱窒反応が過剰に進行していると考えられるため、第1の領域に設けた補助曝気手段5aの曝気量を減らすよう制御する必要がある。また、硝化反応を促進するためには、第1の領域Z1のORPを100~200mV以上に設定するのが好ましい。ORPがこれより低い場合には補助曝気手段5aの曝気量を増やすよう制御する必要がある。さらに、これらの指標を総合的に判断することも出来る。 Since the membrane permeated water becomes the final treated water in the first region, the dissolved oxygen (DO) concentration, oxidation-reduction potential (ORP), ammoniacal nitrogen (NH4 - N) concentration and nitric acid in the first region It is possible to judge whether or not the target water quality is obtained based on the concentration of sex nitrogen (NO 3 -N). For example, when the NH 4 -N concentration in the first region is higher than the target value and the DO concentration is low, it is considered that the progress of the nitrification reaction is insufficient, so that the auxiliary aeration means 5a provided in the first region It is necessary to control to increase the amount of aeration. On the other hand, when the NO 3 -N concentration in the first region is higher than the target value and the DO concentration is high, it is considered that the denitrification reaction is excessively progressing, so that the auxiliary aeration provided in the first region is provided. It is necessary to control the aeration amount of the means 5a to be reduced. Further, in order to promote the nitrification reaction, it is preferable to set the ORP of the first region Z1 to 100 to 200 mV or more. When the ORP is lower than this, it is necessary to control to increase the aeration amount of the auxiliary aeration means 5a. Furthermore, these indicators can be judged comprehensively.

第2の領域では、脱窒反応を主目的とする運転を行うときには、NO-Nの濃度が目標値よりも高い場合には、第1の領域に設けられた補助曝気手段5aの曝気量を減らすよう制御する必要がある。また、脱窒反応を促進するためには、第2の領域Z2のORPを-100~0mVに設定するのが好ましい。負荷状態に応じたより好ましい制御を行うためには、第1の領域及び第3の領域の状況や、第2の領域のその他の項目(DO、NH-N)の測定値も考慮することが重要である。上記測定値を用いる演算式を予め準備しておき、この演算式に基づいて補助曝気手段5a及び/又は補助曝気手段5bの制御を行うことが好ましい。 In the second region, when the operation mainly for the denitrification reaction is performed, if the concentration of NO 3 -N is higher than the target value, the aeration amount of the auxiliary aeration means 5a provided in the first region. Need to be controlled to reduce. Further, in order to promote the denitrification reaction, it is preferable to set the ORP of the second region Z2 to -100 to 0 mV. In order to perform more preferable control according to the load state, the conditions of the first region and the third region and the measured values of other items (DO, NH4 - N) in the second region should be taken into consideration. is important. It is preferable to prepare an arithmetic expression using the measured value in advance and control the auxiliary aeration means 5a and / or the auxiliary aeration means 5b based on this arithmetic expression.

第3の領域では、リン蓄積細菌によるリンの放出を主目的とする運転を行うときには、ORPを-200~-100mVに設定するのが好ましい。また、第1の領域では、嫌気区画を形成するためにNO-Nは検出されず、また、NH-Nの減少のない状態を維持することが好ましい。 In the third region, it is preferable to set the ORP to −200 to −100 mV when the operation is mainly performed for the release of phosphorus by phosphorus-accumulating bacteria. Further, in the first region, NO 3 -N is not detected in order to form an anaerobic compartment, and it is preferable to maintain a state in which there is no decrease in NH 4 -N.

以上の通り、第1の領域の溶存酸素(DO)濃度、酸化還元電位(ORP)、アンモニア性窒素(NH-N)濃度及び硝酸性窒素(NO-N)濃度、第2の領域の溶存酸素(DO)濃度、酸化還元電位(ORP)、アンモニア性窒素(NH4-N)濃度及び硝酸性窒素(NO-N)濃度、第3の領域の酸化還元電位(ORP)及びアンモニア濃度から選ばれる測定値又は前記測定値から得られた演算値に基づいて、第1の領域又は第2の領域に設けられた補助曝気手段からの曝気量を制御することにより、負荷時間帯の区分に応じて最適な運転方法を実現することが出来る。また、前記測定値又は前記測定値から得られた演算値に基づいて越流時間帯及び越流停止時間帯の比率の制御を行うことも出来る。さらに、前記測定値の自動計測を行っている処理場では、様々な計測テータを用いて制御方法を演算式等で設定することにより、適切な運転制御を行うことが出来る。 As described above, the dissolved oxygen (DO) concentration, redox potential (ORP), ammoniacal nitrogen (NH 4 -N) concentration and nitrate nitrogen (NO 3 -N) concentration in the first region, and the second region From dissolved oxygen (DO) concentration, redox potential (ORP), ammoniacal nitrogen (NH4-N) concentration and nitrate nitrogen (NO 3 -N) concentration, redox potential (ORP) and ammonia concentration in the third region By controlling the amount of air exposure from the auxiliary air exhaust means provided in the first region or the second region based on the selected measured value or the calculated value obtained from the measured value, the load time zone can be classified. The optimum operation method can be realized accordingly. Further, it is also possible to control the ratio of the overflow time zone and the overflow stop time zone based on the measured value or the calculated value obtained from the measured value. Further, in the processing plant where the measured values are automatically measured, appropriate operation control can be performed by setting the control method with an arithmetic expression or the like using various measurement data.

次に、本発明の別の実施の形態に係る汚水処理装置及び汚水処理方法を説明する。 Next, the sewage treatment apparatus and the sewage treatment method according to another embodiment of the present invention will be described.

図5は本発明の第2の実施の形態に係る汚水処理装置を概略的に示す上面図である。 FIG. 5 is a top view schematically showing a sewage treatment apparatus according to a second embodiment of the present invention.

図5の汚水処理装置は、その構成、作用が第1の実施の形態(図1)と基本的に同じであり、反応槽1の四隅に第2の仕切板7bと反応槽の槽壁とで囲まれた第3の領域Z3が複数形成されている点で第1の実施の形態(図1)と異なる。以下は、重複した構成、作用については説明を省略し、異なる構成、作用についての説明を行う。 The sewage treatment apparatus of FIG. 5 has basically the same configuration and operation as the first embodiment (FIG. 1), and has a second partition plate 7b and a tank wall of the reaction tank at the four corners of the reaction tank 1. It differs from the first embodiment (FIG. 1) in that a plurality of third regions Z3 surrounded by are formed. In the following, explanations will be omitted for overlapping configurations and actions, and explanations will be given for different configurations and actions.

図5において、反応槽1内の第2の領域Z2は、第1の仕切板7aと第2の仕切板7bに加え反応槽1の4つの槽壁にも囲まれている。また、反応槽1内の四隅のそれぞれには第3の領域Z3が配置されている。ここで、反応槽1の四隅とは反応槽1を構成する4枚の槽壁が互いに接合している4つの接合部をいう。すなわち、本実施の形態において、反応槽1は、第1の仕切板7aで囲まれ膜分離装置が配置される第1の領域Z1と、第1の仕切板と第2の仕切板と反応槽の内壁とで囲まれる第2の領域Z2と、第2の仕切板と反応槽の内壁とで囲まれる4つの第3の領域Z3とに区画されている。 In FIG. 5, the second region Z2 in the reaction tank 1 is surrounded by the four tank walls of the reaction tank 1 in addition to the first partition plate 7a and the second partition plate 7b. Further, a third region Z3 is arranged at each of the four corners in the reaction tank 1. Here, the four corners of the reaction tank 1 refer to four joint portions in which the four tank walls constituting the reaction tank 1 are joined to each other. That is, in the present embodiment, the reaction tank 1 is surrounded by a first partition plate 7a and a first region Z1 in which a membrane separation device is arranged, a first partition plate, a second partition plate, and a reaction tank. It is divided into a second region Z2 surrounded by the inner wall of the reaction tank and four third regions Z3 surrounded by the second partition plate and the inner wall of the reaction tank.

図5のように、反応槽1の四隅に第3の領域Z3を配置することにより、反応槽1内の水位を第2の仕切板7bの汚水越流位置(図1(下図)においてWL2よりも高い位置に相当)に設定した場合、第1の領域Z1と第3の領域Z3を循環する循環流は、反応槽1の中央と四隅を結ぶ対角線方向に沿った循環流となる。反応槽1内に形成された4つの第3の領域Z3はいずれも第1の領域Z1との位置関係が同じであるため、4つの第3の領域Z3に等しく無酸素状態又は嫌気状態を形成することができ、無酸素状態又は嫌気状態の制御が容易であるという利点がある。また、既存の水処理施設を改造する場合に、反応槽形状が正方形に近い場合には適用し易い利点もある。 By arranging the third region Z3 at the four corners of the reaction tank 1 as shown in FIG. 5, the water level in the reaction tank 1 is adjusted to the sewage overflow position of the second partition plate 7b (from WL2 in FIG. 1 (lower figure)). When set to (corresponding to a high position), the circulating flow circulating in the first region Z1 and the third region Z3 is a circulating flow along the diagonal direction connecting the center and the four corners of the reaction vessel 1. Since all four third regions Z3 formed in the reaction vessel 1 have the same positional relationship with the first region Z1, they form an oxygen-free state or an anaerobic state equally with the four third regions Z3. It has the advantage that it is easy to control the anoxic state or the anaerobic state. In addition, when remodeling an existing water treatment facility, there is an advantage that it is easy to apply when the reaction tank shape is close to a square.

図6は本発明の第3の実施の形態に係る汚水処理装置を概略的に示す上面図である。 FIG. 6 is a top view schematically showing a sewage treatment apparatus according to a third embodiment of the present invention.

図6の汚水処理装置は、その構成、作用が第1の実施の形態(図1)と基本的に同じであり、膜分離装置2を配置する第1の領域Z1が反応槽1の1つの内壁の近傍に配置され、第3の領域Z3が該1つの内壁に対向する内壁の近傍に配置され、第1の領域と第3の領域の間に第2の領域Z2が配置される点で第1の実施の形態(図1)と異なる。以下は、重複した構成、作用については説明を省略し、異なる構成、作用についての説明を行う。 The structure and operation of the sewage treatment apparatus of FIG. 6 are basically the same as those of the first embodiment (FIG. 1), and the first region Z1 in which the membrane separation apparatus 2 is arranged is one of the reaction tanks 1. In that the third region Z3 is arranged in the vicinity of the inner wall, the third region Z3 is arranged in the vicinity of the inner wall facing the one inner wall, and the second region Z2 is arranged between the first region and the third region. It is different from the first embodiment (FIG. 1). In the following, explanations will be omitted for overlapping configurations and actions, and explanations will be given for different configurations and actions.

図6において、第1の領域Z1は、第1の仕切板7aに加え反応槽1の3つの内壁にも囲まれており、反応槽1の1つの内壁の近傍に配置されている。第2の領域Z2は、第1の仕切板7aと第2の仕切板7bに加え反応槽1の対向する2つの内壁にも囲まれている。すなわち、本実施の形態において、反応槽1は、第1の仕切板7aと反応槽1の3つの内壁で囲まれ、膜分離装置が配置される第1の領域Z1と、第1の仕切板7aと第2の仕切板7bと反応槽1の対向する2つの内壁とで囲まれる第2の領域Z2と、第2の仕切板と反応槽の3つの内壁とで囲まれる第3の領域Z3とに区画されている。 In FIG. 6, the first region Z1 is surrounded by three inner walls of the reaction tank 1 in addition to the first partition plate 7a, and is arranged in the vicinity of one inner wall of the reaction tank 1. The second region Z2 is surrounded by two facing inner walls of the reaction tank 1 in addition to the first partition plate 7a and the second partition plate 7b. That is, in the present embodiment, the reaction tank 1 is surrounded by three inner walls of the first partition plate 7a and the reaction tank 1, and the first region Z1 in which the membrane separation device is arranged and the first partition plate. A second region Z2 surrounded by 7a, a second partition plate 7b, and two opposing inner walls of the reaction tank 1, and a third region Z3 surrounded by the second partition plate and the three inner walls of the reaction tank 1. It is divided into.

図6のように、反応槽1の内部に第1の領域と第2の領域と第3の領域のそれぞれの領域をまとまった領域として配置することにより、膜分離装置などの機器の配置がしやすく、循環流速も制御しやすくなる。また、既存の水処理施設を改造する場合に、反応槽形状が細長い長方形の場合には適用し易い利点もある。 As shown in FIG. 6, by arranging the first region, the second region, and the third region as a cohesive region inside the reaction vessel 1, equipment such as a membrane separation device can be arranged. It is easy to control the circulation flow velocity. In addition, when remodeling an existing water treatment facility, there is an advantage that it is easy to apply when the reaction tank shape is an elongated rectangular shape.

図7は本発明の第4の実施の形態に係る汚水処理装置を概略的に示す上面図である。 FIG. 7 is a top view schematically showing a sewage treatment apparatus according to a fourth embodiment of the present invention.

図7の汚水処理装置は、その構成、作用が第3の実施の形態(図6)と基本的に同じであり、第3の領域Z3が第2の仕切板7bにより囲包された4つの領域に分割され、該4つの領域Z3が第1の仕切板7aに接するように配置されている点で第3の実施の形態(図6)と異なる。以下は、重複した構成、作用については説明を省略し、異なる構成、作用についての説明を行う。 The sewage treatment apparatus of FIG. 7 has basically the same configuration and operation as those of the third embodiment (FIG. 6), and the third region Z3 is surrounded by the second partition plate 7b. It differs from the third embodiment (FIG. 6) in that it is divided into regions and the four regions Z3 are arranged so as to be in contact with the first partition plate 7a. In the following, explanations will be omitted for overlapping configurations and actions, and explanations will be given for different configurations and actions.

図7において、反応槽1内には第3の領域Z3が4つ存在し、それぞれの領域Z3は、矩形状の4つの板状部材からなる第2の仕切板7bに囲包され、第1の仕切板7aに接するように配置されている。また、第2の領域Z2は、膜分離装置2の近傍に位置する槽壁に対向する槽壁と、これに接合する2つの槽壁と、第1の仕切板7aと、第2の仕切板7bとで囲まれている。第2の仕切板7bは反応槽1の底部から離間するとともに、仕切板7aと接するように配置されるため、板材や鋼材を用いて第2の仕切板7bを安定した状態で反応槽1に固定することが望ましい。すなわち、本実施の形態において、反応槽1は、第1の仕切板7aと反応槽1の3つの内壁とで囲まれ、膜分離装置が配置される第1の領域Z1と、第1の仕切板7aと第2の仕切板7bと反応槽の3つの内壁とで囲まれる第2の領域Z2と、第2の仕切板7bで囲まれる4つの第3の領域Z3とに区画されている。 In FIG. 7, four third regions Z3 exist in the reaction tank 1, and each region Z3 is surrounded by a second partition plate 7b composed of four rectangular plate-shaped members, and the first region Z3 is surrounded by a second partition plate 7b. It is arranged so as to be in contact with the partition plate 7a of. Further, the second region Z2 includes a tank wall facing the tank wall located in the vicinity of the membrane separation device 2, two tank walls joined to the tank wall, a first partition plate 7a, and a second partition plate. It is surrounded by 7b. Since the second partition plate 7b is arranged so as to be separated from the bottom of the reaction tank 1 and in contact with the partition plate 7a, the second partition plate 7b is placed in the reaction tank 1 in a stable state by using a plate material or a steel material. It is desirable to fix it. That is, in the present embodiment, the reaction tank 1 is surrounded by the first partition plate 7a and the three inner walls of the reaction tank 1, and the first region Z1 in which the membrane separation device is arranged and the first partition. It is divided into a second region Z2 surrounded by a plate 7a, a second partition plate 7b, and three inner walls of a reaction vessel, and four third regions Z3 surrounded by a second partition plate 7b.

第1の仕切板7aには第1の領域と第2の領域の水位差によっては大きな水圧がかかる場合がある。本実施の形態のように、反応槽1の内部に第2の仕切板7bで囲まれた複数の第3の領域Z3を設け、この複数の第3の領域Z3を第1の仕切板7aに接するように配置することにより、第2の仕切板7bが第1の仕切板7aの補強材として機能し、耐久性の高い汚水処理装置とすることができるという利点がある。 A large water pressure may be applied to the first partition plate 7a depending on the difference in water level between the first region and the second region. As in the present embodiment, a plurality of third regions Z3 surrounded by a second partition plate 7b are provided inside the reaction tank 1, and the plurality of third regions Z3 are used as the first partition plate 7a. By arranging them so as to be in contact with each other, there is an advantage that the second partition plate 7b functions as a reinforcing material for the first partition plate 7a, and the sewage treatment device having high durability can be obtained.

以上、本発明について、上述した実施の形態を用いて説明したが、本発明は上述した実施の形態に限定されるものではない。 Although the present invention has been described above with reference to the above-described embodiment, the present invention is not limited to the above-mentioned embodiment.

本発明は、汚水から窒素とリンを同時に除去することができ、汚水の流量変動に対し安定して汚水処理を実行できる汚水処理装置及び方法を提供することができる。 The present invention can provide a sewage treatment apparatus and method capable of simultaneously removing nitrogen and phosphorus from sewage and stably performing sewage treatment against fluctuations in the flow rate of sewage.

1 反応槽
2 膜分離装置
3 吸引ポンプ
4 散気管
5a,5b 補助曝気手段
6 原水ポンプ
7a 第1の仕切板
7b 第2の仕切板
Z1 第1の領域
Z2 第2の領域
Z3 第3の領域
1 Reaction tank 2 Membrane separation device 3 Suction pump 4 Diffusing pipe 5a, 5b Auxiliary aeration means 6 Raw water pump 7a First partition plate 7b Second partition plate Z1 First region Z2 Second region Z3 Third region

Claims (15)

汚水を処理するための反応槽の内部に、前記汚水に含まれる汚染物質を分離する膜分離装置と、前記膜分離装置に気泡を供給する散気管とを備える汚水処理装置において、
前記反応槽の内部を前記膜分離装置が配置されている領域と前記膜分離装置が配置されていない領域に仕切る第1の仕切板と、
前記膜分離装置が配置されていない領域に、前記第1の仕切板の上端よりも高い上端を有する第2の仕切板と、
を備えることを特徴とする汚水処理装置。
In a sewage treatment device provided with a membrane separation device for separating pollutants contained in the sewage and an air diffuser for supplying air bubbles to the membrane separation device inside a reaction tank for treating sewage.
A first partition plate that partitions the inside of the reaction vessel into a region where the membrane separation device is arranged and a region where the membrane separation device is not arranged.
A second partition plate having an upper end higher than the upper end of the first partition plate in a region where the membrane separation device is not arranged,
A sewage treatment device characterized by being equipped with.
前記反応槽は、前記膜分離装置が配置される第1の領域と、前記第1の仕切板と前記第2の仕切板とで囲まれる第2の領域と、前記第2の仕切板と反応槽の内壁とで囲まれる第3の領域とを有することを特徴とする請求項1記載の汚水処理装置。 The reaction tank reacts with the first region in which the membrane separation device is arranged, the second region surrounded by the first partition plate and the second partition plate, and the second partition plate. The sewage treatment apparatus according to claim 1, further comprising a third region surrounded by an inner wall of the tank. 前記反応槽は、前記膜分離装置が配置される第1の領域と、前記第1の仕切板と前記第2の仕切板と反応槽の内壁とで囲まれる第2の領域と、前記第2の仕切板と反応槽の内壁とで囲まれる第3の領域とを有することを特徴とする請求項1記載の汚水処理装置。 The reaction tank includes a first region in which the membrane separation device is arranged, a second region surrounded by the first partition plate, the second partition plate, and the inner wall of the reaction tank, and the second. The sewage treatment apparatus according to claim 1, further comprising a third region surrounded by a partition plate and an inner wall of the reaction tank. 前記第3の領域に汚水を供給する汚水供給手段を備えることを特徴とする請求項2又は3記載の汚水処理装置。 The sewage treatment apparatus according to claim 2 or 3, further comprising a sewage supply means for supplying sewage to the third region. 前記第2の領域に補助曝気手段を設けたことを特徴とする請求項2乃至4のいずれか1項に記載の汚水処理装置。 The sewage treatment apparatus according to any one of claims 2 to 4, wherein an auxiliary aeration means is provided in the second region. 前記第1の領域と前記第2の領域と前記第3の領域の容積比が1:1~2:0.2~1であることを特徴とする請求項2乃至5のいずれか1項に記載の汚水処理装置。 The present invention according to any one of claims 2 to 5, wherein the volume ratio of the first region, the second region, and the third region is 1: 1 to 2: 0.2 to 1. The described sewage treatment device. 前記第1の仕切板及び前記第2の仕切板の少なくとも一方が、上端に水位調整手段を設けたものであることを特徴とする請求項1乃至6のいずれか1項に記載の汚水処理装置。 The sewage treatment apparatus according to any one of claims 1 to 6, wherein at least one of the first partition plate and the second partition plate is provided with a water level adjusting means at the upper end. .. 汚水を処理するための反応槽の内部に、前記汚水に含まれる汚染物質を分離する膜分離装置と、前記膜分離装置に気泡を供給する散気管とを備える汚水処理装置であって、前記反応槽の内部を前記膜分離装置が配置されている領域と前記膜分離装置が配置されていない領域に仕切る第1の仕切板と、前記膜分離装置が配置されていない領域に、前記第1の仕切板の上端よりも高い上端を有する第2の仕切板と、を備える汚水処理装置を用いた汚水処理方法において、
前記汚水が前記第1の仕切板を越える第1の越流ステップと、
前記汚水が前記第1の仕切板を越えない非越流ステップと、
前記汚水が前記第2の仕切板を越える第2の越流ステップと、
を有することを特徴とする汚水処理方法。
A sewage treatment device including a membrane separation device for separating contaminants contained in the sewage and an air diffuser for supplying air bubbles to the membrane separation device inside a reaction tank for treating sewage. The first partition plate for partitioning the inside of the tank into a region where the membrane separation device is arranged and a region where the membrane separation device is not arranged, and the first partition plate where the membrane separation device is not arranged. In a sewage treatment method using a sewage treatment device including a second partition plate having an upper end higher than the upper end of the partition plate.
In the first overflow step where the sewage crosses the first partition plate,
A non-overflow step in which the sewage does not cross the first partition plate,
A second overflow step in which the sewage crosses the second partition plate, and
A sewage treatment method characterized by having.
前記反応槽は、前記膜分離装置が配置される第1の領域と、前記第1の仕切板と前記第2の仕切板とで囲まれる第2の領域と、前記第2の仕切板と反応槽の内壁とで囲まれる第3の領域とを有することを特徴とする請求項8記載の汚水処理方法。 The reaction tank reacts with the first region in which the membrane separation device is arranged, the second region surrounded by the first partition plate and the second partition plate, and the second partition plate. The sewage treatment method according to claim 8, further comprising a third region surrounded by an inner wall of the tank. 前記反応槽は、前記膜分離装置が配置される第1の領域と、前記第1の仕切板と前記第2の仕切板と反応槽の内壁とで囲まれる第2の領域と、前記第2の仕切板と反応槽の内壁とで囲まれる第3の領域とを有することを特徴とする請求項8記載の汚水処理方法。 The reaction tank includes a first region in which the membrane separation device is arranged, a second region surrounded by the first partition plate, the second partition plate, and the inner wall of the reaction tank, and the second. The sewage treatment method according to claim 8, further comprising a third region surrounded by a partition plate and an inner wall of the reaction tank. 前記汚水処理装置に供給される汚水の日間の流量変動に基づいて、高負荷時間帯及び/又は低負荷時間帯が予め設定されることを特徴とする請求項8乃至10のいずれか1項に記載の汚水処理方法。 The invention according to any one of claims 8 to 10, wherein a high load time zone and / or a low load time zone is preset based on the daily flow rate fluctuation of the sewage supplied to the sewage treatment apparatus. The described sewage treatment method. 前記高負荷時間帯において、前記第1の仕切板と前記第2の仕切板とで囲まれる第2の領域、又は、前記第1の仕切板と前記第2の仕切板と反応槽の内壁とで囲まれる第2の領域を好気区画とすることを特徴とする請求項11記載の汚水処理方法。 In the high load time zone, the second region surrounded by the first partition plate and the second partition plate, or the first partition plate, the second partition plate, and the inner wall of the reaction tank. The sewage treatment method according to claim 11, wherein a second region surrounded by is an aerobic compartment. 前記低負荷時間帯において、前記第1の仕切板と前記第2の仕切板とで囲まれる第2の領域、又は、前記第1の仕切板と前記第2の仕切板と反応槽の内壁とで囲まれる第2の領域を無酸素区画若しくは嫌気区画とすることを特徴とする請求項11記載の汚水処理方法。 In the low load time zone, the second region surrounded by the first partition plate and the second partition plate, or the first partition plate, the second partition plate, and the inner wall of the reaction tank. The sewage treatment method according to claim 11, wherein the second region surrounded by is an oxygen-free section or an anaerobic section. 前記高負荷時間帯及び/又は前記低負荷時間帯は、汚水流入量及び汚水水質から選ばれる測定値又は前記測定値から得られた演算値に基づいて設定されることを特徴とする請求項11乃至13のいずれか1項に記載の汚水処理方法。 11. The high load time zone and / or the low load time zone is set based on a measured value selected from the inflow amount of sewage and the quality of sewage or a calculated value obtained from the measured value. The sewage treatment method according to any one of 13 to 13. 前記第1の領域の溶存酸素(DO)濃度、酸化還元電位(ORP)、アンモニア性窒素(NH-N)濃度及び硝酸性窒素(NO-N)濃度、前記第2の領域の溶存酸素(DO)濃度、酸化還元電位(ORP)、アンモニア性窒素(NH-N)濃度及び硝酸性窒素(NO-N)濃度、前記第3の領域の酸化還元電位(ORP)及びアンモニア濃度から選ばれる測定値又は前記測定値から得られた演算値に基づいて、前記第1の領域又は前記第2の領域に設けられた補助曝気手段からの曝気量を制御することを特徴とする請求項9乃至14のいずれか1項に記載の汚水処理方法。 Dissolved oxygen (DO) concentration in the first region, redox potential (ORP), ammoniacal nitrogen (NH 4 -N) concentration and nitrate nitrogen (NO 3 -N) concentration, dissolved oxygen in the second region. From (DO) concentration, redox potential (ORP), ammoniacal nitrogen (NH 4 -N) concentration and nitrate nitrogen (NO 3 -N) concentration, redox potential (ORP) and ammonia concentration in the third region. The claim is characterized in that the amount of air exposure from the auxiliary air exhaust means provided in the first region or the second region is controlled based on the selected measured value or the calculated value obtained from the measured value. The sewage treatment method according to any one of 9 to 14.
JP2020165493A 2020-09-30 2020-09-30 Sewage treatment apparatus and sewage treatment method Pending JP2022057310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020165493A JP2022057310A (en) 2020-09-30 2020-09-30 Sewage treatment apparatus and sewage treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020165493A JP2022057310A (en) 2020-09-30 2020-09-30 Sewage treatment apparatus and sewage treatment method

Publications (1)

Publication Number Publication Date
JP2022057310A true JP2022057310A (en) 2022-04-11

Family

ID=81111334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020165493A Pending JP2022057310A (en) 2020-09-30 2020-09-30 Sewage treatment apparatus and sewage treatment method

Country Status (1)

Country Link
JP (1) JP2022057310A (en)

Similar Documents

Publication Publication Date Title
JP4125941B2 (en) Waste water treatment apparatus and waste water treatment method using the same
JP4508694B2 (en) Water treatment method and apparatus
US20130264282A1 (en) Process, apparatus and membrane bioreactor for wastewater treatment
JP5597002B2 (en) Waste water treatment apparatus and waste water treatment method
KR100913728B1 (en) Waste water treatment method maintaining do level by use of pure oxygen gas and system suitable for the same
KR100940123B1 (en) Floating catalysis sewage disposal facility system
WO2018123647A1 (en) Membrane-separation activated sludge treatment device, membrane-separation activated sludge treatment method, raw water supply device, and raw water supply method
JP7016623B2 (en) Membrane separation activated sludge treatment equipment and membrane separation activated sludge treatment method
KR101367229B1 (en) Operating method of advanced treatment process use of submerged membrane and advanced treatment apparatus thereof
JP2022057310A (en) Sewage treatment apparatus and sewage treatment method
KR20080089799A (en) A wastewater transaction system
JP4386054B2 (en) Intermittent biological treatment method
JP2020075224A (en) Sewage treatment device and method of sewage treatment
JP2019150820A (en) Sewage treatment apparatus and sewage treatment method
JP2012228645A (en) Water treatment apparatus, water treating method, and program for the method
KR100985467B1 (en) Advanced treatment apparatus and method of intermittent-bubble running-treatment for waste water
JP3379199B2 (en) Operation control method of activated sludge circulation method
JP6384168B2 (en) Sludge treatment method
JP2018103129A (en) Membrane bioreactor device, membrane bioreactor method and raw water supplying device
SG190528A1 (en) Nitrogen and phosphorus removal method and nitrogen and phosphorus removal apparatus
JP2003266096A (en) Wastewater treatment apparatus
JP4490848B2 (en) Waste water treatment apparatus and waste water treatment method
JPH09253687A (en) Anaerobic and aerobic treatment apparatus for waste water
JP2019076887A (en) Waste water treatment apparatus and waste water treatment method
JP7121823B2 (en) Membrane separation activated sludge treatment device, membrane separation activated sludge treatment method and raw water supply device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240424