KR100985467B1 - Advanced treatment apparatus and method of intermittent-bubble running-treatment for waste water - Google Patents

Advanced treatment apparatus and method of intermittent-bubble running-treatment for waste water Download PDF

Info

Publication number
KR100985467B1
KR100985467B1 KR20090017183A KR20090017183A KR100985467B1 KR 100985467 B1 KR100985467 B1 KR 100985467B1 KR 20090017183 A KR20090017183 A KR 20090017183A KR 20090017183 A KR20090017183 A KR 20090017183A KR 100985467 B1 KR100985467 B1 KR 100985467B1
Authority
KR
South Korea
Prior art keywords
reservoir
wastewater
microorganisms
anaerobic
treatment
Prior art date
Application number
KR20090017183A
Other languages
Korean (ko)
Other versions
KR20100098159A (en
Inventor
허재택
Original Assignee
주식회사 한길엔지니어링
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 한길엔지니어링 filed Critical 주식회사 한길엔지니어링
Priority to KR20090017183A priority Critical patent/KR100985467B1/en
Publication of KR20100098159A publication Critical patent/KR20100098159A/en
Application granted granted Critical
Publication of KR100985467B1 publication Critical patent/KR100985467B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1263Sequencing batch reactors [SBR]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1268Membrane bioreactor systems
    • C02F3/1273Submerged membrane bioreactors
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/20Activated sludge processes using diffusers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/22Activated sludge processes using circulation pipes
    • C02F3/223Activated sludge processes using circulation pipes using "air-lift"
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/10Solids, e.g. total solids [TS], total suspended solids [TSS] or volatile solids [VS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

본 발명의 간헐포기 연속처리식 하폐수 고도처리장치(2)는, 단일조로 된 생물반응조(4)내 바닥에 횡방향 다수 산기구(16)들을 갖는 제1 공기공급관(14)을 설치하고, 생물반응조(4)내에 수직격벽(6)을 설치하여 제1,제2 저수실(8)(10)로 구분 구성하고, 제1 저수실(8)에는 하폐수유입부(12)가 설치되며, 제2 저수실(10)에는 침지형 분리막(24)과 잉여슬러지 인발부(26) 및 제1 저수실(8)의 하폐수유입부(12)에 연통된 미생물반송관(20)을 잠수되게 설치하여서 구성하되, 상기 산기구(16)들로부터의 단속적 포기로 제1 저수실(8)은 혐기상태가 되게 하고 제2 저수실(10)은 산기구(16)들의 포기유무에 따라 무산소상태 및 호기상태로 유도하고, 하폐수유입부(12)를 통해 제1 저수실(8)로 유입된 하폐수(W)가 수직격벽(6)을 통하여 제2 저수실(10)로 유입되고 침지형 분리막(24)을 거쳐서 최종처리수로 연속 배출되고 미생물반송관(20)을 통하여 하류에 축적된 미생물들이 하폐수유입부(12)로 반송될 수 있도록 구성함으로서, 하폐수를 연속적으로 처리할 수 있고 장치가 간단하여 운영 및 유지관리가 용이하도록 한 것이다.

Figure R1020090017183

하폐수, 단일반응조, 연속처리, 간헐포기, 침지형 분리막, 미생물반송관

In the intermittent continuous treatment type sewage treatment system 2 of the present invention, a first air supply pipe 14 having a plurality of transverse direction diffusers 16 is installed at the bottom in a single tank bioreactor 4, The vertical bulkhead 6 is installed in the reactor 4 to be divided into first and second reservoir chambers 8 and 10, and the first reservoir chamber 8 is provided with a wastewater inlet 12. 2 The storage chamber 10 is configured by submerging the microbial conveying pipe 20 connected to the immersion type separation membrane 24, the excess sludge drawing portion 26 and the wastewater inflow portion 12 of the first storage chamber (8). However, the intermittent aeration from the diffuser 16 causes the first reservoir 8 to be anaerobic and the second reservoir 10 is anaerobic and aerobic depending on whether or not the diffuser 16 is abandoned. The wastewater (W) introduced into the first storage chamber (8) through the wastewater inflow portion (12) flows into the second storage chamber (10) through the vertical partition wall (6) and the immersion type separation membrane (24). Via By continuously discharging to the final treatment water and the microorganisms accumulated downstream through the microbial transport pipe 20 can be returned to the wastewater inflow unit 12, the wastewater can be treated continuously and the device is simple to operate and maintain. It is intended to be easy to manage.

Figure R1020090017183

Wastewater, Single Reactor, Continuous Treatment, Intermittent Aeration, Immersion Separation Membrane, Microbial Transfer Pipe

Description

간헐포기 연속처리식 하폐수 고도처리장치 및 방법{ADVANCED TREATMENT APPARATUS AND METHOD OF INTERMITTENT-BUBBLE RUNNING-TREATMENT FOR WASTE WATER}Intermittent Aeration Continuous Treatment Wastewater Advanced Treatment Apparatus and Method {ADVANCED TREATMENT APPARATUS AND METHOD OF INTERMITTENT-BUBBLE RUNNING-TREATMENT FOR WASTE WATER}

본 발명은 하폐수 고도처리장치와 방법에 관한 것으로서, 특히, 하폐수에 포함된 유기물질 및 질소와 인 등 오염물질을 연속적으로 동시 처리하는 간헐포기 연속처리식 하폐수 고도처리장치 및 방법에 관한 것이다.The present invention relates to an advanced wastewater treatment apparatus and method, and more particularly, to an intermittent aeration continuous treatment wastewater advanced treatment apparatus and method for continuously treating contaminants such as nitrogen and phosphorus contained in wastewater.

생물학적으로 하폐수를 고도처리 하여 유기물과 질소와 인을 제거하는 주된 처리방법으로는, 하폐수를 혐기영역, 무산소영역, 호기영역등의 반응조를 통과 시키면서 반응조 슬러지를 반송하여 처리하는 AO, SBR, A2O공정, UCT공정, VIP공정 등의 연속식 과 간헐포기에 의한 회분식 등 다수가 있다.The high processing the wastewater biologically as the main method for removing organic matter and nitrogen and a is the wastewater anaerobic zone, which process by transporting the reactor the sludge was passed through the reactor, such as oxygen-free zone, aerobic zone AO, SBR, A 2 There are a number of continuous processes such as O process, UCT process, VIP process, and batch type by intermittent aeration.

이 중에서 AO, A2O 등을 기준으로 한 연속처리에 의한 간헐포기 연속처리식 하폐수 고도처리방법들은 시설자체의 규모가 크고 복잡하거나 교반기, 반송펌프 침전지등 기계시설과 전기 및 계장설비가 복잡하여 유지관리가 어렵고 운영비가 고가 인 단점이 있다. Among them, the intermittent aeration continuous treatment sewage treatment advanced treatment method based on AO, A2O, etc. is a large and complex facility, or it is complicated to maintain mechanical facilities such as stirrer and return pump sedimentation basin and electrical and instrumentation facilities. It is difficult and expensive to operate.

그리고, SBR(회분식처리시설)의 경우는 연속처리가 어려우며 슬러지(MLSS) 농도가 높아지면 침전공정에서 슬러지 한계수면이 높아져 고액분리가 곤란하며, SRT(슬러지체류시간)이 길어지면 자산화에 의한 FIN FLOC이 증가하여 처리수질이 나빠져 고도처리의 한계가 있어 여과기 등 고도처리시설을 보완 하는 경우가 많다. In the case of SBR (Batch Treatment Facility), continuous treatment is difficult, and when the sludge (MLSS) concentration is increased, the sludge limit surface is increased during the sedimentation process, and it is difficult to separate solid-liquid, and when the SRT is increased, Due to the increase in FLOC, the quality of treated water is worsened and there is a limit to advanced treatment.

그외에도, 부상식여재를 이용한 생물학적 하폐수고도처리방법, 완전침지형회전매체와 간헐포기를 이용한 하폐수고도처리방법, 펌프이젝터 및 바이오그린 메디아를 이용한 하폐수고도처리기술, 혐기/간헐포기/배양조를 이용한 하폐수고도처리기술, 슬러지 재포기에 의한 하폐수 고도처리기술, 무산소/혐기/호기/탈기조와 침지식 중공사막을 이용한 하폐수고도처리기술 등이 있다. In addition, biological wastewater advanced treatment method using floating media, wastewater elevation processing method using fully immersed rotating media and intermittent aeration, wastewater advanced treatment technology using pump ejector and bio green media, anaerobic / intermittent aeration / culture tank Advanced wastewater treatment technology, advanced wastewater treatment technology by sludge reaeration, advanced wastewater treatment technology using anaerobic / anaerobic / aerobic / gas stripping and submerged hollow fiber membranes.

그러나, 상기의 하폐수 고도처리기술들은, 연속처리가 어렵고, 반송슬러지 펌프와 배관설비를 및 침전지와 이의 반송펌프와 배관설비를 필요로 하므로 전기설비 및 계장설비가 복잡하여 유지관리가 어렵고 유지비용도 많이 드는 등의 단점이 있다.However, the advanced wastewater treatment technologies are difficult to continuously process and require a return sludge pump and piping facility, and a sedimentation basin and its return pump and piping facility. There are disadvantages such as high cost.

따라서, 본 발명의 목적은, 저렴한 비용으로 설비 및 유지관리할 수 있고 용이하게 운전하여 쉽고 안정적으로 하폐수의 유기물질 및 질소, 인 등의 오염물질을 처리할 수 있도록 한 간헐포기 연속처리식 하폐수 고도처리장치 및 방법을 제공함에 있다.Accordingly, an object of the present invention, intermittent aeration continuous treatment type sewage water that can be installed and maintained at a low cost and easily operated to easily and stably treat pollutants such as organic substances and nitrogen, phosphorus, etc. A processing apparatus and method are provided.

본 발명의 다른 목적은, 생물반응조의 하류에 축적된 미생물들을 다시 활용할 수 있어 단일조로 된 생물반응조의 동일용적대비 하폐수의 처리효율(처리량 및 오염물질제거율)이 매우 높도록 한 간헐포기 연속처리식 하폐수 고도처리장치 및 방법을 제공함에 있다.Another object of the present invention, the intermittent aeration continuous treatment type so that the microorganisms accumulated downstream of the bioreactor can be reused so that the treatment efficiency (throughput and removal rate of contaminants) of the wastewater is very high compared to the same volume of the single reactor bioreactor. Provided is an advanced wastewater treatment apparatus and method.

상기한 목적을 달성하기 위한 본 발명의 간헐포기 연속처리식 하폐수 고도처리장치(2)는, 하폐수 고도처리장치(2)에 있어서, 단일조로 된 생물반응조(4)내 바닥에 횡방향 다수 산기구(16)들을 갖는 제1 공기공급관(14)을 설치하고, 생물반응조(4)내에 수직격벽(6)을 설치하여 제1,제2 저수실(8)(10)로 구분 구성하고, 제1 저수실(8)에는 하폐수유입부(12)가 설치되며, 제2 저수실(10)에는 침지형 분리막(24)과 잉여슬러지 인발부(26) 및 제1 저수실(8)의 하폐수유입부(12)에 연통된 미생물반송관(20)을 잠수되게 설치하여서 구성하되, 상기 산기구(16)들로부터의 단속적 포기로 제1 저수실(8)은 혐기상태가 되게 하고 제2 저수실(10)은 산기구(16)들의 포기유무에 따라 무산소상태 및 호기상태로 유도하고, 하폐수유입부(12)를 통해 제1 저수실(8)로 유입된 하폐수(W)가 수직격벽(6)을 통하여 제2 저수실(10)로 유입되고 침지형 분리막(24)을 거쳐서 최종처리수로 연속 배출되고 미생물반송관(20)을 통하여 하류에 축적된 미생물들이 하폐수유입부(12)로 반송될 수 있도록 구성함을 특징으로 한다.In order to achieve the above object, the intermittent continuous treatment type sewage treatment apparatus 2 of the present invention, in the sewage treatment apparatus 2, has a plurality of horizontal apparatuses in the transverse direction at the bottom in a single tank of the bioreactor 4. The first air supply pipe (14) having the (16) is installed, the vertical partition 6 is installed in the bioreactor 4, divided into first and second reservoir chambers (8) (10), and the first configuration The wastewater inlet 12 is installed in the reservoir 8, and the wastewater inlet of the submerged separator 24, the surplus sludge drawing 26, and the first reservoir 8 is installed in the second reservoir 10. 12) is constructed by submerging the microbial conveying pipe (20) communicated, the intermittent abandonment from the diffuser 16 to the first reservoir (8) is anaerobic and the second reservoir (10) ) Leads to anoxic and aerobic states according to the aeration of the diffuser 16, and the wastewater (W) introduced into the first reservoir 8 through the wastewater inlet 12 is a vertical bulkhead (6). The microorganisms introduced into the second reservoir 10 and continuously discharged to the final treatment water through the immersion type separation membrane 24 and accumulated downstream through the microbial transport pipe 20 are returned to the wastewater inlet 12. It is characterized by the configuration so that it can be.

상기한 목적을 달성하기 위한 본 발명의 간헐포기 연속처리식 하폐수 고도처리방법은, 하폐수 고도처리방법에 있어서, 단일조로 된 생물반응조(4) 내부를 수직격벽(6)에 의해 제1,제2 저수실(8)(10)로 구획하고, 생물반응조(4) 바닥의 산기구(16)들을 통하여 포기시간 20 ~ 30분과 미포기시간 10 ~ 15분 내에서 일정주기로 단속적 간헐포기하여 제1 저수실(8)은 혐기상태가 되게 하고, 제2 저수실(10)은 산기구(16)들의 포기유무에 따라 호기상태 및 무산소상태가 되게 하며, 하폐수(W)가 하폐수유입부(12)를 통해 혐기상태인 제1 저수실(8)로 유입되어 하폐수내 미생물이 인을 배출하도록 하고, 인을 배출한 미생물을 포함한 하폐수(W)가 수직격벽(6)의 다수 유출구(6a)를 통하여 제2 저수실(10)로 유입되어 미포기시간인 무산소상태에서는 미생물에 의한 탈질반응을 유도하고, 포기시간인 호기상태에서는 질산화반응 및 인을 배출한 미생물이 인을 과잉 흡수하게 한 후 침지형 분리막(24)을 거쳐서 최종처리수로 연속 배출되고 미생물반송관(20)을 통하여 하류에 축적된 미생물들이 하폐수유입부(12)로 반송될 수 있도록 함을 특징으로 한다.In order to achieve the above object, the intermittent continuous treatment type wastewater advanced treatment method according to the present invention is a wastewater advanced treatment method. It is divided into reservoirs (8) and (10), and intermittently giving up intermittently at a predetermined cycle within 20-30 minutes and aeration time 10-15 minutes through the acid devices 16 at the bottom of the bioreactor 4 The chamber 8 is anaerobic, the second reservoir 10 is in aerobic and anoxic states according to the aeration of the diffuser 16, and the wastewater W is the wastewater inlet 12. Through the anaerobic first reservoir (8), the microorganisms in the wastewater discharge the phosphorus, and the wastewater (W) containing the microorganisms that discharged the phosphorus is discharged through a plurality of outlets (6a) of the vertical bulkhead (6). 2 Induced denitrification by microorganisms in the anaerobic state, which flows into the reservoir 10 In the aerobic state, which is abandonment time, the nitrification and phosphorus-derived microorganisms cause excessive absorption of phosphorus and then continuously discharged to the final treatment water through the immersion type membrane 24 and accumulated downstream through the microbial transport tube 20. It is characterized in that the microorganisms can be returned to the wastewater inflow portion (12).

본 발명은 단일 반응조에서 슬러지 반송없이 하폐수의 연속처리가 가능하고, 침전지와 반송펌프 및 배관설비를 필요로 하지 않고, 이에 따른 전기설비와 계장설비도 간단하여서 유지관리가 쉽고 유지관리비용도 절감할 수 있으며, 고농도의 반응조의 미생물(혼합액 부유물)량, 즉 MLSS(mixed liquor suspended solid:10,000㎎/ℓ이상)를 생물반응조에 확보할 수 있고, 생물반응조 하류에 축적된 미생물들을 다시 하폐수의 처리에 활용할 수 있어 동일용적대비 하폐수 처리효율을 크게 높일 수 있는 등의 효과가 있는 것이다. The present invention enables the continuous treatment of wastewater without sludge conveyance in a single reactor, does not require sedimentation basins, conveying pumps and plumbing equipment, and accordingly the electrical equipment and instrumentation equipment is simple to maintain and reduce maintenance costs. It is possible to secure a high concentration of microorganisms (mixed liquor suspension), that is, MLSS (mixed liquor suspended solids: 10,000 mg / l) in the bioreactor, and to accumulate microorganisms accumulated downstream of the bioreactor for treatment of wastewater. It can be used to increase the efficiency of wastewater treatment compared to the same volume.

이하 본 발명의 바람직한 실시예들을 화학식 및 첨부 도면들을 참조하여 상세히 설명한다. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the formula and accompanying drawings.

도 1은 본 발명의 하폐수 고도처리장치의 블럭 구성도이고, 도 2는 도 1의 하폐수 처리상태도이다. 그리고, 도 3은 본 발명 하폐수유입부의 사시도이고, 도 4는 본 발명 수직격벽의 사시도이다.1 is a block diagram of the advanced wastewater treatment system of the present invention, Figure 2 is a wastewater treatment state diagram of FIG. And, Figure 3 is a perspective view of the wastewater inflow portion of the present invention, Figure 4 is a perspective view of the vertical bulkhead of the present invention.

본 발명은 최근 증가추세에 있는 침지형 분리막(24)을 하폐수고도처리에 적용하여 단일조로 된 생물반응조(4)내에 고농도 미생물량을 확보하도록 하고 회분식과 연속식의 장점을 적용하여 하폐수를 연속적으로 처리할 수 있고 장치가 간단하여 운영 및 유지관리가 용이하도록 한 것이다.The present invention by applying the immersion type membrane (24) in the recent trend to increase the wastewater high-level treatment to ensure high concentration of microorganisms in the bioreactor (4) of a single tank and to treat the sewage water continuously by applying the advantages of batch and continuous It is easy to operate and maintain due to the simple device.

본 발명의 생물반응조(4)는 단일반응조를 수직격벽(6)에 의해 제1 저수실(8) 및 제2 저수실(10)로 구획하고, 제1 저수실(8)과 제2 저수실(10)의 바닥에 다수 산기구(16)들을 갖는 제1 공기공급관(14) 및 제2 공기공급관(15)를 각각 설치하고 단속적으로 간헐포기하여 제1 저수실(8)은 혐기상태로 되게하고 제2 저수실(10)은 포기유무에 따라 무산소상태 및 호기상태로 되게한다. The bioreactor 4 of the present invention divides a single reactor into a first reservoir chamber 8 and a second reservoir chamber 10 by a vertical bulkhead 6, and the first reservoir chamber 8 and the second reservoir chamber. The first air supply pipe 14 and the second air supply pipe 15 each having a plurality of diffusers 16 at the bottom of the 10 are intermittently intermittently disposed so that the first reservoir 8 is anaerobic. And the second reservoir 10 is to be in an anaerobic state and aerobic state depending on the abandonment.

상기 혐기상태인 제1 저수실(8)에서는 하폐수(W)내 미생물들이 인을 배출하도록 하며, 상기 제2 저수실(10)은 미포기시간에는 무산소상태로 되게하여 미생물들에 의한 탈질반응을 유도하고, 포기시간에는 호기상태로 되게하여 질산화반응과 인을 배출한 미생물들이 인을 과잉 섭취하도록 함으로서 하폐수(W)내 질소와 인의 제거가 이루어지도록 한다.In the anaerobic first reservoir chamber 8, microorganisms in the wastewater (W) discharge phosphorus, and the second reservoir chamber 10 is deoxygenated at the time of no aeration, thereby denitrification by the microorganisms. Induction and aeration time to aerobic state nitrification and phosphorus-derived microorganisms to ingest excess phosphorus so that the removal of nitrogen and phosphorus in the waste water (W).

유입하폐수(W)내 질소의 성상은 대부분 유기성 질소와 암모니아성 질소 형태로 존재한다. 유기성 질소들은 가수분해를 통하여 대부분 암모니아성 질소로 전환된다. 암모니아성 질소는 제2 저수실(10)이 호기상태일 경우, 독립영양미생물의 에너지원으로 사용되어 하기와 같이 질산화된다. Most of the nitrogen in the influent wastewater (W) is in the form of organic nitrogen and ammonia nitrogen. Organic nitrogen is mostly converted to ammonia nitrogen through hydrolysis. Ammonia nitrogen is used as an energy source for autotrophic microorganisms when the second reservoir 10 is aerobic and is nitridated as follows.

2NH4 ++ 3O2 → 2NO2 -+ 4H++ 2H2O + New Cells 2NH 4 + + 3O 2 → 2NO 2 - + 4H + + 2H 2 O + New Cells

2NO2 - + O2 → 2NO3 - + New Cells 2NO 2 - + O 2 → 2NO 3 - + New Cells

종합하여 표현하면,In summary,

NH4 ++ 1.83O2 + 1.98HCO3 - → 0.98NO3 -+ 0.021C2H7NO2 + 1.88H2CO3 + 1.04H2O NH 4 + + 1.83O 2 + 1.98HCO 3 - → 0.98NO 3 - + 0.021C 2 H 7 NO 2 + 1.88H 2 CO 3 + 1.04H 2 O

제2 저수실(10)이 무산소상태일 경우는 호기상태에서 질산화반응에 의해 생성된 질산염을 무산소상태에서 탈질균의 질산호흡, 아질산호흡을 통해 N2O, NO 등의 형태로 환원시켜 대기중으로 방출되는 탈질화반응이 일어난다. 이러한 반응에는 전자수용체가 관여하게 되는데 주요 전자 수용체로는 유기탄소원이 사용된다. When the second reservoir 10 is anoxic, the nitrate produced by the nitrification reaction in the aerobic state is reduced to N 2 O, NO, etc. through nitrate breathing and nitrite breathing of denitrifying bacteria in anoxic state. The released denitrification reaction takes place. Electron receptors are involved in this reaction, and an organic carbon source is used as the main electron acceptor.

6NO3 - + 5CH3OH → 3N2 + 5CO2 + 7H2O + 6OH- 6NO 3 - + 5CH 3 OH → 3N 2 + 5CO 2 + 7H 2 O + 6OH -

2NO2 -+ 6H+ → N2 + 2H2O + 2OH- 2NO 2 - + 6H + → N 2 + 2H 2 O + 2OH -

2NO3 -+ 10H+ → N2 + 4H2O + 2OH- 2NO 3 - + 10H + → N 2 + 4H 2 O + 2OH -

여기에 세포의 합성을 고려하면,Given the synthesis of cells here,

NO3 -+ 1.08CH3OH + 0.24H2CO3→ 0.06C5H7NO2 + 0.47N2+1.68H2O + HCO3 - NO 3 - + 1.08CH 3 OH + 0.24H 2 CO 3 → 0.06C 5 H 7 NO 2 + 0.47N 2 + 1.68H 2 O + HCO 3 -

다음으로, 인의 제거는 혐기상태에서 인이 방출되고 호기상태에서 인이 과잉 섭취되는 Luxury uptake 현상을 이용한다. Next, the removal of phosphorus uses the luxury uptake phenomenon in which phosphorus is released in anaerobic state and excess phosphorus is ingested in aerobic state.

혐기상태인 제1 저수실(8)에서 임의성 미생물은 미생물에 의해 쉽게 분해되 는 SCVFA (Short Chain Volatile Fatty Acid)를 먹이로 아세테이트(acetate) 및 기타 생성물을 생성한다. In the first anaerobic reservoir, the random microorganisms produce acetate and other products by feeding SCVFA (Short Chain Volatile Fatty Acid), which is easily degraded by microorganisms.

인 제거 미생물은 이들을 세포 내로 이동시켜 Acetyle-CoA를 아세테이트(acetate)로 만들고 이것을 PHB(Poly Hydroxyl Butyrate)로 전환시키며 이때 인은 벌크용액(Bulk solution) 상태로 방출된다. 이때 사용되는 에너지는 Poly-P의 분해에 의해 공급된다. Phosphorus-removing microorganisms move them into cells, converting Acetyle-CoA into acetate and converting it into PHB (Poly Hydroxyl Butyrate), where phosphorus is released as a bulk solution. The energy used is supplied by the decomposition of Poly-P.

제2 저수실(10)이 호기상태일 경우, PHB는 acetyle-CoA로 산화되어 미생물 성장을 위한 에너지원으로 사용되며 TCA cycle을 거쳐면서 벌크(bulk) 상태의 인을 과잉섭취하게 된다. 과잉인을 섭취한 미생물을 잉여슬러지로 배출하여 인을 제거한다.When the second reservoir 10 is aerobic, PHB is oxidized to acetyle-CoA and used as an energy source for the growth of microorganisms, and ingests bulk phosphorus in bulk during the TCA cycle. Microorganisms that consumed excessive phosphorus are discharged to excess sludge to remove phosphorus.

상기와 같이, 제1,2 저수실(8)(10)을 거쳐 유기물 및 질소와 인 등이 제거된 하폐수(W)는 제2 저수실(10)의 침지형 분리막(24)을 통해서 고액분리가 이루어져 최종처리수로 방류된다.  As described above, the wastewater (W) from which organic matter, nitrogen, phosphorus, etc. are removed through the first and second reservoir chambers 8 and 10 is separated through solid-liquid separation membrane 24 of the second reservoir chamber 10. Discharged into the final treatment water.

이제, 도 1 내지 도 4를 참조하여 상기와 같은 반응을 수행하는 본 발명의 간헐포기 연속처리식 하폐수 고도처리장치를 설명한다. Now, with reference to Figures 1 to 4 will be described the intermittent aeration continuous treatment sewage wastewater treatment apparatus of the present invention performing the above reaction.

본 발명의 간헐포기 연속처리식 하폐수 고도처리장치(2)는 단일조로 된 생물반응조(4) 내에 수직격벽(6)을 설치하여 제1,제2 저수실(8)(10)로 구획하고, 제1 저수실(8)에는 하폐수유입부(12)를 설치하고, 제2 저수실(10)에는 침지형 분리막(24)과 미생물반송관(20) 및 잉여슬러지인발부(26)를 설치한다. 그리고, 제1 저수실(8)의 바닥에는 제2 공기공급관(15)을 설치하고, 제2 저수실의 바닥에는 제1 공기공급관(14)을 설치한다. In the intermittent aeration continuous treatment type sewage treatment system 2 of the present invention, a vertical partition 6 is installed in a single tank bioreactor 4 and partitioned into first and second reservoir chambers 8 and 10, The first reservoir 8 is provided with a wastewater inlet 12, and the second reservoir 10 is provided with an immersion type membrane 24, a microbial transport tube 20, and an excess sludge drawing unit 26. The second air supply pipe 15 is installed at the bottom of the first reservoir chamber 8, and the first air supply pipe 14 is installed at the bottom of the second reservoir chamber.

하폐수(W)는 하폐수유입부(12)를 통하여 제1 저수실(8)로 연속 유입되어 수직격벽(6)을 거쳐 제2 저수실(10)로 유입되고, 제2 저수실(10)의 침지형 분리막(24)을 거쳐서 최종처리수로 연속 배출되도록 하며, 제2 저수실(10) 하류에 축적된 미생물들은 미생물반송관(20)에 의해 다시 하폐수유입부(12)로 반송된다.The wastewater (W) is continuously introduced into the first storage chamber (8) through the wastewater inflow portion (12) and flows into the second storage chamber (10) through the vertical bulkhead (6), and the second storage chamber (10) Through the immersion type membrane 24 to be continuously discharged to the final treatment water, the microorganisms accumulated downstream of the second reservoir 10 is conveyed back to the wastewater inlet 12 by the microbial transport pipe (20).

상기 생물반응조(4)내 설치되는 수직격벽(6)은 생물반응조(4)내 상류지점에 설치되며, 상기 수직격벽(6)에 의해 생물반응조(4)는 제1 저수실(8)과 제2 저수실(10)로 구획된다. 상기 수직격벽(6)은 생물반응조(4)내 상측에서부터 하측 바닥면까지 형성되고, 수직격벽(6) 하부에는 다수 유출구(6a)가 형성되어 제1 저수실(8)의 하폐수(W)는 수직격벽(6)의 다수 유출구(6a)를 통하여 제2 저수실(10)로 유입되도록 한다. 상기와 같은 구성에 의해서, 하폐수(W)는 제1 저수실(8)에서 충분히 체류되어 하폐수내 미생물들의 인방출이 충분히 발생된 후 제2 저수실(10)로 유입될 수 있다.The vertical bulkhead 6 installed in the bioreactor 4 is installed at an upstream point in the bioreactor 4, and the bioreactor 4 is formed by the first reservoir 8 and the first storage chamber 8 by the vertical bulkhead 6. It is divided into 2 water storage chambers 10. The vertical bulkhead 6 is formed from the upper side to the bottom bottom in the bioreactor 4, and a plurality of outlets 6a are formed below the vertical bulkhead 6 so that the wastewater W of the first reservoir 8 is The plurality of outlets 6a of the vertical bulkhead 6 are introduced into the second storage chamber 10. By the above configuration, the wastewater W may be sufficiently retained in the first storage chamber 8 to sufficiently flow out the microorganisms in the wastewater, and then may flow into the second storage chamber 10.

제2 저수실(10)내 바닥에는 횡방향 다수 산기구(16)들을 갖는 제1 공기공급관(14)을 설치하여 포기유무에 따라 무산소상태 및 호기상태가 되게하고, 제1 공기공급관(14)으로부터 분기된 제2 공기공급관(15)을 제1 저수실(8)의 바닥에 설치하고 단속적으로 간헐포기하여 제1 저수실(8)은 대체로 혐기상태가 되게한다.
제1 공기공급관(14)과 제2 공기공급관(15)에는 개폐밸브가 각각 설치되고 개폐밸브의 개폐동작에 따라 에어펌프(18)로부터 공급되는 공기의 양을 각각 조절할 수 있도록 구성된다.
상기 제1 공기공급관(14)의 산기구(16)들은 포기시간 20 ~ 30분, 미포기시간 10 ~ 15분 내에서 일정주기로 단속적 간헐포기를 하는데, 포기 및 미포기시간은 유입수의 농도 및 설치한 공기공급관과 산기관들의 종류별 시간당 주입공기량에 따라서 상기 범위 정도에서 조절 가능하다. 상기 제1 공기공급관(14)의 산기구(16)들은 용존산소측정기(DO)와 연결되어 인버터제어방식에 의한 구동으로 제2 저수실(10)의 산소농도를 제어할 수 있어 유입하폐수(W)의 농도와 산기구(16)들의 산기효율 등에 대한 공기공급량을 통제할 수 있다.
A first air supply pipe 14 having a plurality of transverse direction diffusers 16 is installed at the bottom of the second water storage chamber 10 so as to be in an oxygen-free state and an aerobic state depending on whether or not abandonment occurs, and the first air supply pipe 14 The second air supply pipe 15 branching from the bottom is installed at the bottom of the first storage chamber 8 and intermittently aerated so that the first storage chamber 8 is generally anaerobic.
The first air supply pipe 14 and the second air supply pipe 15 are respectively provided with an on-off valve and configured to adjust the amount of air supplied from the air pump 18 according to the opening and closing operation of the on-off valve.
The diffuser 16 of the first air supply pipe 14 is intermittent intermittent aeration at a predetermined cycle within 20 to 30 minutes of aeration time, 10 to 15 minutes of aeration time, the aeration and aeration time is the concentration and installation of the influent The amount of air injected per hour for each type of air supply pipe and diffuser can be adjusted in the above range. The diffusers 16 of the first air supply pipe 14 are connected to the dissolved oxygen measuring device DO to control the oxygen concentration of the second storage chamber 10 by driving by an inverter control method so that the influent wastewater W Air supply amount for the concentration of the) and the acid efficiency of the diffuser (16) can be controlled.

삭제delete

수직격벽(6)에 의해 제2 저수실(10)과 분리되는 제1 저수실(8)은 상기 생물반응조(4)내 상류지점에 형성되며, 측벽에 하폐수유입부(12)와 바닥에 산기구(17)들이 설치된다. 제1 저수실(8)은 제2 저수실(10)에 비하여 좁은 공간으로 형성되고, 수직격벽(6)에 의해 제2 저수실(10)과 독립공간으로 분리된다. The first reservoir 8, which is separated from the second reservoir 10 by the vertical bulkhead 6, is formed at an upstream point in the bioreactor 4, and the wastewater inlet 12 and the bottom are disposed on the side wall. The mechanisms 17 are installed. The first reservoir 8 is formed in a narrower space than the second reservoir 10, and is separated into the independent reservoir 10 by the vertical partition 6.

그리고, 제1 저수실(8)도 바닥에 산기구(17)들이 설치되기는 하나 제2 저수실(10)에 비해 작은 개수로 설치되고 제2 저수실(10) 바닥에 설치된 산기수(16)보다 더 간헐적으로 단속 포기되며, 하폐수유입부(12)에 의해 유입되는 하폐수(W)에 의해 DO소모량이 많아 산기구(17)들의 포기유무와 무관하게 대체로 혐기상태로 유지된다. In addition, although the diffusers 17 are installed on the bottom of the first reservoir 8, the number of diffusers 16 installed on the bottom of the second reservoir 10 is smaller than that of the second reservoir 10. More intermittently intermittent abandonment, the waste water (W) introduced by the wastewater inflow portion 12 has a large amount of DO consumption regardless of the aeration of the living machinery (17) is generally maintained in the anaerobic state.

상기 제1 저수실(8)의 바닥에 설치되는 산기구(17)들은 혐기상태에서 혐기성발효균에 의해 하폐수(W)중의 유기물이 휘발성지방산(VFA-Volatile Fatty Acid)으로 전환되어 생물반응조(4) 하부가 부패되는 현상을 방지하는 역할을 한다.The acid devices 17 installed on the bottom of the first reservoir 8 are converted into volatile fatty acids (VFA-Volatile Fatty Acid) in the wastewater (W) by anaerobic fermentation bacteria in the anaerobic state. The lower part is to prevent the phenomenon of corruption.

상기 제1 저수실(8)의 측벽에 설치되는 하폐수유입부(12)는 제1 저수실(8)의 측벽 상부에서 전체수위(h)의 2/3 지점까지 내려올 수 있는 길이를 가진 직사각형으로 형성될 수 있다. 또 하폐수(W)가 상기 하폐수유입부(12)를 통하여 제1 저수실(8)에 균등 분배될 수 있도록 하폐수유입부(12)의 하부에는 다공(12a)이 고루 형성된다. 상기 다공(12a)은 하폐수유입부(12)의 바닥면과 제1 저수실(8) 측벽에 결합되는 일측면을 제외한 나머지 3측면의 하부에 고루 형성될 수 있다. 본 발명에서는 상기 다공(12a)을 약 50㎜ 사이즈로 구성하여 하폐수유입부(12)의 바닥면에 6개, 3측면에 각각 3개씩 형성할 수 있다. 상기와 같이 형성된 하폐수유입부(12)는 하폐수(W)가 유입될때 제1 저수실(8) 하부 전체로 자연스럽게 분산시켜 한쪽으로 쏠리는 현상을 방지한다.The wastewater inflow portion 12 installed on the side wall of the first storage chamber 8 is a rectangle having a length that can be lowered to 2/3 of the total water level h from the upper side wall of the first storage chamber 8. Can be formed. In addition, the bottom 12 of the wastewater inlet 12 is formed evenly so that the wastewater W can be evenly distributed to the first reservoir 8 through the wastewater inlet 12. The pore 12a may be evenly formed on the bottom of the remaining three sides except for one side coupled to the bottom surface of the wastewater inflow portion 12 and the side wall of the first water storage chamber 8. In the present invention, the porous 12a may be formed in a size of about 50 mm, and six holes may be formed on the bottom surface of the wastewater inflow portion 12 and three on each of the three sides. The wastewater inflow portion 12 formed as described above naturally disperses into the entire lower portion of the first storage chamber 8 when the wastewater W is introduced to prevent the phenomenon from being pulled to one side.

상기의 하폐수유입부(12)를 통해 유입된 하폐수(W)는 혐기상태인 제1 저수실(8)내에서 충분히 체류하여 미생물들이 인을 방출하도록 하며, 수직격벽(6)의 하부에 형성된 다수 유출구(6a)를 통하여 제2 저수실(10)로 유입된다.The wastewater (W) introduced through the wastewater inflow portion 12 is sufficiently retained in the anaerobic first reservoir chamber 8 so that the microorganisms release phosphorus, and formed in the lower portion of the vertical partition 6 It flows into the 2nd water storage chamber 10 through the outlet 6a.

상기 제2 저수실(10)은 제1 저수실(8)보다 큰 용량으로 형성되며, 제2 저수실(10)의 하류지점에는 침지형 분리막(24), 잉여슬러지 인발부(26), 미생물반송관(20)이 설치된다. 상기 제2 저수실(10)은 산기구(16)들로부터의 포기유무에 따라 무산소상태 및 호기상태가 되는데, 제2 저수실(10)이 무산소상태가 될 경우는 탈질반응이 일어나고 제2 저수실(10)이 호기상태가 될 경우는 질산화반응 및 혐기상태인 제1 저수실(8)에서 인방출한 미생물들에 의한 인 과잉섭취가 발생된다. The second reservoir 10 is formed with a larger capacity than the first reservoir 8, and the submerged separator 24, the excess sludge drawing part 26, and the microbial conveyance are located at a downstream point of the second reservoir 10. The tube 20 is installed. The second reservoir 10 is in an anaerobic state and an aerobic state depending on the aeration from the diffuser 16, when the second reservoir 10 is anoxic, denitrification occurs and the second low When the water chamber 10 enters an aerobic state, excess phosphorus intake by microorganisms released from the nitrification and anaerobic first reservoir 8 is generated.

상기 제1 공기공급관(14)의 산기구(16)들이 미포기할 경우는 상기 제2 저수실(10)은 산소가 0.5㎎/ℓ이하로 형성되는 무산소 상태로 조성되며, 하폐수(w)내 미생물들에 의해 무산소상태에서 부족한 산소를 질산성질소내 산소가 소비되는 환원 작용으로 질소가스 상태로 대기중에 방출시키는 탈질화 반응이 수행된다. When the diffusers 16 of the first air supply pipe 14 are not aerated, the second reservoir 10 is formed in an oxygen-free state in which oxygen is formed to 0.5 mg / l or less, and microorganisms in the wastewater (w) These denitrification reactions are performed in which oxygen deficient in an oxygen-free state is released to the atmosphere in a nitrogen gas state by a reducing action in which oxygen in nitrate nitrogen is consumed.

상기 제1 공기공급관(14)의 산기구(16)들이 미포기할 경우는 상기 제2 저수실(10)은 호기상태로 조성되어 유기성질소와 암모니아성 질소를 질산화시키고, 유기오염물을 산화 분해하며, 생물반응조(4) 하부 혐기화 상태에서 인을 배출한 미생물에 의해 과잉인 섭취(Luxury uptake)가 일어나 미생물 체내에 인을 축척시킨 후 잉여슬러지 배출로 제거한다. When the diffusers 16 of the first air supply pipe 14 are not aerated, the second reservoir 10 is formed in an aerobic state to nitrify organic nitrogen and ammonia nitrogen, and oxidize and decompose organic pollutants. Bioreactor (4) Luxurious uptake is caused by the microorganisms that discharged phosphorus in the lower anaerobic state, which accumulates phosphorus in the microorganism and then removes it by discharge of excess sludge.

상기 호기상태에서 오염물 제거가 완료된 하폐수(W)는 처리수를 고액분리하는 침지형 분리막(24)에 의해 고액분리되며, 잉여슬러지는 잉여슬러지 인발부(26)에 의해 생물반응조(4)의 외부로 반출된다.The wastewater (W) in which the contaminant is removed in the expiratory state is solid-liquid separated by an immersion type separation membrane (24) for separating the treated water into solid-liquid separation, and the excess sludge is discharged to the outside of the bioreactor (4) by the excess sludge drawing part (26). It is taken out.

본 발명의 하폐수고도처리장치(2)는 침지형 분리막(24)에 의한 고체 및 액체 분리로 MLSS 농도가 10,000 ~ 12,000㎎/ℓ으로 매우 높게 유지되어, 미생물의 자산화로 잉여슬러지 발생량을 줄일 수 있고 혐기상태 및 무산소상태에서 미생물의 내생호흡에 의한 용존산소 소비량이 많아서 질소제거에 적합한 C/N비가 충족되지 않아도 질소제거효율이 높아진다. The wastewater advanced treatment apparatus 2 of the present invention is maintained at a very high MLSS concentration of 10,000 to 12,000 mg / l by solid and liquid separation by the immersion type membrane 24, thereby reducing the amount of excess sludge generated by the microbial asset and anaerobic. Dissolved oxygen consumption by endogenous respiration of microorganisms in the state and anoxic state increases nitrogen removal efficiency even if the C / N ratio suitable for nitrogen removal is not satisfied.

상기 침지형 분리막(24)은 막공경이 0.2 ~ 0.4㎛ 정도로 형성된 친수처리된 중공사형 침지여과막으로 항상 수중에 침지될 수 있게 수면아래에 30 ~ 50㎝ 깊이에 설치되며, 배출량은 수위계(L)와 연결되어 처리수 배출펌프(28)의 가동을 제어한다. 이 경우, 상기 침지형 분리막(24) 저부에 설치된 제1 공기공급관(14)의 산기구(16)들은 상기 침지형 분리막(24)을 세정하는 역할도 한다. The immersion type separation membrane 24 is a hydrophilic hollow fiber type immersion filtration membrane formed with a membrane pore size of about 0.2 to 0.4 μm and is installed at a depth of 30 to 50 cm below the surface of the water so as to be always immersed in water. It is connected to control the operation of the treated water discharge pump (28). In this case, the diffusers 16 of the first air supply pipe 14 installed at the bottom of the immersion type separation membrane 24 also serve to clean the immersion type separation membrane 24.

상기 침지형 분리막(24)은 수위계(L)와 유량계(F)를 통해 처리수 배출펌프(28)의 가동을 단속하여 처리수량이 자동 조절되고 처리수가 여과 후 유출관(30)을 통해 배출된다. 또한 침지형 분리막(24)의 오염상태를 파악 할 수 있는 차압계를 설치하여 막의 오염상태를 수시로 확인이 가능하다. The immersion type separation membrane 24 controls the operation of the treated water discharge pump 28 through the water level meter L and the flow meter F to automatically adjust the amount of treated water and discharge the treated water through the outlet pipe 30 after filtration. In addition, it is possible to check the contamination state of the membrane from time to time by installing a differential pressure gauge to determine the contamination state of the immersion type separation membrane (24).

그리고, 침지형 분리막(24) 주변에는 생물반응조(4)의 외부로 연결된 잉여슬러지 인발부(26)를 구성하여 항상 잉여슬러지를 인발할 수 있도록 펌프와 배관설비 를 갖도록 한다. 잉여슬러지배출 펌프는 과잉 인 섭취로 인함량이 높은 슬러지를 인발하여 인제거 효율을 높였으며 인발슬러지는 탈수 케이크로 폐기처분된다. In addition, the immersion type separation membrane 24 is configured to have a pump and plumbing facility so that the excess sludge drawing part 26 is connected to the outside of the bioreactor 4 at all times. The excess sludge discharge pump draws high phosphorus sludge due to excess phosphorus intake to increase phosphorus removal efficiency, and the waste sludge is disposed of as a dewatered cake.

또 침지형 분리막(24)과 잉여슬러지 인발부(26) 사이에는 제1 저수실(8)의 하폐수유입부(12)에 연통된 미생물반송관(20)이 잠수되게 설치된다. 상기 미생물반송관(20)은 말단부가 제2 저수실(10)의 바닥근처의 수중에 위치되고, 측면에는 제1 공기공급관(14)으로부터 분기된 공기분기관(22)이 연결된다. 포기시간에 에어펌프(18)로부터 공기가 상기 제1 공기공급관(14)을 따라 공기분기관(22)으로 유입되고, 다시 공기분기관(22)으로부터 미생물반송관(20)으로 공기가 유입된다. 상기 공기분기관(22)의 공기유입에 의해 미생물반송관(20)은 에어 리프트 펌프의 원리를 이용하여 제2 저수실(10) 하류에 축적된 미생물들을 하폐수유입부(12)로 반송시킨다. In addition, between the immersion type separation membrane 24 and the excess sludge drawing portion 26, the microbial conveying pipe 20 communicated with the wastewater inflow portion 12 of the first reservoir chamber 8 is installed to be submerged. The microbial conveying pipe 20 has a distal end located in the water near the bottom of the second reservoir 10, and the air branch pipe 22 branched from the first air supply pipe 14 is connected to the side. At the time of aeration, air flows from the air pump 18 into the air distributor 22 along the first air supply pipe 14, and again, air flows from the air distributor 22 into the microbial transport tube 20. . The microbial conveying pipe 20 conveys the microorganisms accumulated in the downstream of the second storage chamber 10 to the wastewater inflow unit 12 by the air inflow of the air distributor 22.

상기와 같은 구성에 의하여, 본 발명의 하폐수 고도처리장치(2) 및 방법은 간단한 장치로 BOD농도 150㎎/ℓ, T-N 60㎎/ℓ, T-P 5㎎/ℓ의 하폐수를 BOD 3㎎/ℓ, T-N 5㎎,ℓ, T-P 1㎎/ℓ의 처리수로 연속 처리하여 매우 높은 처리 효율을 나타내게 된다.According to the configuration as described above, the advanced wastewater treatment system (2) and method of the present invention is a simple apparatus BOD concentration of 150mg / L, TN 60mg / l, TP 5mg / l sewage wastewater BOD 3mg / l, Continuous treatment with TN 5 mg, L and TP 1 mg / L showed very high treatment efficiency.

상술한 본 발명의 설명에서는 구체적인 실시 예에 관해 설명하였으나, 여러 가지 변형이 본 발명의 범위에서 벗어나지 않고 실시할 수 있다. 따라서 본 발명의 범위는 설명된 실시 예에 의하여 정할 것이 아니고 특허청구범위와 특허청구범위의 균등한 것에 의해 정해 져야 한다.While the present invention has been described in connection with what is presently considered to be practical exemplary embodiments, it is to be understood that the invention is not limited to the disclosed embodiments. Therefore, the scope of the present invention should not be defined by the described embodiments, but should be determined by the equivalent of claims and claims.

도 1은 본 발명의 하폐수 고도처리장치의 블럭 구성도,1 is a block diagram of an advanced wastewater treatment system of the present invention;

도 2는 도 1의 하폐수 처리상태도,2 is a wastewater treatment state diagram of FIG.

도 3은 본 발명 하폐수유입부의 사시도,3 is a perspective view of the wastewater inflow portion of the present invention;

도 4는 본 발명 수직격벽의 사시도이다.4 is a perspective view of the vertical bulkhead of the present invention.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

2 : 하폐수 고도처리장치 4 : 생물반응조2: advanced wastewater treatment system 4: bioreactor

6 : 수직격벽 8 : 제1 저수실6: vertical bulkhead 8: first reservoir

10 : 제2 저수실 12 : 하페수유입부 10: second reservoir chamber 12: hape water inlet

14,15 : 공기공급관 16,17 : 산기구14,15: Air supply pipe 16,17: diffuser

20 :미생물반송관 22 : 공기분기관20: microbial transport pipe 22: air branch pipe

24 : 침지형 분리막 26 : 잉여슬러지 인발부24: dipping membrane 26: excess sludge drawing part

Claims (7)

하폐수 고도처리장치에 있어서,In the wastewater advanced treatment apparatus, 단일조로 된 생물반응조(4)내에 다수 유출구(6a)를 갖는 수직격벽(6)을 설치하여 제1,제2 저수실(8)(10)로 구분 구성하고, 제1,제2 저수실(8)(10)내 바닥에는 횡방향 다수 산기구(16)(17)들을 갖는 제1,2 공기공급관(14)(15)을 각각 설치하고, 제1 저수실(8)에는 하측과 바닥에 다공(12a)이 고루 형성된 하폐수유입부(12)가 설치되며, 제2 저수실(10)에는 침지형 분리막(24)과 잉여슬러지 인발부(26) 및 제1 저수실(8)의 하폐수유입부(12)에 연통된 미생물반송관(20)을 잠수되게 설치하여서 구성하되, 상기 산기구(17)들로부터의 단속적 포기로 제1 저수실(8)은 혐기상태가 되게 하고 제2 저수실(10)은 산기구(16)들의 포기유무에 따라 무산소상태 및 호기상태로 유도하고, 하폐수유입부(12)를 통해 제1 저수실(8)로 유입된 하폐수(W)가 수직격벽(6)을 통하여 제2 저수실(10)로 유입되고 침지형 분리막(24)을 거쳐서 최종처리수로 연속 배출되고, 제1 공기공급관(14)으로부터 분기된 공기분기관(22)이 연결된 미생물반송관(20)이 제2 저수실(10)의 하류에 잠수되게 설치되고, 제2 저수실(10)의 포기시간에 공기분기관(22)으로부터 미생물반송관(20)으로 공기가 유입되어 에어 리프트 펌프의 원리를 이용하여 하류에 축적된 미생물들이 하폐수유입부(12)로 반송될 수 있도록 구성함을 특징으로 하는 간헐포기 연속처리식 하폐수 고도처리장치. A vertical bulkhead 6 having a plurality of outlets 6a is installed in a single tank bioreactor 4 and divided into first and second reservoir chambers 8 and 10, and the first and second reservoir chambers ( 8) In the bottom of 10, first and second air supply pipes 14 and 15 having lateral majority diffusers 16 and 17 are respectively installed, and in the first reservoir chamber 8, the bottom and the bottom The wastewater inflow portion 12 is formed with a uniform pore 12a, and the second reservoir 10 has a sewage separation membrane 24, a surplus sludge drawing portion 26, and a wastewater inflow portion of the first reservoir chamber 8. The microbial conveying pipe 20 communicated with (12) is configured to be submerged, but the intermittent abandonment from the diffusers 17 causes the first reservoir chamber 8 to become anaerobic and the second reservoir chamber ( 10) leads to anoxic state and aerobic state according to the aeration of the diffuser (16), the wastewater (W) introduced into the first reservoir (8) through the wastewater inlet 12 is a vertical bulkhead (6) Inflow into the second reservoir 10 through the needle The microbial conveying pipe 20 connected to the air branch pipe 22 branched from the first air supply pipe 14 and continuously discharged to the final treated water via the mold separation membrane 24 is downstream of the second storage chamber 10. It is installed to be submerged, the air flows into the microbial conveying pipe 20 from the air distributor 22 at the aeration time of the second reservoir 10, the microorganisms accumulated downstream using the principle of the air lift pump inflow into the wastewater Intermittent aeration continuous treatment type sewage treatment apparatus, characterized in that configured to be returned to the unit (12). 삭제delete 삭제delete 제1항에 있어서,The method of claim 1, 생물반응조(4) 내의 MLSS(mixed liquor suspended solid) 농도는 10,000∼12,000㎎/ℓ를 유지하도록 함을 특징으로 하는 간헐포기 연속처리식 하폐수 고도처리장치.MLSS (mixed liquor suspended solids) concentration in the bioreactor (4) is characterized in that to maintain 10,000 ~ 12,000mg / ℓ. 제1항에 있어서,The method of claim 1, 제2 저수실(10) 내의 산기구(16)들은 포기시간 20 ~ 30분과 미포기시간 10 ~ 15분 내에서 일정주기로 간헐포기하도록 구성함을 특징으로 하는 간헐포기 연속처리식 하폐수 고도처리장치. The diffuser 16 in the second reservoir 10 is configured to intermittently give up at a predetermined cycle within 20 to 30 minutes of aeration time and 10 to 15 minutes of no aeration time. 하폐수 고도처리방법에 있어서,In the advanced wastewater treatment method, 단일조로 된 생물반응조(4) 내부를 수직격벽(6)에 의해 제1,제2 저수실(8)(10)로 구획하고, 제1 저수실(8) 바닥의 산기구(17)들을 통하여 단속적 포기로 제1 저수실(8)은 혐기상태가 되게 하고, 제2 저수실(10)은 포기시간 20 ~ 30분과 미포기시간 10 ~ 15분 내에서 일정주기로 단속적 간헐포기하여 산기구(16)들의 포기유무에 따라 호기상태 및 무산소상태가 되게 하며, 하폐수(W)가 하폐수유입부(12)의 다공(12a)을 통해 혐기상태인 제1 저수실(8)로 유입되어 하폐수내 미생물이 인을 배출하도록 하고, 인을 배출한 미생물을 포함한 하폐수(W)가 수직격벽(6)의 다수 유출구(6a)를 통하여 제2 저수실(10)로 유입되어 미포기시간인 무산소상태에서는 미생물에 의한 탈질반응을 유도하고, 포기시간인 호기상태에서는 질산화반응 및 인을 배출한 미생물이 인을 과잉 흡수하게 한 후 침지형 분리막(24)을 거쳐서 최종처리수로 연속 배출되고, 제2 저수실(10)의 포기시간에 제1 공기공급관(14)에서 분기된 공기분기관(22)으로부터 공기가 유입되어 에어 리프트 펌프의 원리를 이용하여 제1 저수실(8) 하류에 축적된 미생물들이 미생물반송관(20)을 통하여 하폐수유입부(12)로 반송할 수 있도록 함을 특징으로 하는 간헐포기 연속처리식 하폐수 고도처리방법.The interior of the unitary bioreactor 4 is partitioned into first and second reservoirs 8 and 10 by a vertical bulkhead 6 and through the diffusers 17 at the bottom of the first reservoir 8. The intermittent aeration gives the first reservoir 8 an anaerobic state, and the second reservoir 10 intermittently abandons intermittently at regular intervals within 20-30 minutes of aeration time and 10-15 minutes of no aeration time. ) To become aerobic and anaerobic according to the abandonment status of the wastewater, and the wastewater (W) is introduced into the anaerobic first reservoir (8) through the pore (12a) of the wastewater inlet (12), and microorganisms in the wastewater The wastewater (W) containing the microorganisms from which phosphorus is discharged is introduced into the second reservoir chamber (10) through the plurality of outlets (6a) of the vertical bulkheads (6) to the microorganisms in the anaerobic state, which is aeration time. Induces denitrification, and in the aerobic state at the aeration time, nitrification and phosphorus-derived microorganisms cause excessive absorption of phosphorus. It is continuously discharged to the final treatment water through the immersion membrane 24, the air is introduced from the air branch pipe 22 branched from the first air supply pipe 14 at the aeration time of the second reservoir 10, the air lift pump By using the principle of the intermittent aeration continuous treatment type sewage water advanced treatment characterized in that the microorganisms accumulated downstream of the first reservoir (8) can be conveyed to the wastewater inlet 12 through the microbial transport pipe (20) Way. 삭제delete
KR20090017183A 2009-02-27 2009-02-27 Advanced treatment apparatus and method of intermittent-bubble running-treatment for waste water KR100985467B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20090017183A KR100985467B1 (en) 2009-02-27 2009-02-27 Advanced treatment apparatus and method of intermittent-bubble running-treatment for waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20090017183A KR100985467B1 (en) 2009-02-27 2009-02-27 Advanced treatment apparatus and method of intermittent-bubble running-treatment for waste water

Publications (2)

Publication Number Publication Date
KR20100098159A KR20100098159A (en) 2010-09-06
KR100985467B1 true KR100985467B1 (en) 2010-10-05

Family

ID=43005170

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20090017183A KR100985467B1 (en) 2009-02-27 2009-02-27 Advanced treatment apparatus and method of intermittent-bubble running-treatment for waste water

Country Status (1)

Country Link
KR (1) KR100985467B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG186810A1 (en) * 2011-01-19 2013-02-28 Dream Engineering Co Ltd Sewage treatment apparatus
KR101068579B1 (en) * 2011-07-15 2011-09-30 한국과학기술연구원 Apparatus and method for alternative aeration-effluent wastewater treatment using ceramic membrane
KR101237408B1 (en) * 2013-01-15 2013-02-26 (주)티에스케이워터 Appartus for reducing nitrogen of sewage and wastewater having stayover device of active sludge and method for reducing nitrogen using it
CN112499764A (en) * 2020-12-10 2021-03-16 浦华环保有限公司 CAST biochemical pool

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200255268Y1 (en) 2001-08-30 2001-12-01 세림제지주식회사 Wastewater Treatment Apparatus using Internal Recycle in ICEAS
KR20020055268A (en) * 2000-12-28 2002-07-08 구자홍 A cooking room ventilation apparatus for micro wave oven
KR100401720B1 (en) * 2002-04-11 2003-10-17 Byung Hun Lee Apparatus for treating sewage and wastewater by using anaerobic/anoxic reactor, anoxic/aerobic reactor and membrane
KR20050095571A (en) * 2005-09-09 2005-09-29 세림제지주식회사 Continuous inflow and intermittent outflow type sequencing batch reactor and wastewater treatment method using the same
KR100860300B1 (en) * 2007-08-27 2008-09-25 백운학 Advanced treatment apparatus and method of intermittent-bubble running-treatment membrane-combination type for waste water

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020055268A (en) * 2000-12-28 2002-07-08 구자홍 A cooking room ventilation apparatus for micro wave oven
KR200255268Y1 (en) 2001-08-30 2001-12-01 세림제지주식회사 Wastewater Treatment Apparatus using Internal Recycle in ICEAS
KR100401720B1 (en) * 2002-04-11 2003-10-17 Byung Hun Lee Apparatus for treating sewage and wastewater by using anaerobic/anoxic reactor, anoxic/aerobic reactor and membrane
KR20050095571A (en) * 2005-09-09 2005-09-29 세림제지주식회사 Continuous inflow and intermittent outflow type sequencing batch reactor and wastewater treatment method using the same
KR100860300B1 (en) * 2007-08-27 2008-09-25 백운학 Advanced treatment apparatus and method of intermittent-bubble running-treatment membrane-combination type for waste water

Also Published As

Publication number Publication date
KR20100098159A (en) 2010-09-06

Similar Documents

Publication Publication Date Title
KR100441208B1 (en) Batch style waste water treatment apparatus using biological filtering process and waste water treatment method using the same
KR100636340B1 (en) Sequential batch reactor with anoxic process of biofilm for sewerage and its sewerage methods
JP5987202B1 (en) Water treatment system and water treatment method
KR101341163B1 (en) A disposal facilities of sewage
KR20180043689A (en) Eco-friendly Sewage System By Contact Oxidation Method Using Plastic Material As Bio-film Filtration
JP4059790B2 (en) Membrane separation activated sludge treatment apparatus and membrane separation activated sludge treatment method
KR20130138048A (en) Membrane wastewater treatment system and method for high energy efficiency, high flow capicity, low operating cost, automated scum and foam removal / destruction and conversion method thereof from a constant level sequencing batch reactor process
KR100985467B1 (en) Advanced treatment apparatus and method of intermittent-bubble running-treatment for waste water
KR102108870B1 (en) Membrane Treatment Device for Eliminating Nitrogen and/or Phosphorus
KR100940123B1 (en) Floating catalysis sewage disposal facility system
KR101237408B1 (en) Appartus for reducing nitrogen of sewage and wastewater having stayover device of active sludge and method for reducing nitrogen using it
KR100972395B1 (en) Advanced treatment apparatus and method for waste water
KR19980083279A (en) Treatment method of high concentration organic wastewater and nutrients using immersion type microfiltration membrane-activated sludge process
WO2015181307A1 (en) Method for biological purification of waste water
KR100624768B1 (en) System and method for advanced sewage treatment using microorganism and separation membrane
KR100948807B1 (en) High class treatment used flotation system having ultrasonic waves
KR100917097B1 (en) Sequencing batch membrane bio reactor process and the device
KR100655471B1 (en) Apparatus for wastewater treatment using up-flow bio reactor and membrane filter
KR19990083645A (en) Organic material and nitrogen, phosphate removal method using intermitted aeration process and plate type microfiltration membrane
KR100531182B1 (en) Sequential batch apparatus for sewerage and its sewerage methods
KR101032068B1 (en) Sewage-wastewater treating system and method the same, using high-effciency sequencing batch reactor process
KR100860300B1 (en) Advanced treatment apparatus and method of intermittent-bubble running-treatment membrane-combination type for waste water
JP3807945B2 (en) Method and apparatus for treating organic wastewater
KR200283062Y1 (en) Advanced Treatment Equipment and Process for Nitrogen and Phosphate Removal in Sewage and Wastewater
KR200381627Y1 (en) System for advanced sewage treatment using microorganism and separation membrane

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130927

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140926

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150925

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20181001

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20190930

Year of fee payment: 10