JP2022057085A - Fuel supply device - Google Patents

Fuel supply device Download PDF

Info

Publication number
JP2022057085A
JP2022057085A JP2020165160A JP2020165160A JP2022057085A JP 2022057085 A JP2022057085 A JP 2022057085A JP 2020165160 A JP2020165160 A JP 2020165160A JP 2020165160 A JP2020165160 A JP 2020165160A JP 2022057085 A JP2022057085 A JP 2022057085A
Authority
JP
Japan
Prior art keywords
water content
water
fuel
unit
fuel supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020165160A
Other languages
Japanese (ja)
Inventor
茂 櫻井
Shigeru Sakurai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokico System Solutions Co Ltd
Original Assignee
Tokico System Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokico System Solutions Co Ltd filed Critical Tokico System Solutions Co Ltd
Priority to JP2020165160A priority Critical patent/JP2022057085A/en
Publication of JP2022057085A publication Critical patent/JP2022057085A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Loading And Unloading Of Fuel Tanks Or Ships (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

To provide a fuel supply device capable of detecting water contaminated in the supplied fuel (a water content rate) with high accuracy.SOLUTION: When an instant water content rate by some supplied fuel passing a detection area of a sensor instantly is out of allowable range, even when the water content rate of a whole supplied fuel is within allowable range and no abnormality is present and a physical property value corresponding to the water content rate equal to or greater than the value of the actual supplied fuel is detected by the sensor even instantly, an oil supplier 10 does not decide that the water content rate of the supplied fuel is out of allowable range and an abnormality is present immediately based on only this event, by computing a water content rate average value Rw of the supplied fuel in a prescribed time series section to detect abnormality.SELECTED DRAWING: Figure 5

Description

本開示は、車両等の供給対象に燃料を供給する燃料供給装置に関する。 The present disclosure relates to a fuel supply device that supplies fuel to a supply target such as a vehicle.

例えばガソリンスタンドのような燃料供給所では、燃料は貯溜タンクに貯蔵されており、供給対象に対する燃料供給は、貯溜タンクに連通接続されて設置された燃料供給装置によって行われる。燃料供給装置では、供給対象に供給された燃料供給量(給液量)が計測・表示される。 For example, in a fuel supply station such as a gas station, fuel is stored in a storage tank, and fuel supply to a supply target is performed by a fuel supply device installed so as to communicate with the storage tank. The fuel supply device measures and displays the fuel supply amount (liquid supply amount) supplied to the supply target.

貯溜タンクは、貯溜している燃料の増減に伴って容量変化するタンク内の気相部分の圧力を調整できるように、通常、タンク内の気相部分が大気と連通可能な構造になっている。また、貯溜タンクや、貯溜タンクと燃料供給装置との間を連通接続する配管は、通常、燃料供給所の地下等に設置される。 The storage tank usually has a structure in which the gas phase part in the tank can communicate with the atmosphere so that the pressure of the gas phase part in the tank whose capacity changes as the stored fuel increases or decreases can be adjusted. .. Further, a storage tank and a pipe for communicating and connecting the storage tank and the fuel supply device are usually installed in the basement of the fuel supply station or the like.

このような燃料供給所では、貯溜タンク内の気相部分の空気(大気)中に含まれる水蒸気の結露によって、貯蔵されている燃料に水分が混入したり、貯溜タンクや貯溜タンクと燃料供給装置との間を連通接続する配管の腐食や亀裂によって、タンク外部の地中の水分がタンク内や配管内に浸入したりすることが起こり得る。そして、許容範囲を超えて水分が混入している燃料が供給対象である車両に供給されてしまうと、燃焼不良によってエンジン破損やエンジン停止等の不具合が起こる可能性があった。 In such a fuel supply station, water vapor may be mixed into the stored fuel due to dew condensation of water vapor contained in the air (atmosphere) of the gas phase part in the storage tank, or the storage tank or the storage tank and the fuel supply device may be mixed. Corrosion or cracks in the pipes that communicate with each other may cause water vapor in the ground outside the tank to infiltrate into the tank or pipes. If fuel containing water in excess of the permissible range is supplied to the vehicle to be supplied, there is a possibility that problems such as engine damage and engine stop may occur due to poor combustion.

そこで、車両等の供給対象に供給する燃料に混入している水を検知する機能を備えて、供給燃料の含水率が所定の含水率を超えたこと、すなわち供給燃料中に混入している水分が許容範囲を超えたことを検出すると、供給対象に対する燃料供給を停止するように構成された燃料供給装置が開発されている。また、このような燃料供給装置に適用可能な、燃料中への水分の混入を検知する方式としては、供給燃料の静電容量、導電率、濁度等の物性値を測定し、その測定値に基づいて検知を行うものが知られている。 Therefore, it has a function to detect the water mixed in the fuel supplied to the supply target such as a vehicle, and the water content of the supplied fuel exceeds the predetermined water content, that is, the water mixed in the supplied fuel. A fuel supply device has been developed that is configured to stop the fuel supply to the supply target when it detects that the fuel supply exceeds the permissible range. Further, as a method for detecting the mixing of water into the fuel, which can be applied to such a fuel supply device, physical property values such as capacitance, conductivity, and turbidity of the supplied fuel are measured, and the measured values are measured. Those that perform detection based on are known.

特開2017-154746号公報JP-A-2017-154746

ところで、燃料中への水分の混入を検知する方式を備えた燃料供給装置では、供給燃料の静電容量、導電率、濁度等の物性値を測定する水検出部としてのセンサが、供給対象に供給するための燃料が流れる燃料供給路に設けられる。そして、水検出部としてのセンサは、当該センサが設置された燃料供給路部分に所在する燃料について、すなわち、燃料供給路における当該センサの検出域に所在している燃料について、その静電容量、導電率、濁度等の物性値を測定する。 By the way, in a fuel supply device equipped with a method for detecting the mixing of water into fuel, a sensor as a water detection unit that measures physical properties such as capacitance, conductivity, and turbidity of the supplied fuel is supplied. It is installed in the fuel supply path through which fuel for supplying fuel flows. Then, the sensor as a water detection unit has a capacitance of the fuel located in the fuel supply path portion where the sensor is installed, that is, the fuel located in the detection area of the sensor in the fuel supply path. Measure physical properties such as conductivity and turbidity.

そのため、例えば、しばらくの間、供給対象に対する燃料供給の停止状態が続いたような場合は、燃料供給路内で燃料の流れ(燃料の移動)がない状態がこの間続くので、供給燃料中における燃料分と水分との分離が進んで、分離した水分が燃料供給路における当該センサの検出域に静止位置するようになってしまうと、実際の供給燃料の値以上の含水率に対応する物性値が、当該センサによって一時的ではあるものの検出されてしまうことになる。 Therefore, for example, if the fuel supply to the supply target continues to be stopped for a while, the fuel flow (fuel movement) in the fuel supply path continues during this period, so that the fuel in the supply fuel remains. When the separation between the minute and the water progresses and the separated water comes to be stationary in the detection range of the sensor in the fuel supply path, the physical property value corresponding to the water content higher than the value of the actual supply fuel becomes. , The sensor will detect it, albeit temporarily.

また、供給対象への実際の燃料供給中に、供給燃料全体の含水率は許容範囲内で異常がない場合であっても、当該センサの検出域を瞬間的に通過する一部の供給燃料による瞬時含水率が許容範囲外で、瞬間的に実際の供給燃料の値以上の含水率に対応する物性値が当該センサによって一時的ではあるものの検出されてしまうような場合は、その検出時点で、供給対象への実際の燃料供給が中止されてしまうことになる。 In addition, even if the water content of the entire supplied fuel is within the permissible range and there is no abnormality during the actual supply of fuel to the supply target, it depends on a part of the supplied fuel that momentarily passes through the detection range of the sensor. If the instantaneous moisture content is out of the permissible range and the sensor momentarily detects a physical property value corresponding to a moisture content higher than the value of the actual supplied fuel, although it is temporary, at the time of detection, The actual fuel supply to the supply target will be stopped.

また、これらの事象を考慮して、異常を判定するための基準となる含水率の値を高めに設定した場合は、高めに設定した分だけ、異常の検出が遅れてしまうことになる。 In addition, when the value of the water content, which is a reference for determining an abnormality, is set high in consideration of these events, the detection of the abnormality is delayed by the amount set high.

本開示は、上記した課題を鑑みてなされたものであり、供給燃料中に混入した水(含水率)を高精度に検知することが可能な燃料供給装置を提供することを目的とする。 The present disclosure has been made in view of the above-mentioned problems, and an object of the present invention is to provide a fuel supply device capable of detecting water (moisture content) mixed in a fuel supply with high accuracy.

本開示に係る燃料供給装置は、
供給対象に供給する燃料が送液される燃料供給路と、
前記燃料供給路に設けられ、前記燃料供給路内の検出域に所在している燃料について混入している水を検出する水検出部と、
前記水検出部の検出出力に基づいて当該水検出部の検出域に所在している燃料中の含水量もしくは含水率を計測する水混入計測部と、
供給対象への燃料供給作業中もしくは燃料供給中に、前記水検出部の検出出力を基に前記水混入計測部によって逐次計測された燃料中の含水量もしくは含水率が記憶される含水値記憶部と、
前記含水値記憶部に記憶されている複数の燃料中の含水量もしくは含水率を基に、予め定められた時系列区間の積算含水量もしくは含水率平均値を演算する水混入演算部と、
前記水混入演算部によって逐次演算される予め定められた時系列区間の積算含水量もしくは含水率平均値を予め定められた異常判定値と比較して、供給対象に供給する燃料における異常の有無を判定する異常判定部と、
を備えている。
The fuel supply device according to this disclosure is
The fuel supply path where the fuel to be supplied to the supply target is sent, and
A water detection unit provided in the fuel supply path and detecting water mixed in the fuel located in the detection area in the fuel supply path, and a water detection unit.
A water mixing measurement unit that measures the water content or water content in the fuel located in the detection area of the water detection unit based on the detection output of the water detection unit.
A water content storage unit that stores the water content or water content in the fuel sequentially measured by the water mixing measurement unit based on the detection output of the water detection unit during fuel supply work or fuel supply to the supply target. When,
A water mixing calculation unit that calculates the integrated water content or average water content of a predetermined time-series section based on the water content or water content in a plurality of fuels stored in the water content storage unit.
The presence or absence of an abnormality in the fuel supplied to the supply target is determined by comparing the integrated water content or the average water content of the predetermined time-series section, which is sequentially calculated by the water mixing calculation unit, with the predetermined abnormality determination value. Abnormality judgment unit to judge and
It is equipped with.

本開示に係る燃料供給装置によれば、供給対象への実際の燃料供給中に、供給燃料全体の含水率は許容範囲内で異常がない場合であっても、当該センサの検出域を瞬間的に通過する一部の供給燃料による瞬時含水率が許容範囲外で、瞬間的に実際の供給燃料の値以上の含水率に対応する物性値が当該センサによって一時的ではあるものの検出されてしまうような場合は、この事象だけに基づいて、直ちに、供給燃料の含水率が許容範囲外で異常があると判定されることは無いため、より正確な異常検出を行える。 According to the fuel supply device according to the present disclosure, even if the water content of the entire supplied fuel is within the permissible range and there is no abnormality during the actual supply of fuel to the supply target, the detection range of the sensor is instantaneously set. The instantaneous moisture content of some of the fuel supplied to the fuel is out of the permissible range, and the physical property value corresponding to the moisture content equal to or higher than the value of the actual supplied fuel is instantaneously detected by the sensor. In this case, based only on this event, it is not immediately determined that the water content of the supplied fuel is out of the permissible range and there is an abnormality, so that more accurate abnormality detection can be performed.

また、異常を検出するための判定値を変えてはいないため、本来は異常であるにもかかわらず、異常を検出できないという不都合を低減できる。 Further, since the determination value for detecting the abnormality is not changed, it is possible to reduce the inconvenience that the abnormality cannot be detected even though it is originally an abnormality.

また、本開示の上記した以外の、課題、構成および効果については、以下の実施の形態の説明により明らかにされる。 In addition, issues, configurations, and effects other than those described above in the present disclosure will be clarified by the following description of the embodiments.

本開示に係る燃料供給装置の一実施例としての給油機の全体構成図である。It is an overall block diagram of the refueling machine as an example of the fuel supply device which concerns on this disclosure. 水検出器が設けられた供給管路部分の断面図である。It is sectional drawing of the supply line part provided with the water detector. 水検知制御装置の記憶部に予め記憶されている検量線を説明するための模式図である。It is a schematic diagram for demonstrating the calibration curve stored in advance in the storage part of a water detection control device. 水検知制御装置の記憶部に予め記憶されている検量線を説明するための模式図である。It is a schematic diagram for demonstrating the calibration curve stored in advance in the storage part of a water detection control device. 給油作業の際に給油機制御装置が実行する給油機給油制御の一実施例のフローチャートである。It is a flowchart of one embodiment of the refueling machine refueling control executed by the refueling machine control device at the time of refueling work. 給油作業の際に水検知制御装置が実行する平均含水率Rwav測定処理の一実施例のフローチャートである。It is a flowchart of one Example of the average water content Rwav measurement processing executed by a water detection control device at the time of refueling work. 給油作業の際に給油機制御装置若しくは水検知制御装置のうちのいずれかが実行する時系列区間の計測の一実施例のフローチャートである。It is a flowchart of one embodiment of the measurement of the time-series section executed by either the refueling machine control device or the water detection control device at the time of refueling work. 供給燃料全体の含水率は許容範囲内で異常がない場合であっても、水検出器の検出域を瞬間的に通過する一部の供給燃料による瞬時含水率Rwが許容範囲外である給油作業の例の模式図である。Even if the water content of the entire supplied fuel is within the permissible range and there is no abnormality, the instantaneous water content Rw of some of the supplied fuel that momentarily passes through the detection range of the water detector is out of the permissible range. It is a schematic diagram of the example of. 含水率平均値Rwavを基に演算して取得した含水率のトレンドの一例である。It is an example of the trend of the water content obtained by calculation based on the average value Rwav of the water content. 含水率平均値Rwavを基に演算して取得した含水率のトレンドの別例である。This is another example of the trend of the water content obtained by calculating based on the average value Rwav of the water content. 含水率平均値Rwavを基に演算して取得した含水率のトレンドのさらに別例である。This is yet another example of the trend of the water content obtained by calculating based on the average water content Rwav. 総加水量ΣWを表した模式図である。It is a schematic diagram showing the total amount of water addition ΣW.

以下、本開示に係る燃料供給装置の一の実施形態について、図面に基づいて説明する。説明では、本開示に係る燃料供給装置を、車両等の供給対象にレギュラーガソリン,ハイオクガソリン,軽油等といった燃料油液を供給する給油所、いわゆるガソリンスタンドに燃料供給装置として設置される給油機を例に説明する。なお、本開示に係る燃料供給装置が適用される燃料供給所は、ガソリンスタンドに限られるものではない。また、給油機も、レギュラーガソリン,ハイオクガソリン,軽油といった液種(油種)を供給する給油機に限られるものではない。 Hereinafter, an embodiment of the fuel supply device according to the present disclosure will be described with reference to the drawings. In the description, the fuel supply device according to the present disclosure is a refueling machine installed as a fuel supply device at a refueling station that supplies fuel oil liquid such as regular gasoline, high-octane gasoline, light oil, etc. to a supply target of a vehicle or the like, a so-called gas station. Let's take an example. The fuel supply station to which the fuel supply device according to the present disclosure is applied is not limited to a gas station. Further, the refueling machine is not limited to the refueling machine that supplies a liquid type (oil type) such as regular gasoline, high octane gasoline, and light oil.

図1は、本開示に係る燃料供給装置の一実施例としての給油機の全体構成図である。 FIG. 1 is an overall configuration diagram of a refueling machine as an embodiment of the fuel supply device according to the present disclosure.

給油機10は、図示の例では、給油機筐体11内に、送液機器としてのポンプ12、流量計測機器としての流量計14、給油機各部の作動制御や給油量の演算や表示制御を行う給油機制御装置30、供給燃料中に混入している水を検出する水検出器40、水検出器40の検出出力に基づいて燃料中の含水率を演算する水検知制御装置50等を収容している。加えて、ポンプ12には、ポンプ12を駆動するためのポンプ駆動モータ13が付設され、流量計14には、供給燃料の単位流量(例えば、0.01L)毎の流れに応じた流量パルスを生成する流量発信器15が付設されている。 In the illustrated example, the refueling machine 10 performs operation control of each part of the refueling machine, calculation and display control of a pump 12 as a liquid feeding device, a flow meter 14 as a flow rate measuring device, and a refueling machine housing 11 in the refueling machine housing 11. It houses a refueling machine control device 30, a water detector 40 that detects water mixed in the supplied fuel, a water detection control device 50 that calculates the water content in the fuel based on the detection output of the water detector 40, and the like. are doing. In addition, the pump 12 is provided with a pump drive motor 13 for driving the pump 12, and the flow meter 14 is provided with a flow rate pulse corresponding to the flow of each unit flow rate (for example, 0.01 L) of the supplied fuel. A flow rate transmitter 15 to generate is attached.

給油機筐体11からは、先端に給油ノズル18を有するホース17が延設され、ホース17に基端側は、給油機筐体11内の流量計14の流出口側と、供給管路16を介して連通接続されている。給油ノズル18には、操作レバーの操作に応動して開閉弁し、車両等の供給対象内における燃料油液の液面がノズル先端の吐出パイプに達すると操作レバーの操作位置にかかわらず閉弁する自動閉弁機構が備えられている。給油ノズル18は、給油機筐体11に設けられたノズル掛け19に対して取り出し・収納自在になっており、給油作業が行われていない間はノズル掛け19に収納される。ノズル掛け19には、ノズル掛け19に対する給油ノズル18の取り出し・収納を検出するノズルスイッチ21が設けられている。 A hose 17 having a refueling nozzle 18 at the tip extends from the refueling machine housing 11, and the base end side of the hose 17 is the outlet side of the flow meter 14 in the refueling machine housing 11 and the supply pipeline 16. It is connected via communication. The refueling nozzle 18 opens and closes in response to the operation of the operation lever, and when the liquid level of the fuel oil liquid in the supply target of the vehicle or the like reaches the discharge pipe at the tip of the nozzle, the valve closes regardless of the operation position of the operation lever. It is equipped with an automatic valve closing mechanism. The refueling nozzle 18 can be taken out and stored in the nozzle hook 19 provided in the refueling machine housing 11, and is stored in the nozzle hook 19 while the refueling work is not performed. The nozzle hook 19 is provided with a nozzle switch 21 for detecting the removal / storage of the refueling nozzle 18 with respect to the nozzle hook 19.

給油機10は、ポンプ12の駆動によって、給油所地下に設置された地下タンク(貯溜タンク)90から汲み上げ配管91を介して燃料油液を汲み上げる。汲み上げ配管91は、地中を延設され、一端側は地下タンク90内に導入されて開口し、他端側はポンプ12の吸い込み口に連通接続されている。ポンプ12によって地下タンク90から汲み上げられた燃料油液は、ポンプ12の吐出口に流入口が連通接続された流量計14、供給管路16、ホース17を介して、給油ノズル18に向けて送液される。この場合、供給管路16等を含む給油機筐体11内における燃料油液の流路部分および汲み上げ配管91が、給油機10の燃料供給路に該当する。 The refueling machine 10 pumps the fuel oil liquid from the underground tank (reservoir tank) 90 installed in the basement of the gas station via the pumping pipe 91 by driving the pump 12. The pumping pipe 91 extends underground, one end side is introduced into the underground tank 90 and opens, and the other end side is communicated with the suction port of the pump 12. The fuel oil liquid pumped from the underground tank 90 by the pump 12 is sent to the refueling nozzle 18 via the flow meter 14, the supply pipe line 16, and the hose 17 in which the inflow port is continuously connected to the discharge port of the pump 12. Be liquid. In this case, the flow path portion of the fuel oil liquid and the pumping pipe 91 in the refueling machine housing 11 including the supply pipe line 16 and the like correspond to the fuel supply path of the refueling machine 10.

また、本実施例の給油機10では、燃料中の含水率Rwを計測するための機構として、供給燃料の静電容量、導電率、濁度等の物性値を測定して供給燃料中の混入している水を検出する水検出器40が、給油機10の燃料供給路に設けられている。図示の例では、水検出器40として、供給燃料の濁度を測定して供給燃料中の混入している水を検出する水検出器が、給油機筐体11内の供給管路16に備えられている。 Further, in the refueling machine 10 of the present embodiment, as a mechanism for measuring the water content Rw in the fuel, physical property values such as capacitance, conductivity, and turbidity of the supplied fuel are measured and mixed in the supplied fuel. A water detector 40 for detecting the water being used is provided in the fuel supply path of the refueling machine 10. In the illustrated example, as the water detector 40, a water detector that measures the turbidity of the supply fuel and detects the mixed water in the supply fuel is provided in the supply line 16 in the refueling machine housing 11. Has been done.

図2は、水検出器が設けられた供給管路部分の断面図である。 FIG. 2 is a cross-sectional view of a supply pipeline portion provided with a water detector.

本実施例では、水検出器40は、供給管路16内の供給燃料に向けてテラヘルツ波を発信するテラヘルツ波発信部41と、供給燃料中を通過してきたテラヘルツ波を検出するテラヘルツ波検出部42とを備えた構成になっている。テラヘルツ波発信部41は、例えばテラヘルツ波共鳴トンネルダイオード等を有して構成され、その発信端面からテラヘルツ波検出部42に向けて所定周波数のテラヘルツ波を出射できる構成になっている。これに対し、テラヘルツ波検出部42は、テラヘルツ波発信部41から発信されたテラヘルツ波をその受信端面で受信してその受信信号を検出する検出素子で、テラヘルツ波発信部41と同様、テラヘルツ波共鳴トンネルダイオードを有して構成されている。 In this embodiment, the water detector 40 has a terahertz wave transmitting unit 41 that transmits a terahertz wave toward the supplied fuel in the supply line 16 and a terahertz wave detecting unit that detects the terahertz wave that has passed through the supplied fuel. It is configured to include 42. The terahertz wave transmitting unit 41 is configured to include, for example, a terahertz wave resonance tunnel diode or the like, and is configured to be able to emit a terahertz wave having a predetermined frequency from the transmitting end surface toward the terahertz wave detecting unit 42. On the other hand, the terahertz wave detection unit 42 is a detection element that receives the terahertz wave transmitted from the terahertz wave transmission unit 41 at its reception end face and detects the received signal. Like the terahertz wave transmission unit 41, the terahertz wave detection unit 42 is a terahertz wave. It is configured with a resonant tunneling diode.

水検出器40は、供給燃料が流通可能な検出域を挟んで、テラヘルツ波を出射するテラヘルツ波発信部41の発信端面とテラヘルツ波を入射させるテラヘルツ波検出部42の受信端面とを相対向させるようにして、供給管路16に両者を配置した構成になっている。さらに、水検出器40は、相対向する発信端面および受信端面がそれぞれ隔離部材43,43で覆われて、供給燃料が流通可能な検出域に臨むテラヘルツ波発信部41の発信端面およびテラヘルツ波検出部42の受信端面が、両端面間の検出域を流れる供給管路16内の供給燃料と接液しない構成になっている。そして、このような水検出器40を具体的に設置する供給管路16部分としては、ポンプの吐出側であることが好ましい。その理由としては、燃料供給路中の燃料中に水分が混入している場合に、ポンプにより燃料中における燃料と水分とが攪拌されることにより、燃料供給路中の燃料に混入している水分を均一化することができ、この結果、水検出器40により検出される含水率を安定化させることができることが期待できるためである。そのため、設置される供給管路16部分としては、ポンプの吐出側に近ければ近いほど好ましい。 The water detector 40 faces the transmitting end face of the terahertz wave transmitting unit 41 that emits the terahertz wave and the receiving end surface of the terahertz wave detecting unit 42 that incidents the terahertz wave with the detection area in which the supplied fuel can flow. In this way, both are arranged in the supply pipeline 16. Further, in the water detector 40, the transmitting end face and the receiving end face facing each other are covered with the isolation members 43 and 43, respectively, and the transmitting end face and the terahertz wave detection of the terahertz wave transmitting unit 41 facing the detection area where the supplied fuel can flow. The receiving end surface of the unit 42 is configured so as not to come into contact with the supply fuel in the supply line 16 flowing through the detection area between both end faces. The supply pipeline 16 portion where the water detector 40 is specifically installed is preferably the discharge side of the pump. The reason is that when water is mixed in the fuel in the fuel supply path, the pump agitates the fuel and the water in the fuel, so that the water in the fuel in the fuel supply path is mixed. This is because it can be expected that the water content detected by the water detector 40 can be stabilized as a result. Therefore, it is preferable that the supply pipeline 16 portion to be installed is closer to the discharge side of the pump.

この場合、隔離部材43は、テラヘルツ波を透過し、かつ、燃料及び水と接触することによって変形、膨潤、溶解等の劣化を起こさない材料で構成されている。加えて、給油機10の使用環境に鑑み、-20℃から40℃の熱耐性がある材料であることが望ましい。隔離部材43の材料としては、例えば、フッ素樹脂材を用いることができる。 In this case, the isolation member 43 is made of a material that transmits terahertz waves and does not cause deterioration such as deformation, swelling, and dissolution by contact with fuel and water. In addition, in view of the usage environment of the refueling machine 10, it is desirable that the material has a heat resistance of −20 ° C. to 40 ° C. As the material of the isolation member 43, for example, a fluororesin material can be used.

また、隔離部材43は、フッ素樹脂材に替えて、ガラスや石英などのテラヘルツ波透過性材料を基板とし、その表面にフッ素樹脂を塗布して構成してもよい。テラヘルツ波透過性材料としては、目的とする含水率Rwの測定(例えば、Rw<2%、2%≦Rw<5%、及びRw≧5%の判別)が可能な程度に、テラヘルツ波を十分透過させることができる材料が用いることができる。 Further, the isolation member 43 may be configured by using a terahertz wave transmissive material such as glass or quartz as a substrate instead of the fluororesin material and applying a fluororesin to the surface thereof. As the terahertz wave transmissive material, the terahertz wave is sufficiently sufficient to measure the target water content Rw (for example, discrimination of Rw <2%, 2% ≤ Rw <5%, and Rw ≥ 5%). A material that can be permeated can be used.

一例として、隔離部材43の材料としては、エチレンテトラフルオロエチレン(以下、ETFE)、四フッ化エチレン-パーフルオロアルコキシエチレンの共重合体(PFA)を用いることができる。ただし、隔離部材43の材料は、これら例示したものに限定されるものではなく、所定のテラヘルツ波透過性、耐油性、耐水性、耐熱性を有し、含水率Rw<2%、2%≦Rw<5%、Rw≧5%の判別が可能な材料であればなお好ましい。さらに、フッ素樹脂材料の中でも、テラヘルツ波が極性分子によって吸収されることから、非極性分子からなるフッ素樹脂材料が、隔離部材43の材料として望ましい。 As an example, as the material of the isolation member 43, ethylene tetrafluoroethylene (hereinafter referred to as ETFE) or a copolymer of ethylene tetrafluoride-perfluoroalkoxyethylene (PFA) can be used. However, the material of the isolation member 43 is not limited to these exemplified materials, and has predetermined terahertz wave permeability, oil resistance, water resistance, and heat resistance, and has a water content Rw <2%, 2% ≦. Any material capable of discriminating between Rw <5% and Rw ≧ 5% is still preferable. Further, among the fluororesin materials, the fluororesin material composed of non-polar molecules is desirable as the material of the isolation member 43 because the terahertz wave is absorbed by the polar molecules.

上記の隔離部材43に用いられるフッ素樹脂は、撥油性及び撥水性を有する。燃料や水等の隔離部へ付着による汚れやすさの指標として、表面自由エネルギーがある。表面自由エネルギーについては、表面自由エネルギーが低いと、燃料や水が付着しにくく、表面自由エネルギーが高いと、燃料や水が付着しやすいことを意味する。すなわち、表面自由エネルギーが低いと、撥油性及び撥水性があるため汚れにくく、表面自由エネルギーが高いと、撥油性及び撥水性がなく、汚れやすい。したがって、表面自由エネルギーが低いフッ素樹脂を隔離部材43の材料として用いることで、隔離部材43の表面の汚れを抑制することができ、これにより含水率Rwの計測精度を上げることができる。 The fluororesin used for the isolation member 43 has oil repellency and water repellency. Surface free energy is an index of the ease of contamination due to adhesion to isolated parts such as fuel and water. Regarding the surface free energy, it means that when the surface free energy is low, fuel and water are hard to adhere, and when the surface free energy is high, fuel and water are easy to adhere. That is, when the surface free energy is low, it has oil repellency and water repellency, so that it is difficult to get dirty, and when the surface free energy is high, it has no oil repellency and water repellency, and it is easy to get dirty. Therefore, by using a fluororesin having a low surface free energy as the material of the isolation member 43, it is possible to suppress the contamination of the surface of the isolation member 43, thereby improving the measurement accuracy of the water content Rw.

また、隔離部材43の表面が汚れにくいことから、給油機10のメンテナンスや、隔離部材43や計測部品の交換の頻度を下げることも可能となる。隔離部材43の形状は、テラヘルツ波発信部41およびテラヘルツ波検出部42を供給燃料に直接接触させない形状であれば、チューブや板状、筒状でもよい。 Further, since the surface of the isolation member 43 is less likely to be soiled, it is possible to reduce the frequency of maintenance of the refueling machine 10 and replacement of the isolation member 43 and measurement parts. The shape of the isolation member 43 may be a tube, a plate, or a cylinder as long as the terahertz wave transmitting unit 41 and the terahertz wave detecting unit 42 are not in direct contact with the supplied fuel.

また、一般的に、水分が混入した燃料を大流量・高吐出で給油する際、燃料油と水分が混じり合い、水泡や気泡が発生する。水泡や気泡の粒子径は、静水下での気泡及び水泡の評価では、およそ200~300μmの範囲である。 Further, in general, when refueling a fuel mixed with water at a large flow rate and high discharge, the fuel oil and the water are mixed, and water bubbles and bubbles are generated. The particle size of the blisters and bubbles is in the range of about 200 to 300 μm in the evaluation of the bubbles and blisters under still water.

そこで、図示した水検出器40では、波長が3mm~300μm(周波数が0.1THz~1.0THz)のテラヘルツ波を、テラヘルツ波発信部41から出射し、テラヘルツ波検出部42に入射させる。テラヘルツ波の波長(3mm~300μm)は、水泡や気泡の粒子径(200~300μm程度)と同等か、それよりも十分に長波長帯にある場合が多い。このため、テラヘルツ波は、水泡や気泡による散乱の影響をほとんど受けない利点がある。 Therefore, in the illustrated water detector 40, a terahertz wave having a wavelength of 3 mm to 300 μm (frequency is 0.1 THz to 1.0 THz) is emitted from the terahertz wave transmitting unit 41 and incident on the terahertz wave detecting unit 42. The wavelength of the terahertz wave (3 mm to 300 μm) is often equal to or sufficiently longer than the particle size of water bubbles or bubbles (about 200 to 300 μm). Therefore, the terahertz wave has an advantage that it is hardly affected by scattering by water bubbles or bubbles.

テラヘルツ波が通過し供給燃料が流通する、テラヘルツ波発信部41とテラヘルツ波検出部42との間の検出域の距離Lは、テラヘルツ波が水に吸収される量に鑑みて、テラヘルツ波が透過可能な距離に設定されている。 The distance L in the detection range between the terahertz wave transmitting unit 41 and the terahertz wave detecting unit 42, through which the terahertz wave passes and the supplied fuel flows, is such that the terahertz wave is transmitted in view of the amount of the terahertz wave absorbed by water. It is set to a possible distance.

テラヘルツ波発信部41とテラヘルツ波検出部42との間の検出域の距離Lは、その距離が長くなるにつれて、検出域を透過するテラヘルツ波の減衰量が多くなり、テラヘルツ波の受信量の損失が大きくなり、含水率Rwの計測精度が低下する。この観点からは、検出域の距離Lは短いほうが好ましい。 As for the distance L in the detection area between the terahertz wave transmitting unit 41 and the terahertz wave detecting unit 42, the attenuation of the terahertz wave passing through the detection area increases as the distance increases, and the reception amount of the terahertz wave is lost. Increases, and the measurement accuracy of the water content Rw decreases. From this point of view, it is preferable that the distance L in the detection range is short.

そこで、検出域の距離Lは、含水率Rwの計測精度が低くならず、かつ、含水率Rwの変化量を判別することができる長さに設定されている。検出域の距離Lは、 テラヘルツ波の周波数と水の吸収係数とに基づいて算出することが可能である。例えば、テラヘルツ波の波長が0.3THzである場合における水の吸収係数は100cm-1である(非特許文献、S.G.Wamen et al, Appl.opt. vol.23, p.1206(1984))。 Therefore, the distance L in the detection range is set to a length that does not lower the measurement accuracy of the water content Rw and can determine the amount of change in the water content Rw. The distance L in the detection range can be calculated based on the frequency of the terahertz wave and the absorption coefficient of water. For example, when the wavelength of the terahertz wave is 0.3 THz, the absorption coefficient of water is 100 cm -1 (Non-Patent Document, SGWamen et al, Appl.opt. Vol.23, p.1206 (1984)).

例えば、図示の水検出器40の構成で、含水率Rw>5%を検知するためには、テラヘルツ波の水による吸収が大きいため、検出域の距離Lは短いほうが好ましい(例えば、6mm以下)。検出域の距離Lをそれよりも長くすると、水によるテラヘルツ波の吸収が大きく、テラヘルツ波が全量減衰してしまい、テラヘルツ波検出部42側でテラヘルツ波を検出できなくなることが生じ得る。検出域の距離Lが短い方が、伝搬に伴うテラヘルツ波の損失が少なくなり、受信強度を高められるため、含水率Rwの検出感度を高くすることができる。 For example, in the configuration of the water detector 40 shown in the figure, in order to detect the water content Rw> 5%, it is preferable that the distance L in the detection range is short (for example, 6 mm or less) because the absorption of terahertz waves by water is large. .. If the distance L in the detection region is made longer than that, the absorption of the terahertz wave by water is large, the terahertz wave is completely attenuated, and the terahertz wave may not be detected on the terahertz wave detection unit 42 side. When the distance L in the detection range is short, the loss of the terahertz wave due to propagation is small and the reception intensity can be increased, so that the detection sensitivity of the water content Rw can be increased.

例えば、図示の水検出器40の場合は、供給燃料が流通する検出域の距離Lは4mm、テラヘルツ波発信部41の発信端面とテラヘルツ波検出部42の受信端面との間の距離(テラヘルツ波の光路長)は10mmとし、コリメートレンズを使用しない構成とした。また、隔離部材43にはETFEのチューブを使用し、テラヘルツ波発信部41からのテラヘルツ波の発振周波数が0.3THzである構成とした。 For example, in the case of the water detector 40 shown in the figure, the distance L in the detection area through which the supplied fuel flows is 4 mm, and the distance between the transmitting end surface of the terahertz wave transmitting unit 41 and the receiving end surface of the terahertz wave detecting unit 42 (terahertz wave). The optical path length) was set to 10 mm, and a collimating lens was not used. Further, an ETFE tube was used for the isolation member 43, and the oscillation frequency of the terahertz wave from the terahertz wave transmitting unit 41 was set to 0.3 THz.

なお、図示は省略するが、テラヘルツ波発信部41及びテラヘルツ波検出部42の間にコリメートレンズを配置することもできる。コリメートレンズを配置することで、テラヘルツ波検出部42でのテラヘルツ波の受信強度を高め、テラヘルツ波をより遠方まで高い強度のままで送信することができるようになる。テラヘルツ波検出部42におけるテラヘルツ波の受信強度が十分に高く、含水率Rwの定量が可能であれば、コリメートレンズは用いなくてもよい。 Although not shown, a collimating lens may be arranged between the terahertz wave transmitting unit 41 and the terahertz wave detecting unit 42. By arranging the collimating lens, the reception intensity of the terahertz wave in the terahertz wave detection unit 42 is increased, and the terahertz wave can be transmitted farther with high intensity. If the reception intensity of the terahertz wave in the terahertz wave detection unit 42 is sufficiently high and the water content Rw can be quantified, the collimating lens may not be used.

このように構成された水検出器40のテラヘルツ波発信部41およびテラヘルツ波検出部42は、それぞれ水検知制御装置50に接続され、給油機制御装置30からの制御信号に基づいて水検知制御装置50によって作動制御され得る。その際、テラヘルツ波検出部42による受信信号(テラヘルツ波の受信強度に基づく水検出信号)は、水検知制御装置50に出力され、水検知制御装置50では、この受信信号に基づき、テラヘルツ波発信部41とテラヘルツ波検出部42との間の、供給管路16内部の検出域を通過する燃料の含水率Rwが演算される。 The terahertz wave transmitting unit 41 and the terahertz wave detecting unit 42 of the water detector 40 configured in this way are each connected to the water detection control device 50, and the water detection control device is based on the control signal from the refueling machine control device 30. The operation can be controlled by 50. At that time, the received signal (water detection signal based on the reception intensity of the terahertz wave) by the terahertz wave detection unit 42 is output to the water detection control device 50, and the water detection control device 50 transmits the terahertz wave based on this received signal. The water content Rw of the fuel passing through the detection area inside the supply pipeline 16 between the unit 41 and the terahertz wave detection unit 42 is calculated.

図示の例では、テラヘルツ波検出部42による受信信号は、例えばテラヘルツ波の受信強度に応じた大きさの電圧信号に変換されて、水検知制御装置50に取り込まれる。水検知制御装置50は、例えばCPU,メモリ,インターフェース等を備えたコンピュータ装置によって構成され、その記憶部には、既知の含水率Rwと電圧値の関係を示した検量線が予め記憶されている。水検知制御装置50は、水検出器40から水検出信号として取り込んだ、テラヘルツ波の受信強度に応じた大きさの電圧信号から、例えば、供給対象への供給液種や供給燃料の吐出量に応じた検量線に基づいて、供給対象に対する供給燃料中の含水率Rwを演算する。 In the illustrated example, the received signal by the terahertz wave detection unit 42 is converted into a voltage signal having a magnitude corresponding to, for example, the reception intensity of the terahertz wave, and is taken into the water detection control device 50. The water detection control device 50 is composed of, for example, a computer device including a CPU, a memory, an interface, and the like, and a calibration curve showing the relationship between the known water content Rw and the voltage value is stored in advance in the storage unit. .. The water detection control device 50 uses a voltage signal of a magnitude corresponding to the reception intensity of the terahertz wave, which is captured as a water detection signal from the water detector 40, to, for example, the supply liquid type to the supply target and the discharge amount of the supply fuel. Based on the corresponding calibration curve, the water content Rw in the supplied fuel for the supply target is calculated.

図3、図4は、水検知制御装置の記憶部に予め記憶されている検量線を説明するための模式図である。図3は、供給液種が軽油で吐出流量が75L/minである場合における給油機10の検量線の模式図であり、図4は、供給液種がレギュラーガソリンで吐出流量が40L/minである場合における給油機10の検量線の模式図である。 3 and 4 are schematic views for explaining a calibration curve stored in advance in the storage unit of the water detection control device. FIG. 3 is a schematic diagram of the calibration curve of the refueling machine 10 when the supply liquid type is light oil and the discharge flow rate is 75 L / min, and FIG. 4 is a diagram in which the supply liquid type is regular gasoline and the discharge flow rate is 40 L / min. It is a schematic diagram of the calibration curve of the refueling machine 10 in a certain case.

図3および図4ともに、含水率Rwを様々に変化させた場合における、テラヘルツ波検出部42でのテラヘルツ波の受信強度をプロットした結果を示したものである。図中、同一の含水率の値に対するテラヘルツ波の受信強度の値のばらつき(標準偏差)は、エラーバーで示してある。いずれの給油機10とも、含水率Rwが大きくなるほど、テラヘルツ波検出部42でのテラヘルツ波の受信強度は低下する。検量線Cは、このように含水率Rwを様々に変化させた場合における、テラヘルツ波検出部42でのテラヘルツ波の受信強度をプロットした結果を基にして作成される。いずれの給油機10とも、検出域の距離Lが4mm、テラヘルツ波発信部41の発信端面とテラヘルツ波検出部42の受信端面との間の距離(テラヘルツ波の光路長)が10mm、コリメートレンズを使用しない構成、隔離部材43にはETFEのチューブを使用、テラヘルツ波発信部41からのテラヘルツ波の発振周波数が0.3THzで同一であるため、供給液種の違いや吐出流量の大きさの違いによる影響を余り受けずに、含水率Rwが2%以下、2%から5%、5%以上であるかの判定が検量線Cを用いて可能であることが理解される。 Both FIGS. 3 and 4 show the results of plotting the reception intensity of the terahertz wave in the terahertz wave detection unit 42 when the water content Rw is variously changed. In the figure, the variation (standard deviation) of the received intensity value of the terahertz wave with respect to the same water content value is indicated by an error bar. In any of the refueling machines 10, the larger the water content Rw, the lower the reception intensity of the terahertz wave in the terahertz wave detection unit 42. The calibration curve C is created based on the result of plotting the reception intensity of the terahertz wave in the terahertz wave detection unit 42 when the water content Rw is variously changed in this way. In each of the refueling machines 10, the distance L in the detection range is 4 mm, the distance between the transmitting end surface of the terahertz wave transmitting unit 41 and the receiving end surface of the terahertz wave detecting unit 42 (terahertz wave optical path length) is 10 mm, and the collimating lens is used. Not used configuration, ETFE tube is used for the isolation member 43, and the oscillation frequency of the terahertz wave from the terahertz wave transmitter 41 is the same at 0.3 THz, so the difference in the supply liquid type and the size of the discharge flow rate are different. It is understood that it is possible to determine whether the water content Rw is 2% or less, 2% to 5%, 5% or more by using the calibration line C without being affected by the above.

このように、図示の水検出器40の構成によれば、燃料の含水率Rwが、安全基準を超える5%(第2の閾値)に達したか否かを検出することに加え、安全基準は満たしているが装置の保守点検が必要又は推奨されると判断されるレベル(2%(第1の閾値)≦Rw<5%(第2の閾値))にあるか否かも高精度に検出することが可能となる。このような高精度な検知が可能となることで、装置の保守や点検などの対策を早期に施すことができる給油機10を提供することができる。 As described above, according to the configuration of the illustrated water detector 40, in addition to detecting whether or not the water content Rw of the fuel reaches 5% (second threshold value) exceeding the safety standard, the safety standard Is satisfied, but it is also detected with high accuracy whether or not it is at a level (2% (first threshold value) ≤ Rw <5% (second threshold value)) where it is judged that maintenance and inspection of the equipment is necessary or recommended. It becomes possible to do. By enabling such highly accurate detection, it is possible to provide a refueling machine 10 that can take measures such as maintenance and inspection of the device at an early stage.

この演算の結果は、水検知制御装置50から給油機制御装置30に送信された後、給油量等の給油情報が表示される表示器22に表示される。そして、演算の結果の燃料の含水率Rwが所定の範囲内であることに該当する場合、給油機制御装置30からの指示の下、警報器23により警報が発せられる。 The result of this calculation is transmitted from the water detection control device 50 to the refueling machine control device 30, and then displayed on the display 22 on which refueling information such as the refueling amount is displayed. Then, when the water content Rw of the fuel as a result of the calculation falls within a predetermined range, an alarm is issued by the alarm device 23 under the instruction from the refueling machine control device 30.

給油機制御装置30は、作業者による給油ノズル18の操作に基づく給油作業の進行に合わせて、給油機10におけるポンプ駆動モータ13すなわちポンプ12、表示器22といった各部の作動を制御し、流量計に付設された流量発信器15から給油中に出力される流量パルスを計数して給油量(供給対象に供給された供給燃料量)等を演算し、表示器22に給油量を含む給油作業に係る給油情報を表示する。 The refueling machine control device 30 controls the operation of each part such as the pump drive motor 13, that is, the pump 12 and the display 22 in the refueling machine 10 according to the progress of the refueling work based on the operation of the refueling nozzle 18 by the operator, and the flow meter. The flow rate pulse output during refueling from the flow rate transmitter 15 attached to is counted to calculate the refueling amount (the amount of fuel supplied to the supply target), etc., and the display 22 is used for refueling work including the refueling amount. Display the relevant refueling information.

また、給油機制御装置30は、水検知制御装置50による供給燃料の含水率の測定を制御するとともに、水検知制御装置50で演算された、水検出器40の検出域における供給燃料の含水率(水検出器40の検出域に所在し、また通過する燃料の含水率)の演算結果を受信し、これら演算結果に従い、給油機10の全体ならびに各部を制御する。加えて、図示の例の給油機制御装置30の場合は、給油作業の実行より取得されるこれら演算結果の蓄積から給油機制御装置30もしくは水検知制御装置50によって生成される、含水率に係る各種トレンド情報を、表示器22に視認可能な状態で表示させることができる。 Further, the refueling machine control device 30 controls the measurement of the water content of the supplied fuel by the water detection control device 50, and also controls the water content of the supplied fuel in the detection range of the water detector 40 calculated by the water detection control device 50. It receives the calculation results of (the water content of the fuel located in the detection area of the water detector 40 and passes through it), and controls the entire refueling machine 10 and each part according to these calculation results. In addition, in the case of the refueling machine control device 30 of the illustrated example, it relates to the water content generated by the refueling machine control device 30 or the water detection control device 50 from the accumulation of these calculation results acquired from the execution of the refueling work. Various trend information can be displayed on the display 22 in a visible state.

また、供給対象に供給している燃料に含水率Rwの異常が発生したことが水検知制御装置50で判定された場合は、給油機制御装置30は、水検知制御装置50からの異常判定結果を受けて、例えばブザー等により構成される警報器23等といった異常判定結果を出力する出力部に対して異常発生指示を出力することもできる。 When the water detection control device 50 determines that an abnormality in the water content Rw has occurred in the fuel supplied to the supply target, the refueling machine control device 30 determines the abnormality determination result from the water detection control device 50. In response to this, it is also possible to output an abnormality occurrence instruction to an output unit that outputs an abnormality determination result, such as an alarm device 23 composed of a buzzer or the like.

給油機制御装置30は、水検知制御装置50と同様に、例えばCPU,メモリ,インターフェース等を備えたコンピュータ装置によって構成されて、水検知制御装置50と信号接続およびデータ接続された構成になっている。なお、上記説明では、両者の機能を明確にするため、給油機制御装置30と水検知制御装置50とは、それぞれ別装置として図1ではブロックを分けて異なる符号を付して示したが、水検知制御装置50は、CPU,メモリ,インターフェース等を備えたコンピュータ装置からなる給油機制御装置30で共用させることも可能である。 Like the water detection control device 50, the refueling machine control device 30 is configured by a computer device provided with, for example, a CPU, a memory, an interface, etc., and is configured to be signal-connected and data-connected to the water detection control device 50. There is. In the above description, in order to clarify the functions of both, the refueling machine control device 30 and the water detection control device 50 are shown as separate devices in FIG. 1 by dividing the blocks and assigning different reference numerals. The water detection control device 50 can also be shared by the refueling machine control device 30 including a computer device including a CPU, a memory, an interface, and the like.

次に、本実施例の給油機10の、給油作業時における各部の制御構成について、図5~図7に基づいて説明する。 Next, the control configuration of each part of the refueling machine 10 of this embodiment at the time of refueling work will be described with reference to FIGS. 5 to 7.

図5は、給油作業の際に給油機制御装置が実行する給油機給油制御の一実施例のフローチャートである。
図6は、給油作業の際に水検知制御装置が実行する含水率平均値Rwav測定の一実施例のフローチャートである。
図7は、給油作業の際に給油機制御装置若しくは水検知制御装置のうちのいずれかが実行する時系列区間の計測の一実施例のフローチャートである。
FIG. 5 is a flowchart of an embodiment of the refueling machine refueling control executed by the refueling machine control device during the refueling work.
FIG. 6 is a flowchart of an embodiment of the water content average value Rwav measurement executed by the water detection control device during the refueling operation.
FIG. 7 is a flowchart of an embodiment of measurement of a time-series section executed by either a refueling machine control device or a water detection control device during refueling work.

図5に示すように、給油機制御装置30による給油機給油制御では、給油ノズル18がノズル掛け19に収納されていて給油作業が行われていない給油機10の待機状態では、給油機制御装置30は、ノズルスイッチ21のスイッチ検出出力を基に、作業者によって給油ノズル18がノズル掛け19から取り出されて給油作業が開始されたか否かを監視している(ステップSD010)。 As shown in FIG. 5, in the refueling machine refueling control by the refueling machine control device 30, the refueling machine control device is in the standby state of the refueling machine 10 in which the refueling nozzle 18 is housed in the nozzle hook 19 and the refueling work is not performed. 30 monitors whether or not the refueling nozzle 18 is taken out from the nozzle hook 19 and the refueling work is started by the operator based on the switch detection output of the nozzle switch 21 (step SD010).

給油ノズル18がノズル掛け19から作業者によって取り出され、給油作業が開始されると(SD010、YES)、給油機制御装置30は、ポンプ駆動モータ13を駆動して(SD020)、ポンプ12から給油ノズル18への送液を開始させ、表示器22の給油量表示をゼロリセットする等して(SD030)、供給対象への給油ノズル18の開弁操作に基づく実際の燃料供給開始に備えた準備処理を行う。 When the refueling nozzle 18 is taken out by the operator from the nozzle hook 19 and the refueling work is started (SD010, YES), the refueling machine control device 30 drives the pump drive motor 13 (SD020) and refuels from the pump 12. Preparation for the actual start of fuel supply based on the valve opening operation of the refueling nozzle 18 to the supply target by starting the liquid feeding to the nozzle 18 and resetting the refueling amount display of the display 22 to zero (SD030). Perform processing.

上述した準備処理を終えると、給油機制御装置30は、流量発信器15から供給される燃料油液の所定単位流量(例えば、0.01リットル)毎の流れに対応した流量パルスからなる流量信号を基に供給対象に対する給油量(燃料供給量)を演算して表示器22に表示し(SD040)、水検知制御装置50から、後述の水検知制御装置50が演算した供給燃料の含水率の平均値(含水率平均値)Rwavを取得するとともに(SD050)、供給対象に対する給油を終了するか否かの給油終了の確認(SD060)、取得した含水率平均値Rwavが2%未満であるか否かの確認(SD070)、取得した含水率平均値Rwavが2%以上で5%未満であるか否かの確認(SD080)を行う。そして、これら確認の結果、含水率平均値Rwavが2%未満である場合(SD070、YES)や2%以上で5%未満である場合(SD080、YES)、すなわち含水率平均値Rwavが5%未満である場合は、給油機制御装置30は、ステップSD040-SD050-SD060-SD070に示した処理、またはステップSD040-SD050-SD060-SD070-SD080に示した処理を繰り返し行うようになっている。 After completing the preparatory process described above, the refueling machine control device 30 is a flow signal consisting of a flow rate pulse corresponding to a flow of each predetermined unit flow rate (for example, 0.01 liter) of the fuel oil liquid supplied from the flow rate transmitter 15. The amount of refueling (fuel supply amount) for the supply target is calculated based on the above and displayed on the display 22 (SD040), and the water content of the supplied fuel calculated by the water detection control device 50 described later from the water detection control device 50 Acquire the average value (water content average value) Rwav (SD050), confirm the end of refueling to determine whether to end refueling to the supply target (SD060), and check whether the acquired average water content Rwav is less than 2%. Confirmation of whether or not (SD070) and whether or not the acquired average water content Rwav is 2% or more and less than 5% (SD080) are performed. As a result of these confirmations, when the average water content Rwav is less than 2% (SD070, YES) or when it is 2% or more and less than 5% (SD080, YES), that is, the average water content Rwav is 5%. If it is less than, the refueling machine control device 30 is adapted to repeat the process shown in step SD040-SD050-SD060-SD070 or the process shown in step SD040-SD050-SD060-SD070-SD080.

これら一連の処理において、ステップSD060で示した、供給対象に対する給油を終了するか否かの給油終了の確認は、給油機制御装置30によって、例えば、ノズル戻し、制限量/制限時間到達、設定給油量の給油完了、緊急停止信号の入力、緊急停止ボタンの操作に基づいて行われる。そして、給油機制御装置30は、給油終了を確認すると(SD060、YES)、ポンプ12等の送液機器による給油ノズル18への送液を停止させる(SD090)。 In these series of processes, confirmation of the end of refueling of whether or not to end refueling to the supply target, which is shown in step SD060, is performed by, for example, nozzle return, limit amount / time limit arrival, and set refueling by the refueling machine control device 30. It is based on the completion of refueling of the amount, the input of the emergency stop signal, and the operation of the emergency stop button. Then, when the refueling machine control device 30 confirms the end of refueling (SD060, YES), the refueling machine control device 30 stops the refueling to the refueling nozzle 18 by the refueling device such as the pump 12 (SD090).

また、給油機制御装置30は、ステップSD070の、取得した含水率平均値Rwavが2%未満であるか否かの確認で、2%未満であることが確認された場合は(SD070、YES)、表示器22および/または警報器23で含水率平均値Rwavが異常であることを警報中であるか否かを確認し(SD071)、警報中である場合は(SD071、YES)、この警報を一旦停止してから(SD072)、ステップSD040-SD050-SD060-SD070に示した処理、またはステップSD040-SD050-SD060-SD070-SD080に示した処理を繰り返す。また、給油機制御装置30は、ステップSD080の、取得した含水率平均値Rwavが2%以上で5%未満であるか否かの確認で、2%以上で5%未満であることが確認された場合は(SD080、YES)、表示器22および/または警報器23で含水率平均値Rwavが異常であることを警報中であるか否かを確認し(SD081)、警報中でない場合は(SD081、NO)、表示器22および/または警報器23で警報開始させてから(SD082)、ステップSD040-SD050-SD060-SD070に示した処理、またはステップSD040-SD050-SD060-SD070-SD080に示した処理を繰り返す。 Further, the refueling machine control device 30 confirms whether or not the acquired average water content Rwave is less than 2% in step SD070, and if it is confirmed that it is less than 2% (SD070, YES). , The display 22 and / or the alarm 23 confirms whether or not an alarm is being made to indicate that the average water content Rwav is abnormal (SD071), and if an alarm is being made (SD071, YES), this alarm. Is temporarily stopped (SD072), and then the process shown in step SD040-SD050-SD060-SD070 or the process shown in step SD040-SD050-SD060-SD070-SD080 is repeated. Further, in the refueling machine control device 30, it was confirmed in step SD080 whether or not the acquired average water content Rwav was 2% or more and less than 5%, and it was confirmed that it was 2% or more and less than 5%. If (SD080, YES), the indicator 22 and / or the alarm 23 confirms whether or not an abnormal water content average value Rwav is being alarmed (SD081), and if not (SD081). SD081, NO), after the alarm is started by the display 22 and / or the alarm 23 (SD082), the process shown in step SD040-SD050-SD060-SD070, or the process shown in step SD040-SD050-SD060-SD070-SD080. Repeat the process.

一方、給油機制御装置30は、ステップSD070およびステップSD080の確認で、含水率平均値Rwavが5%以上であることが確認された場合は(SD070、NOかつSD080、NO)、ステップSD040-SD050-SD060-SD070に示した処理、またはステップSD040-SD050-SD060-SD070-SD080に示した処理を繰り返すことなく、表示器22および/または警報器23で含水率平均値Rwavが異常であることを警報中であるか否かを確認し(SD081)、警報中でない場合は(SD083、NO)、表示器22および/または警報器23で警報開始させ(SD084)、ポンプ12等の送液機器による給油ノズル18への送液を停止させる(SD090)。 On the other hand, when it is confirmed in the confirmation of step SD070 and step SD080 that the average water content Rwav is 5% or more (SD070, NO and SD080, NO), the refueling machine control device 30 has step SD040-SD050. -The process shown in SD060-SD070 or the process shown in step SD040-SD050-SD060-SD070-SD080 is not repeated, and the display 22 and / or the alarm 23 indicate that the average water content Rwav is abnormal. It is confirmed whether or not an alarm is being generated (SD081), and if it is not an alarm (SD083, NO), an alarm is started by the display 22 and / or the alarm 23 (SD084), and a liquid feeding device such as a pump 12 is used. The liquid feeding to the refueling nozzle 18 is stopped (SD090).

給油機制御装置30は、ステップSD090でポンプ12等の送液機器による給油ノズル18への送液を停止させた後は、作業者によって給油ノズル18がノズル掛け19に収納されて給油作業が終了されたか否かを監視している(SD100)。そして、給油機制御装置30は、給油作業が終了されたことを確認されると(SD100、YES)、含水率平均値Rwavが異常であることを警報中であるか否かを確認し(SD110)、警報中でない場合(SD110、NO)、すなわち、供給燃料における水の混入が異常で供給対象に対する給油が強制的に中止させられた(SD080、NO)以外の場合として、現在の給油作業をそのまま終了させて、次の給油作業に備える。 After the refueling machine control device 30 stops the liquid feeding to the refueling nozzle 18 by the refueling device such as the pump 12 in step SD090, the refueling nozzle 18 is housed in the nozzle hook 19 by the operator and the refueling work is completed. It is monitoring whether or not it has been done (SD100). Then, when it is confirmed that the refueling work has been completed (SD100, YES), the refueling machine control device 30 confirms whether or not an alarm is being given that the average water content Rwav is abnormal (SD110). ), The current refueling work is performed except when the alarm is not in effect (SD110, NO), that is, the refueling to the supply target is forcibly stopped due to abnormal water contamination in the supply fuel (SD080, NO). Finish as it is and prepare for the next refueling work.

これに対し、警報中である場合(SD110、NO)、すなわち、ステップSD080で、供給燃料における水の混入が異常で供給対象に対する給油が強制的に中止させられた場合は、給油機制御装置30は、係員によるこの異常状態についての認識後、所定のリセット操作がなされるまで(SD111)、警報を停止せず、警報中を維持する(SD120)。 On the other hand, when an alarm is being issued (SD110, NO), that is, in step SD080, when water is abnormally mixed in the supply fuel and refueling to the supply target is forcibly stopped, the refueling machine control device 30 After recognizing this abnormal state by the staff, the alarm is not stopped and the alarm is maintained until a predetermined reset operation is performed (SD111) (SD120).

一方、水検知制御装置50による含水率平均値Rwav測定は、図5のステップSD010で給油作業の開始が給油機制御装置30によって検知されると(図5、ステップSD010)、給油機制御装置30からの測定開始指示を受けて、水検知制御装置50により、給油機制御装置30による給油機給油制御と並行して、予め定められている実行間隔、すなわち、予め定められている水検出器40のテラヘルツ波検出部42の出力についてのサンプリング間隔で繰り返し実行される。 On the other hand, in the water content average value Rwav measurement by the water detection control device 50, when the start of the refueling work is detected by the refueling machine control device 30 in step SD010 of FIG. 5 (FIG. 5, step SD010), the refueling machine control device 30 In response to the measurement start instruction from the water detection control device 50, in parallel with the refueling machine refueling control by the refueling machine control device 30, a predetermined execution interval, that is, a predetermined water detector 40 It is repeatedly executed at the sampling interval for the output of the terahertz wave detection unit 42 of.

なお、給油機制御装置30からの測定開始指示の出力タイミングとしては、給油ノズル18がノズル掛け19から作業者によって取り出され給油作業が開始されたとき、または、ノズル掛け19から取り出された給油ノズル18が作業者によって開弁操作され、供給対象に対する燃料供給が実際に開始されたとき等が利用可能である。例えば、給油機制御装置30は、前者の場合は、ノズルスイッチ21のスイッチ検出出力を基に測定開始指示を水検知制御装置50に出力することができ、後者の場合は、ノズルスイッチ21のスイッチ検出出力と流量発信器15からの流量パルスの入力とを基に測定開始指示を水検知制御装置50に出力することができる。 The output timing of the measurement start instruction from the refueling machine control device 30 is when the refueling nozzle 18 is taken out by the operator from the nozzle hook 19 and the refueling work is started, or the refueling nozzle taken out from the nozzle hook 19. It can be used when the valve 18 is opened by the operator and the fuel supply to the supply target is actually started. For example, in the former case, the refueling machine control device 30 can output a measurement start instruction to the water detection control device 50 based on the switch detection output of the nozzle switch 21, and in the latter case, the switch of the nozzle switch 21. A measurement start instruction can be output to the water detection control device 50 based on the detection output and the input of the flow rate pulse from the flow rate transmitter 15.

図6に示すように、含水率平均値Rwav測定では、水検知制御装置50は、水検出器40のテラヘルツ波検出部42からのテラヘルツ波の受信強度に応じた大きさの電圧信号を読み込み(ステップSR010)、この読み込んだ電圧信号を電圧値にA/D変換する等してテラヘルツ波の受信量を演算する(SR020)。それから、水検知制御装置50は、予め記憶部にデータテーブル若しくは演算式として記憶してある既知の含水率Rwと電圧値の関係(検量線C)から、テラヘルツ波の受信量に対応する含水率Rwを演算し(SR030)、この含水率Rwを含水率平均値演算エリアに蓄積記憶する(SR040)。 As shown in FIG. 6, in the water content average value Rwav measurement, the water detection control device 50 reads a voltage signal having a magnitude corresponding to the reception intensity of the terahertz wave from the terahertz wave detection unit 42 of the water detector 40 ( Step SR010), the received amount of the terahertz wave is calculated by A / D converting the read voltage signal into a voltage value (SR020). Then, the water detection control device 50 has a water content corresponding to the received amount of the terahertz wave from the relationship between the known water content Rw and the voltage value (calibration curve C) stored in advance in the storage unit as a data table or an arithmetic expression. Rw is calculated (SR030), and the water content Rw is stored and stored in the water content average value calculation area (SR040).

それから、水検知制御装置50は、水検知制御装置50自身または給油機制御装置30で別途計測している所定の時系列区間の測定が完了し、含水率平均値Rwavの演算指示が入力されているか否かを確認する(SR050)。水検知制御装置50は、含水率平均値Rwavの演算指示が入力されている場合は(SR050、YES)、含水率平均値演算エリアに記憶されている当該時系列区間内の複数の含水率Rwを用いて、当該時系列区間における含水率平均値Rwavを演算し(SR060)、演算した含水率平均値Rwavを、今回の給油作業で取得された含水率平均値Rwavを蓄積しておくための履歴記憶エリアに記憶する一方(SR070)、必要に応じて、含水率平均値演算エリアに蓄積されている含水率Rwの記憶内容のクリアが行われる。 Then, the water detection control device 50 completes the measurement of the predetermined time-series section separately measured by the water detection control device 50 itself or the refueling machine control device 30, and the calculation instruction of the water content average value Rwav is input. Check if it is present (SR050). When the calculation instruction of the water content average value Rwav is input (SR050, YES), the water detection control device 50 has a plurality of water content Rw in the time series section stored in the water content average value calculation area. Is used to calculate the average water content Rwav in the time-series section (SR060), and the calculated average water content Rwav is used to store the average water content Rwav acquired in the current refueling operation. While storing in the history storage area (SR070), the stored contents of the water content Rw stored in the water content average value calculation area are cleared, if necessary.

これに対し、SR050含水率平均値Rwavの演算指示が入力されていない場合は(SR050、NO)、含水率平均値Rwavの演算は行わずに、今回の含水率平均値Rwav測定を終了する。 On the other hand, when the calculation instruction of the SR050 average water content Rwav is not input (SR050, NO), the calculation of the average water content Rwav is not performed, and the current measurement of the average water content Rwav is terminated.

したがって、水検知制御装置50では、予め定められているサンプリング間隔で、水検出器40のテラヘルツ波検出部42から、テラヘルツ波検出部42が検出しているテラヘルツ波の検出出力(受信強度に応じた大きさの電圧信号)の取得が行われる一方、このサンプリング間隔よりも区間長さが大きな時系列区間毎に、当該時系列区間の含水率平均値Rwavの演算が行われるようになっている。 Therefore, in the water detection control device 50, the terahertz wave detection output (depending on the reception intensity) detected by the terahertz wave detection unit 42 from the terahertz wave detection unit 42 of the water detector 40 at a predetermined sampling interval. While the acquisition of the voltage signal of the same magnitude) is performed, the calculation of the average water content Rwav of the time-series section is performed for each time-series section whose section length is larger than this sampling interval. ..

次に、ステップSR050で述べた含水率平均値Rwavの演算指示について、その生成方法について、図7に基づいて説明する。含水率平均値Rwavの演算指示の生成は、図示の実施例では、給油機制御装置30と水検知制御装置50とは信号接続およびデータ接続された構成になっているため、水検知制御装置50または給油機制御装置30のうちのいずれでも実行可能であるが、ここでは、水検知制御装置50が実行する場合を例に説明する。 Next, the calculation instruction of the water content average value Rwav described in step SR050 will be described with reference to FIG. 7. In the illustrated embodiment, the water detection control device 50 and the water detection control device 50 are signal-connected and data-connected to generate the calculation instruction of the water content average value Rwav. Alternatively, any of the refueling machine control devices 30 can be executed, but here, a case where the water detection control device 50 executes the execution will be described as an example.

含水率平均値Rwavの演算指示では、図7に示すように、水検知制御装置50は、供給対象に対する給油が開始されたか否かを監視して(ステップSS010)、給油の開始を確認した場合は(SS010、YES)、図6のステップSR0600に示した含水率平均値Rwavの演算で利用される、区間長さが予め定められている時系列区間の計測を開始する(SS020)。 In the calculation instruction of the average water content Rwav, as shown in FIG. 7, the water detection control device 50 monitors whether or not refueling to the supply target is started (step SS010), and confirms the start of refueling. (SS010, YES) starts the measurement of the time-series section having a predetermined section length, which is used in the calculation of the water content average value Rwav shown in step SR0600 in FIG. 6 (SS020).

この場合、給油が開始されたか否かの確認は、図6に示した水検知制御装置50が含水率平均値Rwav測定の開始と同期していることが好ましく、例えば、給油ノズル18がノズル掛け19から作業者によって取り出され給油作業が開始されたか否か、ノズル掛け19から取り出された給油ノズル18が作業者によって開弁操作され、供給対象に対する燃料供給が実際に開始されたか否か等に基に行われる。 In this case, it is preferable that the water detection control device 50 shown in FIG. 6 synchronizes with the start of the water content average value Rwave measurement for confirmation of whether or not refueling has started. For example, the refueling nozzle 18 is nozzle-hooked. Whether or not the refueling work was started by being taken out by the worker from 19 and whether or not the refueling nozzle 18 taken out from the nozzle hook 19 was opened by the worker and the fuel supply to the supply target was actually started. It is done based on.

また、予め定められている時系列区間の区間長さは、図6に示した含水率Rwのサンプリング間隔に比べて時間長さが長くなるものであれば、例えば、所定時間(例えば、10sec)で規定することや、所定燃料供給量(例えば、10.00L単位、もしくは10L分の流量パルス数単位)で規定することが可能である。予め定められている時系列区間の区間長さを所定時間で規定した場合は、各時系列区間に含まれる含水率Rwの個数は時系列区間毎で略一定になる。また、予め定められている時系列区間の区間長さを所定燃料供給量で規定した場合は、各時系列区間に含まれる含水率Rwの個数は各時系列区間の燃料供給速度(吐出流速)の大きさの違いによって変化する。以下では、予め定められている時系列区間の区間長さを所定時間で規定した場合を例に説明する。 Further, the section length of the predetermined time-series section is, for example, a predetermined time (for example, 10 sec) as long as the time length is longer than the sampling interval of the water content Rw shown in FIG. It is possible to specify in the above, or in a predetermined fuel supply amount (for example, in units of 10.00 L or in units of the number of flow rate pulses for 10 L). When the section length of a predetermined time-series section is specified by a predetermined time, the number of water content Rw included in each time-series section is substantially constant for each time-series section. Further, when the section length of the predetermined time series section is specified by the predetermined fuel supply amount, the number of water content Rw included in each time series section is the fuel supply rate (discharge flow velocity) of each time series section. It changes depending on the size of. In the following, a case where the section length of a predetermined time-series section is defined by a predetermined time will be described as an example.

ステップSS020で、所定時間で規定されている時系列区間の区間長さの計測を開始すると、水検知制御装置50は、この所定時間の計時を完了したか否か(SS030)、給油の終了が確認されたか否か(SS040)をそれぞれ監視する。そして、水検知制御装置50は、所定時間の計時を完了し、その間に給油の終了が確認されなかった場合は(SS030、YES)、当該時系列区間に対応した含水率平均値Rwavの演算指示を出力して(SS031)、ステップSS020に戻り、所定時間で規定されている時系列区間の区間長さの計測を再び開始する。 When the measurement of the section length of the time-series section specified by the predetermined time is started in step SS020, the water detection control device 50 determines whether or not the time measurement of the predetermined time is completed (SS030), and the end of refueling is completed. Whether or not it has been confirmed (SS040) is monitored. Then, when the water detection control device 50 completes the time counting for a predetermined time and the end of refueling is not confirmed during that time (SS030, YES), the water content average value Rwav calculation instruction corresponding to the time series section is instructed. Is output (SS031), the process returns to step SS020, and the measurement of the section length of the time-series section defined by the predetermined time is started again.

一方、所定時間で規定されている時系列区間の区間長さの計測中に、給油の終了が確認された場合は(SS040、YES)、水検知制御装置50は、所定時間で規定されている時系列区間の区間長さの計測を終了し(SS041)、さらに、図示の例では、この間における図6に示した含水率平均値Rwavの測定の実行で履歴エリアに蓄積された当該給油作業において取得した含水率平均値Rwavを、履歴エリアから取り出して、当該給油作業と対応付けて、水検知制御装置50の記憶部に設けられた分析記憶エリアに保存記憶する(SS042)。これにより、水検知制御装置50の記憶部における分析記憶エリアには、給油作業毎に対応させて、当該給油作業中に図6に示した含水率平均値Rwavの測定の実行で取得された1または複数の含水率平均値Rwavが保存されることになる。 On the other hand, if the end of refueling is confirmed during the measurement of the section length of the time-series section specified in the predetermined time (SS040, YES), the water detection control device 50 is specified in the predetermined time. The measurement of the section length of the time-series section is completed (SS041), and in the illustrated example, in the refueling work accumulated in the history area by executing the measurement of the water content average value Rwav shown in FIG. 6 during this period. The acquired average water content Rwav is taken out from the history area, and is stored and stored in the analysis storage area provided in the storage unit of the water detection control device 50 in association with the refueling operation (SS042). As a result, the analysis storage area in the storage unit of the water detection control device 50 corresponds to each refueling operation, and was acquired by executing the measurement of the average water content Rwav shown in FIG. 6 during the refueling operation. Alternatively, a plurality of water content average values Rwav will be stored.

以上のように構成された本実施例の給油機10によれば、テラヘルツ波発信部41およびテラヘルツ波検出部42を有する水検出器40を備え、図3、図4に示したような含水率Rwが2%未満、2%から5%未満、5%以上であるかの判定が可能な検量線Cを用いて供給燃料の含水率平均値Rwを測定することができるので、供給対象に燃料を高吐出(例えば、75L/min)で大量(例えば、400L)に給油する給油装置に適用した場合でも、精度良く燃料の含水率Rwを計測することが可能になる。その結果、供給対象に供給する燃料の含水率Rwについて、含水率Rwが2%未満で異常がない場合と、含水率Rwが2%から5%未満で供給対象である車両での使用としては許容範囲内であるが給油機10において保守点検が必要又は推奨されると判断され得る場合と、含水率Rw5%以上で供給対象である車両で使用されると燃焼不良が起きる可能性が高い場合とを供給対象に対する給油中に区別することができる。 According to the refueling machine 10 of the present embodiment configured as described above, the water detector 40 having the terahertz wave transmitting unit 41 and the terahertz wave detecting unit 42 is provided, and the water content as shown in FIGS. 3 and 4 is provided. Since the average water content Rw of the supplied fuel can be measured using the calibration curve C that can determine whether Rw is less than 2%, 2% to less than 5%, or 5% or more, the fuel to be supplied to the supply target. Is applied to a refueling device that refuels a large amount (for example, 400 L) with a high discharge (for example, 75 L / min), it becomes possible to accurately measure the water content Rw of the fuel. As a result, regarding the water content Rw of the fuel supplied to the supply target, when the water content Rw is less than 2% and there is no abnormality, and when the water content Rw is 2% to less than 5% and it is used in the vehicle to be supplied. When it is within the permissible range but it can be judged that maintenance and inspection is necessary or recommended for the refueling machine 10, and when it is used in a vehicle to be supplied with a water content of Rw5% or more, there is a high possibility that combustion failure will occur. Can be distinguished during refueling to the supply target.

さらに、この供給燃料の含水率Rwの判別の際も、予め定められている時系列区間の供給燃料の含水率平均値Rwを演算して異常を判別するので、供給燃料全体の含水率は許容範囲内で異常がない場合であっても、水検出器40の検出域を瞬間的に通過する一部の供給燃料による瞬時含水率Rwが許容範囲外(例えば、2%≦Rw<5%、5%≦Rw)で、瞬間的に実際の供給燃料の値以上の含水率Rwに対応する電圧値(物性値)が水検出器40のテラヘルツ波検出部42によって一時的ではあるものの検出されてしまうような場合は、この事象だけに基づいて、直ちに、供給燃料の含水率Rwが許容範囲外で異常があると判定されることは無いため、より正確な異常検出を行える。 Further, when determining the water content Rw of the supplied fuel, the abnormality is determined by calculating the average water content Rw of the supplied fuel in a predetermined time series section, so that the water content of the entire supplied fuel is permissible. Even if there is no abnormality within the range, the instantaneous moisture content Rw due to some supplied fuel that momentarily passes through the detection range of the water detector 40 is out of the permissible range (for example, 2% ≤ Rw <5%, At 5% ≤ Rw), the voltage value (physical property value) corresponding to the water content Rw equal to or higher than the value of the actual supplied fuel is instantaneously detected by the terahertz wave detection unit 42 of the water detector 40, although it is temporary. In such a case, it is not immediately determined that the water content Rw of the supplied fuel is out of the permissible range and there is an abnormality based only on this event, so that more accurate abnormality detection can be performed.

図8は、供給燃料全体の含水率は許容範囲内で異常がない場合であっても、水検出器の検出域を瞬間的に通過する一部の供給燃料による瞬時含水率Rwが許容範囲外である給油作業の例の模式図である。 In FIG. 8, even if the water content of the entire supplied fuel is within the allowable range and there is no abnormality, the instantaneous water content Rw of some of the supplied fuels that momentarily pass through the detection range of the water detector is out of the allowable range. It is a schematic diagram of the example of the refueling work.

従来技術の給油機では、図8に示すような給油作業が事象として現れると、供給燃料全体の含水率平均値Rwavは2%未満であるのにもかかわらず、点線で示すような5%を超える瞬時含水率Rwが含まれていると、その測定時点で異常と判定されて給油作業が中止されてしまうが、予め定められている時系列区間の供給燃料の含水率平均値Rwを演算して異常を判別する本実施例の給油機10では、直ちに、供給燃料の含水率Rwが許容範囲外で異常があると判定されることは無いため、より正確な異常検出を行える。 In the conventional refueling machine, when the refueling work as shown in FIG. 8 appears as an event, the average water content Rwave of the entire supplied fuel is 5% as shown by the dotted line even though it is less than 2%. If the instantaneous moisture content Rw that exceeds is included, it is determined to be abnormal at the time of measurement and the refueling work is stopped, but the average moisture content Rw of the supplied fuel in the predetermined time series section is calculated. In the refueling machine 10 of the present embodiment for determining the abnormality, it is not immediately determined that the water content Rw of the supplied fuel is out of the permissible range and there is an abnormality, so that more accurate abnormality detection can be performed.

また、異常を検出するための判定値(例えば、2%≦Rw<5%、5%≦Rw)を変えてはいないため、本来は異常であるにもかかわらず、異常を検出できないという不都合を低減できる。 Further, since the determination value for detecting the abnormality (for example, 2% ≤ Rw <5%, 5% ≤ Rw) is not changed, there is an inconvenience that the abnormality cannot be detected even though it is originally an abnormality. Can be reduced.

また、本実施例の給油機10では、給油作業毎に対応させて、当該給油作業中に含水率平均値Rwavの測定の実行で取得された1または複数の含水率平均値Rwavが、水検知制御装置50の記憶部における分析記憶エリアに保存できるようになっているので、例えば図9~図11に示すような含水率のトレンドを、給油機制御装置30または水検知制御装置50は、この分析記憶エリア保存されている含水率平均値Rwavを基に演算して取得することができる。 Further, in the refueling machine 10 of the present embodiment, one or a plurality of water content average value Rwav acquired by executing the measurement of the water content average value Rwav during the refueling work is detected as water. Since it can be stored in the analysis storage area in the storage unit of the control device 50, for example, the refueling machine control device 30 or the water detection control device 50 can show the trend of the water content as shown in FIGS. 9 to 11. It can be calculated and acquired based on the water content average value Rwav stored in the analysis storage area.

図9は、含水率平均値Rwavを基に演算して取得した含水率のトレンドの一例である。 FIG. 9 is an example of the trend of the water content obtained by calculation based on the average water content Rwav.

図9は、直近50回の給油作業について、各給油作業毎に、作業毎の含水率平均値Rwavの平均値Rwav2を算出し、この作業毎の含水率平均値Rwavの平均値Rwav2を、縦軸を含水率の値[%]とし横軸を直近50回の給油作業別としたグラフ上にプロットした、含水率のトレンド分析結果である。この含水率のトレンド分析結果によれば、直近50回の給油作業における含水率の増/減/一定といった変化傾向を把握することができる。 In FIG. 9, for each of the last 50 refueling operations, the average value Rwav2 of the average water content Rwav for each operation is calculated, and the average value Rwav2 of the average water content Rwav for each operation is vertically calculated. It is the trend analysis result of the water content plotted on the graph with the axis as the value [%] of the water content and the horizontal axis as the latest 50 refueling operations. According to the trend analysis result of the water content, it is possible to grasp the change tendency such as increase / decrease / constant of the water content in the last 50 refueling operations.

図10は、含水率平均値Rwavを基に演算して取得した含水率のトレンドの別例である。 FIG. 10 is another example of the water content trend obtained by calculation based on the water content average value Rwav.

図10は、直近1か月間の給油作業について、各給油作業毎に、作業毎の含水率平均値Rwavの平均値Rwav2を算出し、さらにこれを基に1日の給油作業全体における含水率の平均値Rwav3と1週間の給油作業全体における含水率の平均値Rwav4を算出し、この含水率の平均値Rwav3およびRwav4を、縦軸を含水率の値[%]とし横軸を月日としたグラフ上にプロットした、含水率のトレンド分析結果である。この含水率のトレンド分析結果によれば、直近1か月間の給油作業における含水率の増/減/一定といった変化傾向を1日単位および1週間単位で把握することができる。 In FIG. 10, for each refueling work in the last one month, the average value Rwav2 of the average water content Rwav for each work is calculated, and based on this, the water content in the entire daily refueling work is calculated. The average value Rwav3 and the average value Rwav4 of the water content in the entire refueling work for one week were calculated, and the average values Rwav3 and Rwav4 of the water content were defined as the water content value [%] on the vertical axis and the month and day on the horizontal axis. It is the trend analysis result of the water content plotted on the graph. According to the trend analysis result of the water content, it is possible to grasp the change tendency such as increase / decrease / constant of the water content in the refueling work in the last one month on a daily basis and a weekly basis.

図11は、含水率平均値Rwavを基に演算して取得した含水率のトレンドのさらに別例である。 FIG. 11 is a further example of the trend of the water content obtained by calculating based on the average water content Rwav.

図11は、1日の給油作業について、各給油作業毎に、作業毎の含水率平均値Rwavの平均値Rwav2を算出し、この作業毎の含水率平均値Rwavの平均値Rwav2を基に、1日における給油作業の総回数に対して、平均値Rwav2のそれぞれ値範囲に対応した給油作業の回数が占める割合[%]を、縦軸を割合[%]とし横軸を平均値Rwav2の各値範囲したグラフ上に棒グラフで表した、含水率のトレンド分析結果である。この含水率のトレンド分析結果によれば、平均値Rwav2のそれぞれ値範囲のうち、どの値範囲の給油作業が多かったか少なかったかを把握することができる。 FIG. 11 shows, for each refueling work, the average value Rwav2 of the average water content Rwav for each work is calculated, and based on the average value Rwav2 of the average water content Rwav for each work, FIG. 11 is shown. The ratio [%] of the number of refueling operations corresponding to each value range of the average value Rwav2 to the total number of refueling operations in one day is the ratio [%] on the vertical axis and the average value Rwav2 on the horizontal axis. It is the trend analysis result of the water content shown by the bar graph on the graph with the value range. According to the trend analysis result of the water content, it is possible to grasp in which value range the refueling work was more or less in each value range of the average value Rwav2.

そして、これら図9~図11に示すような含水率のトレンドは、表示器22が画像表示可能な表示器であれば、当該表示器に表示させることができる。また、表示器22が画像表示可能な表示器でなくとも、例えば給油所LAN等によって当該給油機10と通信接続された給油管理装置(SSC)や給油所POSに送信出力することによって、これらの表示器に表示させることもできる。 If the display 22 is a display capable of displaying an image, the trend of the water content as shown in FIGS. 9 to 11 can be displayed on the display. Further, even if the display 22 is not a display capable of displaying an image, for example, by transmitting and outputting to a refueling management device (SSC) or a refueling station POS communicatively connected to the refueling machine 10 by a gas station LAN or the like. It can also be displayed on the display.

本実施例の給油機10は、上述したように構成されるが、各部の具体的構成については上述した構成に限られるものでなく、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。 The refueling machine 10 of the present embodiment is configured as described above, but the specific configuration of each part is not limited to the above-mentioned configuration, and various omissions and replacements are made without departing from the gist of the invention. You can make changes.

例えば、上述した給油機10では、予め定められている時系列区間の各時系列区間は隣り合う時系列区間同士が接して連なるように構成したが、隣り合う時系列区間同士の一部が重なる構成であってもよいし、また、当所の時系列区間が供給対象に対する燃料供給時間(給油時間)や燃料供給量(給油量)の増大に合わせて所定区間長さを所定量ずつ増大していく構成であってもよい。後者の場合は、増大させた最後の時系列区間の含水率平均値Rwavを自動的に当該給油作業の含水率平均値Rwav2とすることが可能である。 For example, in the above-mentioned refueling machine 10, each time-series section of a predetermined time-series section is configured so that adjacent time-series sections are in contact with each other and are connected, but a part of the adjacent time-series sections overlaps with each other. It may be configured, or the time-series section of our office may increase the predetermined section length by a predetermined amount according to the increase in the fuel supply time (refueling time) and the fuel supply amount (refueling amount) for the supply target. It may be configured in any number. In the latter case, it is possible to automatically set the average moisture content Rwav of the last increased time series section to the average moisture content Rwav2 of the refueling operation.

また、上述した給油機10では、水検知制御装置50は、テラヘルツ波の受信量に対応する含水率(瞬時含水率)Rwを演算して時系列区間の含水率平均値Rwavを演算するように構成したが(図6)、テラヘルツ波の受信量に対応する含水量(瞬時含水量)Fwを演算して時系列区間の含水量平均値Fwavを演算し、この得られた時系列区間の含水量平均値Fwavを遂次加算していき、供給対象に対する燃料供給量に占める総含水量ΣFwを取得するように構成してもよい。そして、供給対象に対する燃料供給量に占める総含水量ΣFwが、供給対象に対する燃料供給量の何%にあたるかを随時算出し、予め定められた含水率(例えば、5%)を超える場合には、異常と判定するようにしてもよい。 Further, in the refueling machine 10 described above, the water detection control device 50 calculates the water content (instantaneous water content) Rw corresponding to the received amount of the terahertz wave to calculate the average water content Rwav in the time series section. Although it was configured (Fig. 6), the water content (instantaneous water content) Fw corresponding to the received amount of the terahertz wave was calculated to calculate the average water content Fwav of the time series section, and the obtained time series section was included. The water content average value Fwav may be added one after another to obtain the total water content ΣFw in the fuel supply amount to the supply target. Then, the percentage of the total water content ΣFw in the fuel supply amount to the supply target is calculated at any time, and when it exceeds the predetermined water content (for example, 5%), it is calculated. It may be determined that it is abnormal.

さらに、図12に示すように、時系列単位区間毎の燃料吐出量(給油吐出量)に、時系列単位区間毎の含水率(瞬時含水率)Rwを乗算して、時系列単位区間毎の含水量を算出し、この時系列単位区間毎の含水量を、供給対象に対する燃料供給中の間、積算して、供給対象に対して加水した総加水量ΣWを算出して、この総加水量ΣWが予め定められている異常判定値に達したか否かに応じて異常を判定するように構成してもよい。 Further, as shown in FIG. 12, the fuel discharge amount (refueling discharge amount) for each time-series unit interval is multiplied by the water content (instantaneous water content) Rw for each time-series unit interval to obtain each time-series unit interval. The water content is calculated, the water content for each time-series unit interval is integrated during fuel supply to the supply target, and the total water content ΣW added to the supply target is calculated, and this total water content ΣW is calculated. It may be configured to determine an abnormality depending on whether or not a predetermined abnormality determination value has been reached.

図12は、総加水量ΣWを表した模式図である。 FIG. 12 is a schematic diagram showing the total amount of water added ΣW.

また、供給燃料の濁度を測定して、供給燃料中の混入している水を検出する水検出器40としては、テラヘルツ波発信部41およびテラヘルツ波検出部42に代えて、発光側光ファイバと受光側光ファイバとを有して構成される光ファイバセンサを用いてもよい。光ファイバセンサは、例えば、両光ファイバの発光端面および受光端面を、供給管路16の内部の供給燃料に臨ませた構成になっている。さらに、水検出器40としては、時系列区間毎の含水量や含水率を測定できるものであるならば、これらテラヘルツ波発信部41およびテラヘルツ波検出部42、光ファイバセンサにも限られない。 Further, as the water detector 40 that measures the turbidity of the supplied fuel and detects the mixed water in the supplied fuel, the light emitting side optical fiber is used instead of the terahertz wave transmitting unit 41 and the terahertz wave detecting unit 42. An optical fiber sensor configured to include an optical fiber on the light receiving side and an optical fiber on the light receiving side may be used. The optical fiber sensor is configured such that, for example, the light emitting end face and the light receiving end face of both optical fibers face the supply fuel inside the supply pipe line 16. Further, the water detector 40 is not limited to the terahertz wave transmitting unit 41, the terahertz wave detecting unit 42, and the optical fiber sensor as long as it can measure the water content and the water content for each time series section.

このような変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Such modifications are included in the scope and gist of the invention, as well as in the scope of the invention described in the claims and the equivalent scope thereof.

10 給油機、
11 給油機筐体、
12 ポンプ、
13 ポンプ駆動モータ、
14 流量計、
15 流量発信器、
16 供給管路、
17 ホース、
18 給油ノズル、
19 ノズル掛け、
21 ノズルスイッチ、
22 表示器、
23 警報器、
30 給油機制御装置、
40 水検出器、
41 テラヘルツ波発信部、
42 テラヘルツ波検出部、
43 隔離部材、
50 水検知制御装置。

10 refueling machine,
11 Gasoline pump housing,
12 pumps,
13 Pump drive motor,
14 Flowmeter,
15 Flow transmitter,
16 Supply pipeline,
17 hose,
18 Refueling nozzle,
19 Nozzle hook,
21 Nozzle switch,
22 Display,
23 Alarm,
30 Refueling machine control device,
40 water detector,
41 Terahertz wave transmitter,
42 Terahertz wave detector,
43 Isolation member,
50 Water detection control device.

Claims (5)

供給対象に供給する燃料が送液される燃料供給路と、
前記燃料供給路に設けられ、前記燃料供給路内の検出域に所在している燃料について混入している水を検出する水検出部と、
前記水検出部の検出出力に基づいて当該水検出部の検出域に所在している燃料中の含水量もしくは含水率を計測する水混入計測部と、
供給対象への燃料供給作業中もしくは燃料供給中に、前記水検出部の検出出力を基に前記水混入計測部によって逐次計測された燃料中の含水量もしくは含水率が記憶される含水値記憶部と、
前記含水値記憶部に記憶されている複数の燃料中の含水量もしくは含水率を基に、予め定められた時系列区間の積算含水量もしくは含水率平均値を演算する水混入演算部と、
前記水混入演算部によって逐次演算される予め定められた時系列区間の積算含水量もしくは含水率平均値を予め定められた異常判定値と比較して、供給対象に供給する燃料における異常の有無を判定する異常判定部と、
を備えている燃料供給装置。
The fuel supply path where the fuel to be supplied to the supply target is sent, and
A water detection unit provided in the fuel supply path and detecting water mixed in the fuel located in the detection area in the fuel supply path, and a water detection unit.
A water mixing measurement unit that measures the water content or water content in the fuel located in the detection area of the water detection unit based on the detection output of the water detection unit.
A water content storage unit that stores the water content or water content in the fuel sequentially measured by the water mixing measurement unit based on the detection output of the water detection unit during fuel supply work or fuel supply to the supply target. When,
A water mixing calculation unit that calculates the integrated water content or average water content of a predetermined time-series section based on the water content or water content in a plurality of fuels stored in the water content storage unit.
The presence or absence of an abnormality in the fuel supplied to the supply target is determined by comparing the integrated water content or the average water content of the predetermined time-series section, which is sequentially calculated by the water mixing calculation unit, with the predetermined abnormality determination value. Abnormality judgment unit to judge and
It is equipped with a fuel supply device.
前記水検出部は、
前記燃料供給路を流れる燃料が通過可能な検出域流路を間に介在させて、相対向配置されたテラヘルツ波発信部およびテラヘルツ波検出部を有して構成されている、
請求項1に記載の燃料供給装置。
The water detection unit
It is configured to have a terahertz wave transmitting unit and a terahertz wave detecting unit arranged opposite to each other with a detection region flow path through which fuel flowing through the fuel supply path can pass.
The fuel supply device according to claim 1.
前記水混入計測部は、前記水検出部の検出出力に基づいて当該水検出部の検出域に所在している燃料中の含水率を計測し、
前記含水値記憶部は、供給対象への燃料供給作業中もしくは燃料供給中に、前記水検出部の検出出力を基に前記水混入計測部によって逐次計測された燃料中の含水率が記憶され、
前記水混入演算部は、前記含水値記憶部に記憶されている複数の燃料中の含水率を基に、予め定められた時系列区間の含水率平均値を演算し、
前記異常判定部は、
前記水混入演算部によって逐次演算される予め定められた時系列区間の含水率平均値を予め定められた異常判定用の含水率しきい値と比較して、供給対象に供給する燃料における異常の有無を判定し、
予め定められた時系列区間は、前記水混入計測部による含水率の計測間隔よりも長く、供給対象への燃料供給作業中時間もしくは燃料供給中時間よりも短い一定時間長さである、
請求項1に記載の燃料供給装置。
The water mixing measuring unit measures the water content in the fuel located in the detection area of the water detecting unit based on the detection output of the water detecting unit.
The water content storage unit stores the water content in the fuel sequentially measured by the water mixing measurement unit based on the detection output of the water detection unit during the fuel supply work to the supply target or during the fuel supply.
The water mixing calculation unit calculates the average water content of a predetermined time series section based on the water content in a plurality of fuels stored in the water content storage unit.
The abnormality determination unit is
The water content average value of the predetermined time-series section calculated sequentially by the water mixing calculation unit is compared with the predetermined water content threshold value for abnormality determination, and the abnormality in the fuel supplied to the supply target is compared. Judge the presence or absence,
The predetermined time-series section is a fixed time length that is longer than the measurement interval of the water content by the water mixing measuring unit and shorter than the fuel supply working time or the fuel supply working time to the supply target.
The fuel supply device according to claim 1.
前記水混入計測部は、前記水検出部の検出出力に基づいて当該水検出部の検出域に所在している燃料中の含水量を計測し、
前記含水値記憶部は、供給対象への燃料供給作業中もしくは燃料供給中に、前記水検出部の検出出力を基に前記水混入計測部によって逐次計測された燃料中の含水量が記憶され、
前記水混入演算部は、前記含水値記憶部に記憶されている複数の燃料中の含水量を基に、予め定められた時系列区間の積算含水量を演算し、
前記異常判定部は、
前記水混入演算部によって逐次演算される予め定められた時系列区間の積算含水量を予め定められた異常判定用の積算含水量しきい値と比較して、供給対象に供給する燃料における異常の有無を判定し、
予め定められた時系列区間は、前記水混入計測部による含水率の計測間隔よりも長く、供給対象への燃料供給作業中時間もしくは燃料供給中時間よりも短い一定時間長さである、
請求項1に記載の燃料供給装置。
The water mixing measuring unit measures the water content in the fuel located in the detection area of the water detecting unit based on the detection output of the water detecting unit.
The water content storage unit stores the water content in the fuel sequentially measured by the water mixing measurement unit based on the detection output of the water detection unit during the fuel supply operation to the supply target or during the fuel supply.
The water mixing calculation unit calculates the integrated water content in a predetermined time series section based on the water content in the plurality of fuels stored in the water content value storage unit.
The abnormality determination unit is
The integrated water content of the predetermined time-series section calculated sequentially by the water mixing calculation unit is compared with the predetermined integrated water content threshold value for determining an abnormality, and the abnormality in the fuel supplied to the supply target is compared. Judge the presence or absence,
The predetermined time-series section is a fixed time length that is longer than the measurement interval of the water content by the water mixing measuring unit and shorter than the fuel supply working time or the fuel supply working time to the supply target.
The fuel supply device according to claim 1.
前記水混入計測部によって計測された前記水検出部の検出域に所在している燃料中の含水量もしくは含水率についての、燃料供給作業毎のトレンド、
または、
前記水混入演算部によって演算された予め定められた時系列区間の積算含水量もしくは含水率平均値についての、燃料供給作業毎のトレンド、
を解析する解析部、
をさらに備える請求項1に記載の燃料供給装置。


Trends for each fuel supply operation regarding the water content or water content in the fuel located in the detection area of the water detection unit measured by the water mixing measurement unit.
or,
Trends for each fuel supply operation regarding the integrated water content or water content average value of the predetermined time-series section calculated by the water mixing calculation unit.
Analysis department, which analyzes
The fuel supply device according to claim 1.


JP2020165160A 2020-09-30 2020-09-30 Fuel supply device Pending JP2022057085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020165160A JP2022057085A (en) 2020-09-30 2020-09-30 Fuel supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020165160A JP2022057085A (en) 2020-09-30 2020-09-30 Fuel supply device

Publications (1)

Publication Number Publication Date
JP2022057085A true JP2022057085A (en) 2022-04-11

Family

ID=81110227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020165160A Pending JP2022057085A (en) 2020-09-30 2020-09-30 Fuel supply device

Country Status (1)

Country Link
JP (1) JP2022057085A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102023200537A1 (en) 2022-03-30 2023-10-05 Ngk Insulators, Ltd. HONEYCOMB FILTER

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102023200537A1 (en) 2022-03-30 2023-10-05 Ngk Insulators, Ltd. HONEYCOMB FILTER

Similar Documents

Publication Publication Date Title
US11846537B2 (en) Non-linear ultrasound method and apparatus for quantitative detection of materials
US7562570B2 (en) Ultrasonic oil/water tank level monitor having wireless transmission means
US7518719B2 (en) Contaminant analyzer for fuel
KR101340145B1 (en) Maintenance expert system for measuring instrument
EP3058347B1 (en) Photometric measurement cell
US10752490B2 (en) Automated water and particle detection for dispensing fuel including aviation fuel
US10481036B2 (en) Pipeline leak detection system
EP1660869B1 (en) Real-time on-line sensing and control of emulsions in formation fluids
JP2022057085A (en) Fuel supply device
CN106556439B (en) Entrained flow detection diagnostics
CN115243587A (en) Monitoring balance and distribution of a fluid distribution system to improve quality and efficiency
WO2016187505A1 (en) Method and system for monitoring pressure in a gas containment unit
JP6522218B1 (en) Liquid tank monitoring system
JP5578493B2 (en) Lubrication device
JP5610317B2 (en) Detection device
AU2022204222B2 (en) Non-linear ultrasound method and apparatus for quantitative detection of materials
JP5668940B2 (en) Detection device
JP2022085124A (en) Fuel supply system
JP5614730B2 (en) Lubricator sensor
CN111122706A (en) Non-contact type pipeline foreign matter exploration device and method
KR100632607B1 (en) Oil content measurement and automatic management device
CN112781811B (en) Method, device and system for detecting leakage of connecting pipe
EP3746766B1 (en) Sensor system for detecting contaminant in fluid
JP2021119084A (en) Fuel supply apparatus
CN115718105A (en) Jet fuel pollution degree detection equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240315