JP2022057039A - Additive manufacturing apparatus - Google Patents

Additive manufacturing apparatus Download PDF

Info

Publication number
JP2022057039A
JP2022057039A JP2020165100A JP2020165100A JP2022057039A JP 2022057039 A JP2022057039 A JP 2022057039A JP 2020165100 A JP2020165100 A JP 2020165100A JP 2020165100 A JP2020165100 A JP 2020165100A JP 2022057039 A JP2022057039 A JP 2022057039A
Authority
JP
Japan
Prior art keywords
light beam
heat
molten
heat insulating
irradiation range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020165100A
Other languages
Japanese (ja)
Inventor
翔 長谷川
Sho Hasegawa
貴也 長濱
Takaya Nagahama
好一 椎葉
Koichi Shiiba
誠 田野
Makoto Tano
高史 溝口
Takashi Mizoguchi
浩平 加藤
Kohei Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2020165100A priority Critical patent/JP2022057039A/en
Publication of JP2022057039A publication Critical patent/JP2022057039A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide an additive manufacturing apparatus that can easily adjust control conditions for a heat-retention light beam irradiation device to obtain a high-quality additively manufactured product.SOLUTION: An additive manufacturing apparatus 100 comprises: a powder material supply device 110; a melting light beam irradiation device 121; a heat-retention light beam irradiation device 122; and a control device 130 that controls irradiation of a melting light beam MBM and a heat-retention light beam KBM so that a heat-retention light irradiation area KS, being an irradiation area to which the heat-retention light beam KBM is applied, superimposes a melting light irradiation area MS, being an irradiation area to which the melting light beam MBM is applied, to mold an additively manufactured product FF obtained by adding a powder material P to a base material B. The control device 130 prepares a process map PM that shows a relation between the size of heat-retention light power density KBP being light output of the heat-retention light beam KBM per unit area and the heat-retention light irradiation area KS, and quality of the additively manufactured product FF to control the irradiation of the heat-retention light beam KBM on the basis of the process map PM.SELECTED DRAWING: Figure 7

Description

本発明は、付加製造装置に関する。 The present invention relates to an additional manufacturing apparatus.

付加製造には、例えば、指向性エネルギ堆積(Directed Energy Deposition)方式、粉末床溶融結合(Powder Bed Fusion)方式等があることが知られている。指向性エネルギ堆積方式は、光ビーム(レーザビーム及び電子ビーム等)の照射と材料の供給を行う加工ヘッドの位置を制御することで付加製造を行う。指向性エネルギ堆積方式には、LMD(Laser Metal Deposition)、DMP(Direct Metal Printing)等が含まれる。粉末床溶融結合方式は、平らに敷き詰められた粉末材料に対して、光ビームを照射することで付加製造を行う。粉末床溶融結合方式には、SLM(Selective Laser Melting)、EBM(Electron Beam Melting)等が含まれる。 It is known that additional manufacturing includes, for example, a directed energy deposition method, a powder bed fusion method, and the like. In the directed energy deposition method, additional manufacturing is performed by controlling the position of the processing head that irradiates a light beam (laser beam, electron beam, etc.) and supplies materials. The directed energy deposition method includes LMD (Laser Metal Deposition), DMP (Direct Metal Printing) and the like. In the powder bed melt-bonding method, additional manufacturing is performed by irradiating a powder material spread flat with a light beam. The powder bed melt bonding method includes SLM (Selective Laser Melting), EBM (Electron Beam Melting) and the like.

指向性エネルギ堆積方式のLMDは、例えば硬質材を含む粉末材料等を噴射しながら光ビームを照射することにより、粉末材料等を溶融させた後に凝固させることができる。これにより、LMDは、例えば、部分的に耐摩耗性や強度を向上させるため、基材に対して硬質の付加製造物を付加する肉盛技術として利用されている。特許文献1には、炭化タングステン(WC)とコバルト(Co)を含む超硬合金部とニッケル(Ni)またはコバルト(Co)を含む基材部とを有する超硬合金複合材が開示されている。 In the directed energy deposition type LMD, for example, by irradiating a light beam while injecting a powder material or the like containing a hard material, the powder material or the like can be melted and then solidified. As a result, LMD is used, for example, as a build-up technique for adding a hard additional product to a base material in order to partially improve wear resistance and strength. Patent Document 1 discloses a cemented carbide composite material having a cemented carbide portion containing tungsten carbide (WC) and cobalt (Co) and a base material portion containing nickel (Ni) or cobalt (Co). ..

しかし、LMDで硬質の付加製造物を付加する場合、一般的に硬度とじん性は反比例の関係となるため、急冷凝固時に付加製造物の割れが発生するおそれがあり、硬質の付加製造物の品質が低下する。そこで、特許文献2には、粉末材料等を溶融させるための光ビームと、付加した付加製造物を保温するための光ビームを照射できる付加製造装置が開示されている。これにより、付加製造物の冷却速度を低減でき、付加製造物の割れの発生を抑制できる。 However, when a hard additional product is added by LMD, the hardness and toughness are generally inversely proportional to each other, so that the additional product may be cracked during quenching and solidification, and the hard additional product may be cracked. The quality deteriorates. Therefore, Patent Document 2 discloses an additional manufacturing apparatus capable of irradiating a light beam for melting a powder material or the like and a light beam for keeping the added additional product warm. As a result, the cooling rate of the additional product can be reduced, and the occurrence of cracks in the additional product can be suppressed.

国際公開第2019/069701号International Publication No. 2019/069701 特開2020-94269号公報Japanese Unexamined Patent Publication No. 2020-94269

従来の付加製造装置では、付加した付加製造物を保温するための光ビームを照射する保温光ビーム照射装置の制御条件によっては、付加製造物(ビード)の割れの発生のみならず、付加製造物(ビード)のビード幅の許容範囲の逸脱や付加製造物(ビード)における空孔の発生等の品質異常が生じるおそれがある。このため、保温光ビーム照射装置の制御条件を調整するために多数の試し加工が必要になり、付加製造の工数が大幅に増加するという問題がある。 In the conventional additional manufacturing device, depending on the control conditions of the heat insulating light beam irradiating device that irradiates the light beam for keeping the added manufacturing warm, not only the cracking of the additional manufacturing product (bead) occurs but also the additional manufacturing device is generated. There is a possibility that quality abnormalities such as deviation of the allowable range of the bead width of the (bead) and generation of holes in the additional product (bead) may occur. Therefore, a large number of trial processes are required to adjust the control conditions of the heat insulating light beam irradiation device, and there is a problem that the man-hours for additional manufacturing are significantly increased.

本発明は、保温光ビーム照射装置の制御条件の調整を簡易に行なって高品質な付加製造物が得られる付加製造装置を提供することを目的とする。 An object of the present invention is to provide an additional manufacturing apparatus capable of easily adjusting the control conditions of a heat insulating light beam irradiation apparatus to obtain a high-quality additional product.

付加製造装置は、硬質材を含む粉末材料を基材に供給する粉末材料供給装置と、前記基材に供給された前記粉末材料を前記粉末材料の融点以上に加熱して溶融する溶融光ビームを照射する溶融光ビーム照射装置と、前記溶融光ビームが照射される照射範囲である溶融光照射範囲の外側を前記融点未満に加熱して保温する保温光ビームを照射する保温光ビーム照射装置と、前記保温光ビームが照射される照射範囲である保温光照射範囲が前記溶融光照射範囲に重畳するように、前記溶融光ビーム及び前記保温光ビームの照射を制御して、前記基材に前記粉末材料でなる付加製造物を造形する制御装置と、を備える。前記制御装置は、前記保温光ビームの単位面積当たりの光出力である保温光パワー密度及び前記保温光照射範囲の大きさと前記付加製造物の品質との関係性を示すプロセスマップを作成し、前記プロセスマップに基づいて、前記保温光ビームの照射を制御する。 The additional manufacturing apparatus includes a powder material supply device that supplies a powder material containing a hard material to the base material, and a molten light beam that heats the powder material supplied to the base material to a temperature equal to or higher than the melting point of the powder material and melts the powder material. A molten light beam irradiating device for irradiating, a heat insulating light beam irradiating device for irradiating a heat insulating light beam that heats and keeps the outside of the molten light irradiation range, which is the irradiation range to which the molten light beam is irradiated, below the melting point. The powder is applied to the substrate by controlling the irradiation of the molten light beam and the heat insulating light beam so that the heat insulating light irradiation range, which is the irradiation range to which the heat insulating light beam is irradiated, is superimposed on the molten light irradiation range. It is provided with a control device for modeling an additional product made of a material. The control device creates a process map showing the relationship between the heat-retaining light power density, which is the light output per unit area of the heat-retaining light beam, the size of the heat-retaining light irradiation range, and the quality of the additional product. The irradiation of the heat insulating light beam is controlled based on the process map.

この付加製造装置によれば、付加製造物の品質を保温光ビームの保温光パワー密度と保温光照射範囲の大きさとの関係から把握できるので、付加製造時に適正な保温光ビームの保温光パワー密度及び保温光照射範囲の大きさによる保温光ビーム照射装置の制御条件の調整を簡易に行うことが可能となり、高品質な付加製造物を造形できる。 According to this additional manufacturing device, the quality of the additional product can be grasped from the relationship between the thermal insulation power density of the thermal insulation beam and the size of the thermal insulation light irradiation range. In addition, it is possible to easily adjust the control conditions of the heat-retaining light beam irradiation device according to the size of the heat-retaining light irradiation range, and it is possible to form a high-quality additional product.

付加製造装置を示す図である。It is a figure which shows the additional manufacturing apparatus. 図1の付加製造装置の移動装置を説明するための図である。It is a figure for demonstrating the moving apparatus of the additional manufacturing apparatus of FIG. 図1の付加製造装置における溶融光ビームの溶融光照射範囲と保温光ビームの保温光照射範囲とを説明するための図である。It is a figure for demonstrating the molten light irradiation range of the molten light beam and the heat insulating light irradiation range of a heat insulating light beam in the additional manufacturing apparatus of FIG. 図1の付加製造装置において基材に付加製造物を造形する場合のレーザ光パワー密度とレーザ光照射範囲との関係を示すビームプロファイルである。6 is a beam profile showing the relationship between the laser light power density and the laser light irradiation range when the additional product is formed on the base material in the additional manufacturing apparatus of FIG. 1. 図1の付加製造装置による付加製造物を造形する際の基材に付加した付加製造物の初期状態を示す断面図である。It is sectional drawing which shows the initial state of the addition product added to the base material at the time of modeling the addition product by the addition manufacturing apparatus of FIG. 図5Aの状態から走査が進んだときの基材に付加製造した付加製造物の途中状態及び付加状態を示す断面図である。FIG. 5 is a cross-sectional view showing an intermediate state and an addition state of an addition product manufactured by addition to a base material when scanning proceeds from the state of FIG. 5A. 保温光ビームの入熱を変動させたときの付加製造物の品質状態を示す図である。It is a figure which shows the quality state of an additional product when the heat input of a heat insulating light beam is varied. 保温光ビームの保温光パワー密度及び保温光照射径と付加製造物の品質との関係性を示すプロセスマップである。It is a process map which shows the relationship between the heat-retaining light power density and the heat-retaining light irradiation diameter of a heat-retaining light beam, and the quality of an additional product. 付加製造物の付加製造条件決定方法を説明するための前半のフローチャートである。It is the flowchart of the first half for demonstrating the method of determining the additional manufacturing condition of an additional product. 付加製造物の付加製造条件決定方法を説明するための後半のフローチャートである。It is the flowchart of the latter half for demonstrating the method of determining the additional manufacturing condition of an additional product. 保温光ビームの照射形状の第一変更例を示す図である。It is a figure which shows the 1st change example of the irradiation shape of a heat insulating light beam. 保温光ビームの照射形状の第二変更例を示す図である。It is a figure which shows the second modification example of the irradiation shape of a heat insulating light beam. 保温光ビームの照射形状の第三変更例を示す図である。It is a figure which shows the third modification example of the irradiation shape of a heat insulating light beam. 保温光ビームに重畳する溶融光ビームの照射位置の第一変更例を示す図である。It is a figure which shows the 1st change example of the irradiation position of the molten light beam superposed on a heat insulating light beam. 保温光ビームに重畳する溶融光ビームの照射位置の第二変更例を示す図である。It is a figure which shows the 2nd change example of the irradiation position of the molten light beam superposed on a heat insulating light beam.

(1.付加製造装置の概要)
本実施形態の付加製造装置は、例えば、指向性エネルギ堆積方式であってLMD方式を採用する。この付加製造装置は、硬質材である硬質粉末材料に結合粉末材料を混合した粉末材料を基材に向けて噴射しながら光ビームを照射することにより、基材に硬質の付加製造物を造形する。粉末材料、特に、硬質粉末材料と基材は、異なる材料でも良く、同一種類の材料でも良い。更に、粉末材料は、硬質粉末材料と結合粉末材料とを固めた造粒粉末でも良い。
(1. Outline of additional manufacturing equipment)
The additional manufacturing apparatus of this embodiment adopts, for example, a directed energy deposition method and an LMD method. This additional manufacturing device forms a hard additional product on the base material by irradiating a light beam while injecting a powder material obtained by mixing a bonded powder material with a hard powder material which is a hard material toward the base material. .. The powder material, particularly the hard powder material and the base material, may be different materials or may be the same type of material. Further, the powder material may be a granulated powder obtained by solidifying a hard powder material and a bonded powder material.

ここでは、硬質材である炭化タングステン(WC)の硬質粉末材等を用いて造形される硬質の付加製造物を、炭素鋼(S45C)を用いて形成された基材に造形する場合について説明する。結合粉末材料は、炭化タングステン(WC)を結合する超硬バインダとして作用するコバルト(Co)を用いる。ここで、炭化タングステン(WC)の融点(凝固点)は、2870℃であり、超硬バインダであるコバルト(Co)の融点(凝固点)の1495℃よりも高い。尚、超硬バインダはコバルト(Co)に限られず、例えば、ニッケル(Ni)を超硬バインダとして用いることも可能である。 Here, a case where a hard addition product formed by using a hard powder material such as tungsten carbide (WC), which is a hard material, is formed into a base material formed by using carbon steel (S45C) will be described. .. As the bonded powder material, cobalt (Co) acting as a cemented carbide binder for binding tungsten carbide (WC) is used. Here, the melting point (freezing point) of tungsten carbide (WC) is 2870 ° C., which is higher than the melting point (freezing point) of cobalt (Co), which is a cemented carbide binder, at 1495 ° C. The cemented carbide binder is not limited to cobalt (Co), and for example, nickel (Ni) can be used as the cemented carbide binder.

(2.付加製造装置100の構成)
図1に示すように、付加製造装置100は、粉末材料供給装置110、光ビーム照射装置120及び制御装置130を主に備える。尚、本例の付加製造装置100の基本的な構成及び動作については、周知のLMD型の付加製造装置と同等である。このため、付加製造装置100についての詳細な構成及び動作等の説明については省略する。
(2. Configuration of additional manufacturing apparatus 100)
As shown in FIG. 1, the additional manufacturing device 100 mainly includes a powder material supply device 110, a light beam irradiation device 120, and a control device 130. The basic configuration and operation of the additional manufacturing apparatus 100 of this example are the same as those of the well-known LMD type additional manufacturing apparatus. Therefore, a detailed description of the configuration and operation of the additional manufacturing apparatus 100 will be omitted.

粉末材料供給装置110は、ホッパ111、バルブ112、ガスボンベ113及び噴射ノズル114を備える。ホッパ111は、結合粉末材料P2が混合された硬質粉末材料P1を貯蔵する。尚、以下の説明において、硬質粉末材料P1と結合粉末材料P2とを混合した粉末材料を「粉末材料P」と称呼する。 The powder material supply device 110 includes a hopper 111, a valve 112, a gas cylinder 113, and an injection nozzle 114. The hopper 111 stores the hard powder material P1 mixed with the bonded powder material P2. In the following description, the powder material obtained by mixing the hard powder material P1 and the bonded powder material P2 is referred to as "powder material P".

バルブ112は、粉末導入バルブ112a、粉末供給バルブ112b及びガス導入バルブ112cを備える。粉末導入バルブ112aは、配管111aを介してホッパ111と接続される。粉末供給バルブ112bは、配管114aを介して噴射ノズル114と接続される。ガス導入バルブ112cは、配管113aを介してガスボンベ113と接続される。 The valve 112 includes a powder introduction valve 112a, a powder supply valve 112b, and a gas introduction valve 112c. The powder introduction valve 112a is connected to the hopper 111 via the pipe 111a. The powder supply valve 112b is connected to the injection nozzle 114 via the pipe 114a. The gas introduction valve 112c is connected to the gas cylinder 113 via the pipe 113a.

噴射ノズル114及び配管114aは、噴射ノズル114側に傾斜部分を有する筒状の容器115に収容される。噴射ノズル114は、容器115の傾斜部分の先端に配置される。そして、噴射ノズル114は、配管114aを介して、例えば、ガスボンベ113から供給される高圧の窒素により、粉末材料Pを基材B、より詳しくは、付加製造物FFを造形する造形面B1に向けて噴射する。尚、粉末材料Pを噴射するガスは、窒素に限定されるものではなく、不活性ガスであればアルゴン等でも良い。 The injection nozzle 114 and the pipe 114a are housed in a cylindrical container 115 having an inclined portion on the injection nozzle 114 side. The injection nozzle 114 is arranged at the tip of the inclined portion of the container 115. Then, the injection nozzle 114 directs the powder material P toward the base material B, more specifically, the modeling surface B1 for modeling the additional product FF, by using high-pressure nitrogen supplied from the gas cylinder 113, for example, via the pipe 114a. And spray. The gas for injecting the powder material P is not limited to nitrogen, and may be argon or the like as long as it is an inert gas.

光ビーム照射装置120は、溶融光ビーム照射装置121と、保温光ビーム照射装置122と、溶融光ビーム照射装置121及び保温光ビーム照射装置122の各々を独立して相対移動させる移動装置123を主に備える。溶融光ビーム照射装置121と保温光ビーム照射装置122とは、移動装置123によって各々が照射する光ビームの照射方向(光軸)が交差する、或いは、ねじれの位置関係を有するように配置される。 The light beam irradiating device 120 mainly includes a moving device 123 that independently and relatively moves each of the molten light beam irradiating device 121, the heat insulating light beam irradiating device 122, and the molten light beam irradiating device 121 and the heat retaining light beam irradiating device 122. Prepare for. The molten light beam irradiating device 121 and the heat insulating light beam irradiating device 122 are arranged so that the irradiation directions (optical axes) of the light beams irradiated by the moving device 123 intersect each other or have a twisted positional relationship. ..

溶融光ビーム照射装置121は、溶融光ビーム生成部121aにより生成され供給される溶融光ビームMBMを基材Bの造形面B1に直交するように照射する溶融光ビーム照射部121bを備える。溶融光ビーム生成部121aは、制御装置130によって制御されて、溶融光ビームMBMを生成する。 The molten light beam irradiating device 121 includes a molten light beam irradiating unit 121b that irradiates the molten light beam MBM generated and supplied by the molten light beam generating unit 121a so as to be orthogonal to the modeling surface B1 of the base material B. The molten light beam generation unit 121a is controlled by the control device 130 to generate the molten light beam MBM.

溶融光ビーム照射部121bは、容器115の内部において、噴射ノズル114の近傍に配置される。具体的に、溶融光ビーム照射部121bは、噴射ノズル114から噴射される粉末材料Pの供給位置に向けて溶融光ビームMBMが照射可能となるように、容器115の傾斜部分の先端に配置される。そして、溶融光ビーム照射部121bは、容器115の内部に配置された図示省略のコリメータレンズや集光レンズ等の光学系を通して溶融光ビームMBMを照射する。 The molten light beam irradiation unit 121b is arranged in the vicinity of the injection nozzle 114 inside the container 115. Specifically, the molten light beam irradiation unit 121b is arranged at the tip of the inclined portion of the container 115 so that the molten light beam MBM can be irradiated toward the supply position of the powder material P ejected from the injection nozzle 114. To. Then, the molten light beam irradiation unit 121b irradiates the molten light beam MBM through an optical system such as a collimator lens or a condenser lens (not shown) arranged inside the container 115.

溶融光ビームMBMは、基材Bにおいて粉末材料供給装置110から供給される粉末材料Pを融点以上に加熱して溶融することにより溶融池MPを形成する。尚、「加工ヘッド」は、噴射ノズル114、溶融光ビーム照射装置121及び容器115を含んで構成されることにより、粉末材料Pと溶融光ビームMBMとは一体に移動する。 The molten light beam MBM forms a molten pool MP by heating the powder material P supplied from the powder material supply device 110 in the base material B to a temperature equal to or higher than the melting point and melting the material P. The "processing head" includes the injection nozzle 114, the molten light beam irradiating device 121, and the container 115, so that the powder material P and the molten light beam MBM move integrally.

保温光ビーム照射装置122は、保温光ビーム生成部122aにより生成され供給される保温光ビームKBMを基材Bの造形面B1に斜め上方から照射する保温光ビーム照射部122bを備える。保温光ビーム生成部122aは、制御装置130によって制御されて、保温光ビームKBMを生成する。 The heat-retaining light beam irradiation device 122 includes a heat-retaining light beam irradiation unit 122b that irradiates the modeling surface B1 of the base material B with the heat-retaining light beam KBM generated and supplied by the heat-retaining light beam generation unit 122a from diagonally above. The heat insulating light beam generation unit 122a is controlled by the control device 130 to generate the heat insulating light beam KBM.

保温光ビーム照射部122bは、筒状の容器122cにおいて、基材Bに対向する先端に配置される。具体的に、保温光ビーム照射部122bは、溶融光ビーム照射装置121から照射される溶融光ビームMBMの溶融光照射範囲に重ねて保温光ビームKBMが照射可能となるように、容器122cの先端に配置される。そして、保温光ビーム照射部122bは、容器122cの内部に配置された図示省略のコリメータレンズや集光レンズ等の光学系を通して保温光ビームKBMを照射する。 The heat insulating light beam irradiation unit 122b is arranged at the tip of the cylindrical container 122c facing the base material B. Specifically, the heat-retaining light beam irradiation unit 122b is the tip of the container 122c so that the heat-retaining light beam KBM can be irradiated by superimposing it on the molten light irradiation range of the molten light beam MBM irradiated from the molten light beam irradiation device 121. Is placed in. Then, the heat-retaining light beam irradiation unit 122b irradiates the heat-retaining light beam KBM through an optical system such as a collimator lens or a condenser lens (not shown) arranged inside the container 122c.

保温光ビーム照射部122bは、形成された溶融池MPに対し、溶融光照射範囲の外側、つまり溶融光ビーム照射装置121の走査方向にて前側及び後側、特に、少なくとも後側に向けて保温光ビームKBMを照射する。そして、保温光ビームKBMは、基材Bの造形面B1及び供給される未溶融の粉末材料Pを融点未満に予熱(加熱)すると共に、溶融光ビームMBMによって形成された溶融池MPを融点未満に保温する。 The heat retaining light beam irradiation unit 122b heats the formed molten pool MP toward the outside of the molten light irradiation range, that is, toward the front side and the rear side, particularly at least the rear side, in the scanning direction of the molten light beam irradiation device 121. Irradiate the light beam KBM. Then, the heat insulating light beam KBM preheats (heats) the molding surface B1 of the base material B and the supplied unmelted powder material P to a temperature below the melting point, and at the same time, the molten pool MP formed by the molten light beam MBM is below the melting point. Keep warm.

移動装置123は、図1及び図2に示すように、第一ロボットアーム123a及び第二ロボットアーム123bを主に備える。第一ロボットアーム123aは、溶融光ビーム照射装置121(即ち、加工ヘッド)を支持する。そして、第一ロボットアーム123aは、基材Bの造形面B1に対して、溶融光ビームMBMの照射方向(即ち、溶融光ビームMBMの光軸)が直交する状態で、溶融光ビーム照射装置121を相対変位させる。 As shown in FIGS. 1 and 2, the mobile device 123 mainly includes a first robot arm 123a and a second robot arm 123b. The first robot arm 123a supports the molten light beam irradiation device 121 (that is, the processing head). Then, the first robot arm 123a is in a state where the irradiation direction of the molten light beam MBM (that is, the optical axis of the molten light beam MBM) is orthogonal to the modeling surface B1 of the base material B, and the molten light beam irradiation device 121 Relative displacement.

第二ロボットアーム123bは、保温光ビーム照射装置122を支持する。具体的に、第二ロボットアーム123bは、溶融光ビームMBMの照射方向(溶融光ビームMBMの光軸)に対して保温光ビームKBMの照射方向(保温光ビームKBMの光軸)が傾いた姿勢、換言すれば、造形面B1に対して保温光ビームKBMの照射方向(保温光ビームKBMの光軸)が傾いた姿勢で、保温光ビーム照射装置122を支持する。そして、第二ロボットアーム123bは、保温光ビーム照射装置122を、溶融光ビーム照射装置121に追従させて、基材Bに対して相対変位させる。なお、光ビームの照射系は固定し、移動装置123の代わりに基材Bを保持する移動可能なステージ等を備える構成としてもよい。また、移動装置123を無くし、ガルバノスキャナヘッド等の一つのレーザヘッドで溶融光ビームMBMと保温光ビームKBMの各径や各位置を独立制御する構成としてもよい。 The second robot arm 123b supports the heat insulating light beam irradiating device 122. Specifically, the second robot arm 123b has a posture in which the irradiation direction of the heat insulating light beam KBM (optical axis of the heat insulating light beam KBM) is tilted with respect to the irradiation direction of the molten light beam MBM (optical axis of the molten light beam MBM). In other words, the heat-retaining light beam irradiation device 122 is supported in a posture in which the irradiation direction of the heat-retaining light beam KBM (the optical axis of the heat-retaining light beam KBM) is tilted with respect to the modeling surface B1. Then, the second robot arm 123b causes the heat insulating light beam irradiating device 122 to follow the molten light beam irradiating device 121 and is displaced relative to the base material B. The irradiation system of the light beam may be fixed and may be configured to include a movable stage or the like that holds the base material B instead of the moving device 123. Further, the moving device 123 may be eliminated, and the diameters and positions of the molten light beam MBM and the heat insulating light beam KBM may be independently controlled by one laser head such as a galvano scanner head.

制御装置130は、CPU、ROM、RAM、インターフェース等を主要構成部品とするコンピュータ装置である。制御装置130は、粉末材料供給装置110の粉末供給を制御する。具体的に、制御装置130は、粉末供給バルブ112b及びガス導入バルブ112cの開閉を制御することにより、噴射ノズル114から基材Bの造形面B1に向けた粉末材料Pの噴射供給を制御する。 The control device 130 is a computer device whose main components are a CPU, ROM, RAM, an interface, and the like. The control device 130 controls the powder supply of the powder material supply device 110. Specifically, the control device 130 controls the injection supply of the powder material P from the injection nozzle 114 toward the molding surface B1 of the base material B by controlling the opening and closing of the powder supply valve 112b and the gas introduction valve 112c.

制御装置130は、光ビーム照射装置120、即ち溶融光ビーム照射装置121、保温光ビーム照射装置122及び移動装置123の光照射を制御する。具体的に、制御装置130は、溶融光ビーム照射装置121の溶融光ビーム生成部121a及び保温光ビーム照射装置122の保温光ビーム生成部122aの動作をそれぞれ制御する。つまり、制御装置130は、溶融光ビーム照射装置121及び保温光ビーム照射装置122の各々を独立して制御可能であり、図3に示す溶融光照射範囲MSと保温光照射範囲KSを連動させずに変化可能である。 The control device 130 controls the light irradiation of the light beam irradiating device 120, that is, the molten light beam irradiating device 121, the heat retaining light beam irradiating device 122, and the moving device 123. Specifically, the control device 130 controls the operations of the molten light beam generating unit 121a of the molten light beam irradiating device 121 and the heat insulating light beam generating unit 122a of the heat insulating light beam irradiating device 122, respectively. That is, the control device 130 can independently control each of the molten light beam irradiation device 121 and the heat retention light beam irradiation device 122, and the melt light irradiation range MS and the heat retention light irradiation range KS shown in FIG. 3 are not linked. Can be changed to.

そして、本例においては、図3に示すように、制御装置130は、溶融光ビーム照射部121bから溶融光照射範囲MSが円形状の照射形状となる溶融光ビームMBMを照射する。また、保温光ビーム照射部122bから保温光照射範囲KSが溶融光照射範囲MSの全部に重畳し且つ溶融光照射範囲MSの外側を囲う円形状の照射形状となる保温光ビームKBMを照射する。そして、制御装置130は、溶融光照射範囲MSの中心と保温光照射範囲KSの中心との同心を維持して、溶融光ビームMBM及び保温光ビームKBMを走査方向SDに走査する。 Then, in this example, as shown in FIG. 3, the control device 130 irradiates the molten light beam MBM having the molten light irradiation range MS having a circular irradiation shape from the molten light beam irradiation unit 121b. Further, the heat-retaining light beam irradiation unit 122b irradiates the heat-retaining light beam KBM having a circular irradiation shape in which the heat-retaining light irradiation range KS is superimposed on the entire molten light irradiation range MS and surrounds the outside of the molten light irradiation range MS. Then, the control device 130 maintains the concentricity between the center of the molten light irradiation range MS and the center of the heat insulating light irradiation range KS, and scans the molten light beam MBM and the heat insulating light beam KBM in the scanning direction SD.

ここで、図3に示すように、本例では溶融光照射範囲MSが円形状であるので、当該溶融光照射範囲MSの大きさは、走査方向SDに平行であって溶融光照射範囲MSの最長部分、すなわち溶融光照射範囲MSの中心を通る直線MLと、溶融光照射範囲MSの外周との交点間の距離(溶融光照射範囲MSの直径(溶融光照射径MD))で定義する。また、保温光照射範囲KSが円形状であって溶融光照射範囲MSの中心と保温光照射範囲KSの中心とが同心であるので、当該保温光照射範囲KSの大きさは、走査方向SDに平行であって溶融光照射範囲MSの中心を通る直線ML(保温光照射範囲KSの中心を通る直線KL)と、保温光照射範囲KSの外周との交点間の距離(保温光照射範囲KSの直径(保温光照射径KD))で定義する。 Here, as shown in FIG. 3, since the molten light irradiation range MS is circular in this example, the size of the molten light irradiation range MS is parallel to the scanning direction SD and is the same as that of the molten light irradiation range MS. It is defined by the distance between the longest portion, that is, the intersection of the straight line ML passing through the center of the molten light irradiation range MS and the outer periphery of the molten light irradiation range MS (the diameter of the molten light irradiation range MS (melt light irradiation diameter MD)). Further, since the heat insulating light irradiation range KS is circular and the center of the molten light irradiation range MS and the center of the heat insulating light irradiation range KS are concentric, the size of the heat insulating light irradiation range KS is set in the scanning direction SD. The distance between the intersection of the straight line ML (straight line KL passing through the center of the heat insulating light irradiation range KS) parallel and passing through the center of the molten light irradiation range MS and the outer periphery of the heat insulating light irradiation range KS (of the heat insulating light irradiation range KS). It is defined by the diameter (heat retention light irradiation diameter KD).

溶融光ビームMBMは、主として、基材Bの造形面B1において粉末材料Pを溶融することにより、図1に示すように、複数のビードNによる付加製造物FFを造形する。また、保温光ビームKBMは、主として、基材Bの造形面B1を予熱し、また、基材Bの造形面B1に付加製造された付加製造物FF(より詳しくは、粉末材料Pが溶融した溶融池MP)の温度低下を抑制することにより保温する。 As shown in FIG. 1, the molten light beam MBM forms an additional product FF with a plurality of beads N mainly by melting the powder material P on the modeling surface B1 of the base material B. Further, the heat insulating light beam KBM mainly preheats the modeling surface B1 of the base material B, and the additive product FF additionally manufactured on the modeling surface B1 of the base material B (more specifically, the powder material P is melted). The temperature of the molten pool MP) is kept warm by suppressing the temperature drop.

制御装置130は、溶融光ビームMBM及び保温光ビームKBMの各々の出力条件を独立して制御する。ここで、出力条件としては、例えば、それぞれのレーザ出力や、レーザ光照射範囲(溶融光ビームMBMの溶融光照射範囲MS及び保温光ビームKBMの保温光照射範囲KS)の各単位面積当たりのレーザ出力(光出力)であるレーザ光パワー密度(溶融光ビームMBMの溶融光パワー密度及び保温光ビームKBMの保温光パワー密度)の分布形状、即ち、ビームプロファイルを挙げることができる。 The control device 130 independently controls the output conditions of the molten light beam MBM and the heat insulating light beam KBM. Here, as the output conditions, for example, each laser output and the laser per unit area of the laser light irradiation range (melting light irradiation range MS of the molten light beam MBM and the heat insulating light irradiation range KS of the heat insulating light beam KBM). The distribution shape of the laser light power density (melting light power density of the molten light beam MBM and the heat retaining light power density of the heat retaining light beam KBM), which is the output (light output), that is, the beam profile can be mentioned.

制御装置130は、図4に示すように、溶融光ビームMBMの溶融光パワー密度のビームプロファイルにおけるピークMBP1を、保温光ビームKBMの保温光パワー密度のビームプロファイルにおけるピークKBP1より増加させる制御を行う。溶融光ビームMBMのレーザ出力は、硬質粉末材料P1及び結合粉末材料P2を溶融して溶融池MPを形成できる温度となるように制御される。また、保温光ビームKBMのレーザ出力は、硬質粉末材料P1及び結合粉末材料P2を溶融させることがない所定の温度となるように制御される。 As shown in FIG. 4, the control device 130 controls to increase the peak MBP1 in the beam profile of the molten light power density of the molten light beam MBM from the peak KBP1 in the beam profile of the heat insulating light power density of the heat insulating light beam KBM. .. The laser output of the molten light beam MBM is controlled to a temperature at which the hard powder material P1 and the bonded powder material P2 can be melted to form a molten pool MP. Further, the laser output of the heat insulating light beam KBM is controlled to a predetermined temperature at which the hard powder material P1 and the bonded powder material P2 are not melted.

また、制御装置130は、移動装置123の第一ロボットアーム123a及び第二ロボットアーム123bを作動させることにより、保温光ビームKBMを溶融光ビームMBMの軌跡に追従させる。この場合、制御装置130は、第二ロボットアーム123bを作動させることにより、保温光ビームKBMの保温光照射範囲KSの大きさや保温光ビームKBMの光軸の溶融光ビームMBMの光軸に対する角度等を制御することができる。 Further, the control device 130 operates the first robot arm 123a and the second robot arm 123b of the moving device 123 to make the heat insulating light beam KBM follow the locus of the molten light beam MBM. In this case, by operating the second robot arm 123b, the control device 130 causes the size of the heat insulating light irradiation range KS of the heat insulating light beam KBM, the angle of the optical axis of the heat insulating light beam KBM with respect to the optical axis of the molten light beam MBM, and the like. Can be controlled.

これにより、溶融光ビームMBMの溶融光照射範囲MSの大きさに対する保温光ビームKBMの保温光照射範囲KSの大きさが可変となるように、制御装置130は、溶融光ビーム照射装置121に対する保温光ビーム照射装置122の相対的な姿勢を制御することができる。 As a result, the control device 130 heat-retains the molten light beam irradiation device 121 so that the size of the heat-retaining light irradiation range KS of the heat-retaining light beam KBM becomes variable with respect to the size of the molten light irradiation range MS of the molten light beam MBM. The relative posture of the light beam irradiator 122 can be controlled.

更に、制御装置130は、基材Bの造形面B1に対する溶融光ビームMBM及び保温光ビームKBMの相対的な走査を制御する。具体的に、本例においては、制御装置130は、モータM1の回転を制御して基材Bを中心軸線Cの回りに回転させると共に、モータM2の回転を制御して基材Bを中心軸線Cの方向に移動させる。これにより、基材Bの周面に対する溶融光ビームMBM及び保温光ビームKBMの相対的な走査を制御する。 Further, the control device 130 controls the relative scanning of the molten light beam MBM and the heat insulating light beam KBM with respect to the modeling surface B1 of the base material B. Specifically, in this example, the control device 130 controls the rotation of the motor M1 to rotate the base material B around the central axis C, and controls the rotation of the motor M2 to rotate the base material B around the central axis line. Move in the direction of C. This controls the relative scanning of the molten light beam MBM and the heat insulating light beam KBM with respect to the peripheral surface of the base material B.

尚、本例においては、制御装置130が基材Bを回転及び移動させるようにする。しかしながら、制御装置130が移動装置123を制御することにより、溶融光ビーム照射装置121及び保温光ビーム照射装置122を基材Bの造形面B1に対して相対的に移動させることが可能であることは言うまでもない。 In this example, the control device 130 rotates and moves the base material B. However, by controlling the moving device 123, the control device 130 can move the molten light beam irradiating device 121 and the heat insulating light beam irradiating device 122 relative to the modeling surface B1 of the base material B. Needless to say.

更に、制御装置130は、撮像装置140と接続される。撮像装置140は、溶融光ビーム照射装置121に組み付けられており、基材Bの造形面B1に形成された付加製造物FF(ビードN)の状態を撮像する。撮像装置140は、例えば、赤外線カメラやサーモグラフィ等を用いることができる。 Further, the control device 130 is connected to the image pickup device 140. The image pickup device 140 is assembled to the molten light beam irradiation device 121, and images the state of the additional product FF (bead N) formed on the modeling surface B1 of the base material B. As the image pickup apparatus 140, for example, an infrared camera, a thermography, or the like can be used.

(3.保温光ビーム照射装置122の制御条件)
次に、保温光ビーム照射装置122の制御条件について説明する。背景技術で述べたように、保温光ビーム照射装置122の制御条件によっては、付加製造物(ビード)の割れの発生のみならず、付加製造物(ビード)のビード幅の許容範囲の逸脱や付加製造物(ビード)における空孔の発生等の品質異常が生じるおそれがある。
(3. Control conditions of the heat insulating light beam irradiation device 122)
Next, the control conditions of the heat insulating light beam irradiation device 122 will be described. As described in the background technology, depending on the control conditions of the heat insulating light beam irradiation device 122, not only the cracking of the additional product (bead) occurs, but also the deviation of the allowable range of the bead width of the additional product (bead) and the addition of the bead width. There is a risk of quality abnormalities such as the occurrence of vacancies in the product (bead).

付加製造物(ビード)の品質を正常に保つためには、保温光ビーム照射装置122の制御条件を調整するために多数の試し加工が必要になり、付加製造の工数が大幅に増加するという問題がある。本例の付加製造装置100は、保温光ビーム照射装置122の制御条件の調整を簡易に行なって高品質な付加製造物が得られる。 In order to maintain the normal quality of the additional product (bead), a large number of trial processes are required to adjust the control conditions of the heat insulating light beam irradiation device 122, which causes a problem that the man-hours for the additional product are significantly increased. There is. In the additional manufacturing apparatus 100 of this example, the control conditions of the heat insulating light beam irradiation apparatus 122 can be easily adjusted to obtain a high quality additional manufacturing apparatus.

ここで、付加製造物FF(ビードN)の付加製造方法の概略について以下説明する。まず、第一段階として、保温光ビームKBMを照射することにより、付加製造物FF(ビードN)の付加製造処理における前処理である予熱処理を行う。この予熱処理における保温光ビームKBMのレーザ出力は、基材Bの造形面B1が溶融せずに所定の温度となるように制御される。 Here, the outline of the addition manufacturing method of the addition product FF (bead N) will be described below. First, as a first step, by irradiating the heat insulating light beam KBM, preheat treatment, which is a pretreatment in the additional production process of the additional product FF (bead N), is performed. The laser output of the heat-retaining light beam KBM in this preheat treatment is controlled so that the modeling surface B1 of the base material B does not melt and reaches a predetermined temperature.

一般に、基材Bの造形面B1の温度が低い状態では、溶融光ビームMBMの照射による熱エネルギが基材Bに逃げ易い。これにより、第二段階において付加製造物FF(ビードN)を基材Bの造形面B1に造形する場合、溶融不足の発生等の溶融の不良要因となり易いため、第一段階で保温光ビームKBMを用いて基材Bの造形面B1を予熱(加熱)する。 Generally, when the temperature of the modeling surface B1 of the base material B is low, the thermal energy generated by the irradiation of the molten light beam MBM easily escapes to the base material B. As a result, when the additional product FF (bead N) is molded on the molding surface B1 of the base material B in the second stage, it is likely to cause melting defects such as the occurrence of insufficient melting. Therefore, the heat insulating light beam KBM in the first stage. Is used to preheat (heat) the modeling surface B1 of the base material B.

次に、第二段階として、図5Aに示すように、溶融光ビームMBMを照射することにより、溶融光照射範囲MSにおいて、基材Bの造形面B1の一部及び粉末材料Pを溶融して溶融池MPを形成する溶融処理を行う。また、この溶融処理においては、保温光ビームKBMの保温光照射範囲KSのうち、溶融光ビームMBMの走査方向SDにて溶融光ビームMBMよりも前側の保温光照射範囲KSFにて、保温光ビームKBMの一部により溶融池MPの形成処理の前処理としての予熱処理を行う。 Next, as a second step, as shown in FIG. 5A, by irradiating the molten light beam MBM, a part of the modeling surface B1 of the base material B and the powder material P are melted in the molten light irradiation range MS. A melting process is performed to form the molten pool MP. Further, in this melting process, in the heat insulating light irradiation range KS of the heat insulating light beam KBM, the heat insulating light beam is in the heat insulating light irradiation range KSF in front of the molten light beam MBM in the scanning direction SD of the molten light beam MBM. Preheat treatment is performed as a pretreatment for the formation treatment of the molten pool MP by a part of KBM.

そして、図5Bに示すように、溶融光ビームMBMを走査方向SDに走査する(本例では、基材Bが回転することにより走査するが、図5Bでは便宜上、溶融光ビームMBMを走査するものとして説明する。)ことで溶融池MPを拡大させることにより、付加製造物FF(ビードN)を造形する。 Then, as shown in FIG. 5B, the molten light beam MBM is scanned in the scanning direction SD (in this example, the substrate B is rotated to scan, but in FIG. 5B, the molten light beam MBM is scanned for convenience. By expanding the molten pool MP, the additional product FF (bead N) is formed.

ここで、本例の付加製造物FF(ビードN)は、硬質粉末材料P1の炭化タングステン(WC)が超硬バインダとして作用する結合粉末材料P2のコバルト(Co)によって結合されて形成されるものである。そして、本例の付加製造物FFは、基材Bの周方向に沿って筋状に形成される複数のビードNによって構成される(図1参照)。 Here, the additional product FF (bead N) of this example is formed by bonding tungsten carbide (WC) of the hard powder material P1 with cobalt (Co) of the bonded powder material P2 acting as a cemented carbide binder. Is. The additional product FF of this example is composed of a plurality of beads N formed in a streak shape along the circumferential direction of the base material B (see FIG. 1).

また、溶融光ビームMBMは、溶融池MPを拡大させるように粉末材料Pを溶融させた後、走査方向SDに順次移動する。このため、保温光ビームKBMの保温光照射範囲KSのうち、溶融光ビームMBMの走査方向SDにて溶融光ビームMBMよりも後側の保温光照射範囲KSBにおいて、保温光ビームKBMの一部が溶融池MPを照射する。これにより、保温光ビームKBMは、付加製造物FFの付加製造の後処理としての保温処理を行う。 Further, the molten light beam MBM melts the powder material P so as to expand the molten pool MP, and then sequentially moves in the scanning direction SD. Therefore, in the heat-retaining light irradiation range KS of the heat-retaining light beam KBM, a part of the heat-retaining light beam KBM is in the heat-retaining light irradiation range KSB behind the molten light beam MBM in the scanning direction SD of the molten light beam MBM. Irradiate the molten pool MP. As a result, the heat insulating light beam KBM performs the heat insulating treatment as a post-treatment of the additional manufacturing of the additional product FF.

ここで、例えば、複数のビードNが形成されることによって基材Bの造形面B1の温度が上昇して高い状態では、溶融光ビームMBM及び保温光ビームKBMの照射による熱エネルギの入熱が過多になり易い。これにより、第二段階において付加製造物FF(ビードN)を基材Bの造形面B1に造形する場合、溶融池MPの領域が大きくなり、付加製造物FF(ビードN)のビード幅が許容範囲を逸脱して付加製造物FF(ビードN)の品質異常が発生する(図6(a)参照)。 Here, for example, in a state where the temperature of the modeling surface B1 of the base material B rises due to the formation of a plurality of beads N and is high, heat input of heat energy by irradiation of the molten light beam MBM and the heat insulating light beam KBM is performed. It tends to be excessive. As a result, when the additional product FF (bead N) is formed on the modeling surface B1 of the base material B in the second stage, the region of the molten pool MP becomes large, and the bead width of the additional product FF (bead N) is permissible. Out of range, quality abnormality of the additive product FF (bead N) occurs (see FIG. 6A).

また、図示しないが、熱エネルギの入熱の過多により、金属蒸発反張力による飛散金属量(スパッタ)が増加したり、溶融池MPの対流が速くなることで、付加製造物FF(ビードN)に空孔が発生して付加製造物FF(ビードN)の品質異常が発生する場合もある。 Further, although not shown, the amount of scattered metal (spatter) due to the metal evaporation reaction tension increases due to excessive heat input of thermal energy, and the convection of the molten pool MP becomes faster, so that the additional product FF (bead N) In some cases, vacancies may occur in the FF, resulting in quality abnormalities in the additional product FF (bead N).

一方、保温光ビームKBMの照射による熱エネルギの入熱が不足する状態では、付加製造物FF(ビードN)の保温が不十分となるので、付加製造物FF(ビードN)の急冷凝固により割れが発生して付加製造物FF(ビードN)の品質異常となる(図6(c)参照)。以上から、保温光ビームKBMの照射による熱エネルギを適切に制御することで、付加製造物FF(ビードN)の割れの発生、付加製造物FF(ビードN)のビード幅の許容範囲の逸脱、付加製造物FF(ビードN)における空孔の発生等の品質異常の発生を抑制できる(図6(b)参照)。 On the other hand, in a state where the heat input of the heat energy due to the irradiation of the heat insulating light beam KBM is insufficient, the heat retention of the additional product FF (bead N) is insufficient, so that the additional product FF (bead N) is cracked due to rapid cooling and solidification. (See FIG. 6 (c)). From the above, by appropriately controlling the thermal energy generated by the irradiation of the heat-retaining light beam KBM, cracking of the additional product FF (bead N) occurs, deviation of the allowable range of the bead width of the additional product FF (bead N), and It is possible to suppress the occurrence of quality abnormalities such as the occurrence of vacancies in the additive product FF (bead N) (see FIG. 6 (b)).

そこで、任意の付加製造物FF(ビードN)のビード形状(溶融光ビームMBMの溶融光照射範囲MSの面積(溶融光照射径MD2・π/4)及び溶融光ビームMBMの溶融光パワー密度MBPで決定される)を選定し、保温光ビームKBMの保温光照射径KDを複数設定する。そして、各保温光照射径KD(>溶融光照射径MD)において保温光ビームKBMの保温光パワー密度KBPを変化させ、付加製造物FF(ビードN)の品質の正常・異常をプロットしたプロセスマップ(図7参照)を構築する。なお、図7においては、保温光ビームKBMの入熱は常に一定である。 Therefore, the bead shape of any additional product FF (bead N) (the area of the molten light irradiation range MS of the molten light beam MBM (melting light irradiation diameter MD 2 · π / 4) and the molten light power density of the molten light beam MBM). (Determined by MBP) is selected, and a plurality of heat-retaining light irradiation diameters KD of the heat-retaining light beam KBM are set. Then, the heat-retaining light power density KBP of the heat-retaining light beam KBM is changed in each heat-retaining light irradiation diameter KD (> molten light irradiation diameter MD), and a process map plotting the normality / abnormality of the quality of the additional product FF (bead N). (See Fig. 7) is constructed. In FIG. 7, the heat input of the heat insulating light beam KBM is always constant.

つまり、保温光ビームKBMの熱エネルギの入熱量は、保温光ビームKBMの保温光照射範囲KSの面積(溶融光照射径MD2・π/4)と保温光ビームKBMの保温光パワー密度KBPとの積で表される。このことから、プロセスマップ上で保温光ビームKBMの入熱一定条件では反比例の関係となることを利用して効率的にプロセスマップを構築する。 That is, the amount of heat input of the heat energy of the heat-retaining light beam KBM is the area of the heat-retaining light irradiation range KS of the heat-retaining light beam KBM (melting light irradiation diameter MD 2・ π / 4) and the heat-retaining light power density KBP of the heat-retaining light beam KBM. It is represented by the product of. From this, the process map is efficiently constructed by utilizing the fact that the heat-retaining light beam KBM has an inverse proportional relationship under a constant heat input condition on the process map.

図7に示すプロセスマップでは、付加製造物FF(ビードN)の品質が異常な場合は「▽」、「×」で示し、正常な場合は「◎」、「〇」、「●」で示す。ここで、「▽」は付加製造物FF(ビードN)に割れが発生した場合、「×」はビード幅が許容範囲を逸脱した場合を示す。「◎」及び「●」は付加製造物FF(ビードN)の品質が正常なときの保温光ビームKBMの保温光パワー密度KBPの上限値KBPu及び下限値KBPd、「〇」はそれらの中間値KBPcを示す。そして、保温光パワー密度KBPの各上限値KBPu、各下限値KBPd、各中間値KBPc(=(KBPu+KBPd)/2)に基づいて近似曲線をそれぞれ求め、上限値KBPuの近似曲線を上限線KBPul、下限値KBPdの近似曲線を下限線KBPdl、中間値KBPcの近似曲線を中間線KBPclとする。 In the process map shown in FIG. 7, when the quality of the additive product FF (bead N) is abnormal, it is indicated by “▽” and “×”, and when it is normal, it is indicated by “◎”, “〇” and “●”. .. Here, "▽" indicates a case where the additional product FF (bead N) is cracked, and "x" indicates a case where the bead width deviates from the allowable range. "◎" and "●" are the upper limit value KBPu and the lower limit value KBPd of the heat insulating light power density KBP of the heat insulating light beam KBM when the quality of the additive product FF (bead N) is normal, and "○" is an intermediate value between them. Indicates KBPc. Then, an approximate curve is obtained based on each upper limit value KBPu, each lower limit value KBPd, and each intermediate value KBPc (= (KBPu + KBPd) / 2) of the heat retaining light power density KBP, and the approximate curve of the upper limit value KBPu is used as the upper limit line KBPul. The approximate curve of the lower limit value KBPd is defined as the lower limit line KBPdl, and the approximate curve of the intermediate value KBPc is defined as the intermediate line KBPcl.

図7から明らかなように、付加製造物FF(ビードN)の品質が正常な範囲は、保温光照射径KDが増加し、保温光パワー密度KBPが減少するにつれて、右肩下がりの指数関数的傾向を示している。そして、保温光照射径KDが、溶融光照射径MDの2倍未満では、付加製造物FF(ビードN)の品質は常に異常であるが、溶融光照射径MDの2倍以上になると、付加製造物FF(ビードN)の品質は正常な範囲を持つことが判明した。 As is clear from FIG. 7, in the range where the quality of the additive product FF (bead N) is normal, the heat-retaining light irradiation diameter KD increases and the heat-retaining light power density KBP decreases, which is an exponential downward slope. It shows a trend. When the heat insulating light irradiation diameter KD is less than twice the molten light irradiation diameter MD, the quality of the additive product FF (bead N) is always abnormal, but when it is more than twice the molten light irradiation diameter MD, it is added. The quality of the product FF (Bead N) was found to be in the normal range.

ここで、付加製造時においては、保温光照射径KDは殆ど変化しないが、保温光パワー密度KBPは変動し易い。このため、保温光パワー密度KBPが多少変動しても、付加製造物FF(ビードN)の品質が正常な範囲を逸脱しないようにする必要がある。よって、保温光パワー密度KBPの上限値KBPuと下限値KBPdの間隔が最大となる保温光照射径KDaを選択する。そして、選択した保温光照射径KDaにおいて、保温光パワー密度KBPの上限値KBPuaと下限値KBPdaの中間値KBPcaを求め、この保温光パワー密度KBPの中間値KBPcaで付加製造を行う。これにより、品質が正常な付加製造物FF(ビードN)を得ることができる。 Here, at the time of additional manufacturing, the heat insulating light irradiation diameter KD hardly changes, but the heat insulating light power density KBP tends to fluctuate. Therefore, it is necessary to prevent the quality of the additive product FF (bead N) from deviating from the normal range even if the heat insulating light power density KBP fluctuates to some extent. Therefore, the heat insulating light irradiation diameter KDa that maximizes the interval between the upper limit value KBPu and the lower limit value KBPd of the heat insulating light power density KBP is selected. Then, at the selected heat-retaining light irradiation diameter KDa, an intermediate value KBPca between the upper limit value KBPua and the lower limit value KBPda of the heat-retaining light power density KBP is obtained, and additional manufacturing is performed at the median value KBPca of the heat-retaining light power density KBP. Thereby, the additive product FF (bead N) having normal quality can be obtained.

尚、本例においては、溶融光ビームMBM及び保温光ビームKBMとして、レーザ光を用いる。しかしながら、溶融光ビームMBM及び保温光ビームKBMは、レーザ光に限られず、電磁波であれば例えば電子ビームを用いることも可能である。 In this example, laser light is used as the molten light beam MBM and the heat insulating light beam KBM. However, the molten light beam MBM and the heat insulating light beam KBM are not limited to laser light, and for example, an electron beam can be used as long as it is an electromagnetic wave.

(4.付加製造物FFの付加製造条件決定方法)
次に、付加製造物FFの付加製造条件決定方法の詳細について図8A及び図8Bを参照して説明する。制御装置130は、作業者から入力される付加製造物FF(ビードN)のビード形状(ビード幅、ビード高さ)の造形を行うために必要な溶融光ビームMBMの出力条件を設定する(ステップS1)。
(4. Method for determining additional manufacturing conditions for additional product FF)
Next, the details of the method for determining the additional manufacturing conditions of the additional product FF will be described with reference to FIGS. 8A and 8B. The control device 130 sets the output conditions of the molten light beam MBM necessary for modeling the bead shape (bead width, bead height) of the additional product FF (bead N) input from the operator (step). S1).

すなわち、付加製造物FF(ビードN)のビード形状は、溶融光ビームMBMの出力条件により必然的に決定される。このことから、制御装置130は、入力されるビード形状の造形を行うために必要な溶融光ビームMBMの溶融光照射径MD及び溶融光ビームMBMの溶融光パワー密度MBPを設定する。 That is, the bead shape of the additional product FF (bead N) is inevitably determined by the output conditions of the molten light beam MBM. From this, the control device 130 sets the molten light irradiation diameter MD of the molten light beam MBM and the molten light power density MBP of the molten light beam MBM, which are necessary for forming the input bead shape.

そして、制御装置130は、保温光ビームKBMの保温光照射径KDを設定する(ステップS2)。前述したように、保温光照射径KDが、溶融光照射径MDの2倍未満では、付加製造物FF(ビードN)の品質は常に異常であるが、溶融光照射径MDの2倍以上になると、付加製造物FF(ビードN)の品質は正常な範囲を持つ。そこで、制御装置130は、例えば溶融光照射径MDの2倍となる保温光照射径KDを設定する。 Then, the control device 130 sets the heat insulating light irradiation diameter KD of the heat insulating light beam KBM (step S2). As described above, when the heat insulating light irradiation diameter KD is less than twice the molten light irradiation diameter MD, the quality of the additive product FF (bead N) is always abnormal, but it is more than twice the molten light irradiation diameter MD. Then, the quality of the additive product FF (Bead N) has a normal range. Therefore, the control device 130 sets, for example, a heat insulating light irradiation diameter KD that is twice the melt light irradiation diameter MD.

そして、制御装置130は、粉末材料供給装置110の作動を開始する(ステップS3)。すなわち、制御装置130は、粉末材料供給装置110のバルブ112、具体的には、粉末供給バルブ112b及びガス導入バルブ112cの開閉を制御し、予め設定された供給量の粉末材料Pを噴射ノズル114から基材Bに供給する。 Then, the control device 130 starts the operation of the powder material supply device 110 (step S3). That is, the control device 130 controls the opening and closing of the valve 112 of the powder material supply device 110, specifically, the powder supply valve 112b and the gas introduction valve 112c, and injects the powder material P in a preset supply amount into the injection nozzle 114. Is supplied to the base material B.

制御装置130は、光ビーム照射装置120の溶融光ビーム照射装置121及び保温光ビーム照射装置122の作動を開始する(ステップS4)。そして、制御装置130は、基材Bに供給された粉末材料Pに対して、ステップS1,S2で設定した溶融光ビームMBM及び保温光ビームKBMを照射し、基材Bの造形面B1にビードN、すなわち付加製造物FFを造形する。 The control device 130 starts the operation of the molten light beam irradiating device 121 and the heat retaining light beam irradiating device 122 of the light beam irradiating device 120 (step S4). Then, the control device 130 irradiates the powder material P supplied to the base material B with the molten light beam MBM and the heat insulating light beam KBM set in steps S1 and S2, and beads the modeling surface B1 of the base material B. N, that is, the additional product FF is modeled.

制御装置130は、基材Bの造形面B1にビードN、すなわち付加製造物FFの造形が完了したか否かを判断し(ステップS5)、付加製造物FFの造形が完了していないときは付加製造を継続する。そして、制御装置130は、付加製造物FFの造形が完了したら、粉末材料供給装置110の作動を停止し(ステップS6)、光ビーム照射装置120の溶融光ビーム照射装置121及び保温光ビーム照射装置122の作動を停止する(ステップS7)。 The control device 130 determines whether or not the modeling of the bead N, that is, the additional product FF is completed on the modeling surface B1 of the base material B (step S5), and when the modeling of the additional product FF is not completed, the control device 130 determines. Continue additional manufacturing. Then, when the modeling of the additional product FF is completed, the control device 130 stops the operation of the powder material supply device 110 (step S6), and the molten light beam irradiation device 121 and the heat retaining light beam irradiation device of the light beam irradiation device 120 are stopped. The operation of 122 is stopped (step S7).

制御装置130は、造形された付加製造物FFを撮像装置140によって撮像して画像データGを取得する(ステップS8)。尚、制御装置130は、静止画である画像データGを取得することに限られず、例えば、撮像装置140によって撮像された動画である動画データを取得しても可能である。 The control device 130 takes an image of the modeled additional product FF by the image pickup device 140 and acquires the image data G (step S8). The control device 130 is not limited to acquiring image data G which is a still image, and can also acquire moving image data which is a moving image captured by the image pickup device 140, for example.

そして、制御装置130は、取得した画像データG(または、動画データ)に基づき、造形した付加製造物FFの品質を判定する(ステップS9)。すなわち、制御装置130は、付加製造物FFのビード幅及びビード高さが規定された許容値の範囲内であるか否か、また付加製造物FFに割れや空孔(画像データGから検出される凹凸)が発生しているか否か、また付加製造物FFのビード形状の不具合、例えば2つ以上の山形状になっているか否かを判定する。なお、ビード高さは、粉末材料Pの供給量を制御することで調整できる。 Then, the control device 130 determines the quality of the modeled additional product FF based on the acquired image data G (or moving image data) (step S9). That is, the control device 130 determines whether or not the bead width and the bead height of the additional product FF are within the specified allowable values, and whether the additional product FF has cracks or holes (detected from the image data G). It is determined whether or not the unevenness is generated, and whether or not the bead shape of the additional product FF is defective, for example, whether or not it has two or more mountain shapes. The bead height can be adjusted by controlling the supply amount of the powder material P.

制御装置130は、造形した付加製造物FFの品質の判定結果をプロセスマップにプロットする。すなわち、制御装置130は、保温光ビームKBMの保温光パワー密度KBPを縦軸に取り、保温光ビームKBMの保温光照射径KDを横軸に取ったプロセスマップに、造形した付加製造物FFの品質の判定結果をプロットする。 The control device 130 plots the quality determination result of the modeled additional product FF on the process map. That is, the control device 130 has the heat-retaining light power density KBP of the heat-retaining light beam KBM on the vertical axis, and the heat-retaining light irradiation diameter KD of the heat-retaining light beam KBM on the horizontal axis. Plot the quality judgment result.

そして、制御装置130は、プロセスマップの作成が完了したか否かを判定し(ステップS11)、プロセスマップの作成が完了していないときはステップS2に戻り、先に設定した保温光ビームKBMの保温光照射径KDとは異なる保温光照射径KDを設定し、以降は上述の処理を繰り返す。 Then, the control device 130 determines whether or not the process map creation is completed (step S11), and if the process map creation is not completed, returns to step S2 and returns to the previously set heat insulating light beam KBM. A heat insulating light irradiation diameter KD different from the heat insulating light irradiation diameter KD is set, and the above processing is repeated thereafter.

一方、制御装置130は、プロセスマップの作成が完了したときは、プロセスマップにおける保温光ビームKBMの保温光パワー密度KBPの上限線KBPul及び下限線KBPdlを算出する(ステップS12)。すなわち、制御装置130は、保温光ビームKBMの保温光パワー密度KBPの各上限値KBPuに基づいて近似曲線を求め、求めた上限値KBPuの近似曲線を上限線KBPulとするとともに、各下限値KBPdに基づいて近似曲線を求め、求めた下限値KBPdの近似曲線を下限線KBPdlとする。 On the other hand, when the creation of the process map is completed, the control device 130 calculates the upper limit line KBPul and the lower limit line KBPdl of the heat insulating light power density KBP of the heat insulating light beam KBM in the process map (step S12). That is, the control device 130 obtains an approximate curve based on each upper limit value KBPu of the heat retention light power density KBP of the heat retention light beam KBM, sets the approximate curve of the obtained upper limit value KBPu as the upper limit line KBPul, and sets each lower limit value KBPd. The approximate curve is obtained based on the above, and the approximate curve of the obtained lower limit value KBPd is defined as the lower limit line KBPdl.

そして、制御装置130は、求めた上限線KBPulと下限線KBPdlに基づいて保温光ビームKBMの保温光照射径KDaを選定する(ステップS13)。すなわち、制御装置130は、上限線KBPulと下限線KBPdlとで囲まれる付加製造物FFの品質が正常な範囲において、一つの保温光照射径KDにおける保温光パワー密度KBPの上限値KBPuと下限値KBPdとの差が最も大きくなる保温光照射径KDaを選定する。 Then, the control device 130 selects the heat insulating light irradiation diameter KDa of the heat insulating light beam KBM based on the obtained upper limit line KBPul and the lower limit line KBPdl (step S13). That is, the control device 130 has an upper limit value KBPu and a lower limit value of the heat insulating light power density KBP in one heat insulating light irradiation diameter KD within a range in which the quality of the additional product FF surrounded by the upper limit line KBPul and the lower limit line KBPdl is normal. Select the heat insulating light irradiation diameter KDa that has the largest difference from KBPd.

そして、制御装置130は、選定した保温光照射径KDaに基づいて保温光ビームKBMを制御するための保温光パワー密度KBPを決定し(ステップS14)、全ての処理を終了する。すなわち、制御装置130は、保温光ビームKBMの保温光パワー密度KBPの各中間値KBPcに基づいて近似曲線を求め、求めた中間値KBPcの近似曲線を中間線KBPclとする。そして、中間線KBPclと選定した保温光照射径KDaから中間値KBPcaを求め、保温光ビームKBMを制御するための保温光パワー密度KBPcaとして決定し、全ての処理を終了する。 Then, the control device 130 determines the heat-retaining light power density KBP for controlling the heat-retaining light beam KBM based on the selected heat-retaining light irradiation diameter KDa (step S14), and ends all the processing. That is, the control device 130 obtains an approximate curve based on each intermediate value KBPc of the heat-retaining light power density KBP of the heat-retaining light beam KBM, and sets the approximate curve of the obtained intermediate value KBPc as the intermediate line KBPcl. Then, the median value KBPca is obtained from the intermediate line KBPcl and the selected heat insulating light irradiation diameter KDa, determined as the heat insulating light power density KBPca for controlling the heat insulating light beam KBM, and all the processing is completed.

なお、上述の例では、プロセスマップは、付加製造物FFを実際に造形したときの保温光照射径KDを5点変化させて作成しているが、少なくとも3点変化させることで作成可能であり、これにより付加製造の工数の低減化を図れる。 In the above example, the process map is created by changing the heat insulating light irradiation diameter KD when the additional product FF is actually modeled by 5 points, but it can be created by changing at least 3 points. As a result, the man-hours for additional manufacturing can be reduced.

以上の説明からも理解できるように、付加製造装置100によれば、付加製造物FF(ビードN)の品質を保温光ビームKBMの保温光パワー密度KBPと保温光照射範囲KSの大きさ、すなわち保温光照射径KDとの関係性を示すプロセスマップから把握できるので、付加製造時に適正な保温光ビームKBMの保温光パワー密度KBP及び保温光照射径KDによる保温光ビーム照射装置122の制御条件の調整を簡易に行うことが可能となり、高品質な付加製造物FF(ビードN)を造形できる。 As can be understood from the above description, according to the additional manufacturing apparatus 100, the quality of the additional product FF (bead N) is determined by the size of the heat insulating light power density KBP and the heat insulating light irradiation range KS of the heat insulating light beam KBM, that is, Since it can be grasped from the process map showing the relationship with the heat-retaining light irradiation diameter KD, the control conditions of the heat-retaining light beam irradiation device 122 by the heat-retaining light power density KBP and the heat-retaining light irradiation diameter KD of the heat-retaining light beam KBM appropriate at the time of additional manufacturing. Adjustment can be easily performed, and a high-quality additional product FF (Bead N) can be formed.

(5.その他)
上述した実施形態では、溶融光照射範囲MSが円形状であり保温光照射範囲KSも円形状である場合を説明した。しかし、溶融光照射範囲MS及び保温光照射範囲KSは円形状に限定されるものではなく、溶融光照射範囲MSの全部が保温光照射範囲KSに重畳(包含)する形状であれば、付加製造物FF(ビードN)の品質は正常な範囲を持つことができる。
(5. Others)
In the above-described embodiment, the case where the molten light irradiation range MS is circular and the thermal insulation light irradiation range KS is also circular has been described. However, the molten light irradiation range MS and the heat insulating light irradiation range KS are not limited to a circular shape, and if the entire molten light irradiation range MS is superimposed (included) on the heat insulating light irradiation range KS, additional manufacturing is performed. The quality of the object FF (Bead N) can have a normal range.

例えば、円形状の溶融光照射範囲MSは実施形態と同一で、図9Aに示す正四角形状(一辺の方向が走査方向SDと平行となる配置)の保温光照射範囲KSa(溶融光照射範囲MSの中心と保温光照射範囲KSaの中心とが同心)としてもよい。そして、この保温光照射範囲KSaの場合、保温光照射範囲KSaの大きさは、走査方向SDに平行であって溶融光照射範囲MSの中心を通る直線ML(保温光照射範囲KSaの中心を通る直線KLa)と、保温光照射範囲KSaの外周との交点間の距離、すなわち一辺の長さSLで定義する。この一辺の長さSLが円形状の溶融光照射径MDの2倍以上であれば、付加製造物FF(ビードN)の品質は正常な範囲を持つ。なお、図9Aでは正四角形状を例に説明したが、正四角形状に限定されるものではなく、長方形状も同様に適用できる。 For example, the circular molten light irradiation range MS is the same as that of the embodiment, and the heat-retaining light irradiation range KSa (melting light irradiation range MS) having a regular square shape (arrangement in which one side direction is parallel to the scanning direction SD) shown in FIG. 9A. The center of the heat insulating light irradiation range KSa is concentric). In the case of this heat-retaining light irradiation range KSa, the size of the heat-retaining light irradiation range KSa is parallel to the scanning direction SD and passes through the center of the molten light irradiation range MS (the center of the heat-retaining light irradiation range KSa). It is defined by the distance between the straight line KLa) and the intersection of the heat insulating light irradiation range KSa and the outer circumference, that is, the length SL of one side. If the length SL on one side is at least twice the circular molten light irradiation diameter MD, the quality of the additional product FF (bead N) has a normal range. Although the regular square shape has been described as an example in FIG. 9A, the shape is not limited to the regular square shape, and the rectangular shape can be similarly applied.

また、円形状の溶融光照射範囲MSは実施形態と同一で、図9Bに示す楕円形状の保温光照射範囲KSb(溶融光照射範囲MSの中心と保温光照射範囲KSbの中心とが同心)としてもよい。そして、この保温光照射範囲KSbの場合、保温光照射範囲KSbの大きさは、走査方向SDに平行であって溶融光照射範囲MSの中心を通る直線ML(保温光照射範囲KSbの中心を通る直線KLb)と、保温光照射範囲KSbの外周との交点間の距離、すなわち短径ODで定義する。この短径ODが円形状の溶融光照射径MDの2倍以上であれば、付加製造物FF(ビードN)の品質は正常な範囲を持つ。なお、図9Bでは短径ODが走査方向SDと平行となる配置を例に説明したが、楕円形状の配置は特に限定されるものではなく、同様に適用できる。 Further, the circular molten light irradiation range MS is the same as that of the embodiment, and the elliptical heat insulating light irradiation range KSb shown in FIG. 9B (the center of the molten light irradiation range MS and the center of the heat insulating light irradiation range KSb are concentric). May be good. In the case of this heat-retaining light irradiation range KSb, the size of the heat-retaining light irradiation range KSb is parallel to the scanning direction SD and passes through the center of the molten light irradiation range MS (the center of the heat-retaining light irradiation range KSb). It is defined by the distance between the intersection of the straight line KLb) and the outer periphery of the heat insulating light irradiation range KSb, that is, the minor axis OD. If the minor axis OD is at least twice the circular molten light irradiation diameter MD, the quality of the additional product FF (bead N) has a normal range. In FIG. 9B, an arrangement in which the minor axis OD is parallel to the SD in the scanning direction has been described as an example, but the arrangement of the elliptical shape is not particularly limited and can be similarly applied.

また、円形状の溶融光照射範囲MSは実施形態と同一で、図9Cに示すように溶融光照射範囲MSを円環内に含むような円環状の保温光照射範囲KSc(溶融光照射範囲MSの中心と保温光照射範囲KScの中心とが同心)としてもよい。そして、この保温光ビームKBMcの場合、保温光照射範囲KScの大きさは、走査方向SDに平行であって溶融光照射範囲MSの中心を通る直線ML(保温光照射範囲KScの中心を通る直線KLc)と、保温光照射範囲KScの外周との交点間の距離、すなわち外環径RDで定義する。この外環径RDが円形状の溶融光照射径MDの2倍以上であれば、付加製造物FF(ビードN)の品質は正常な範囲を持つ。 Further, the circular molten light irradiation range MS is the same as that of the embodiment, and as shown in FIG. 9C, the annular heat insulating light irradiation range KSC (melting light irradiation range MS) including the molten light irradiation range MS in the ring. The center of the heat insulating light irradiation range KSc is concentric). In the case of this heat-retaining light beam KBMc, the size of the heat-retaining light irradiation range KSc is a straight line ML (a straight line passing through the center of the heat-retaining light irradiation range KSc) that is parallel to the scanning direction SD and passes through the center of the molten light irradiation range MS. It is defined by the distance between the intersection of KLc) and the outer periphery of the heat insulating light irradiation range KSc, that is, the outer ring diameter RD. If the outer ring diameter RD is at least twice the circular melt light irradiation diameter MD, the quality of the additional product FF (bead N) has a normal range.

更に、溶融光照射範囲MSの中心と保温光照射範囲KScの中心とが同心でなくてもよく、溶融光照射範囲MSの全部が、保温光照射範囲KSと重畳していれば良い。よって、図10Aに示すように、四角形状の保温光照射範囲KSaの一角部にずれていても、付加製造物FF(ビードN)の品質は正常な範囲を持つ。また、図10Bに示すように、円形状の溶融光照射範囲MSの中心と円形状の保温光照射範囲KSの中心とが走査方向SDと直交する方向に偏心、すなわち溶融光照射範囲MSが保温光照射範囲KSの円周近傍にずれていてもよい。そして、この保温光ビームKBMの場合、保温光照射範囲KSの大きさは、走査方向SDに平行であって溶融光照射範囲MSの中心を通る直線MLと、保温光照射範囲KSの外周との交点間の距離KDdで定義する。この距離KDdが円形状の溶融光照射径MDの2倍以上であれば、付加製造物FF(ビードN)の品質は正常な範囲を持つ。 Further, the center of the molten light irradiation range MS and the center of the heat insulating light irradiation range KSc do not have to be concentric, and the entire molten light irradiation range MS may be superimposed on the heat insulating light irradiation range KS. Therefore, as shown in FIG. 10A, the quality of the additional product FF (bead N) has a normal range even if it is deviated from one corner of the square-shaped heat insulating light irradiation range KSa. Further, as shown in FIG. 10B, the center of the circular molten light irradiation range MS and the center of the circular thermal insulation light irradiation range KS are eccentric in the direction orthogonal to the scanning direction SD, that is, the molten light irradiation range MS retains heat. The light irradiation range may be shifted to the vicinity of the circumference of the KS. In the case of this heat-retaining light beam KBM, the size of the heat-retaining light irradiation range KS is parallel to the scanning direction SD and passes through the center of the molten light irradiation range MS, and the outer periphery of the heat-retaining light irradiation range KS. It is defined by the distance KDd between the intersections. If this distance KDd is at least twice the circular melt light irradiation diameter MD, the quality of the additional product FF (bead N) has a normal range.

また、上述した実施形態では、付加製造装置100において、粉末材料供給装置110により、基材Bの造形面B1に対して硬質粉末材料P1及び結合粉末材料P2からなる粉末材料Pを噴射して供給するようにした。しかしながら、造形面B1への材料供給に関しては、粉末材料Pに限定されず、金属製の線形材料からなる、例えば、ワイヤ等を材料供給装置により供給することも可能である。この場合においては、供給された線形材料が光ビーム照射装置120から照射された溶融光ビームMBMにより溶融され且つ保温光ビームKBMにより保温されることにより、基材Bの造形面B1に付加製造物FFを造形することができる。従って、上述した本例と同様の効果が期待できる。 Further, in the above-described embodiment, in the additional manufacturing apparatus 100, the powder material supply device 110 injects and supplies the powder material P composed of the hard powder material P1 and the bonded powder material P2 to the modeling surface B1 of the base material B. I tried to do it. However, the material supply to the modeling surface B1 is not limited to the powder material P, and it is also possible to supply a wire or the like made of a linear metal material by a material supply device. In this case, the supplied linear material is melted by the molten light beam MBM irradiated from the light beam irradiator 120 and kept warm by the heat retaining light beam KBM, so that the product is added to the modeling surface B1 of the base material B. FF can be modeled. Therefore, the same effect as this example described above can be expected.

更に、上述した実施形態では、付加製造装置100がLMD方式を採用した場合を説明した。これに代えて、付加製造装置がSLM方式を採用した場合であっても、保温光ビームが溶融池(付加製造物)を保温することが可能である。但し、SLMを採用した場合、通常、光ビームの走査速度はLMDの光ビームの走査速度よりも速い。このため、付加製造装置がSLMを採用した場合には、例えば、通常の付加製造時よりも溶融光ビーム及び保温光ビームの走査速度を低下させることが好ましい。走査速度を低下させるほど、保温光ビームKBMによる保温効果がより発揮される。 Further, in the above-described embodiment, the case where the additional manufacturing apparatus 100 adopts the LMD method has been described. Instead of this, even when the additional manufacturing apparatus adopts the SLM method, the heat insulating light beam can keep the molten pool (additional product) warm. However, when SLM is adopted, the scanning speed of the light beam is usually faster than the scanning speed of the light beam of the LMD. Therefore, when the additional manufacturing apparatus adopts SLM, for example, it is preferable to lower the scanning speed of the molten light beam and the heat insulating light beam as compared with the case of normal additional manufacturing. The lower the scanning speed, the more the heat-retaining effect of the heat-retaining light beam KBM is exhibited.

100…付加製造装置、110…粉末材料供給装置、120…光ビーム照射装置、121…溶融光ビーム照射装置、122…保温光ビーム照射装置、123…移動装置、130…制御装置、140…撮像装置、B…基材、B1…造形面、FF…付加製造物、N…ビード、MP…溶融池、KBM…保温光ビーム、MBM…溶融光ビーム、KS…保温光照射範囲、MS…溶融光照射範囲、KD…保温光照射径、MD…溶融光照射径、KBP…保温光パワー密度、MBP…溶融光パワー密度、P…粉末材料、SD…走査方向、PM…プロセスマップ 100 ... Additional manufacturing device, 110 ... Powder material supply device, 120 ... Light beam irradiation device, 121 ... Molten light beam irradiation device, 122 ... Thermal insulation light beam irradiation device, 123 ... Mobile device, 130 ... Control device, 140 ... Imaging device , B ... base material, B1 ... shaped surface, FF ... additive product, N ... bead, MP ... molten pond, KBM ... heat insulating light beam, MBM ... molten light beam, KS ... heat insulating light irradiation range, MS ... molten light irradiation Range, KD ... Thermal insulation diameter, MD ... Molten light irradiation diameter, KBP ... Thermal insulation power density, MBP ... Molten light power density, P ... Powder material, SD ... Scanning direction, PM ... Process map

Claims (9)

硬質材を含む粉末材料を基材に供給する粉末材料供給装置と、
前記基材に供給された前記粉末材料を前記粉末材料の融点以上に加熱して溶融する溶融光ビームを照射する溶融光ビーム照射装置と、
前記溶融光ビームが照射される照射範囲である溶融光照射範囲の外側を前記融点未満に加熱して保温する保温光ビームを照射する保温光ビーム照射装置と、
前記保温光ビームが照射される照射範囲である保温光照射範囲が前記溶融光照射範囲に重畳するように、前記溶融光ビーム及び前記保温光ビームの照射を制御して、前記基材に前記粉末材料でなる付加製造物を造形する制御装置と、
を備え、
前記制御装置は、
前記保温光ビームの単位面積当たりの光出力である保温光パワー密度及び前記保温光照射範囲の大きさと前記付加製造物の品質との関係性を示すプロセスマップを作成し、前記プロセスマップに基づいて、前記保温光ビームの照射を制御する、付加製造装置。
A powder material supply device that supplies powder materials including hard materials to the base material,
A molten light beam irradiating device that irradiates a molten light beam that melts the powder material supplied to the substrate by heating it to a temperature equal to or higher than the melting point of the powder material.
A heat-retaining light beam irradiation device that irradiates a heat-retaining light beam that heats the outside of the melt-light irradiation range, which is the irradiation range to which the melt-light beam is irradiated, to a temperature lower than the melting point and keeps the heat.
The irradiation of the molten light beam and the heat insulating light beam is controlled so that the heat insulating light irradiation range, which is the irradiation range to which the heat insulating light beam is irradiated, is superimposed on the molten light irradiation range, and the powder is applied to the substrate. A control device for modeling additional products made of materials,
Equipped with
The control device is
A process map showing the relationship between the heat-retaining light power density, which is the light output per unit area of the heat-retaining light beam, the size of the heat-retaining light irradiation range, and the quality of the additional product was created, and based on the process map. , An additional manufacturing device that controls the irradiation of the heat insulating light beam.
前記制御装置は、前記溶融光ビーム及び前記保温光ビームの照射、並びに、前記基材に対する前記溶融光ビーム及び前記保温光ビームの相対的な走査について、前記溶融光ビーム照射装置及び前記保温光ビーム照射装置の各々を独立して制御可能であり、前記溶融光照射範囲と前記保温光照射範囲を連動させずに変化可能である、請求項1に記載の付加製造装置。 The control device comprises the molten light beam irradiator and the heat-retaining light beam for irradiation of the molten light beam and the heat-retaining light beam, and relative scanning of the molten light beam and the heat-retaining light beam with respect to the substrate. The additional manufacturing apparatus according to claim 1, wherein each of the irradiation devices can be controlled independently, and the melt light irradiation range and the heat retention light irradiation range can be changed without interlocking with each other. 前記制御装置は、前記付加製造物に割れが発生している場合に前記品質を異常として前記プロセスマップを作成する、請求項1または2に記載の付加製造装置。 The additional manufacturing apparatus according to claim 1 or 2, wherein the control device creates the process map with the quality as an abnormality when the additional product is cracked. 前記制御装置は、前記付加製造物のビード幅が許容範囲を逸脱している場合に前記品質を異常として前記プロセスマップを作成する、請求項1-3の何れか一項に記載の付加製造装置。 The additional manufacturing apparatus according to any one of claims 1-3, wherein the control device creates the process map with the quality as an abnormality when the bead width of the additional product deviates from the allowable range. .. 前記制御装置は、前記付加製造物に空孔が発生している場合に前記品質を異常として前記プロセスマップを作成する、請求項1-4の何れか一項に記載の付加製造装置。 The additional manufacturing apparatus according to any one of claims 1-4, wherein the control device creates the process map with the quality as an abnormality when vacancies are generated in the additional manufacturing product. 前記制御装置は、前記プロセスマップにおける前記保温光パワー密度の上限値と下限値との差が最も大きくなる前記保温光照射範囲の大きさを選定して前記保温光ビームの照射を制御する、請求項1-5の何れか一項に記載の付加製造装置。 The control device controls the irradiation of the heat insulating light beam by selecting the size of the heat insulating light irradiation range in which the difference between the upper limit value and the lower limit value of the heat insulating light power density in the process map is the largest. Item 5. The additional manufacturing apparatus according to any one of Items 1-5. 前記制御装置は、前記選定した前記保温光照射範囲の大きさにおける前記保温光パワー密度の前記上限値と前記下限値との中央値で前記保温光ビームの照射を制御する、請求項6に記載の付加製造装置。 The sixth aspect of the invention, wherein the control device controls the irradiation of the heat insulating light beam at the median value of the upper limit value and the lower limit value of the heat insulating light power density in the selected size of the heat insulating light irradiation range. Additional manufacturing equipment. 前記保温光パワー密度の前記上限値及び前記下限値は、前記付加製造物に異常が発生しない値である、請求項6又は7に記載の付加製造装置。 The additional manufacturing apparatus according to claim 6 or 7, wherein the upper limit value and the lower limit value of the heat insulating light power density are values that do not cause an abnormality in the additional product. 前記制御装置は、
前記保温光照射範囲の大きさを、前記基材に対する前記溶融光ビーム及び前記保温光ビームの相対的な走査方向に平行であって前記溶融光照射範囲の中心を通る直線と、前記保温光照射範囲の外周との交点間の距離で定義し、
前記溶融光照射範囲の大きさを、前記走査方向に平行であって前記溶融光照射範囲の中心を通る直線と、前記溶融光照射範囲の外周との交点間の距離で定義し、
前記保温光照射範囲の大きさが前記溶融光照射範囲の大きさの2倍以上となるように、前記溶融光ビーム及び前記保温光ビームの照射を制御する、請求項1-8の何れか一項に記載の付加製造装置。
The control device is
The size of the heat-retaining light irradiation range is parallel to the scanning direction of the molten light beam and the heat-retaining light beam with respect to the substrate and passes through the center of the melt-retaining light irradiation range, and the heat-retaining light irradiation. Defined by the distance between the intersections with the outer circumference of the range,
The size of the molten light irradiation range is defined by the distance between the intersection of a straight line parallel to the scanning direction and passing through the center of the molten light irradiation range and the outer periphery of the molten light irradiation range.
Any one of claims 1-8, wherein the irradiation of the molten light beam and the heat insulating light beam is controlled so that the size of the heat insulating light irradiation range is at least twice the size of the molten light irradiation range. The additional manufacturing equipment described in the section.
JP2020165100A 2020-09-30 2020-09-30 Additive manufacturing apparatus Pending JP2022057039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020165100A JP2022057039A (en) 2020-09-30 2020-09-30 Additive manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020165100A JP2022057039A (en) 2020-09-30 2020-09-30 Additive manufacturing apparatus

Publications (1)

Publication Number Publication Date
JP2022057039A true JP2022057039A (en) 2022-04-11

Family

ID=81110266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020165100A Pending JP2022057039A (en) 2020-09-30 2020-09-30 Additive manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP2022057039A (en)

Similar Documents

Publication Publication Date Title
US11097349B2 (en) Method and system for additive manufacturing using a light beam
EP3307526B1 (en) Multiple beam additive manufacturing
TWI780163B (en) Apparatus, method, and computer program product for additive manufacturing with cell processing recipes
US20210039166A1 (en) Triangle hatch pattern for additive manufacturing
CN113423847B (en) Method and system for heating using an energy beam
WO2018169630A1 (en) Constantly varying hatch for additive manufacturing
JP7439520B2 (en) additive manufacturing equipment
JP2020094269A (en) Additive manufacturing apparatus
JP2021188111A (en) Addition production device
US10668534B2 (en) Leg elimination strategy for hatch pattern
JP2022129511A (en) Additive manufacturing apparatus
JP2022057039A (en) Additive manufacturing apparatus
JP2024025142A (en) additive manufacturing equipment
JP2022099636A (en) Additive manufacturing apparatus
EA007448B1 (en) Method for laser sintering of articles made from powder materials and device therefor
JP2021171958A (en) Additional production device
US20220023950A1 (en) Additive manufacturing device
JP2023182215A (en) Additive manufacturing apparatus
CN113382819A (en) Method and system for heating an object using an energy beam

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210301