JP2022057000A - Method of manufacturing translucent member, translucent member, and light-emitting device - Google Patents

Method of manufacturing translucent member, translucent member, and light-emitting device Download PDF

Info

Publication number
JP2022057000A
JP2022057000A JP2020165029A JP2020165029A JP2022057000A JP 2022057000 A JP2022057000 A JP 2022057000A JP 2020165029 A JP2020165029 A JP 2020165029A JP 2020165029 A JP2020165029 A JP 2020165029A JP 2022057000 A JP2022057000 A JP 2022057000A
Authority
JP
Japan
Prior art keywords
translucent member
light extraction
organic solvent
extraction surface
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020165029A
Other languages
Japanese (ja)
Inventor
康志 岡本
Koji Okamoto
耕治 阿部
Koji Abe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP2020165029A priority Critical patent/JP2022057000A/en
Publication of JP2022057000A publication Critical patent/JP2022057000A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Filters (AREA)
  • Led Device Packages (AREA)

Abstract

To provide a method of manufacturing a translucent member capable of enhancing light-extraction efficiency, and to provide such translucent member and a light-emitting device.SOLUTION: A method of manufacturing a translucent member comprises: preparing a translucent member containing a phosphor and a resin and having a light extraction surface; polishing the light extraction surface; and bringing the polished light extraction surface into contact with an organic solvent.SELECTED DRAWING: Figure 1

Description

本発明は、透光性部材の製造方法、透光性部材及び発光装置に関する。 The present invention relates to a method for manufacturing a translucent member, a translucent member, and a light emitting device.

発光素子として、発光ダイオード(Light Emitting Diode、以下「LED」ともいう。)やレーザーダイオード(Laser Diode、以下「LD」ともいう。)が広く利用されている。 As the light emitting element, a light emitting diode (Light Emitting Diode, hereinafter also referred to as “LED”) and a laser diode (Laser Diode, hereinafter also referred to as “LD”) are widely used.

LEDやLDの発光素子から発せられた光を波長変換するために、蛍光体と樹脂とを含み、少なくとも光取り出し面を含む透光性部材や、蛍光体とアルミン酸塩を含むセラミックス複合体が波長変換部材として用いられる。発光素子と、波長変換部材を備えた発光装置は、室内照明や車載用照明などの光源、液晶用バックライト光源、イルミネーション、プロジェクター光源などとして広範囲の分野で利用されている。 In order to wavelength-convert the light emitted from the light emitting element of the LED or LD, a translucent member containing a phosphor and a resin and at least including a light extraction surface, or a ceramic composite containing a phosphor and an aluminate is used. It is used as a wavelength conversion member. A light emitting device provided with a light emitting element and a wavelength conversion member is used in a wide range of fields as a light source for indoor lighting and in-vehicle lighting, a backlight light source for liquid crystal displays, illumination, and a projector light source.

特許文献1には、半導体発光素子を含む半導体ボディーと、波長変換部材とを含む光学素子とが間隔を空けて配置された構成を有するリモートフォスファー技術に用いるものとして、蛍光体と透光性の樹脂とを含み、光散乱性を向上させるために、面状構造の少なくとも一部に凹凸を有する波長変換部材が開示されている。特許文献1には、波長変換部材の面状構造の少なくとも一部に凹凸を形成するために、有機溶剤に浸漬する方法、有機溶剤を塗布してブラッシングする方法、凹凸を設けた型に注型する方法が開示されている。 Patent Document 1 describes a phosphor and translucency as those used in a remote phosphor technology having a configuration in which a semiconductor body including a semiconductor light emitting element and an optical element including a wavelength conversion member are arranged at intervals. A wavelength conversion member having irregularities in at least a part of the planar structure is disclosed in order to improve the light scattering property. In Patent Document 1, in order to form unevenness on at least a part of the planar structure of the wavelength conversion member, a method of immersing in an organic solvent, a method of applying an organic solvent and brushing, and casting into a mold provided with unevenness. The method of doing so is disclosed.

特開2014-192251号公報Japanese Unexamined Patent Publication No. 2014-192251

本発明の一態様は、光取り出し効率をより高くすることができる透光性部材の製造方法、透光性部材及び発光装置を提供することを目的とする。 One aspect of the present invention is to provide a method for manufacturing a translucent member, a translucent member, and a light emitting device capable of increasing the light extraction efficiency.

第一の態様は、蛍光体と樹脂を含み、光取り出し面を備えた透光性部材を準備することと、前記光取り出し面の表面を研磨することと、研磨後の光取り出し面と、有機溶剤と、を接触させること、を含む、透光性部材の製造方法である。 The first aspect is to prepare a translucent member containing a phosphor and a resin and having a light extraction surface, polishing the surface of the light extraction surface, the light extraction surface after polishing, and organic. A method for manufacturing a translucent member, which comprises contacting with a solvent.

第二の態様は、蛍光体と樹脂を含み、光取り出し面を備え、前記光取り出し面において、一辺が20μmの正方形で囲まれた領域内に、断面視で0°を超えて160°以下の範囲内に角度を有し、一辺が0.5μm以上2μm以下の範囲内の二辺を有する凸部を備え、前記凸部の数が1個以上100個以下の範囲内である、透光性部材である。 The second aspect comprises a phosphor and a resin, and comprises a light extraction surface, which is more than 0 ° and 160 ° or less in cross-sectional view in a region surrounded by a square having a side of 20 μm on the light extraction surface. Translucency having a convex portion having an angle in the range and having two sides in a range of 0.5 μm or more and 2 μm or less on one side, and the number of the convex portions is in the range of 1 or more and 100 or less. It is a member.

第三の態様は、前記透光性部材と、励起光源と、を備えた発光装置である。 A third aspect is a light emitting device including the translucent member and an excitation light source.

本発明の一態様によれば、光取り出し効率を高くすることができる透光性部材の製造方法、透光性部材及び発光装置を提供することができる。 According to one aspect of the present invention, it is possible to provide a method for manufacturing a translucent member, a translucent member, and a light emitting device capable of increasing the light extraction efficiency.

図1は、本形態の透光性部材の製造方法の一例を示すフローチャートである。FIG. 1 is a flowchart showing an example of a method for manufacturing a translucent member of the present embodiment. 図2Aは、発光装置の一例を示す概略斜視図である。FIG. 2A is a schematic perspective view showing an example of a light emitting device. 図2Bは、図2Aの発光装置におけるA-A’線における概略断面図である。FIG. 2B is a schematic cross-sectional view taken along the line AA'in the light emitting device of FIG. 2A. 図2Cは、図2Aの発光装置の平面図である。2C is a plan view of the light emitting device of FIG. 2A. 図3は、研磨後であって、有機溶剤接触前の実施例1に係る透光性部材の一つのサンプルの光取り出し面の一部を示すSEM写真である。FIG. 3 is an SEM photograph showing a part of the light extraction surface of one sample of the translucent member according to Example 1 after polishing and before contact with an organic solvent. 図4は、研磨後であって、有機溶剤接触後の実施例1に係る透光性部材の一つのサンプルの光取り出し面の一部を示すSEM写真である。FIG. 4 is an SEM photograph showing a part of the light extraction surface of one sample of the translucent member according to Example 1 after polishing and after contact with an organic solvent. 図5は、透光性部材の光取り出し面において計測した二辺を有する凸部の模式図である。FIG. 5 is a schematic view of a convex portion having two sides measured on the light extraction surface of the translucent member. 図6は、研磨後であって、有機溶剤接触前の実施例1に係る透光性部材の一つのサンプルの光取り出し面の一部を示すSEM写真である。FIG. 6 is an SEM photograph showing a part of the light extraction surface of one sample of the translucent member according to Example 1 after polishing and before contact with an organic solvent. 図7は、研磨後であって、有機溶剤接触後の実施例1に係る透光性部材の一つのサンプルの光取り出し面の一部を示すSEM写真である。FIG. 7 is an SEM photograph showing a part of the light extraction surface of one sample of the translucent member according to Example 1 after polishing and after contact with an organic solvent.

以下、本発明に係る透光性部材の製造方法、透光性部材及び発光装置を実施形態に基づいて説明する。ただし、以下に示す実施形態は、本発明の技術思想を具体化するための例示であって、本発明は、以下の透光性部材の製造方法に限定されない。なお、色名と色度座標との関係、光の波長範囲と単色光の色名との関係などは、JIS Z8110に従う。 Hereinafter, a method for manufacturing a translucent member, a translucent member, and a light emitting device according to the present invention will be described based on an embodiment. However, the embodiments shown below are examples for embodying the technical idea of the present invention, and the present invention is not limited to the following method for manufacturing a translucent member. The relationship between the color name and the chromaticity coordinate, the relationship between the wavelength range of light and the color name of monochromatic light, and the like follow JIS Z8110.

透光性部材の製造方法
本形態に係る透光性部材の製造方法は、蛍光体と樹脂を含み、光取り出し面を備えた透光性部材を準備することと、前記光取り出し面の表面を研磨することと、研磨後の光取り出し面と、有機溶剤と、を接触させることと、を含む。
例えば、光取り出し効率を向上させるために波長変換部材の表面を研磨した場合、波長変換部材の表面には凹凸が形成され、その凹凸構造の凸部の先端が鋭角な形状となる場合がある。波長変換部材の表面を研磨後、波長変換部材の表面の凹凸構造の凸部の先端が鋭角な形状となっていると、凸部の先端の鋭角な形状によって光が波長変換部材の内部で乱反射して光の取り出し効率を高くすることができない場合もある。しかし、本形態における透光性部材の製造方法であると、光取り出し効率を高くすることができる。つまり、研磨された波長変換部材の表面における鋭角な部分を有機溶剤で溶かすことで鋭角な部分がやや丸みを帯びた形状となる。この波長変換部材の表面における凹凸の形状の変化が、発光素子からの反射角度を変えることになり、全反射を減らすなどして波長変換部材からの光取り出し効率を高めていると思われる。また、波長変換部材の表面で反射された光の一部は蛍光体に戻っているが、波長変換部材の表面における凹凸の形状の変化により、波長変換部材の表面における全反射が減る。その結果として、表面反射に伴う発光素子からの光の戻り光による蛍光体からの発光が減り、反面、発光素子からの光が増えることとなり、色度座標における発光素子からの光、つまり、青色光が増えることとなっている。
Method for manufacturing a translucent member In the method for manufacturing a translucent member according to the present embodiment, a translucent member containing a phosphor and a resin and having a light extraction surface is prepared, and the surface of the light extraction surface is prepared. It includes polishing and contacting the light extraction surface after polishing with an organic solvent.
For example, when the surface of the wavelength conversion member is polished in order to improve the light extraction efficiency, unevenness may be formed on the surface of the wavelength conversion member, and the tip of the convex portion of the uneven structure may have an acute-angled shape. After polishing the surface of the wavelength conversion member, if the tip of the convex portion of the concave-convex structure on the surface of the wavelength conversion member has an acute-angled shape, light is diffusely reflected inside the wavelength conversion member due to the acute-angled shape of the tip of the convex portion. Therefore, it may not be possible to increase the efficiency of light extraction. However, the method for manufacturing the translucent member in the present embodiment can increase the light extraction efficiency. That is, by dissolving the acute-angled portion on the surface of the polished wavelength conversion member with an organic solvent, the acute-angled portion becomes a slightly rounded shape. It is considered that the change in the shape of the unevenness on the surface of the wavelength conversion member changes the reflection angle from the light emitting element, and the light extraction efficiency from the wavelength conversion member is improved by reducing the total reflection. Further, although a part of the light reflected on the surface of the wavelength conversion member returns to the phosphor, the total reflection on the surface of the wavelength conversion member is reduced due to the change in the shape of the unevenness on the surface of the wavelength conversion member. As a result, the light emitted from the phosphor due to the return light of the light from the light emitting element due to the surface reflection is reduced, while the light from the light emitting element is increased, and the light from the light emitting element in the chromaticity coordinates, that is, blue The light is supposed to increase.

図1は、透光性部材の製造方法のフローチャートである。図1を参照して、透光性部材の製造方法の工程を説明する。透光性部材の製造方法は、透光性部材の準備工程S101、透光性部材の光取り出し面の研磨工程S102、研磨した透光性部材の光取り出し面と有機溶剤との接触工程S103と、を含む。 FIG. 1 is a flowchart of a method for manufacturing a translucent member. A process of a method for manufacturing a translucent member will be described with reference to FIG. 1. The method for manufacturing the translucent member includes a preparation step S101 for the translucent member, a polishing step S102 for the light extraction surface of the translucent member, and a contact step S103 between the light extraction surface of the polished translucent member and an organic solvent. ,including.

透光性部材の準備
透光性部材は、蛍光体と樹脂とを含み、光取り出し面を備える。発光装置に用いる透光性部材の場合は、発光素子から出射される光の60%以上を透過するものであることが好ましい。透光性部材は、例えば発光素子から出射される光の透過率が70%以上であってもよく、80%以上でもよく、90%以上でもよい。
Preparation of Translucent Member The translucent member contains a phosphor and a resin, and has a light extraction surface. In the case of a translucent member used in a light emitting device, it is preferable that the light transmitting member transmits 60% or more of the light emitted from the light emitting element. The translucent member may have, for example, a transmittance of light emitted from a light emitting element of 70% or more, 80% or more, or 90% or more.

透光性部材に含まれる樹脂は、シリコーン樹脂、シリコーン変性樹脂、エポキシ樹脂、エポキシ変性樹脂、フェノール樹脂、ポリカーボネート樹脂、アクリル樹脂、ポリメチルペンテン樹脂(例えばTPX(登録商標))、ポリノルボルネン樹脂、及びこれらの混合物からなる群から選択される少なくとも1種の樹脂であることが好ましい。なかでもシリコーン樹脂及びエポキシ樹脂からなる群から選択される少なくとも1種であることが好ましく、耐光性、耐熱性に優れるシリコーン樹脂がより好ましい。 The resin contained in the translucent member includes silicone resin, silicone-modified resin, epoxy resin, epoxy-modified resin, phenol resin, polycarbonate resin, acrylic resin, polymethylpentene resin (for example, TPX (registered trademark)), polynorbornene resin, and the like. And at least one resin selected from the group consisting of a mixture thereof. Among them, at least one selected from the group consisting of a silicone resin and an epoxy resin is preferable, and a silicone resin having excellent light resistance and heat resistance is more preferable.

透光性部材に含まれる蛍光体は、発光素子からの光に励起されるものが好ましい。蛍光体は、例えばセリウムで賦活された希土類アルミン酸塩蛍光体(YAG、LAG)、ユウロピウム及び/又はクロムで賦活された窒素含有アルミノケイ酸カルシウム(CaO-Al-SiO)系蛍光体、ユウロピウムで賦活されたシリケート((Sr、Ba)SiO)系蛍光体、βサイアロン蛍光体、ユウロピウムで賦活された窒化物蛍光体(CASN、SCASN)、マンガンで賦活されたフッ化物蛍光体(KSF)、ユウロピウムで賦活された硫化物蛍光体が挙げられる。透光性部材に含まれる蛍光体は、1種を単独で用いてもよく、組成の異なる2種以上の蛍光体を併用してもよい。 The phosphor contained in the translucent member is preferably one that is excited by the light from the light emitting element. The fluorophore is, for example, a cerium-activated rare earth aluminate phosphor (YAG, LAG), europium and / or chromium-activated nitrogen-containing calcium aluminosilicate (CaO-Al 2 O 3 -SiO 2 ) -based fluorophore. , Europium-activated silicate ((Sr, Ba) 2 SiO 4 ) -based fluorescent material, β-sialon fluorescent material, europium-activated nitride fluorescent material (CASN, SCASN), manganese-activated fluoride fluorescent material. (KSF), Europium-activated sulfide fluorophore. As the fluorescent substance contained in the translucent member, one type may be used alone, or two or more kinds of fluorescent materials having different compositions may be used in combination.

蛍光体は、フィッシャーサブシーブサイザー法(Fisher Sub-Sieve Sizer)法(以下、「FSSS法」ともいう。)で測定した平均粒径が、好ましくは5μm以上50μm以下の範囲内であり、より好ましくは6μm以上45μm以下の範囲内であり、さらに好ましくは7μm以上40μm以下の範囲内である。蛍光体の平均粒径は、大きいほうが、発光素子から発せられた光を効率よく波長変換することができ、透光性部材の光取り出し面からの光の取り出し効率を向上させることができる。一方、蛍光体の平均粒径が大きすぎると、作業性が低下する。FSSS法は、空気透過法の1種であり、空気の流通抵抗を利用して比表面積を測定し、主に一次粒子の粒径を求める方法である。FSSS法で測定された平均粒径は、フィッシャーサブシーブサイザーズナンバー(Fisher Sub-Sieve Sizer’s Number)である。 The average particle size of the phosphor measured by the Fisher Sub-Sheave Sizar method (hereinafter, also referred to as “FSSS method”) is preferably in the range of 5 μm or more and 50 μm or less, which is more preferable. Is in the range of 6 μm or more and 45 μm or less, and more preferably in the range of 7 μm or more and 40 μm or less. When the average particle size of the phosphor is large, the light emitted from the light emitting element can be efficiently wavelength-converted, and the efficiency of extracting light from the light extraction surface of the translucent member can be improved. On the other hand, if the average particle size of the phosphor is too large, the workability is lowered. The FSSS method is a kind of air permeation method, and is a method of measuring the specific surface area by utilizing the flow resistance of air and mainly determining the particle size of primary particles. The average particle size measured by the FSSS method is the Fisher Sub-Sizar's Number.

蛍光体は、例えば、いわゆるナノクリスタル、量子ドットと称される発光物質でもよい。これらの材料としては、半導体材料、例えば、2から6族、3から5族、4から6族半導体、具体的には、CdSe、コアシェル型のCdSSe1-x/ZnS、GaPなどのナノサイズの高分散粒子が挙げられる。またペロブスカイト、硫化鉛、カルコパイライトなども使用することができる。このような蛍光体は、例えば、粒径1nmから20nm程度(原子10から50個)程度が挙げられる。このような蛍光体を用いることにより、内部散乱を抑制することができ、光の透過率をより一層向上させることができる。量子ドット蛍光体は、不安定であるため、PMMA(ポリメタクリル酸メチル)などの樹脂で表面修飾又は安定化してもよい。これらは透光性部材を構成する母材となる透明樹脂(例えば、エポキシ樹脂、シリコーン樹脂など)に混合されて成形されたバルク体(例えば、板状体)であってもよいし、ガラス板の間に透明樹脂とともに封止された板状体であってもよい。 The phosphor may be, for example, a so-called nanocrystal or a luminescent substance called a quantum dot. Examples of these materials include semiconductor materials, for example, group 2 to 6 group, 3 to 5 group, 4 to 6 group semiconductors, specifically, CdSe, core-shell type CdS x Se 1-x / ZnS, and nano such as GaP. Examples include highly dispersed particles of size. In addition, perovskite, lead sulfide, chalcopyrite and the like can also be used. Examples of such a fluorescent substance include a particle size of about 1 nm to 20 nm (10 to 50 atoms). By using such a phosphor, internal scattering can be suppressed and the light transmittance can be further improved. Since the quantum dot phosphor is unstable, it may be surface-modified or stabilized with a resin such as PMMA (polymethyl methacrylate). These may be a bulk body (for example, a plate-shaped body) formed by being mixed with a transparent resin (for example, epoxy resin, silicone resin, etc.) as a base material constituting the translucent member, or between glass plates. It may be a plate-like body sealed with a transparent resin.

透光性部材中の樹脂と蛍光体の配合比率は、透光性部材中に含まれる樹脂及び蛍光体の種類によって異なる。透光性部材を形成するための透光性部材用組成物中の樹脂100質量部に対して、蛍光体の総量は、好ましくは80質量部以上300質量部以下の範囲内であり、より好ましくは100質量部以上250質量部以下の範囲内であり、さらに好ましくは120質量部以上200質量部以下の範囲内である。樹脂がシリコーン樹脂であって、KSF蛍光体と、βサイアロン蛍光体と、シリカのフィラーと、を混合して透光性部材用組成物を形成する場合には、所定の色度座標に合わせるため、適宜、透光性部材用組成物に含まれる成分の含有量を調整することができる。例えば、透光性部材用組成物は、シリコーン樹脂100質量部に対してKSF蛍光体は約70質量部以上80質量部以下の範囲内、βサイアロン蛍光体は約75質量部以上85質量部以下の範囲内、フィラーを約1質量部以上8質量部以下の範囲内とすることができる。 The blending ratio of the resin and the phosphor in the translucent member differs depending on the type of the resin and the phosphor contained in the translucent member. The total amount of the phosphor is preferably in the range of 80 parts by mass or more and 300 parts by mass or less with respect to 100 parts by mass of the resin in the composition for the translucent member for forming the translucent member, which is more preferable. Is in the range of 100 parts by mass or more and 250 parts by mass or less, and more preferably in the range of 120 parts by mass or more and 200 parts by mass or less. When the resin is a silicone resin and a KSF phosphor, a β-sialon phosphor, and a silica filler are mixed to form a composition for a translucent member, in order to match the composition with a predetermined chromaticity coordinate. , The content of the component contained in the composition for the translucent member can be adjusted as appropriate. For example, in the composition for a translucent member, the KSF phosphor is in the range of about 70 parts by mass or more and 80 parts by mass or less, and the β-sialon phosphor is about 75 parts by mass or more and 85 parts by mass or less with respect to 100 parts by mass of the silicone resin. Within the range of, the filler can be in the range of about 1 part by mass or more and 8 parts by mass or less.

透光性部材は、蛍光体及び樹脂の他に、充填材(例えば、フィラー、拡散剤、着色剤など)を含んでいてもよい。例えば、充填材は、シリカ、酸化チタン、酸化ジルコニウム、酸化マグネシウム、ガラス、蛍光体の結晶又は焼結体、蛍光体と無機物の結合材との焼結体などが挙げられる。任意に、充填材の屈折率を調整してもよい。充填材の屈折率は、例えば、1.8以上が挙げられる。 The translucent member may contain a filler (for example, a filler, a diffusing agent, a coloring agent, etc.) in addition to the phosphor and the resin. For example, examples of the filler include silica, titanium oxide, zirconium oxide, magnesium oxide, glass, a crystal or sintered body of a phosphor, and a sintered body of a phosphor and an inorganic binder. Optionally, the refractive index of the filler may be adjusted. The refractive index of the filler is, for example, 1.8 or more.

充填材は、粒子であることが好ましい。粒子の形状は、破砕状、球状、中空及び多孔質などのいずれでもよい。粒子の平均粒径(メジアン径)は、高い効率で光散乱効果を得られる、0.08μm以上10μm以下の範囲内であることが好ましい。充填材の粒子の平均粒径は、例えばレーザー回折散乱式粒度分布測定法による体積基準の粒度分布における小径側からの累積頻度が50%に達する平均粒径(メジアン径)であることが好ましい。また、市販されている充填材を用いる場合には、平均粒径はカタログ値を参照することができる。充填材は、例えば、透光性部材の全体量に対して10質量%以上80質量%以下の範囲内であることが好ましい。透光性部材中に含まれる充填材は、樹脂100質量部に対して、好ましくは0.1質量部以上10質量部以下の範囲内であり、より好ましくは0.5質量部以上8質量部以下の範囲内である。 The filler is preferably particles. The shape of the particles may be crushed, spherical, hollow, porous or the like. The average particle size (median diameter) of the particles is preferably in the range of 0.08 μm or more and 10 μm or less, which can obtain a light scattering effect with high efficiency. The average particle size of the particles of the filler is preferably an average particle size (median diameter) at which the cumulative frequency from the small diameter side in the volume-based particle size distribution measured by the laser diffraction / scattering type particle size distribution measurement method reaches 50%, for example. When a commercially available filler is used, the average particle size can be referred to the catalog value. The filler is preferably in the range of 10% by mass or more and 80% by mass or less with respect to the total amount of the translucent member, for example. The filler contained in the translucent member is preferably in the range of 0.1 parts by mass or more and 10 parts by mass or less, and more preferably 0.5 parts by mass or more and 8 parts by mass with respect to 100 parts by mass of the resin. It is within the following range.

透光性部材は、光取り出し面と、この光取り出し面に対向する面を備えたシート状体又は板状体であることが好ましい。透光性部材がシート状体又は板状体であると、透光性部材を製造し易く、透光性部材を発光装置に用いた場合に、発光素子から出射される光の方向に配置し易く、発光装置を製造が容易となる。透光性部材は、粒子状の蛍光体を含む粒子層が複数積層された層状部材であってもよい。 The translucent member is preferably a sheet-like body or a plate-like body having a light extraction surface and a surface facing the light extraction surface. When the translucent member is a sheet-shaped body or a plate-shaped body, it is easy to manufacture the translucent member, and when the translucent member is used in the light emitting device, it is arranged in the direction of the light emitted from the light emitting element. It is easy to manufacture a light emitting device. The translucent member may be a layered member in which a plurality of particle layers containing a particulate phosphor are laminated.

透光性部材を形成する方法は、透光性部材をシート状体又は板状体に成形して、ホットメルト方式で又は接着剤により接着する方法、電気泳動堆積法で蛍光体を付着させた後で透光性樹脂を含浸させる方法、ポッティング、圧縮成形、スプレー法、静電塗布法、印刷法などが挙げられる。これらの方法を用いて透光性部材を形成する際、粘度又は流動性を調整するために、シリカ(アエロジル)などを添加してもよい。透光性部材に蛍光体を含有させる場合には、スプレー法、特に、パルス状、すなわち間欠的にスプレーを噴射するパルススプレー法を用いて透光性部材を形成することが好ましい。パルススプレー法を用いて透光性部材を形成することにより、例えば凹凸形状を有する塗布面に均一に蛍光体を塗布することができる。また、パルススプレー法により、ノズルからのスラリーの噴出速度を低減することなく、エアの風速を低減することができるため、透光性部材に含まれる蛍光体と他の部材、例えば発光素子の表面と密着性が高い塗布膜を形成することができる。また、粒子状の蛍光体を含む薄膜の粒子層を複数の積層数で形成することができる。 The method for forming the translucent member is a method in which the translucent member is formed into a sheet-like body or a plate-like body and bonded by a hot melt method or an adhesive, or a phosphor is attached by an electrophoretic deposition method. Examples thereof include a method of impregnating a translucent resin later, a potting method, a compression molding method, a spraying method, an electrostatic coating method, and a printing method. When forming the translucent member using these methods, silica (Aerosil) or the like may be added in order to adjust the viscosity or fluidity. When the translucent member contains a phosphor, it is preferable to form the translucent member by using a spray method, particularly a pulse-shaped, that is, a pulse spray method in which a spray is intermittently sprayed. By forming the translucent member by using the pulse spray method, for example, the phosphor can be uniformly applied to the coated surface having an uneven shape. Further, since the pulse spray method can reduce the wind speed of air without reducing the ejection speed of the slurry from the nozzle, the phosphor contained in the translucent member and the surface of another member, for example, a light emitting element. It is possible to form a coating film having high adhesion. Further, the particle layer of the thin film containing the particulate phosphor can be formed by a plurality of layers.

パルススプレー法は、例えば、特開昭61-161175号公報、特開2003-300000号公報及び国際公開第2013/038953号に記載された公知の方法を参照することができる。 As the pulse spray method, for example, the known methods described in JP-A-61-161175, JP-A-2003-30000 and International Publication No. 2013/038953 can be referred to.

透光性部材の厚さは特に限定されるものではなく、例えば1μm以上300μm以下の範囲内でもよく、1μm以上100μm以下の範囲内でもよく、2μm以上60μm以下の範囲内でもよく、5μm以上40μm以下の範囲内でもよい。例えば透光性部材を発光装置に用いる場合であって、スプレー法により形成する場合には、透光性部材は、発光素子に用いる窒化物半導体積層体の全厚さの20倍以下の厚さであってもよく、10倍以下であってもよく、6倍以下、4倍以下、3倍以下であってもよい。 The thickness of the translucent member is not particularly limited, and may be, for example, 1 μm or more and 300 μm or less, 1 μm or more and 100 μm or less, 2 μm or more and 60 μm or less, and 5 μm or more and 40 μm. It may be within the following range. For example, when a translucent member is used in a light emitting device and is formed by a spray method, the translucent member has a thickness of 20 times or less the total thickness of the nitride semiconductor laminate used in the light emitting element. It may be 10 times or less, 6 times or less, 4 times or less, and 3 times or less.

透光性部材の光取り出し面(以下、「上面」という場合もある。)は平面であってもよい。配光を制御するために、光取り出し面又はその他の面を凸面又は凹面の凹凸面にしてもよい。 The light extraction surface (hereinafter, may be referred to as “upper surface”) of the translucent member may be a flat surface. In order to control the light distribution, the light extraction surface or other surface may be a convex or concave uneven surface.

研磨工程
透光性部材の光取り出し面の表面を研磨する。研磨の方法は、例えば研磨紙、バフ研磨、ダイヤモンド砥石などを用いて研磨する方法が挙げられる。研磨は、装置を用いて行ってもよい。研磨紙を用いる場合、番手2000番(♯2000)以上6000番(♯6000)以下の研磨紙を用いてもよい。透光性部材は、所望の大きさ又は厚さに切断加工した後、光取り出し面を研磨してもよい。透光性部材を所望の大きさ又は厚さに切断加工する方法としては、例えばブレードダイシング、レーザーダイシング、ワイヤーソーを用いることができる。
Polishing process The surface of the light extraction surface of the translucent member is polished. Examples of the polishing method include a method of polishing using polishing paper, buffing, a diamond grindstone and the like. Polishing may be performed using an apparatus. When using abrasive paper, abrasive paper having a count of 2000 (# 2000) or more and 6000 (# 6000) or less may be used. The translucent member may be cut to a desired size or thickness, and then the light extraction surface may be polished. As a method for cutting the translucent member to a desired size or thickness, for example, blade dicing, laser dicing, or wire saw can be used.

研磨後であって後述する有機溶剤と接触させる前の透光性部材の光取り出し面の算術平均粗さRa1は、0.8μm以上5.0μm以下の範囲内であることが好ましく、より好ましくは0.9μm以上4.5μm以下の範囲内であり、さらに好ましくは1.0μm以上4.0μm以下の範囲内である。研磨後であって有機溶剤と接触させる前の透光性部材の光取り出し面の算術平均粗さRa1が0.8μm以上5.0μm以下の範囲内であれば、研磨後の有機溶剤と接触させる工程で、光取り出し面に存在する研磨によって発生した凸部の先端の鋭角な部分を丸くして、丸くした部分の曲面のレンズ効果により光取り出し面に垂直な方向へ光量を収束することができ、光の取り出し効率を高くすることができる。透光性部材の光取り出し面において、有機溶剤に接触前の光取り出し面の算術平均粗さをRa1とし、有機溶剤に接触後の光取り出し面の算術平均粗さをRa2とする。 The arithmetic mean roughness Ra1 of the light extraction surface of the translucent member after polishing and before contacting with an organic solvent described later is preferably in the range of 0.8 μm or more and 5.0 μm or less, more preferably. It is in the range of 0.9 μm or more and 4.5 μm or less, and more preferably 1.0 μm or more and 4.0 μm or less. If the arithmetic average roughness Ra1 of the light extraction surface of the translucent member after polishing and before contact with the organic solvent is within the range of 0.8 μm or more and 5.0 μm or less, the light-transmitting member is brought into contact with the organic solvent after polishing. In the process, the sharp part at the tip of the convex part generated by polishing existing on the light extraction surface can be rounded, and the amount of light can be converged in the direction perpendicular to the light extraction surface by the lens effect of the curved surface of the rounded part. , Light extraction efficiency can be increased. In the light extraction surface of the translucent member, the arithmetic mean roughness of the light extraction surface before contact with the organic solvent is Ra1, and the arithmetic mean roughness of the light extraction surface after contact with the organic solvent is Ra2.

透光性部材の光取り出し面の算術平均粗さ、後述する粗さ曲線の最大高さ、及び粗さ曲線要素の平均長さは、透光性部材の光取り出し面の研磨後においても、後述する有機溶剤に接触させた後においても、JIS B0601-2001に準拠して、例えば形状測定レーザーマイクロスコープ(VK-X200、株式会社キーエンス製)を用いて測定することができる。 The arithmetic mean roughness of the light extraction surface of the translucent member, the maximum height of the roughness curve described later, and the average length of the roughness curve element are described later even after the light extraction surface of the translucent member is polished. Even after being brought into contact with the organic solvent, it can be measured using, for example, a shape measuring laser microscope (VK-X200, manufactured by Keyence Co., Ltd.) in accordance with JIS B0601-2001.

研磨後であって後述する有機溶剤と接触させる前の透光性部材の光取り出し面の粗さ曲線の最大高さRz1は、好ましくは5μm以上18μm以下の範囲内であり、より好ましくは6μm以上17μm以下の範囲内であり、さらに好ましくは7μm以上16μm以下の範囲内である。透光性部材の光取り出し面の粗さ曲線において、有機溶剤に接触前の最大高さをRz1とし、有機溶剤に接触後の最大高さをRz2とする。 The maximum height Rz1 of the roughness curve of the light extraction surface of the translucent member after polishing and before contacting with an organic solvent described later is preferably in the range of 5 μm or more and 18 μm or less, more preferably 6 μm or more. It is within the range of 17 μm or less, and more preferably within the range of 7 μm or more and 16 μm or less. In the roughness curve of the light extraction surface of the translucent member, the maximum height before contact with the organic solvent is Rz1, and the maximum height after contact with the organic solvent is Rz2.

研磨後であって後述する有機溶剤と接触させる前の透光性部材の光取り出し面の粗さ曲線要素の平均長さRS1mは、好ましくは10μm以上20μm以下の範囲内であり、より好ましくは11μm以上19μm以下の範囲内であり、さらに好ましくは12μm以上18μm以下の範囲内である。透光性部材の光取り出し面において、有機溶剤に接触前の粗さ曲線要素の平均長さをRS1とし、有機溶剤に接触後の粗さ曲線要素の平均長さをRS2とする。 The average length RS1 m of the roughness curve element of the light extraction surface of the translucent member after polishing and before contacting with an organic solvent described later is preferably in the range of 10 μm or more and 20 μm or less, and more preferably 11 μm. It is within the range of 19 μm or less, and more preferably 12 μm or more and 18 μm or less. On the light extraction surface of the translucent member, the average length of the roughness curve element before contact with the organic solvent is RS1, and the average length of the roughness curve element after contact with the organic solvent is RS2.

有機溶剤との接触工程
研磨した透光性部材の光取り出し面と、有機溶剤とを接触させる。研磨した透光性部材の光取り出し面と、有機溶剤との接触方法は、例えば、研磨した透光性部材の光取り出し面を有機溶剤に浸漬させる方法、研磨した透光性部材の光取り出し面に有機溶剤を塗布する方法、研磨した透光性部材の光取り出し面に有機溶剤を滴下する方法が挙げられる。有機溶剤を塗布する方法としては、ディスペンス法、スプレー法、静電塗布法、印刷法、刷毛やスポンジを用いた塗布方法が挙げられる。透光性部材の光取り出し面に有機溶剤を滴下する場合には、滴下する有機溶剤の種類にもよるが、有機溶剤の滴下量は1mg/cm以上3mg/cm以下の範囲内であることが好ましく、1.2mg/cm以上1.5g/cm以下の範囲内であることがより好ましい。研磨した透光性部材の光取り出し面と、有機溶剤との接触時間は、透光性部材の光取り出し面を有機溶剤に浸漬させる場合は、例えば、トルエンの場合、3秒以上40秒以内が好ましく、5秒以上20秒以下が特に好ましい。ただし、有機溶剤の種類や濃度によって接触時間は異なるため、適宜調整する。
Contact process with organic solvent The light extraction surface of the polished translucent member is brought into contact with the organic solvent. The contact method between the light extraction surface of the polished translucent member and the organic solvent is, for example, a method of immersing the light extraction surface of the polished translucent member in an organic solvent, or a light extraction surface of the polished translucent member. Examples thereof include a method of applying an organic solvent to the light, and a method of dropping the organic solvent on the light extraction surface of the polished translucent member. Examples of the method for applying the organic solvent include a dispens method, a spray method, an electrostatic coating method, a printing method, and a coating method using a brush or a sponge. When the organic solvent is dropped on the light extraction surface of the translucent member, the dropping amount of the organic solvent is in the range of 1 mg / cm 2 or more and 3 mg / cm 2 or less, although it depends on the type of the dropped organic solvent. It is preferable, and it is more preferable that it is in the range of 1.2 mg / cm 2 or more and 1.5 g / cm 2 or less. The contact time between the light extraction surface of the polished translucent member and the organic solvent is 3 seconds or more and 40 seconds or less when the light extraction surface of the translucent member is immersed in the organic solvent, for example, in the case of toluene. It is preferable, and 5 seconds or more and 20 seconds or less are particularly preferable. However, since the contact time varies depending on the type and concentration of the organic solvent, adjust as appropriate.

有機溶剤は、沸点が50℃以上150℃以下の範囲内であることが好ましい。有機溶剤の沸点が50℃以上150℃以下の範囲内であれば、透光性部材の光取り出し面の研磨によって生じた凸部の先端の鋭角な部分を丸めて、微細な凸部のレンズ効果に光取り出し面に対して垂直な方向への光の配光成分を増加させることができ、光取り出し面における全反射を減らして、光取り出し効率をより向上させることができる。 The organic solvent preferably has a boiling point in the range of 50 ° C. or higher and 150 ° C. or lower. When the boiling point of the organic solvent is within the range of 50 ° C. or higher and 150 ° C. or lower, the sharp portion at the tip of the convex portion generated by polishing the light extraction surface of the translucent member is rounded, and the lens effect of the fine convex portion is obtained. The light distribution component of light in the direction perpendicular to the light extraction surface can be increased, the total reflection on the light extraction surface can be reduced, and the light extraction efficiency can be further improved.

有機溶剤は、脂肪族炭化水素系有機溶剤、芳香族炭化水素系有機溶剤、ケトン系有機溶剤、及び、アルコール系有機溶剤からなる群から選ばれる少なくとも1種であることが好ましい。脂肪族炭化水素系有機溶剤としては、n-ヘキサン、n-ヘプタン、シクロヘプタン、イソオクタンなどが挙げられる。芳香族炭化水素系有機溶剤としては、トルエン、キシレン、ベンゼンなどが挙げられる。ケトン系有機溶剤としては、アセトン、メチルエチルケトン、メチルイソブチルケトンなどが挙げられる。アルコール系有機溶剤としては、メタノール、エタノール、n-プロピルアルコール、イソプロピルアルコールなどが挙げられる。透光性部材の光取り出し面の研磨によって生じた鋭角な凸部の先端を、有機溶剤との接触によって丸くするために、有機溶剤は、トルエン、キシレン、n-ヘプタン、n-ヘキサン、ベンゼン、及びアセトンからなる群から選択される少なくとも1種を用いることが好ましく、2種以上を併用してもよい。有機溶剤は、トルエン、キシレン、n-ヘプタン、n-ヘキサン、ベンゼン、及びアセトンからなる群から選択される少なくとも1種を用いることがより好ましい。 The organic solvent is preferably at least one selected from the group consisting of an aliphatic hydrocarbon-based organic solvent, an aromatic hydrocarbon-based organic solvent, a ketone-based organic solvent, and an alcohol-based organic solvent. Examples of the aliphatic hydrocarbon-based organic solvent include n-hexane, n-heptane, cycloheptane, and isooctane. Examples of the aromatic hydrocarbon-based organic solvent include toluene, xylene, benzene and the like. Examples of the ketone-based organic solvent include acetone, methyl ethyl ketone, and methyl isobutyl ketone. Examples of the alcohol-based organic solvent include methanol, ethanol, n-propyl alcohol, isopropyl alcohol and the like. The organic solvent is toluene, xylene, n-heptane, n-hexane, benzene, in order to round the tip of the sharp convex portion generated by polishing the light extraction surface of the translucent member by contact with the organic solvent. It is preferable to use at least one selected from the group consisting of and acetone, and two or more thereof may be used in combination. It is more preferable to use at least one organic solvent selected from the group consisting of toluene, xylene, n-heptane, n-hexane, benzene, and acetone.

透光性部材の光取り出し面と有機溶剤とを接触させた後、光取り出し面を室温又は20℃以上130℃以下の温度範囲内で15分以上24時間以内の乾燥機にて乾燥させて、透光性部材を得ることが好ましい。ただし、乾燥の温度や時間は有機溶剤の種類や濃度によって乾燥状態が異なるため、適宜調整する。 After contacting the light extraction surface of the translucent member with the organic solvent, the light extraction surface is dried at room temperature or in a temperature range of 20 ° C. or higher and 130 ° C. or lower in a dryer for 15 minutes or more and 24 hours or less. It is preferable to obtain a translucent member. However, the drying temperature and time will vary depending on the type and concentration of the organic solvent, so adjust accordingly.

光取り出し面を研磨後、有機溶剤に接触させて得られた透光性部材は、以下の特徴を備えることが好ましい。 The translucent member obtained by contacting the light extraction surface with an organic solvent after polishing preferably has the following characteristics.

透光性部材は、樹脂と蛍光体を含み、光取り出し面を備え、光取り出し面において、一辺が20μmの正方形で囲まれた領域内に、断面視で0°を超えて160°以下の範囲内の角度を有し、一辺が0.5μm以上2μm以下の範囲内の二辺を有する凸部を備え、凸部の数が1個以上100個以下の範囲内である。 The translucent member contains a resin and a phosphor, has a light extraction surface, and has a range of more than 0 ° and 160 ° or less in cross-sectional view within a region surrounded by a square having a side of 20 μm on the light extraction surface. It is provided with a convex portion having an inner angle and having two sides in a range of 0.5 μm or more and 2 μm or less on one side, and the number of convex portions is in the range of 1 or more and 100 or less.

透光性部材の光取り出し面は、研磨後、研磨により光取り出し面に、断面視で0°を超えて160°以下の範囲内の角度を有し、一辺が0.5μm以上2μm以下の範囲内の二辺を有する微細な凸部が多く形成される。透光性部材の光取り出し面の研磨後に形成された微細な凸部の中には、先端が鋭角な形状となっているものも含まれる。透光性部材の光取り出し面を研磨後、有機溶剤に接触させることによって、微細な凸部自体又は凸部の先端部分が有機溶剤に溶けて、断面視で0°を超えて160°以下の範囲内の角度を有し、一辺が0.5μm以上2μm以下の範囲内の比較的小さな微細な凸部の先端の鋭角な部分は少なくなり、一辺が0.5μm以上2μm以下の範囲内の比較的大きな凸部は先端部分が丸くなる。このため、光取り出し面を研磨後、有機溶剤を接触させて得られた透光性部材は、光取り出し面において、一辺が20μmの正方形で囲まれた領域内に、断面視で0°を超えて160°以下の範囲内の角度を有し、一辺が0.5μm以上2μm以下の範囲内の二辺を有する凸部の数が1個以上100個以下の範囲内と少なくなり、透光性部材は、光取り出し面に存在する先端が丸くなった凸部のレンズ効果により、発光装置に用いた場合に、光取り出し面に対して垂直な方向への光の配光成分を増加させることができ、光取り出し面における全反射を減らして光取り出し効率をより向上させることができる。透光性部材の光取り出し面において、一辺が20μmの正方形で囲まれた領域内に、断面視で0°を超えて160°以下の範囲内の角度を有し、一辺が0.5μm以上2μm以下の範囲内の二辺を有する凸部の数は、好ましくは2個以上90個以下の範囲内でもよく、3個以上85個以下の範囲内でもよく、4個以上80個以下の範囲内でもよく、5個以上75個以下の範囲内でもよい。透光性部材の光取り出し面における凸部又は後述する粒子の数は、例えば形状測定レーザーマイクロスコープ(VK-X200、株式会社キーエンス製)を用いて測定することができる。断面視で0°を超えて160°以下の範囲内の角度を有する凸部は、一辺が0.5μm以上1.5μm以下の範囲内でもよく、一辺が1μmの2辺を有するものであってもよい。 After polishing, the light extraction surface of the translucent member has an angle within the range of more than 0 ° and 160 ° or less in cross-sectional view on the light extraction surface by polishing, and one side is in the range of 0.5 μm or more and 2 μm or less. Many fine protrusions having two inner sides are formed. Some of the fine convex portions formed after polishing the light extraction surface of the translucent member include those having an acute-angled tip. After polishing the light extraction surface of the translucent member, by contacting it with an organic solvent, the fine convex portion itself or the tip portion of the convex portion is dissolved in the organic solvent, and the cross-sectional view exceeds 0 ° and 160 ° or less. Comparison within the range of 0.5 μm or more and 2 μm or less on one side, with less sharp edges at the tips of relatively small fine protrusions within the range of 0.5 μm or more and 2 μm or less on one side. The tip of a large convex part is rounded. Therefore, the translucent member obtained by contacting the light extraction surface with an organic solvent after polishing the light extraction surface exceeds 0 ° in cross-sectional view in the region surrounded by a square having a side of 20 μm on the light extraction surface. The number of convex portions having an angle within the range of 160 ° or less and having two sides within the range of 0.5 μm or more and 2 μm or less on one side is reduced to within the range of 1 or more and 100 or less, and the translucency is transmitted. The member can increase the light distribution component of light in the direction perpendicular to the light extraction surface when used in a light emitting device due to the lens effect of the convex portion having a rounded tip existing on the light extraction surface. It is possible to reduce the total reflection on the light extraction surface and further improve the light extraction efficiency. On the light extraction surface of the translucent member, the angle is within the range of more than 0 ° and 160 ° or less in cross-sectional view within the area surrounded by a square with one side of 20 μm, and one side is 0.5 μm or more and 2 μm. The number of convex portions having two sides in the following range may be preferably in the range of 2 or more and 90 or less, in the range of 3 or more and 85 or less, and in the range of 4 or more and 80 or less. However, it may be in the range of 5 or more and 75 or less. The number of convex portions or particles described later on the light extraction surface of the translucent member can be measured using, for example, a shape measuring laser microscope (VK-X200, manufactured by KEYENCE CORPORATION). A convex portion having an angle in the range of more than 0 ° and 160 ° or less in cross-sectional view may have one side in the range of 0.5 μm or more and 1.5 μm or less, and has two sides of 1 μm on one side. May be good.

透光性部材の光取り出し面は、研磨されることによって微細な削りカスが発生し、この削りカスが、透光性部材とは別体の粒子となって透光性部材の光取り出し面に存在する。透光性部材の光取り出し面を研磨後、有機溶剤に接触させると、微細な粒子も有機溶剤に溶解して粒子の数が少なくなる。透光性部材の光取り出し面において、一辺が20μmの正方形で囲まれた領域内に、平面視で測定される直径が0.2μm以上20μm以下の範囲内の粒子が30個以下であることが好ましい。粒子の形状は、球、楕円体、多面体、破砕状でもよい。透光性部材の光取り出し面に存在する粒子は、平面視で測定される直径が通常0.2μm以上5μm以下の範囲内であり、0.2μm以上3μm以下の範囲内でもよい。透光性部材の光取り出し面において、一辺が20μmの正方形で囲まれた領域内に、平面視で測定される直径が0.2μm以上20μm以下の範囲内の粒子は、25個以下であってもよく、20個以下であってもよく、18個以下であってもよい。透光性部材の光取り出し面において、一辺が20μmの正方形で囲まれた領域内に、平面視で測定される直径が0.2μm以上20μm以下の範囲内の粒子は、0個であってもよく、1個以上であってもよい。透光性部材は、光取り出し面において、一辺が20μmの正方形で囲まれた領域内に、平面視で測定される直径が0.2μm以上20μm以下の範囲内の粒子が30個以下であると、光取り出し面に存在する粒子による光の乱反射を抑制し、光取り出し面に対して垂直な方向への光の配光成分を増加させることができ、光取り出し効率をより向上させることができる。 Fine shavings are generated on the light extraction surface of the translucent member by polishing, and the shavings become particles separate from the translucent member and form the light extraction surface of the translucent member. exist. When the light extraction surface of the translucent member is polished and then brought into contact with an organic solvent, fine particles are also dissolved in the organic solvent and the number of particles is reduced. On the light extraction surface of the translucent member, there are 30 or less particles in the range of 0.2 μm or more and 20 μm or less in diameter measured in plan view in the area surrounded by a square having a side of 20 μm. preferable. The shape of the particles may be a sphere, an ellipsoid, a polyhedron, or a crushed shape. The particles present on the light extraction surface of the translucent member usually have a diameter measured in a plan view in the range of 0.2 μm or more and 5 μm or less, and may be in the range of 0.2 μm or more and 3 μm or less. On the light extraction surface of the translucent member, 25 or less particles having a diameter of 0.2 μm or more and 20 μm or less measured in a plan view are contained in a region surrounded by a square having a side of 20 μm. It may be 20 or less, or 18 or less. On the light extraction surface of the translucent member, even if there are no particles in the range of 0.2 μm or more and 20 μm or less in diameter measured in plan view in the area surrounded by a square with a side of 20 μm. Often, there may be one or more. The translucent member has 30 or less particles having a diameter of 0.2 μm or more and 20 μm or less as measured in a plan view in a region surrounded by a square having a side of 20 μm on the light extraction surface. It is possible to suppress diffused reflection of light by particles existing on the light extraction surface, increase the light distribution component of light in the direction perpendicular to the light extraction surface, and further improve the light extraction efficiency.

透光性部材の光取り出し面の算術平均粗さRa2は、0.2μm以上4μm以下の範囲内であることが好ましく、より好ましくは0.3μm以上3.5μm以下の範囲内であり、さらに好ましくは0.4μm以上3μm以下の範囲内である。研磨後であって有機溶剤と接触させた後の透光性部材の光取り出し面の算術平均粗さRa2が0.2μm以上4μm以下の範囲内であれば、透光性部材の光取り出し面を研磨することによって形成された微細な凸部の先端が有機溶剤に接触することによって丸くなり、丸くなった部分の曲面のレンズ効果により光取り出し面に垂直な方向へ光量を収束することができ、光の取り出し効率を高くすることができる。 The arithmetic mean roughness Ra2 of the light extraction surface of the translucent member is preferably in the range of 0.2 μm or more and 4 μm or less, more preferably in the range of 0.3 μm or more and 3.5 μm or less, and further preferably. Is in the range of 0.4 μm or more and 3 μm or less. If the arithmetic average roughness Ra2 of the light extraction surface of the translucent member after polishing and after contacting with an organic solvent is within the range of 0.2 μm or more and 4 μm or less, the light extraction surface of the translucent member is used. The tip of the fine convex part formed by polishing becomes round when it comes into contact with the organic solvent, and the lens effect of the curved surface of the rounded part makes it possible to converge the amount of light in the direction perpendicular to the light extraction surface. The efficiency of light extraction can be increased.

透光性部材において、光取り出し面の粗さ曲線の最大高さRz2が15μm以下であることが好ましい。透光性部材は、光取り出し面を研磨後、有機溶剤に接触させることによって、研磨によって形成された微細な凸部の先端が丸くなり、光取り出し面の粗さ曲線の最大高さRz2が15μm以下と小さくなり、丸くした部分の曲面のレンズ効果により光取り出し面に垂直な方向へ光量を収束することができ、光の取り出し効率を高くすることができる。透光性部材において、光取り出し面の粗さ曲線の最大高さRz2が、より好ましくは12μm以下であり、さらに好ましくは10μm以下であり、よりさらに好ましくは8μm以下であり、特に好ましくは6μm以下である。透光性部材の光取り出し面の粗さ曲線の最大高さRz2は1μm以上であってもよい。 In the translucent member, the maximum height Rz2 of the roughness curve of the light extraction surface is preferably 15 μm or less. In the translucent member, the tip of the fine convex portion formed by polishing is rounded by contacting the light extraction surface with an organic solvent after polishing, and the maximum height Rz2 of the roughness curve of the light extraction surface is 15 μm. It becomes smaller as below, and the amount of light can be converged in the direction perpendicular to the light extraction surface due to the lens effect of the curved surface of the rounded portion, and the light extraction efficiency can be improved. In the translucent member, the maximum height Rz2 of the roughness curve of the light extraction surface is more preferably 12 μm or less, further preferably 10 μm or less, still more preferably 8 μm or less, and particularly preferably 6 μm or less. Is. The maximum height Rz2 of the roughness curve of the light extraction surface of the translucent member may be 1 μm or more.

透光性部材の光取り出し面の粗さ曲線要素の平均長さRS2は、1μm以上12μm以下の範囲内であることが好ましく、より好ましくは2μm以上10μm以下の範囲内であり、さらに好ましくは3μm以上8μm以下の範囲内である。研磨後であって有機溶剤と接触させた後の透光性部材の光取り出し面の粗さ曲線要素の平均長さRS2が1μm以上12μm以下の範囲内であれば、透光性部材の光取り出し面を研磨することによって形成された微細な凸部の先端が有機溶剤に接触することによって丸く小さくなり、丸く小さくなった部分の曲面のレンズ効果により光取り出し面に垂直な方向へ光量を収束することができ、光の取り出し効率を高くすることができる。 The average length RS2 of the roughness curve element of the light extraction surface of the translucent member is preferably in the range of 1 μm or more and 12 μm or less, more preferably in the range of 2 μm or more and 10 μm or less, and further preferably in the range of 3 μm. It is within the range of 8 μm or less. If the average length RS2 of the roughness curve element of the light extraction surface of the translucent member after polishing and after contact with an organic solvent is within the range of 1 μm or more and 12 μm or less, the light extraction of the translucent member The tip of the fine convex part formed by polishing the surface becomes round and small when it comes into contact with the organic solvent, and the amount of light converges in the direction perpendicular to the light extraction surface due to the lens effect of the curved surface of the round and small part. It is possible to increase the efficiency of light extraction.

透光性部材において、研磨後であって有機溶剤に接触前の光取り出し面の算術平均粗さRa1に対して、研磨後であって有機溶剤に接触後の光取り出し面の算術平均粗さRa2の平均粗さ比Ra2/Ra1が0.2以上0.8以下の範囲内であることが好ましく、より好ましくは0.3以上0.7以下の範囲内であり、さらに好ましくは0.4以上0.6以下の範囲内である。透光性部材において、研磨によって光取り出し面に形成された微細な凸部を、有機溶剤に接触させることによって、微細な凸部を溶解させ又は凸部の先端を丸くすることができる。透光性部材において、研磨後であって有機溶剤に接触前と後の光取り出し面の平均粗さ比Ra2/Ra1が0.2以上0.8以下の範囲内であると、丸くなった凸部の曲面のレンズ効果により、光取り出し面に垂直な方向へ光量を収束し、光の取り出し効率を高くすることができる。 In the translucent member, the arithmetic mean roughness Ra1 of the light extraction surface after polishing and before contact with the organic solvent is compared with the arithmetic mean roughness Ra2 of the light extraction surface after polishing and after contact with the organic solvent. The average roughness ratio of Ra2 / Ra1 is preferably in the range of 0.2 or more and 0.8 or less, more preferably in the range of 0.3 or more and 0.7 or less, and further preferably 0.4 or more. It is within the range of 0.6 or less. In the translucent member, the fine convex portion formed on the light extraction surface by polishing is brought into contact with an organic solvent, whereby the fine convex portion can be dissolved or the tip of the convex portion can be rounded. In the translucent member, when the average roughness ratio Ra2 / Ra1 of the light extraction surface after polishing and before and after contact with the organic solvent is within the range of 0.2 or more and 0.8 or less, the convexity is rounded. Due to the lens effect of the curved surface of the portion, the amount of light can be converged in the direction perpendicular to the light extraction surface, and the light extraction efficiency can be improved.

透光性部材において、研磨後であって有機溶剤に接触前の光取り出し面の粗さ曲線の最大高さRz1に対して、研磨後であって有機溶剤に接触後の光取り出し面の粗さ曲線の最大高さRz2の最大高さ比Rz2/Rz1が0.1以上0.9以下の範囲内であることが好ましく、より好ましくは0.2以上0.8以下の範囲内であり、さらに好ましくは0.3以上0.7以下の範囲内であり、特に好ましくは0.4以上0.6以下の範囲内である。透光性部材において、研磨によって光取り出し面に形成された微細な凸部を、有機溶剤に接触させることによって、微細な凸部を溶解させ又は凸部の先端を丸くすることができる。透光性部材において、研磨後であって有機溶剤に接触前と後の光取り出し面の粗さ曲線の最大高さ比Rz2/Rz1が0.1以上0.9以下の範囲内であると、丸くなった凸部の曲面のレンズ効果により、光取り出し面に垂直な方向へ光量を収束し、光の取り出し効率を高くすることができる。 In the translucent member, the roughness of the light extraction surface after polishing and after contact with the organic solvent is relative to the maximum height Rz1 of the roughness curve of the light extraction surface after polishing and before contact with the organic solvent. The maximum height ratio Rz2 / Rz1 of the maximum height Rz2 of the curve is preferably in the range of 0.1 or more and 0.9 or less, more preferably in the range of 0.2 or more and 0.8 or less, and further. It is preferably in the range of 0.3 or more and 0.7 or less, and particularly preferably in the range of 0.4 or more and 0.6 or less. In the translucent member, the fine convex portion formed on the light extraction surface by polishing is brought into contact with an organic solvent, whereby the fine convex portion can be dissolved or the tip of the convex portion can be rounded. In the translucent member, when the maximum height ratio Rz2 / Rz1 of the roughness curve of the light extraction surface after polishing and before and after contact with the organic solvent is within the range of 0.1 or more and 0.9 or less. Due to the lens effect of the curved surface of the rounded convex portion, the amount of light can be converged in the direction perpendicular to the light extraction surface, and the light extraction efficiency can be improved.

透光性部材において、研磨後であって有機溶剤に接触前の光取り出し面の粗さ曲線要素の平均長さRS1と、研磨後であって有機溶剤に接触後の光取り出し面の粗さ曲線要素の平均長さRS2の、平均長さ比RS2/RS1が0.1以上0.9以下の範囲内であることが好ましく、より好ましくは0.2以上0.8以下の範囲内であり、さらに好ましくは0.3以上0.7以下の範囲内である。透光性部材において、研磨によって光取り出し面に形成された微細な凸部を、有機溶剤に接触させることによって、微細な凸部を溶解させ又は凸部の先端を丸く小さくすることができる。透光性部材において、研磨後であって有機溶剤に接触前と後の光取り出し面の粗さ曲線要素の平均長さ比RS2/RS1が0.1以上0.9以下の範囲内であると、丸く小さくなった凸部の曲面のレンズ効果により、光取り出し面に垂直な方向へ光量を収束し、光の取り出し効率を高くすることができる。 In the translucent member, the average length RS1 of the roughness curve element of the light extraction surface after polishing and before contact with the organic solvent, and the roughness curve of the light extraction surface after polishing and after contact with the organic solvent. The average length ratio RS2 / RS1 of the element average length RS2 is preferably in the range of 0.1 or more and 0.9 or less, more preferably in the range of 0.2 or more and 0.8 or less. More preferably, it is in the range of 0.3 or more and 0.7 or less. In the translucent member, by contacting the fine convex portion formed on the light extraction surface by polishing with an organic solvent, the fine convex portion can be dissolved or the tip of the convex portion can be made round and small. In the translucent member, the average length ratio RS2 / RS1 of the roughness curve element of the light extraction surface after polishing and before and after contact with the organic solvent is within the range of 0.1 or more and 0.9 or less. Due to the lens effect of the curved surface of the convex portion that has become round and small, the amount of light can be converged in the direction perpendicular to the light extraction surface, and the light extraction efficiency can be improved.

発光装置
発光装置は、前記透光性部材と、励起光源とを備える。励起光源は、発光素子であることが好ましい。
Light emitting device The light emitting device includes the translucent member and an excitation light source. The excitation light source is preferably a light emitting element.

以下、発光装置の実施形態を、図面を参照して説明する。以下に説明する発光装置は、本発明の技術思想を具体化するためのものであって、特定的な記載がない限り、本発明を以下のものに限定しない。また、実施形態、及び実施例において説明する内容は、他の実施形態、実施例にも適用可能である。各図面が示す部材の大きさや位置関係などは、説明を明確にするため、誇張していることがある。 Hereinafter, embodiments of the light emitting device will be described with reference to the drawings. The light emitting device described below is for embodying the technical idea of the present invention, and the present invention is not limited to the following unless otherwise specified. Further, the contents described in the embodiments and examples can be applied to other embodiments and examples. The size and positional relationship of the members shown in each drawing may be exaggerated for the sake of clarity.

図2Aは、実施形態の発光装置1の概略を示す斜視図である。発光装置1は、光取り出し面に隣接する面を実装面とする、いわゆるサイドビュー型と称される発光装置である。光取り出し面に対向する面を実装面とするトップビュー型と称される発光装置にも適用することができる。 FIG. 2A is a perspective view showing an outline of the light emitting device 1 of the embodiment. The light emitting device 1 is a so-called side view type light emitting device having a surface adjacent to the light extraction surface as a mounting surface. It can also be applied to a light emitting device called a top view type having a surface facing the light extraction surface as a mounting surface.

図2Bは、図2Aの発光装置1のA-A’線における概略断面図であり、図2Cは、発光装置1の概略平面図である。発光装置1は、基体4上に搭載された発光素子5と、発光素子5上に配置された透光性部材10とを、備える。 2B is a schematic cross-sectional view taken along the line AA'of the light emitting device 1 of FIG. 2A, and FIG. 2C is a schematic plan view of the light emitting device 1. The light emitting device 1 includes a light emitting element 5 mounted on the substrate 4 and a translucent member 10 arranged on the light emitting element 5.

基体4は、母材2と、接続端子3と、を備える。母材2は、長手方向と該長手方向に直交する短手方向を有する第1主面2aと、第1主面2aの反対側の第2主面2bと、長手方向に延びる第1端面2cと、短手方向に延びる第2端面2dと、を含む。接続端子3は、少なくとも正負一対あって、母材の第1主面2a上に設けられている。ここでは、接続端子3は、母材2の第1主面2aである上面、短手方向に延びる第2端面2d及び第2主面2bである下面に向けて、母材2側から積層されていてもよい。 The substrate 4 includes a base material 2 and a connection terminal 3. The base material 2 has a first main surface 2a having a longitudinal direction and a lateral direction orthogonal to the longitudinal direction, a second main surface 2b opposite to the first main surface 2a, and a first end surface 2c extending in the longitudinal direction. And a second end face 2d extending in the lateral direction. The connection terminals 3 have at least a pair of positive and negative, and are provided on the first main surface 2a of the base material. Here, the connection terminal 3 is laminated from the base material 2 side toward the upper surface which is the first main surface 2a of the base material 2, the second end surface 2d extending in the lateral direction, and the lower surface which is the second main surface 2b. May be.

基体4は、母材2の第1端面2cに、第1主面2aと第2端面2dに連続する、及び/又は第2主面2bと第2端面2dに連続する、窪み部25を有していてもよい。窪み部25は、短手方向の深さdより長手方向の長さ(幅)wのほうが大きくなるように形成されていてもよい。接続端子3は、窪み部25上に延長して設けられていてもよい。窪み部25は、母材2の長手方向の両側にそれぞれ設けられていてもよい。 The substrate 4 has a recess 25 in the first end surface 2c of the base material 2 which is continuous with the first main surface 2a and the second end surface 2d and / or is continuous with the second main surface 2b and the second end surface 2d. You may be doing it. The recessed portion 25 may be formed so that the length (width) w in the longitudinal direction is larger than the depth d in the lateral direction. The connection terminal 3 may be extended and provided on the recess 25. The recessed portions 25 may be provided on both sides of the base metal 2 in the longitudinal direction.

基体4の第1主面2a上には、発光素子5が搭載され、接続端子3に接続されている。より詳細には、接続端子3の突出パターン3aには、1つの発光素子5がフリップチップ実装されている。発光素子5は、正負一対の電極が其々、基体4の一対の接続端子3の突出パターン3aに、接合部材6によって接続されている。 A light emitting element 5 is mounted on the first main surface 2a of the substrate 4 and is connected to the connection terminal 3. More specifically, one light emitting element 5 is flip-chip mounted on the protrusion pattern 3a of the connection terminal 3. In the light emitting element 5, a pair of positive and negative electrodes are connected to the protrusion pattern 3a of the pair of connection terminals 3 of the substrate 4 by a joining member 6.

基体4の第1主面2a上には、発光素子5に接し、その側面の全周に接触して被覆するように、封止部材7が設けられている。封止部材7は、発光素子5の基体4と対向する面側にも設けられている。より詳細には、封止部材7は、接合部材6の表面(周囲)を略完全に被覆しており、さらに発光素子5と基体4の間に設けられている。これによって、発光素子5から上方に効率良く光を取り出すことができる。また、封止部材7が、発光素子5の基体4と対向する面側にも設けられていることによって、より強固に発光素子5を基体4に接続させることができる。封止部材7の上面は、発光素子5の上面と略一致している。 A sealing member 7 is provided on the first main surface 2a of the substrate 4 so as to be in contact with the light emitting element 5 and to be in contact with and cover the entire circumference of the side surface thereof. The sealing member 7 is also provided on the surface side of the light emitting element 5 facing the substrate 4. More specifically, the sealing member 7 covers the surface (periphery) of the joining member 6 substantially completely, and is further provided between the light emitting element 5 and the substrate 4. As a result, light can be efficiently extracted upward from the light emitting element 5. Further, since the sealing member 7 is also provided on the surface side of the light emitting element 5 facing the substrate 4, the light emitting element 5 can be more firmly connected to the substrate 4. The upper surface of the sealing member 7 substantially coincides with the upper surface of the light emitting element 5.

発光素子5上、つまり、正負一対の電極と反対側の表面に前述の透光性部材10が配置されている。透光性部材10は、光取り出し面10aに対向する面10bが発光素子5側に配置されている。透光性部材10は、封止部材7の上面を被覆していてもよく、透光性部材10の端面は、封止部材7の端面と略一致していてもよい。発光素子5上に配置された透光性部材10は、光取り出し面10aが、前述の特徴を備えていることによって、光取り出し面に存在する先端が丸くなった凸部のレンズ効果により、発光装置に用いた場合に、光取り出し面に対して垂直な方向への光の配光成分を増加させることができ、光取り出し面における全反射を減らして、光取り出し効率をより向上させることができる。 The above-mentioned translucent member 10 is arranged on the light emitting element 5, that is, on the surface opposite to the pair of positive and negative electrodes. In the translucent member 10, a surface 10b facing the light extraction surface 10a is arranged on the light emitting element 5 side. The translucent member 10 may cover the upper surface of the sealing member 7, and the end surface of the translucent member 10 may substantially coincide with the end surface of the sealing member 7. The translucent member 10 arranged on the light emitting element 5 emits light due to the lens effect of the convex portion having a rounded tip existing on the light extraction surface because the light extraction surface 10a has the above-mentioned characteristics. When used in an apparatus, it is possible to increase the light distribution component of light in the direction perpendicular to the light extraction surface, reduce total reflection on the light extraction surface, and further improve the light extraction efficiency. ..

基体4の母材の第1主面2a側において、基体4上の封止部材7の両側で、接続端子3の幅狭の部位の一部と外部接続部3bが封止部材7から露出されている。母材の第2主面2b側において、接続端子3が配置されていない部位に補強、放熱等のために、金属層3dが配置されている。この金属層3dを含む領域において、2つの絶縁性の膜8が形成されている。2つの絶縁性の膜8は、大きさが異なり、発光装置のアノード及びカソードを区別するマークとして機能させることができる。 On the first main surface 2a side of the base material of the substrate 4, a part of the narrow portion of the connection terminal 3 and the external connection portion 3b are exposed from the sealing member 7 on both sides of the sealing member 7 on the substrate 4. ing. On the second main surface 2b side of the base material, a metal layer 3d is arranged at a portion where the connection terminal 3 is not arranged for reinforcement, heat dissipation, and the like. Two insulating films 8 are formed in the region including the metal layer 3d. The two insulating films 8 are different in size and can function as a mark for distinguishing the anode and the cathode of the light emitting device.

封止部材7は、発光素子5の少なくとも1つの側面の一部又は全部に接触して、発光素子5の側面を被覆するように配置されていてもよく、発光素子5の全周囲を取り囲むように、発光素子5に接触して配置されていてもよい。封止部材7は、発光装置1の長手方向に延長する側面(図2C中、7a)において薄く、短手方向に延長する側面(図2C中、7b)において厚く設けられていてもよい。 The sealing member 7 may be arranged so as to contact a part or all of at least one side surface of the light emitting element 5 and cover the side surface of the light emitting element 5, and surround the entire circumference of the light emitting element 5. In addition, it may be arranged in contact with the light emitting element 5. The sealing member 7 may be provided thin on the side surface extending in the longitudinal direction (7a in FIG. 2C) of the light emitting device 1 and thick on the side surface extending in the lateral direction (7b in FIG. 2C).

発光装置を構成する各部材の材質、大きさ(サイズ)、特性、及び製造方法などは、特開2015-220426号公報を参照にすることができる。 Japanese Patent Application Laid-Open No. 2015-220426 can be referred to for the material, size (size), characteristics, manufacturing method, etc. of each member constituting the light emitting device.

以下、本発明を実施例により具体的に説明する。本発明は、これらの実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples. The present invention is not limited to these examples.

実施例1
透光性部材の準備
シリコーン樹脂に、KSF蛍光体と、βサイアロン蛍光体と、シリカのフィラーと、を混合し、所定の色度座標に合わせるため、適宜、含有量を調整する。例えば、シリコーン樹脂100質量部に対してKSF蛍光体は約70質量部以上80質量部以下の範囲内、βサイアロン蛍光体は約75質量部以上85質量部以下の範囲内、フィラーを約1質量部以上8質量部以下の範囲内とする。KSF蛍光体とβサイアロン蛍光体とをシリコーン樹脂に混ぜ合わせて透光性部材用組成物を製造した。この透光性部材用組成物をシート状に硬化させて、厚さが20μmのシート状体の透光性部材を得た。
Example 1
Preparation of translucent member The silicone resin is mixed with a KSF phosphor, a β-sialon phosphor, and a silica filler, and the content is appropriately adjusted in order to match the predetermined chromaticity coordinates. For example, the KSF phosphor is in the range of about 70 parts by mass or more and 80 parts by mass or less, the β-sialon phosphor is in the range of about 75 parts by mass or more and 85 parts by mass or less, and the filler is about 1 mass with respect to 100 parts by mass of the silicone resin. It shall be within the range of 2 parts or more and 8 parts by mass or less. A composition for a translucent member was produced by mixing a KSF phosphor and a β-sialon phosphor with a silicone resin. This composition for a translucent member was cured into a sheet to obtain a translucent member in a sheet-like body having a thickness of 20 μm.

研磨工程
得られた透光性部材の光取り出し面となる一方の面を、番手2000番(#2000)から6000番(#6000)の研磨紙を用いて研磨した。
Polishing Step One surface of the obtained translucent member, which is the light extraction surface, was polished with polishing paper having a count of 2000 (# 2000) to 6000 (# 6000).

有機溶剤との接触工程
透光性部材の研磨した面に、トルエンを滴下して、研磨した面の全面に広げ、透光性部材の光取り出し面をトルエンと接触させた。透光性部材の光取り出し面とトルエンとを接触させた後、乾燥して、透光性部材を得た。トルエンの滴下量は、1mg/cmから3mg/cmの範囲内であった。より具体的には、1.2mg/cm以上1.5mg/cm以下の範囲内であった。
Contact Step with Organic Solvent Toluene was dropped onto the polished surface of the translucent member and spread over the entire surface of the polished surface, and the light extraction surface of the translucent member was brought into contact with toluene. The light extraction surface of the translucent member was brought into contact with toluene and then dried to obtain a translucent member. The amount of toluene dropped was in the range of 1 mg / cm 2 to 3 mg / cm 2 . More specifically, it was in the range of 1.2 mg / cm 2 or more and 1.5 mg / cm 2 or less.

比較例1
透光性部材の光取り出し面を研磨していないこと以外は、実施例1と同様の透光性部材を比較例1の透光性部材とした。
Comparative Example 1
The same translucent member as in Example 1 was used as the translucent member of Comparative Example 1 except that the light extraction surface of the translucent member was not polished.

透光性部材の評価
算術平均粗さ、粗さ曲線の最大高さ、粗さ曲線要素の平均長さ
実施例及び比較例の各透光性部材は、有機溶剤接触前、研磨後であって有機溶剤接触後の光取り出し面の算術平均粗さ、粗さ曲線の最大高さ、粗さ曲線要素の平均長さを、JIS B0601-2001に準拠して、形状測定レーザーマイクロスコープ(VK-X200、株式会社キーエンス製)を用いて測定した。各透光性部材の光取り出し面において、有機溶剤接触前の算術平均粗さをRa1、粗さ曲線の最大高さをRz1、粗さ曲線要素の平均長さをRS1とした。各透光性部材の光取り出し面において、有機溶剤接触後の算術平均粗さをRa2、粗さ曲線の最大高さをRz2、粗さ曲線要素の平均長さをRS2とした。結果を表1に示した。
Evaluation of Translucent Member Arithmetic Mean Roughness, Maximum Height of Roughness Curve, Average Length of Roughness Curve Element Each translucent member of Examples and Comparative Examples is before contact with an organic solvent and after polishing. Arithmetic mean roughness of the light extraction surface after contact with organic solvent, maximum height of roughness curve, average length of roughness curve elements are measured according to JIS B0601-2001, shape measurement laser microscope (VK-X200). , Made by Keyence Co., Ltd.). On the light extraction surface of each translucent member, the arithmetic mean roughness before contact with the organic solvent was Ra1, the maximum height of the roughness curve was Rz1, and the average length of the roughness curve elements was RS1. On the light extraction surface of each translucent member, the arithmetic mean roughness after contact with the organic solvent was Ra2, the maximum height of the roughness curve was Rz2, and the average length of the roughness curve elements was RS2. The results are shown in Table 1.

SEM写真
凸部の計測、粒子の計測
実施例の透光性部材は、有機溶剤接触前後の光取り出し面の任意の部位を、走査型電子顕微鏡(Scanning Electron Microscope:SEM)を用いて観察した。実施例の透光性部材のサンプルを、20°の傾斜した傾斜台に設置し、透光性部材の直上からSEM写真を撮影した。透光性部材のサンプルを傾斜台に載置してSEM写真を撮影したのは、透光性部材の光取り出し面の凸部をより明確に確認できるようにするためである。
Measurement of convex portions in SEM photographs, measurement of particles In the translucent member of the example, any part of the light extraction surface before and after contact with the organic solvent was observed using a scanning electron microscope (SEM). A sample of the translucent member of the example was placed on an inclined table inclined at 20 °, and an SEM photograph was taken from directly above the translucent member. The reason why the sample of the translucent member was placed on the inclined table and the SEM photograph was taken is to make it possible to more clearly confirm the convex portion of the light extraction surface of the translucent member.

凸部の計測、粒子の計測
実施例の透光性部材のSEM写真の一辺が20μmの正方形で囲まれた領域内において図5の凸部の模式図に示すように、断面視で0°を超えて160°以下の範囲内の角度を有し、一辺が0.5μm以上2μm以下の範囲内の二辺を有する凸部の数を目視で計測した。実施例及び比較例の各透光性部材は、有機溶剤接触前と後の光取り出し面の任意の部位を、SEMを用いて観察し、一辺が20μmの正方形で囲まれた領域内において、平面視で測定される直径が0.2μm以上20μm以下の範囲内の粒子の数を目視で計測した。
Measurement of convex parts, measurement of particles In the area surrounded by a square of 20 μm on one side of the SEM photograph of the translucent member of the example, as shown in the schematic diagram of the convex parts in FIG. The number of convex portions having an angle in the range of 160 ° or less and having two sides in the range of 0.5 μm or more and 2 μm or less on one side was visually measured. Each of the translucent members of Examples and Comparative Examples was observed by observing any part of the light extraction surface before and after contact with the organic solvent using SEM, and was flat in a region surrounded by a square having a side of 20 μm. The number of particles in the range of 0.2 μm or more and 20 μm or less in the diameter measured visually was visually measured.

Figure 2022057000000002
Figure 2022057000000002

実施例1に係る透光性部材は、研磨後、有機溶剤接触前の光取り出し面の算術平均粗さRa1が0.8μm以上5.0μm以下の範囲内であり、有機溶剤接触前と後の光取り出し面の平均粗さ比Ra2/Ra1が0.2以上0.8以下の範囲内であった。
実施例1に係る透光性部材は、研磨後、有機溶剤接触前の光取り出し面の粗さ曲線の最大高さRz1が5μm以上18μm以下の範囲内であり、有機溶剤接触前と後の光と出し面の粗さ曲線の最大高さ比Rz2/Rz1が0.1以上0.9以下の範囲内であった。
実施例1に係る透光性部材は、研磨後、有機溶剤接触前の光取り出し面の粗さ曲線要素の平均長さRS1が10μm以上20μm以下の範囲内であり、有機溶剤接触前と後の光取り出し面の粗さ曲線要素の平均長さ比RS2/RS1が0.1以上0.9以下の範囲内であった。実施例1に係る透光性部材は、光取り出し面を研磨することによって形成された微細な凸部の先端が有機溶剤に接触することによって丸くなっていた。
In the translucent member according to Example 1, the arithmetic average roughness Ra1 of the light extraction surface after polishing and before contact with the organic solvent is within the range of 0.8 μm or more and 5.0 μm or less, and before and after contact with the organic solvent. The average roughness ratio Ra2 / Ra1 of the light extraction surface was in the range of 0.2 or more and 0.8 or less.
In the translucent member according to Example 1, the maximum height Rz1 of the roughness curve of the light extraction surface after polishing and before contact with the organic solvent is within the range of 5 μm or more and 18 μm or less, and the light before and after contact with the organic solvent. The maximum height ratio Rz2 / Rz1 of the roughness curve of the exposed surface was within the range of 0.1 or more and 0.9 or less.
In the translucent member according to Example 1, the average length RS1 of the roughness curve element of the light extraction surface after polishing and before contact with the organic solvent is within the range of 10 μm or more and 20 μm or less, and before and after contact with the organic solvent. The average length ratio RS2 / RS1 of the roughness curve element of the light extraction surface was in the range of 0.1 or more and 0.9 or less. The translucent member according to the first embodiment was rounded when the tip of a fine convex portion formed by polishing the light extraction surface came into contact with an organic solvent.

図3は、実施例1の透光性部材の有機溶剤接触前の一つのサンプルを平面からの角度20°の傾斜した傾斜台に設置し、透光性部材の直上から撮影したSEM写真である。実施例1に係る透光性部材の光取り出し面は、研磨することによって微細な凸部が形成されていることが確認できた。図4は、実施例1の透光性部材の有機溶剤接触後の一つのサンプルを平面から角度20°の傾斜した傾斜台に設置し、透光性部材の直上から撮影したSEM写真である。実施例1に係る透光性部材の光取り出し面は、研磨後、有機溶剤に接触させることによって、微細な凸部の先端が丸くなっていた。 FIG. 3 is an SEM photograph taken from directly above the translucent member by installing one sample of the translucent member of Example 1 before contact with the organic solvent on an inclined table having an angle of 20 ° from a plane. .. It was confirmed that fine protrusions were formed on the light extraction surface of the translucent member according to Example 1 by polishing. FIG. 4 is an SEM photograph taken from directly above the translucent member by placing one sample of the translucent member of Example 1 after contact with the organic solvent on an inclined table inclined at an angle of 20 ° from a plane. The light extraction surface of the translucent member according to Example 1 had a rounded tip of a fine convex portion by being brought into contact with an organic solvent after polishing.

実施例1に係る透光性部材の光取り出し面において、一辺が20μmの正方形で囲まれた領域内に断面視で0°を超えて160°以下の範囲内の角度を有し、一辺が1μmである二辺を有する凸部の数は、有機溶剤接触前は360個であり、有機溶剤接触後は56個であった。実施例1に係る透光性部材の光取り出し面において一辺が20μmの正方形で囲まれた領域内に断面視で0°を超えて160°以下の範囲内の角度を有し、一辺が1μmの二辺を有する凸部の数は、光取り出し面の研磨後、有機溶剤の接触前の凸部の数と比べて、1個以上100個以下の範囲内と少なくなった。この結果から、実施例1に係る透光性部材を発光装置に用いた場合に、光の取り出し面に存在する先端が丸くなった凸部のレンズ効果により、光取り出し面に対して垂直な方向への光の配光成分を増加させ、光取り出し面における全反射を減らして、光の取り出し効を向上できると推測された。 In the light extraction surface of the translucent member according to the first embodiment, an angle within a range of more than 0 ° and 160 ° or less in cross-sectional view is provided in a region surrounded by a square having a side of 20 μm, and one side is 1 μm. The number of convex portions having two sides was 360 before the contact with the organic solvent and 56 after the contact with the organic solvent. On the light extraction surface of the translucent member according to the first embodiment, the angle is within a range of more than 0 ° and 160 ° or less in cross-sectional view within a region surrounded by a square having a side of 20 μm, and the side is 1 μm. The number of convex portions having two sides was as small as 1 or more and 100 or less as compared with the number of convex portions before contact with the organic solvent after polishing the light extraction surface. From this result, when the translucent member according to the first embodiment is used in the light emitting device, the direction perpendicular to the light extraction surface is due to the lens effect of the convex portion having a rounded tip existing on the light extraction surface. It was speculated that the light distribution component to the light could be increased, the total reflection on the light extraction surface could be reduced, and the light extraction effect could be improved.

実施例1に係る透光性部材について、2以上のサンプルを作製した。実施例1に係る透光性部材の一つのサンプルの光取り出し面において、一辺が20μmの正方形で囲まれた領域内において、平面視で直径が0.2μm以上20μm以下の粒子の数を目視で計測した。実施例1に係る透光性部材の一つのサンプル1の光の取り出し面において、有機溶剤接触前の直径が0.2μm以上20μm以下の粒子の数は55個であり、有機溶剤接触後の直径が0.2μm以上20μm以下の粒子の数は16個であり、有機溶剤接触前と比べて粒子の数は少なくなった。実施例1に係る透光性部材の他のサンプル2の光の取り出し面において、有機溶剤接触前の直径が0.2μm以上20μm以下の粒子の数は41個であり、有機溶剤接触後の直径が0.2μm以上20μm以下の粒子の数は13個であり、有機溶剤接触前と比べて粒子の数は少なくなった。この結果から、実施例1に係る透光性部材を発光装置に用いた場合に、光取り出し面に存在する粒子が少ないため、粒子による乱反射を抑制し、光取り出し面に対して垂直な方向への光の配光成分を増加させることができ、光取り出し効率を向上できると推測された。 Two or more samples were prepared for the translucent member according to Example 1. On the light extraction surface of one sample of the translucent member according to Example 1, the number of particles having a diameter of 0.2 μm or more and 20 μm or less in a plan view is visually observed in a region surrounded by a square having a side of 20 μm. I measured it. On the light extraction surface of sample 1 of the translucent member according to Example 1, the number of particles having a diameter of 0.2 μm or more and 20 μm or less before contact with the organic solvent is 55, and the diameter after contact with the organic solvent. The number of particles having a value of 0.2 μm or more and 20 μm or less was 16, and the number of particles was smaller than that before contact with the organic solvent. On the light extraction surface of the other sample 2 of the translucent member according to Example 1, the number of particles having a diameter of 0.2 μm or more and 20 μm or less before contact with the organic solvent is 41, and the diameter after contact with the organic solvent. The number of particles having a value of 0.2 μm or more and 20 μm or less was 13, and the number of particles was smaller than that before contact with the organic solvent. From this result, when the translucent member according to the first embodiment is used in the light emitting device, since there are few particles existing on the light extraction surface, diffuse reflection by the particles is suppressed and the direction is perpendicular to the light extraction surface. It was speculated that the light distribution component of the light could be increased and the light extraction efficiency could be improved.

図6は、実施例1に係る透光性部材の有機溶剤接触前の光取り出し面の平面視のSEM写真であり、白い枠は一辺が20μmの正方形で囲まれた領域を示す。図7は、実施例1に係る透光性部材の有機溶剤接触後の光取り出し面の平面視のSEM写真であり、白い枠は一辺が20μmの正方形で囲まれた領域を示す。実施例1に係る透光性部材の光取り出し面は、研磨することによって微細な凸部が形成され、研磨後、有機溶剤に接触させることによって、微細な凸部の先端が丸くなっていた。この結果から、実施例1に係る透光性部材を発光装置に用いた場合に、光の取り出し面に存在する先端が丸くなった凸部のレンズ効果により、光取り出し面に対して垂直な方向への光の配光成分を増加させ、光取り出し面における全反射を減らして、光の取り出し効を向上できると推測された。 FIG. 6 is an SEM photograph of the light extraction surface of the translucent member according to Example 1 before contact with the organic solvent, and the white frame shows a region surrounded by a square having a side of 20 μm. FIG. 7 is an SEM photograph of the light extraction surface of the translucent member according to Example 1 after contact with an organic solvent, and the white frame shows a region surrounded by a square having a side of 20 μm. The light extraction surface of the translucent member according to Example 1 had fine protrusions formed by polishing, and after polishing, the tips of the fine protrusions were rounded by contacting with an organic solvent. From this result, when the translucent member according to the first embodiment is used in the light emitting device, the direction perpendicular to the light extraction surface is due to the lens effect of the convex portion having a rounded tip existing on the light extraction surface. It was speculated that the light distribution component to the light could be increased, the total reflection on the light extraction surface could be reduced, and the light extraction effect could be improved.

発光装置の製造
実施例2
得られた実施例1に係る透光性部材を用いて、図2Aから図2Cに示す実施形態と同様の発光装置を製造した。具体的には以下のように発光装置を製造した。
基体4の母材2は、市販のガラスクロスを含有するナフタレン系のエポキシ樹脂が含有されたビスマレイミドトリアジン(BT)樹脂組成物(HL832NSF typeLCA、三菱ガス化学株式会社製)を用いた。母材2は、窪み部25がない状態において、直方体形状を有していた。接続端子3は、母材2側からCu/Ni/Au(合計厚さ:2μm)が積層されているものを用いた。基体4は、長手方向の長さが1.8mm、短手方向の幅が0.3mm、厚さが0.45mmであった。発光素子5は、サファイア基板(厚さ:150μm程度)上に窒化物半導体の積層体(厚さ:8~12μm程度)が形成され、積層体のサファイア基板と反対側の表面に正負一対の電極を有する。
発光素子5は、正負一対の電極が其々、基体4の一対の接続端子3の突出パターン3aに、Au-Sn共晶半田である溶融性の接合部材6(厚さ:20μm)によって接続され、基体4にフリップチップ実装されている。発光素子5は、長手方向の長さが0.9mm、短手方向の幅が0.2mm、厚さが0.15mmの直方体状の青色発光(発光ピーク波長455nm)のLEDチップを用いた。発光素子5は、その側面の表面粗さRaが1.0μm以下であった。
実施例1に係る透光性部材10は、光取り出し面10aと対向する面10bが発光素子5側となるように配置し、発光素子5上を被覆した。実施例1に係る透光性部材10は、厚さが20μmであった。
封止部材7は、長手方向の長さ(全長)が1.2mm、短手方向の幅(全長)が0.3mm、厚さが0.15mmの略直方体状の外形に形成されている。封止部材7は、平均粒径14μm(カタログ値)のシリカと、無機粒子として平均粒径0.25μmから0.3μm(カタログ値)の酸化チタンと、をそれぞれ、封止部材7の全質量に対して、2質量%以上2.5質量%以下の範囲内、及び、40質量%以上50質量%以下の範囲内で含有するシリコーン樹脂によって形成した。封止部材7の端面と透光性部材10の端面は略一致していた。
Manufacturing Example 2 of a light emitting device
Using the obtained translucent member according to Example 1, a light emitting device similar to the embodiment shown in FIGS. 2A to 2C was manufactured. Specifically, the light emitting device was manufactured as follows.
As the base material 2 of the substrate 4, a bismaleimide triazine (BT) resin composition (HL832NSF typeLCA, manufactured by Mitsubishi Gas Chemical Company, Inc.) containing a naphthalene-based epoxy resin containing a commercially available glass cloth was used. The base material 2 had a rectangular parallelepiped shape in the absence of the recess 25. As the connection terminal 3, Cu / Ni / Au (total thickness: 2 μm) laminated from the base material 2 side was used. The substrate 4 had a length of 1.8 mm in the longitudinal direction, a width of 0.3 mm in the lateral direction, and a thickness of 0.45 mm. In the light emitting element 5, a laminate of nitride semiconductors (thickness: about 8 to 12 μm) is formed on a sapphire substrate (thickness: about 150 μm), and a pair of positive and negative electrodes are formed on the surface of the laminate opposite to the sapphire substrate. Has.
In the light emitting element 5, a pair of positive and negative electrodes are connected to the protrusion pattern 3a of the pair of connection terminals 3 of the substrate 4 by a meltable bonding member 6 (thickness: 20 μm) which is Au—Sn eutectic solder. , The flip chip is mounted on the substrate 4. As the light emitting element 5, a rectangular parallelepiped blue light emitting (emission peak wavelength 455 nm) LED chip having a length of 0.9 mm in the longitudinal direction, a width of 0.2 mm in the lateral direction, and a thickness of 0.15 mm was used. The surface roughness Ra of the side surface of the light emitting element 5 was 1.0 μm or less.
The translucent member 10 according to the first embodiment was arranged so that the surface 10b facing the light extraction surface 10a was on the light emitting element 5 side, and covered the light emitting element 5. The translucent member 10 according to the first embodiment had a thickness of 20 μm.
The sealing member 7 is formed in a substantially rectangular parallelepiped outer shape having a length (total length) of 1.2 mm in the longitudinal direction, a width (total length) of 0.3 mm in the lateral direction, and a thickness of 0.15 mm. The sealing member 7 contains silica having an average particle size of 14 μm (catalog value) and titanium oxide having an average particle size of 0.25 μm to 0.3 μm (catalog value) as inorganic particles, respectively. It was formed of a silicone resin contained in a range of 2% by mass or more and 2.5% by mass or less, and 40% by mass or more and 50% by mass or less. The end face of the sealing member 7 and the end face of the translucent member 10 were substantially the same.

比較例2
比較例1に係る透光性部材を用いたこと以外は、実施例2と同様にして、発光装置を製造した。
Comparative Example 2
A light emitting device was manufactured in the same manner as in Example 2 except that the translucent member according to Comparative Example 1 was used.

発光装置の評価
発光装置の色度座標(x、y)、光束
実施例及び比較例の各発光装置について、分光測光装置(PMA-11、浜松ホトニクス株式会社)と積分球を組み合わせた光計測システムを用いて、CIE(国際照明委員会:Commission Internationale de l’Eclairage)1931色度図の色度座標系における色度座標(x、y)及び光束を求めた。実施例及び比較例の各透光性部材において、有機溶剤接触前の透光性部材を用いた発光装置の色度座標を色度座標(x1、y1)とし、光束をF1として求めた。実施例及び比較例の各透光性部材において、有機溶剤接触後の透光性部材を用いた発光装置の色度座標を色度座標(x2、y2)とし、光束をF2として求めた。また、色度座標(x1、y1)と色度座標(x2、y2)の差分を色度座標の変化率(Δx、Δy)として求めた。また、光束F1と光束F2の光束比F2/F1を、光束F1を100%とした変化率として求めた。結果を表2に示した。
Evaluation of light emitting device Color degree coordinates (x, y) of light emitting device, luminous flux For each light emitting device of Examples and Comparative Examples, an optical measurement system combining a spectrophotometric device (PMA-11, Hamamatsu Photonics Co., Ltd.) and an integrating sphere. The chromaticity coordinates (x, y) and the luminous flux in the chromaticity coordinate system of the 1931 chromaticity diagram of the CIE (Commission International de l'Eclairage) 1931 were obtained. In each of the translucent members of Examples and Comparative Examples, the chromaticity coordinates of the light emitting device using the translucent member before contact with the organic solvent were defined as the chromaticity coordinates (x1, y1), and the luminous flux was determined as F1. In each of the translucent members of Examples and Comparative Examples, the chromaticity coordinates of the light emitting device using the translucent member after contact with the organic solvent were defined as the chromaticity coordinates (x2, y2), and the luminous flux was determined as F2. Further, the difference between the chromaticity coordinates (x1, y1) and the chromaticity coordinates (x2, y2) was obtained as the rate of change (Δx, Δy) of the chromaticity coordinates. Further, the luminous flux ratio F2 / F1 of the luminous flux F1 and the luminous flux F2 was obtained as the rate of change with the luminous flux F1 as 100%. The results are shown in Table 2.

Figure 2022057000000003
Figure 2022057000000003

実施例1に係る透光性部材を用いた実施例2に係る発光装置は、実施例1に係る透光性部材が、光取り出し面を研磨することによって形成された微細な凸部が、有機溶剤に接触させることによって微細な凸部の先端が丸くなり、先端が丸くなった凸部のレンズ効果により、光取り出し面に対して垂直な方向への光の配光成分を増加させ、光取り出し面における全反射を減らして、光の取り出し効果を高くすることができ、光束比F2/F1は100.6%と高くなった。 In the light emitting device according to the second embodiment using the translucent member according to the first embodiment, the translucent member according to the first embodiment has an organic fine convex portion formed by polishing the light extraction surface. The tip of the fine convex part is rounded by contact with the solvent, and the lens effect of the convex part with the rounded tip increases the light distribution component of the light in the direction perpendicular to the light extraction surface, and the light is extracted. The total reflection on the surface could be reduced and the light extraction effect could be enhanced, and the luminous flux ratio F2 / F1 was as high as 100.6%.

比較例1に係る透光性部材を用いた比較例2の発光装置は、比較例1に係る透光性部材が研磨されていないため、微細な凸部が形成されておらず、有機溶剤を接触させてもレンズ効果がそれほど期待できず、光束比F2/F1は低くなった。 In the light emitting device of Comparative Example 2 using the translucent member according to Comparative Example 1, since the translucent member according to Comparative Example 1 was not polished, fine protrusions were not formed and an organic solvent was used. The lens effect could not be expected so much even if they were brought into contact with each other, and the luminous flux ratio F2 / F1 became low.

本発明の一態様に透光性部材は、発光装置の波長変換部材として用いることができる。透光性部材を用いた発光装置は、液晶ディスプレイのバックライト光源、各種照明用の発光装置、大型ディスプレイ、車両用の発光装置、表示装置、デジタルビデオカメラ、ファクシミリ、コピー機、スキャナなどにおける画像読取装置、プロジェクター装置などに利用することができる。 In one aspect of the present invention, the translucent member can be used as a wavelength conversion member of a light emitting device. The light emitting device using the translucent member is an image in a backlight source of a liquid crystal display, a light emitting device for various lightings, a large display, a light emitting device for a vehicle, a display device, a digital video camera, a facsimile, a copier, a scanner, etc. It can be used for reading devices, projector devices, and the like.

1:発光装置、2:母材、2a:第1主面(上面)、2b:第2主面(下面)、2c:第1端面、2d:第2端面、3:接続端子、3a:突出パターン、3b:外部接続部、3d:金属層、4:基体、5:発光素子、6:接合部材、7:封止部材、7a:長手方向に延長する側面、7b:短手方向に延長する側面、8:絶縁性の膜、10:透光性部材、10a:光取り出し面、10b:光取り出し面に対するする面。 1: Light emitting device, 2: Base material, 2a: First main surface (upper surface), 2b: Second main surface (lower surface), 2c: First end surface, 2d: Second end surface, 3: Connection terminal, 3a: Projection Pattern, 3b: External connection part, 3d: Metal layer, 4: Base material, 5: Light emitting element, 6: Joining member, 7: Sealing member, 7a: Side surface extending in the longitudinal direction, 7b: Extending in the lateral direction Side surface, 8: Insulating film, 10: Translucent member, 10a: Light extraction surface, 10b: Surface with respect to the light extraction surface.

Claims (18)

蛍光体と樹脂を含み、光取り出し面を備えた透光性部材を準備することと、
前記光取り出し面の表面を研磨することと、
研磨後の光取り出し面と、有機溶剤と、を接触させること、を含む、透光性部材の製造方法。
To prepare a translucent member that contains a phosphor and a resin and has a light extraction surface.
Polishing the surface of the light extraction surface and
A method for manufacturing a translucent member, which comprises contacting a light extraction surface after polishing with an organic solvent.
有機溶剤に接触後の光取り出し面の算術平均粗さRa2と、研磨後であって有機溶剤に接触前の光取り出し面の算術平均粗さRa1の平均粗さ比Ra2/Ra1が、0.2以上0.8以下の範囲内である、請求項1に記載の透光性部材の製造方法。 The average roughness ratio Ra2 / Ra1 of the arithmetic average roughness Ra2 of the light extraction surface after contact with the organic solvent and the arithmetic average roughness Ra1 of the light extraction surface after polishing and before contact with the organic solvent is 0.2. The method for manufacturing a translucent member according to claim 1, which is within the range of 0.8 or less. 研磨後であって有機溶剤に接触前の光取り出し面の算術平均粗さRa1が、0.8μm以上5.0μm以下の範囲内である、請求項1又は2に記載の透光性部材の製造方法。 The manufacture of the translucent member according to claim 1 or 2, wherein the arithmetic mean roughness Ra1 of the light extraction surface after polishing and before contact with the organic solvent is within the range of 0.8 μm or more and 5.0 μm or less. Method. 研磨後であって有機溶剤に接触前の光取り出し面の粗さ曲線の最大高さRz1が、5μm以上18μm以下の範囲内であり、粗さ曲線要素の平均長さRS1が、10μm以上20μm以下の範囲内である、請求項1から3のいずれか1項に記載の透光性部材の製造方法。 The maximum height Rz1 of the roughness curve of the light extraction surface after polishing and before contact with the organic solvent is within the range of 5 μm or more and 18 μm or less, and the average length RS1 of the roughness curve element is 10 μm or more and 20 μm or less. The method for manufacturing a translucent member according to any one of claims 1 to 3, which is within the range of. 有機溶剤に接触後の光取り出し面の粗さ曲線の最大高さRz2と、研磨後であって有機溶剤に接触前の光取り出し面の粗さ曲線の最大高さRz1の最大高さ比Rz2/Rz1が、0.1以上0.9以下の範囲内である、請求項1から4のいずれか1項に記載の透光性部材の製造方法。 Maximum height ratio Rz2 of the maximum height Rz2 of the roughness curve of the light extraction surface after contact with the organic solvent and the maximum height Rz1 of the roughness curve of the light extraction surface after polishing and before contact with the organic solvent. The method for manufacturing a translucent member according to any one of claims 1 to 4, wherein Rz1 is in the range of 0.1 or more and 0.9 or less. 有機溶剤に接触後の光取り出し面の粗さ曲線要素の平均長さRS2と、研磨後であって有機溶剤に接触前の光取り出し面の粗さ曲線の要素の平均長さRS1の平均長さ比RS2/RS1が、0.1以上0.9以下の範囲内である、請求項1から5のいずれか1項に記載の透光性部材の製造方法。 Average length of the roughness curve element of the light extraction surface after contact with the organic solvent RS2 and the average length of the element of the roughness curve of the light extraction surface after polishing and before contact with the organic solvent RS1 average length The method for manufacturing a translucent member according to any one of claims 1 to 5, wherein the ratio RS2 / RS1 is in the range of 0.1 or more and 0.9 or less. 前記有機溶剤の沸点が50℃以上150℃以下の範囲内である、請求項1から6のいずれか1項に記載の透光性部材の製造方法。 The method for producing a translucent member according to any one of claims 1 to 6, wherein the boiling point of the organic solvent is in the range of 50 ° C. or higher and 150 ° C. or lower. 前記有機溶剤が、脂肪族炭化水素系有機溶剤、芳香族炭化水素系有機溶剤、ケトン系有機溶剤、及び、アルコール系有機溶剤からなる群から選ばれる少なくとも1種である、請求項1から7のいずれか1項に記載の透光性部材の製造方法。 Claims 1 to 7, wherein the organic solvent is at least one selected from the group consisting of an aliphatic hydrocarbon-based organic solvent, an aromatic hydrocarbon-based organic solvent, a ketone-based organic solvent, and an alcohol-based organic solvent. The method for manufacturing a translucent member according to any one of the following items. 研磨後の光取り出し面を有機溶剤に浸漬させ、又は、研磨後の光取出し面に有機溶剤を塗布することよって、研磨後の光取り出し面と有機溶剤とを接触させる、請求項1から8のいずれか1項に記載の透光性部材の製造方法。 Claims 1 to 8, wherein the light extraction surface after polishing is immersed in an organic solvent, or the light extraction surface after polishing is coated with an organic solvent to bring the light extraction surface after polishing into contact with the organic solvent. The method for manufacturing a translucent member according to any one of the following items. 蛍光体と樹脂を含み、光取り出し面を備え、前記光取り出し面において、一辺が20μmの正方形で囲まれた領域内に、断面視で0°を超えて160°以下の範囲内の角度を有し、一辺が0.5μm以上2μm以下の範囲内の二辺を有する凸部を備え、前記凸部の数が1個以上100個以下である、透光性部材。 It contains a phosphor and a resin, has a light extraction surface, and has an angle within a range of more than 0 ° and 160 ° or less in cross-sectional view in a region surrounded by a square having a side of 20 μm. A translucent member having a convex portion having two sides in a range of 0.5 μm or more and 2 μm or less on one side, and having one or more and 100 or less convex portions. 前記光取り出し面の粗さ曲線の最大高さRz2が、15μm以下である、請求項10に記載の透光性部材。 The translucent member according to claim 10, wherein the maximum height Rz2 of the roughness curve of the light extraction surface is 15 μm or less. 前記光取り出し面の算術平均粗さRa2が、0.2μm以上4μm以下の範囲内である、請求項10又は11に記載の透光性部材。 The translucent member according to claim 10 or 11, wherein the arithmetic mean roughness Ra2 of the light extraction surface is within the range of 0.2 μm or more and 4 μm or less. 前記光取り出し面において、一辺が20μmの正方形で囲まれた領域内に、平面視で測定される直径が0.2μm以上20μm以下の範囲内の粒子を30個以下有する、請求項10から12のいずれか1項に記載の透光性部材。 Claims 10 to 12 have 30 or less particles having a diameter of 0.2 μm or more and 20 μm or less measured in a plan view in a region surrounded by a square having a side of 20 μm on the light extraction surface. The translucent member according to any one of the items. 前記蛍光体のフィッシャーサブシーブサイザー法で測定した平均粒径が、5μm以上50μm以下の範囲内である、請求項10から13のいずれか1項に記載の透光性部材。 The translucent member according to any one of claims 10 to 13, wherein the average particle size of the phosphor measured by the Fisher subsieving sizer method is in the range of 5 μm or more and 50 μm or less. 前記樹脂が、シリコーン樹脂、シリコーン変性樹脂、エポキシ樹脂、エポキシ変性樹脂、フェノール樹脂、ポリカーボネート樹脂、アクリル樹脂、ポリメチルペンテン樹脂、ポリノルボルネン樹脂、及びこれらの混合物からなる群から選択される少なくとも1種の樹脂である、請求項10から14のいずれか1項に記載の透光性部材。 At least one selected from the group consisting of a silicone resin, a silicone-modified resin, an epoxy resin, an epoxy-modified resin, a phenol resin, a polycarbonate resin, an acrylic resin, a polymethylpentene resin, a polynorbornene resin, and a mixture thereof. The translucent member according to any one of claims 10 to 14, which is the resin of the above. 前記光取り出し面に対向する面を備えた、シート状体又は板状体である、請求項10から15のいずれか1項に記載の透光性部材。 The translucent member according to any one of claims 10 to 15, which is a sheet-like body or a plate-like body having a surface facing the light extraction surface. 請求項10から16のいずれか1項に記載の透光性部材と、励起光源と、を備えた、発光装置。 A light emitting device comprising the translucent member according to any one of claims 10 to 16 and an excitation light source. 前記励起光源が発光素子である、請求項17に記載の発光装置。 The light emitting device according to claim 17, wherein the excitation light source is a light emitting element.
JP2020165029A 2020-09-30 2020-09-30 Method of manufacturing translucent member, translucent member, and light-emitting device Pending JP2022057000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020165029A JP2022057000A (en) 2020-09-30 2020-09-30 Method of manufacturing translucent member, translucent member, and light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020165029A JP2022057000A (en) 2020-09-30 2020-09-30 Method of manufacturing translucent member, translucent member, and light-emitting device

Publications (1)

Publication Number Publication Date
JP2022057000A true JP2022057000A (en) 2022-04-11

Family

ID=81110752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020165029A Pending JP2022057000A (en) 2020-09-30 2020-09-30 Method of manufacturing translucent member, translucent member, and light-emitting device

Country Status (1)

Country Link
JP (1) JP2022057000A (en)

Similar Documents

Publication Publication Date Title
US11038089B2 (en) Light emitting device
TWI766841B (en) Light emitting device and method of manufacturing the same
JP6303805B2 (en) Light emitting device and manufacturing method thereof
JP5650885B2 (en) Wavelength conversion sintered body, light emitting device using the same, and method for producing wavelength conversion sintered body
JP4417906B2 (en) Light emitting device and manufacturing method thereof
TWI513033B (en) Light emitting diode device and producing method thereof
JP6131986B2 (en) Method for manufacturing light emitting device
US9847466B2 (en) Light emitting device, package, and methods of manufacturing the same
JP6299423B2 (en) Light emitting device manufacturing method and light emitting device
JP6520736B2 (en) Lighting device
JP6724634B2 (en) Method for manufacturing light emitting device
CN107887490B (en) Light emitting device
JP2015090887A (en) Light-emitting element and light-emitting device
JP6524624B2 (en) Light emitting device
JP2015211058A (en) Semiconductor light emitting device and manufacturing method of the same
JP7248379B2 (en) Light-emitting device and manufacturing method thereof
JP2016006821A (en) Light emitting element and light emitting device using the same
JP2022057000A (en) Method of manufacturing translucent member, translucent member, and light-emitting device
JP2020013986A (en) Light emitting device and method of manufacturing the same
WO2022071230A1 (en) Light-emitting device and light-emitting device manufacturing method
JP2017224867A (en) Light-emitting device and manufacturing method therefor
JP7389333B2 (en) light emitting device
JP7037053B2 (en) Manufacturing method of light emitting device and light emitting device
JP2022007638A (en) Molding, light emitting device and method for producing molding
JP2019212931A (en) Light-emitting device and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240419