JP2022056684A - Conductive fiber structure and bioelectrode - Google Patents

Conductive fiber structure and bioelectrode Download PDF

Info

Publication number
JP2022056684A
JP2022056684A JP2020164562A JP2020164562A JP2022056684A JP 2022056684 A JP2022056684 A JP 2022056684A JP 2020164562 A JP2020164562 A JP 2020164562A JP 2020164562 A JP2020164562 A JP 2020164562A JP 2022056684 A JP2022056684 A JP 2022056684A
Authority
JP
Japan
Prior art keywords
fiber
conductive
conductive resin
region
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020164562A
Other languages
Japanese (ja)
Inventor
晋 四衢
Susumu Shimichi
祥玄 小野木
Yoshiharu Onoki
秀生 岡野
Hideo Okano
飛鳥 及川
Asuka OIKAWA
圭亮 平田
Keisuke Hirata
勝徳 成田
Katsunori Narita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Trading Co Ltd
AI Silk Corp
Original Assignee
Kuraray Trading Co Ltd
AI Silk Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Trading Co Ltd, AI Silk Corp filed Critical Kuraray Trading Co Ltd
Priority to JP2020164562A priority Critical patent/JP2022056684A/en
Publication of JP2022056684A publication Critical patent/JP2022056684A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Knitting Of Fabric (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Woven Fabrics (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

To provide a conductive fiber structure capable of improving washing durability.SOLUTION: Provided is a conductive fiber structure including a base material composed of a fiber bundle that includes synthetic fibers, and a conductive resin present in the base material. The fiber bundle is composed of a fiber region where fibers exist and a non-fiber region where no fibers exist. The conductive fiber structure, inside the fiber bundle on a cut surface where the fiber bundle is cut in a direction orthogonal to a fiber longer direction, includes a non-fiber region where an area ratio of the fiber region/the non-fiber region in a circle with a diameter of 30 μm having four or more points of centroid on a single fiber cross section is 20/80 to 80/20, and an area ratio of the conductive resin in the non-fiber region is 40 to 90%. The conductive resin contains a conductive polymer.SELECTED DRAWING: Figure 1

Description

本発明は、合成繊維を含む繊維束で構成される基材と、前記基材内に存在する導電性樹脂とを含む導電性繊維構造物、およびそれを電極として備える生体電極に関する。 The present invention relates to a conductive fiber structure containing a substrate composed of a fiber bundle containing synthetic fibers and a conductive resin existing in the substrate, and a bioelectrode including the same as an electrode.

近年、導電性繊維を用いることで人体や動物の心拍数や電気的生体信号を測定可能な電極、あるいは電極を使用したウエアラブルセンサーが多く開発されている。また、電極を通して生体、特に筋肉に電気的刺激を与えることで、積極的に筋運動を促す電気的筋肉刺激(EMS)用途も盛んに開発が進んでいる。これらは、人々の安全や健康の向上を図るという目的がある。本目的に求められる電極としては、生体面と面状に接触させることが望ましく、洗濯耐久性が高くなければならない。また、EMS用途については電極の抵抗値が1000Ω以下である必要があり、1000Ωを超えると電極が発熱し事故のおそれがある。 In recent years, many electrodes have been developed that can measure the heart rate and electrical biological signals of humans and animals by using conductive fibers, or wearable sensors using the electrodes. In addition, electrical muscle stimulation (EMS) applications that actively promote muscle movement by applying electrical stimulation to living organisms, especially muscles, through electrodes are being actively developed. These have the purpose of improving people's safety and health. As the electrode required for this purpose, it is desirable to bring it into contact with the biological surface in a planar manner, and the washing durability must be high. For EMS applications, the resistance value of the electrode must be 1000Ω or less, and if it exceeds 1000Ω, the electrode may generate heat and cause an accident.

従来、生体面と面状に接触させる電極として、PEDOT-PSS(ポリ3,4-エチレンジオキシチオフェン-ポリスチレンスルホン酸)等の導電性高分子を含む導電体を基材繊維に含浸及び/又は付着させ、導電体が基材繊維に密着した導電性高分子繊維を作製し、この導電性高分子繊維を用いた生体電極が開発されている(特許文献1(特許第5706539号公報)参照)。 Conventionally, the base fiber is impregnated with a conductor containing a conductive polymer such as PEDOT-PSS (poly 3,4-ethylenedioxythiophene-polystyrene sulfonic acid) as an electrode for surface contact with the biological surface and / or. A conductive polymer fiber is produced by adhering the conductor to the substrate fiber, and a bioelectrode using this conductive polymer fiber has been developed (see Patent Document 1 (Japanese Patent Laid-Open No. 5706539)). ..

また、洗濯耐久性を向上させた電極として、導電性高分子を含む導電性樹脂が繊維構造物を構成する単繊維と単繊維の間隙に担持され、前記繊維構造物の厚み方向の断面を観察したときに、表層から15~30μmの領域に存在する前記導電性樹脂の面積比率が15%以上である導電性繊維構造物が開発されている(特許文献2(国際公開第2017/183463号パンフレット)参照)。 Further, as an electrode with improved washing durability, a conductive resin containing a conductive polymer is supported in the gap between the single fibers constituting the fiber structure, and the cross section of the fiber structure in the thickness direction is observed. A conductive fiber structure having an area ratio of 15% or more of the conductive resin existing in a region of 15 to 30 μm from the surface layer has been developed (Patent Document 2 (International Publication No. 2017/183463). )reference).

さらに、近年では、導電性高分子としてPEDOT-PSSよりも導電性が高いPEDOT-PTS(ポリ3,4-エチレンジオキシチオフェン-p-トルエンスルホン酸)を基材表面に塗布する技術も開発されており、導電性高分子を非結晶のまま均一に付着させることにより洗濯耐久性を向上させている(特許文献3(特許第6476480号公報)参照)。 Furthermore, in recent years, a technique has been developed in which PEDOT-PTS (poly 3,4-ethylenedioxythiophene-p-toluenesulfonic acid), which has higher conductivity than PEDOT-PSS as a conductive polymer, is applied to the surface of the substrate. By uniformly adhering the conductive polymer in a non-crystalline state, the washing durability is improved (see Patent Document 3 (Japanese Patent No. 6476480)).

特許第5706539号公報Japanese Patent No. 5706539 国際公開第2017/183463号パンフレットInternational Publication No. 2017/183464 Pamphlet 特許第6476480号公報Japanese Patent No. 6476480

しかしながら、特許文献1では、導電体が繊維表層に多く付着した導電性高分子繊維を用いており、そのような導電性高分子繊維を加工してテキスタイル形状にした電極は、洗濯耐久性は決して高いものではなく、不十分であった。また、特許文献1では、基材繊維としてシルク繊維しか実際に用いておらず、構造として導電性高分子を含む導電体が基材繊維に密着した形態となっているが、特に合成繊維を用いた場合、導電性高分子との相性が悪く接着性に劣るため導電体が密着した形態になりにくい。また、たとえ製造直後は密着した形態となっても洗濯時に導電体が剥離、脱落し導電性が急激に低下する不十分なものであった。 However, Patent Document 1 uses a conductive polymer fiber in which a large amount of a conductor adheres to the fiber surface layer, and an electrode obtained by processing such a conductive polymer fiber into a textile shape never has washing durability. It wasn't expensive, it wasn't enough. Further, in Patent Document 1, only silk fiber is actually used as the base fiber, and the structure is such that the conductor containing the conductive polymer is in close contact with the base fiber, but synthetic fiber is particularly used. If so, the compatibility with the conductive polymer is poor and the adhesiveness is inferior, so that the conductors are unlikely to be in close contact with each other. In addition, even if the conductors are in close contact with each other immediately after production, the conductors are peeled off and fall off during washing, and the conductivity is insufficiently reduced.

特許文献2に開示されている導電性繊維構造体は厚み方向の断面を観察したときに、表層から15~30μmの領域に存在する導電性樹脂の面積比率が15%以上である。この文献には、導電性樹脂が繊維と繊維の間隙に担持されるが、深部まで含侵することにより、柔軟性と耐洗濯耐久性が得られると記載されている。厚み方向の表層から15~30μmの領域とは、導電性繊維構造体の厚みやこれを構成する繊維の繊維径等によって異なるため、必ずしも深部を表現しているとはいえない。また、導電性樹脂が繊維構造物内部に担持されているとしても洗濯耐久性が不十分である場合があった。 In the conductive fiber structure disclosed in Patent Document 2, when the cross section in the thickness direction is observed, the area ratio of the conductive resin existing in the region of 15 to 30 μm from the surface layer is 15% or more. It is described in this document that the conductive resin is supported in the gaps between the fibers, but by impregnating the fibers deeply, flexibility and washing durability can be obtained. The region of 15 to 30 μm from the surface layer in the thickness direction differs depending on the thickness of the conductive fiber structure, the fiber diameter of the fibers constituting the conductive fiber structure, and the like, and therefore does not necessarily represent the deep part. Further, even if the conductive resin is supported inside the fiber structure, the washing durability may be insufficient.

また、特許文献2の実施例では、分散粒子径が200nm以下の微細な粒子であり、バインダ樹脂を含む導電性樹脂を塗布することにより、導電性樹脂を繊維と繊維の間に担持、すなわち接着させるため、30回洗濯しても導電性が維持されるとしている。しかしながら、このような態様では、結局は相溶性のない導電性樹脂を繊維間に担持させているだけのため、実用的な洗濯回数においては性能を維持できない。すなわち、導電性樹脂を含む導電性繊維構造体を洗濯すると、洗濯機との摩擦抵抗、洗濯物同士の衝撃力などにより表層から順次導電性物質が脱落していく。洗濯を更に繰り返すと繊維表面に担持した導電性物質が脱落した後は繊維外層部から内層方向に向かって順次導電性物質が脱落していく。そのため、導電性高分子を繊維に担持、すなわち接着させる方法では洗濯30回までは導電性を有していても、3日に1回洗濯するとして約1年の実用性を鑑みた洗濯100回という過酷な条件では導電性物質が脱落し導電性が発揮できなかった。 Further, in the embodiment of Patent Document 2, the dispersed particle size is fine particles of 200 nm or less, and by applying a conductive resin containing a binder resin, the conductive resin is supported between the fibers, that is, adhered. Therefore, it is said that the conductivity is maintained even after washing 30 times. However, in such an embodiment, since the incompatible conductive resin is only supported between the fibers in the end, the performance cannot be maintained in a practical number of washings. That is, when the conductive fiber structure containing the conductive resin is washed, the conductive substance is sequentially dropped from the surface layer due to frictional resistance with the washing machine, impact force between the laundry and the like. When washing is repeated further, the conductive substance carried on the fiber surface is removed, and then the conductive substance is sequentially removed from the outer layer portion of the fiber toward the inner layer. Therefore, even if the method of supporting the conductive polymer on the fiber, that is, adhering it, has conductivity up to 30 times of washing, it is assumed that the washing is performed once every 3 days, and 100 times of washing in consideration of practicality for about 1 year. Under the harsh conditions, the conductive substance fell off and the conductivity could not be exhibited.

特許文献3では、導電性高分子を均一に付着させることができると記載しているものの、基材表面に対する付着を対象としており、特に、合成繊維を基材として用いた場合には、その分子構造および親水性の欠如が原因となり導電性高分子との相性が悪く、繊維束内側まで存在させることは困難であるため、洗濯耐久性について改善の余地があった。 Although Patent Document 3 describes that a conductive polymer can be uniformly adhered, it is intended for adhesion to the surface of a base material, and in particular, when a synthetic fiber is used as a base material, the molecule thereof. Due to the lack of structure and hydrophilicity, the compatibility with the conductive polymer is poor, and it is difficult to allow it to exist inside the fiber bundle, so there is room for improvement in washing durability.

また、特許文献2および3では、洗濯耐久性の評価として30回および10回程度の洗濯しかなされておらず、実用性を考慮した評価とはいえなかった。特許文献2および3に記載されている衣料品は人の肌に接触することが必須である。すなわちセンサーとして作動するには心電を計測する必要があり、また電気によるマッサージ・筋肉刺激を付与するためにも、導電性繊維構造体との間に他の衣類が存在しては電気が流れず、性能が発揮できないためである。このように人肌に接触する衣類は汗による臭気の問題などから洗濯を繰り返して使用されることが一般的である。着用シーンにより着用頻度は変わるものの1年間の使用を考慮すると、洗濯30回は12日に1回の着用となりあまり実用的とは言えない。洗濯100回であれば3~4日に1回の着用となり実用性があると言えるレベルである。 Further, in Patent Documents 2 and 3, the evaluation of the washing durability is performed only about 30 times and 10 times, and it cannot be said that the evaluation considers the practicality. It is essential that the clothing described in Patent Documents 2 and 3 come into contact with human skin. That is, it is necessary to measure the electrocardiogram in order to operate as a sensor, and in order to apply electric massage and muscle stimulation, electricity flows when other clothing exists between the conductive fiber structure. This is because the performance cannot be exhibited. Clothes that come into contact with human skin in this way are generally used repeatedly after being washed due to the problem of odor caused by sweat. Although the frequency of wearing varies depending on the wearing scene, considering the use for one year, 30 times of washing is worn once every 12 days, which is not very practical. If it is washed 100 times, it will be worn once every 3 to 4 days, which is a level that can be said to be practical.

本発明はこのような問題に基づきなされたものであり、洗濯耐久性を向上させることができる導電性繊維構造物および生体電極を提供することを目的とする。 The present invention has been made based on such a problem, and an object of the present invention is to provide a conductive fiber structure and a bioelectrode capable of improving washing durability.

本発明の発明者らは、前記目的を達成するために鋭意検討した結果、合成繊維を含む繊維束で構成される基材と、前記基材内に存在する導電性樹脂とを含む導電性繊維構造物であって、前記繊維束断面において、繊維領域と非繊維領域とが特定の面積で存在するとともに、非繊維領域中で導電性樹脂の占める面積が特定の割合である導電性繊維構造物は、繊維束の内側に導電性樹脂を保持させることができるため、洗濯耐久性に優れていることを見出し、本発明の完成に至った。 As a result of diligent studies to achieve the above object, the inventors of the present invention have made a conductive fiber containing a base material composed of a fiber bundle containing synthetic fibers and a conductive resin existing in the base material. A conductive fiber structure in which a fiber region and a non-fiber region exist in a specific area in the fiber bundle cross section, and the area occupied by the conductive resin in the non-fiber region is a specific ratio. Found that it has excellent washing durability because the conductive resin can be held inside the fiber bundle, and the present invention has been completed.

すなわち、本発明は、以下の態様で構成されうる。
〔態様1〕
合成繊維を含む繊維束で構成される基材と、前記基材内に存在する導電性樹脂とを含む導電性繊維構造物であって、
前記繊維束は、繊維が存在する繊維領域および繊維が存在しない非繊維領域で構成され、
前記繊維束を繊維長手方向に対して直交する方向で切断した切断面の繊維束内において、単繊維断面の重心が4点以上入る直径30μmの円内における繊維領域/非繊維領域の面積比が、20/80~80/20(好ましくは30/70~75/25、より好ましくは40/60~65/35)であり、かつ前記非繊維領域中で導電性樹脂の占める面積割合が40~90%(好ましくは45~80%、より好ましくは50~75%)である非繊維領域を含み、前記導電性樹脂が導電性高分子を含む導電性繊維構造物。
〔態様2〕
態様1に記載の導電性繊維構造物であって、前記導電性樹脂が、離間する単繊維間において、連通孔があるスポンジ状および/または境界膜状に存在する、導電性繊維構造物。
〔態様3〕
態様1または2に記載の導電性繊維構造物であって、前記基材を構成する合成繊維の断面形状が3点以上の凹部を有する異形断面である繊維を含む、導電性繊維構造物。
〔態様4〕
態様1~3のいずれか一態様に記載の導電性繊維構造物であって、前記基材が単繊維繊度0.5~4dtex(好ましくは0.7~3dtex、より好ましくは1.0~2.5dtex)である合成繊維を含んでなる、導電性繊維構造物。
〔態様5〕
態様1~4のいずれか一態様に記載の導電性繊維構造物であって、100回洗濯後の表面抵抗率が200Ω/□以下(好ましくは150Ω/□以下、より好ましくは100Ω/□以下)である、導電性繊維構造物。
〔態様6〕
態様1~5のいずれか一態様に記載の導電性繊維構造物を電極として備える生体電極。
That is, the present invention can be configured in the following aspects.
[Aspect 1]
A conductive fiber structure containing a substrate composed of a fiber bundle containing synthetic fibers and a conductive resin existing in the substrate.
The fiber bundle is composed of a fiber region in which fibers are present and a non-fiber region in which fibers are not present.
In the fiber bundle of the cut surface obtained by cutting the fiber bundle in a direction orthogonal to the fiber longitudinal direction, the area ratio of the fiber region / non-fiber region in the circle having a diameter of 30 μm containing four or more points of gravity of the single fiber cross section is , 20/80 to 80/20 (preferably 30/70 to 75/25, more preferably 40/60 to 65/35), and the area ratio of the conductive resin in the non-fiber region is 40 to 40. A conductive fiber structure containing a non-fiber region of 90% (preferably 45 to 80%, more preferably 50 to 75%), wherein the conductive resin contains a conductive polymer.
[Aspect 2]
The conductive fiber structure according to the first aspect, wherein the conductive resin exists in the form of a sponge and / or a boundary film having communication holes between the separated single fibers.
[Aspect 3]
A conductive fiber structure according to aspect 1 or 2, wherein the synthetic fiber constituting the base material has a deformed cross section having three or more recesses.
[Aspect 4]
The conductive fiber structure according to any one of aspects 1 to 3, wherein the substrate has a single fiber fineness of 0.5 to 4 dtex (preferably 0.7 to 3 dtex, more preferably 1.0 to 2). A conductive fiber structure comprising synthetic fibers of .5 dtex).
[Aspect 5]
The conductive fiber structure according to any one of aspects 1 to 4, having a surface resistivity of 200 Ω / □ or less (preferably 150 Ω / □ or less, more preferably 100 Ω / □ or less) after washing 100 times. Is a conductive fiber structure.
[Aspect 6]
A bioelectrode comprising the conductive fiber structure according to any one of aspects 1 to 5 as an electrode.

本発明の導電性繊維構造物によれば、実着用を考慮した今までより多い回数の洗濯でも導電性樹脂を繊維束内に保持でき、洗濯耐久性に優れる。 According to the conductive fiber structure of the present invention, the conductive resin can be held in the fiber bundle even after washing a larger number of times in consideration of actual wearing, and the washing durability is excellent.

この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。
実施例1で得られた導電性繊維構造物の断面を示す拡大写真(倍率:800倍)である。 実施例2で得られた導電性繊維構造物の断面を示す拡大写真(倍率:800倍)である。 実施例3で得られた導電性繊維構造物の断面を示す拡大写真(倍率:1000倍)である。 繊維断面形状が3点以上の凹部を有する異形断面の例を示す概略断面図である。
The present invention will be more clearly understood from the following description of preferred embodiments with reference to the accompanying drawings. However, embodiments and drawings are for illustration and illustration purposes only and should not be used to define the scope of the invention. The scope of the invention is determined by the appended claims.
6 is an enlarged photograph (magnification: 800 times) showing a cross section of the conductive fiber structure obtained in Example 1. 6 is an enlarged photograph (magnification: 800 times) showing a cross section of the conductive fiber structure obtained in Example 2. 6 is an enlarged photograph (magnification: 1000 times) showing a cross section of the conductive fiber structure obtained in Example 3. It is a schematic cross-sectional view which shows the example of the deformed cross section which has the concave part of the fiber cross-sectional shape of 3 points or more.

[導電性繊維構造物]
本発明の導電性繊維構造物は、合成繊維を含む繊維束で構成される基材と、前記基材内に存在する導電性樹脂とを含む。繊維束とは、2本以上の単繊維が合わさることにより形成された束をいい、紡糸直後の撚りの無いマルチフィラメント原糸、また原糸に撚糸・仮撚・インターレース等の加工を行ったものも含まれる。導電性樹脂は、基材の少なくとも一部に存在していればよく、後述の面積比および面積割合の範囲は、少なくとも導電性樹脂が存在している部分で満たしていればよい。
[Conductive fiber structure]
The conductive fiber structure of the present invention includes a base material composed of a fiber bundle containing synthetic fibers and a conductive resin existing in the base material. A fiber bundle is a bundle formed by combining two or more single fibers, and is a multifilament yarn without twist immediately after spinning, or a yarn obtained by processing twisted yarn, false twist, interlace, etc. Is also included. The conductive resin may be present in at least a part of the base material, and the range of the area ratio and the area ratio described later may be satisfied by at least the portion where the conductive resin is present.

本発明の導電性繊維構造物は、繊維束を繊維長手方向に対して直交する方向で切断した切断面において、繊維が存在する繊維領域および繊維が存在しない非繊維領域で構成される。繊維領域は、繊維束を構成する繊維自体の領域を示す。非繊維領域は、繊維以外が存在する領域、つまり、空気層、導電性樹脂などが存在する領域を示し、例えば、単繊維間で空気層の存在する領域や、単繊維間または繊維表面で導電性樹脂の存在する領域であってもよい。また、空気層は、繊維や導電性樹脂などの物質が存在せず、空隙となっている領域を示す。 The conductive fiber structure of the present invention is composed of a fiber region in which fibers are present and a non-fiber region in which fibers are not present on a cut surface obtained by cutting a fiber bundle in a direction orthogonal to the fiber longitudinal direction. The fiber region indicates a region of the fiber itself constituting the fiber bundle. The non-fiber region indicates a region in which a non-fiber is present, that is, a region in which an air layer, a conductive resin, or the like is present. It may be a region where a sex resin is present. Further, the air layer indicates a region in which a substance such as a fiber or a conductive resin does not exist and is a void.

本発明の導電性繊維構造物は、繊維束を繊維長手方向に対して直交する方向で切断した切断面において、単繊維断面の重心が4点以上入る直径30μmの円内における繊維領域/非繊維領域の面積比が、20/80~80/20である。本発明において、単繊維断面の重心が4点以上入る直径30μmの円内とは、後述の方法により決定される部分を示し、繊維束の内側に該当する部分を示す。この繊維束の内側において、繊維領域と非繊維領域との面積比を特定の範囲にし、単繊維同士の距離をある程度広げることにより、繊維束の内側に空気層および導電性樹脂が存在できる空間を確保できるとともに、導電性樹脂を繊維束内に保持することができるため、洗濯耐久性を向上させることができる。単繊維断面の重心が4点以上入る直径30μmの円内における繊維領域/非繊維領域の面積比は、好ましくは30/70~75/25、より好ましくは40/60~65/35であってもよい。 The conductive fiber structure of the present invention is a fiber region / non-fiber in a circle having a diameter of 30 μm in which four or more centers of gravity of a single fiber cross section are inserted on a cut surface obtained by cutting a fiber bundle in a direction orthogonal to the fiber longitudinal direction. The area ratio of the area is 20/80 to 80/20. In the present invention, the inside of a circle having a diameter of 30 μm in which four or more points of the center of gravity of the cross section of a single fiber are inserted indicates a portion determined by the method described later, and indicates a portion corresponding to the inside of the fiber bundle. Inside the fiber bundle, the area ratio between the fiber region and the non-fiber region is set to a specific range, and the distance between the single fibers is widened to some extent to create a space where the air layer and the conductive resin can exist inside the fiber bundle. Since it can be secured and the conductive resin can be held in the fiber bundle, the washing durability can be improved. The area ratio of the fiber region / non-fiber region in a circle having a diameter of 30 μm containing four or more centers of gravity of the single fiber cross section is preferably 30/70 to 75/25, more preferably 40/60 to 65/35. May be good.

本発明の導電性繊維構造物は、繊維束を繊維長手方向に対して直交する方向で切断した切断面において、単繊維断面の重心が4点以上入る直径30μmの円内で、非繊維領域中で導電性樹脂の占める割合(面積)が40~90%である。非繊維領域中の導電性樹脂の占める面積割合を特定の範囲にし、繊維束内に保持できる導電性樹脂が特定量存在することにより、導電性を維持させることができるため、洗濯耐久性を向上させることができる。単繊維断面の重心が4点以上入る直径30μmの円内で、非繊維領域中で導電性樹脂の占める割合(面積)は、好ましくは45~80%、より好ましくは50~75%であってもよい。 The conductive fiber structure of the present invention is contained in a non-fiber region within a circle having a diameter of 30 μm in which four or more centers of gravity of a single fiber cross section are inserted on a cut surface obtained by cutting a fiber bundle in a direction orthogonal to the fiber longitudinal direction. The ratio (area) occupied by the conductive resin is 40 to 90%. By setting the area ratio of the conductive resin in the non-fiber region to a specific range and the presence of a specific amount of the conductive resin that can be held in the fiber bundle, the conductivity can be maintained and the washing durability is improved. Can be made to. The proportion (area) of the conductive resin in the non-fiber region is preferably 45 to 80%, more preferably 50 to 75% within a circle having a diameter of 30 μm containing four or more centers of gravity of the single fiber cross section. May be good.

本発明の導電性繊維構造物において、導電性樹脂は、繊維束の少なくとも内側に存在していればよく、さらに繊維束の外側表面に接着していてもよい。また、本発明の導電性繊維構造物は、繊維束の内側および/または外側において、導電性樹脂が合成繊維に接着していてもよいが、接着していない部分があってもよい。導電性樹脂と合成繊維との接着性が低い場合であっても、繊維束の外側に存在する導電性樹脂は洗濯時に脱落するが、繊維束の内側に導電性樹脂を閉じ込めることにより洗濯時の脱落を防止することができる。 In the conductive fiber structure of the present invention, the conductive resin may be present at least inside the fiber bundle, and may be further adhered to the outer surface of the fiber bundle. Further, in the conductive fiber structure of the present invention, the conductive resin may be adhered to the synthetic fiber inside and / or outside the fiber bundle, but there may be a portion where the conductive resin is not adhered. Even when the adhesiveness between the conductive resin and the synthetic fiber is low, the conductive resin existing on the outside of the fiber bundle falls off during washing, but by confining the conductive resin inside the fiber bundle, during washing. It can be prevented from falling off.

本発明において、繊維領域/非繊維領域の面積比および非繊維領域中の導電性樹脂の面積割合は以下の方法により決定される。重心は導電性繊維構造物の切断面写真(SEM)において画像解析をして求めるが、まず合成繊維、導電性樹脂および空気層を区別する必要がある。なお、他の材料が存在する場合にはその材料も区別する必要がある。例えば、前処理として導電性繊維構造物をオスミウムで処理し、その境界面を明確化することが好ましく、オスミウムは導電性高分子に吸着するが合成繊維には吸着しないため、境界面を明確化することができる。合成繊維、導電性樹脂および空気層の境界を画像解析ソフトで区別した後、合成繊維の単繊維断面の重心を解析ソフトから特定し、その位置を切断面写真にプロットする。その後、4つの単繊維断面の重心を選択し、その4点の重心を中心とする直径30μmの円を描き、当該円内に単繊維断面の重心が4点以上入る部分を探し、当該部分の繊維領域/非繊維領域の面積比および非繊維領域中の導電性樹脂の面積割合を画像解析ソフトで計算することができる。なお、基材が織物や編物等の組織において、複数種類の繊維束で構成されている場合には、少なくとも1種の繊維束が上記特定の面積比および面積割合を満たしていればよい。 In the present invention, the area ratio of the fiber region / non-fiber region and the area ratio of the conductive resin in the non-fiber region are determined by the following methods. The center of gravity is determined by image analysis on a cut surface photograph (SEM) of the conductive fiber structure, but first it is necessary to distinguish between synthetic fibers, conductive resin and air layer. If other materials are present, it is necessary to distinguish those materials as well. For example, as a pretreatment, it is preferable to treat the conductive fiber structure with osmium and clarify the boundary surface thereof. Since osmium is adsorbed on the conductive polymer but not on the synthetic fiber, the boundary surface is clarified. can do. After distinguishing the boundaries between the synthetic fiber, the conductive resin and the air layer with image analysis software, the center of gravity of the single fiber cross section of the synthetic fiber is specified from the analysis software, and the position is plotted on the cut surface photograph. After that, select the center of gravity of the four single fiber cross sections, draw a circle with a diameter of 30 μm centered on the center of gravity of the four points, search for a part in which the center of gravity of the single fiber cross section fits at four points or more, and search for the part of the relevant part. The area ratio of the fiber region / non-fiber region and the area ratio of the conductive resin in the non-fiber region can be calculated by image analysis software. When the base material is composed of a plurality of types of fiber bundles in a structure such as a woven fabric or a knitted fabric, at least one type of fiber bundle may satisfy the above-mentioned specific area ratio and area ratio.

また、本発明の導電性繊維構造物は、繊維束を繊維長手方向に対して直交する方向で切断した切断面において、繊維束の内側において、特定の割合で非繊維領域として空気層が存在することにより、洗濯時の衝撃に対して空気層がクッションの役割を果たすためか洗濯耐久性を向上させることができ、さらに柔軟性に優れる。単繊維断面の重心が4点以上入る直径30μmの円内の非繊維領域において、導電性樹脂/空気層の面積比が、40/60~90/10であってもよく、好ましくは45/55~80/20、より好ましくは50/50~75/25であってもよい。 Further, in the conductive fiber structure of the present invention, an air layer is present as a non-fiber region at a specific ratio inside the fiber bundle on the cut surface obtained by cutting the fiber bundle in a direction orthogonal to the fiber longitudinal direction. As a result, the washing durability can be improved, probably because the air layer acts as a cushion against the impact during washing, and the flexibility is further excellent. The area ratio of the conductive resin / air layer may be 40/60 to 90/10, preferably 45/55, in the non-fiber region within a circle having a diameter of 30 μm containing four or more centers of gravity of the single fiber cross section. It may be ~ 80/20, more preferably 50/50 to 75/25.

導電性樹脂が、離間する単繊維間において、スポンジ状および/または境界膜状に存在していてもよい。スポンジ状とは、単繊維間に存在する導電性樹脂が多孔状に空気層(空隙)を含んでいる形状をいう。境界膜状とは、導電性繊維構造物の製造時において導電性樹脂が乾燥する際に、隣接する単繊維間から働く表面張力により形成された膜状構造を有していることをいう。導電性樹脂がスポンジ状および境界膜状に存在するとは、導電性繊維構造物中の1個の繊維束中、導電性樹脂がスポンジ状に存在している部分と、境界膜状に存在している部分とが混在していてもよいし、導電性繊維構造物中の複数の繊維束のうち、導電性樹脂がスポンジ状に存在している繊維束と、境界膜状に存在している繊維束とが混在していてもよい。導電性樹脂が隣接する単繊維間で充填された形状ではなく、単繊維間で空隙を含む形状を有することによって、洗濯耐久性を向上させることができるとともに、柔軟性に優れる。 The conductive resin may be present in the form of a sponge and / or a boundary film between the separated single fibers. The sponge-like shape refers to a shape in which the conductive resin existing between the single fibers porously contains an air layer (void). The boundary film-like structure means that the conductive resin has a film-like structure formed by surface tension acting between adjacent single fibers when the conductive resin dries during production. The presence of the conductive resin in the form of sponge and boundary film means that the conductive resin exists in the form of sponge and the boundary film in one fiber bundle in the conductive fiber structure. Of the plurality of fiber bundles in the conductive fiber structure, the fiber bundle in which the conductive resin exists in the form of a sponge and the fiber in which the conductive resin exists in the form of a boundary film may be mixed. Bundles may be mixed. By having the shape in which the conductive resin is filled between the adjacent single fibers but including the voids between the single fibers, the washing durability can be improved and the flexibility is excellent.

本発明の導電性繊維構造物は、用途に応じて目付を適宜決定することができ、その目付は特に限定されないが、例えば、50~300g/m程度であってもよい。 The weight of the conductive fiber structure of the present invention can be appropriately determined depending on the intended use, and the weight is not particularly limited, but may be, for example, about 50 to 300 g / m 2 .

本発明の導電性繊維構造物は、100回洗濯後の表面抵抗率が200Ω/□以下であってもよく、好ましくは150Ω/□以下、より好ましくは100Ω/□以下であってもよい。100回洗濯後の表面抵抗率の下限は、例えば、0.1Ω/□以上であってもよい。また、200回洗濯後においても上記範囲の表面抵抗率であることが好ましい。なお、100回洗濯後の表面抵抗率は、後述する実施例に記載された方法により測定される値である。 The conductive fiber structure of the present invention may have a surface resistivity of 200 Ω / □ or less after washing 100 times, preferably 150 Ω / □ or less, and more preferably 100 Ω / □ or less. The lower limit of the surface resistivity after washing 100 times may be, for example, 0.1 Ω / □ or more. Further, it is preferable that the surface resistivity is within the above range even after washing 200 times. The surface resistivity after washing 100 times is a value measured by the method described in Examples described later.

(基材)
基材は、合成繊維を含む繊維束で構成されていれば特に限定されないが、例えば、織物、編物、不織布などの布帛が挙げられるが、好ましくは織物、編物であってもよい。
従来では導電性の維持が困難であった、特に伸縮性織物や編物を基材として用いても、本発明では、導電性の維持を可能とする。すなわち、従来の導電性繊維構造物のうち、ストレッチ性の高い編物を基材として用いることは非常に困難であった。編地のループを形成する繊維束は通常時は比較的低張力下にあり、繊維軸横方向に広がって配置されているが、編地が引っ張られるとループに張力が掛かり、繊維束が延ばされることで、構造の変形を受ける。この構造の変形により、繊維束と導電性樹脂の剥離が促され、最終的には導電性樹脂を大量に脱落させ、導電性を消失させるため、導電性繊維構造物の基材として編物を用いることは困難であった。
一方、本発明の導電性繊維構造物は、繊維束の内側に導電性樹脂が存在する構造を形成しているため、編物ループの変形を受けても導電性樹脂が脱落せず、ストレッチ性の高い編地であっても導電性を維持することができる。また、上記と同様の理由で、ポリウレタン弾性糸、サイドバイサイド型高捲縮糸などを用いたストレッチ性の高い織物についても、導電性を維持することができる。
(Base material)
The base material is not particularly limited as long as it is composed of a fiber bundle containing synthetic fibers, and examples thereof include fabrics such as woven fabrics, knitted fabrics, and non-woven fabrics, but woven fabrics and knitted fabrics may be preferable.
In the present invention, it is possible to maintain the conductivity even when an elastic woven fabric or a knitted fabric, which has been difficult to maintain the conductivity in the past, is used as a base material. That is, it has been very difficult to use a knitted fabric having high stretchability as a base material among the conventional conductive fiber structures. The fiber bundles that form the loops of the knitted fabric are usually under relatively low tension and are spread out in the lateral direction of the fiber axis, but when the knitted fabric is pulled, the loops are tensioned and the fiber bundles are stretched. As a result, the structure is deformed. Deformation of this structure promotes the separation of the fiber bundle and the conductive resin, and finally a large amount of the conductive resin is shed and the conductivity is lost. Therefore, a knit is used as the base material of the conductive fiber structure. It was difficult.
On the other hand, since the conductive fiber structure of the present invention forms a structure in which the conductive resin exists inside the fiber bundle, the conductive resin does not fall off even if the knitted loop is deformed, and the stretchability is stretchable. Conductivity can be maintained even with a high knitted fabric. Further, for the same reason as described above, the conductivity can be maintained even for a woven fabric having high stretchability using a polyurethane elastic yarn, a side-by-side type high crimp yarn, or the like.

合成繊維は、繊維形成性の合成高分子を用いて形成された繊維であり、1種類の合成高分子から形成されていてもよいし、2種類以上の合成高分子から形成されていてもよい。合成繊維としては、例えば、ポリエチレンやポリプロピレン等のポリオレフィン系樹脂から形成されるポリオレフィン系繊維;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート、ポリ乳酸等のポリエステル系樹脂から形成されるポリエステル系繊維;ポリアミド6、ポリアミド66、ポリアミド11、ポリアミド12、ポリアミド610、ポリアミド612等のポリアミド系樹脂から形成されるポリアミド系繊維;ポリウレタン系樹脂から形成されるポリウレタン系繊維;ポリアクリロニトリルから形成されるアクリル繊維やアクリル系繊維;ポリアクリル酸、ポリメタクリル酸等のアクリレート系樹脂から形成されるアクリレート系繊維等が挙げられる。これらの繊維は、単独でまたは二種以上組み合わせて使用してもよい。これらの繊維のうち、ポリエステル系繊維、ポリアミド系繊維、およびポリウレタン系繊維が好ましく用いられる。本発明の導電性繊維構造物は、導電性高分子との相性が良くない合成繊維を基材として用いた場合であっても、繊維束の内側に存在させることができるため、洗濯耐久性に優れる。例えば、基材を構成する繊維のうち合成繊維を含む割合は50質量%以上であってもよく、好ましくは60質量%以上、より好ましくは70質量%以上であってもよい。合成繊維の割合の上限は特に制限されないが、100質量%であってもよい。基材を構成する繊維として合成繊維以外に種々の天然繊維や半合成繊維等を含んでいてもよい。例えば、コットン、麻、羊毛、パルプ等の天然繊維;レーヨン、ポリノジック、キュプラ等の再生繊維;アセテート、トリアセテート等の半合成繊維等を含んでいてもよい。 The synthetic fiber is a fiber formed by using a fiber-forming synthetic polymer, and may be formed from one kind of synthetic polymer or two or more kinds of synthetic polymers. .. Examples of the synthetic fiber include polyolefin fibers formed from polyolefin resins such as polyethylene and polypropylene; polyester fibers formed from polyester resins such as polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, and polylactic acid; Polyamide-based fibers formed from polyamide-based resins such as polyamide 6, polyamide 66, polyamide 11, polyamide 12, polyamide 610, and polyamide 612; polyurethane fibers formed from polyurethane-based resins; acrylic fibers formed from polyacrylonitrile and Acrylic fibers; Examples thereof include acrylate-based fibers formed from acrylate-based resins such as polyacrylic acid and polymethacrylic acid. These fibers may be used alone or in combination of two or more. Of these fibers, polyester fibers, polyamide fibers, and polyurethane fibers are preferably used. The conductive fiber structure of the present invention can be present inside the fiber bundle even when synthetic fibers that are not compatible with the conductive polymer are used as the base material, and thus the washing durability is improved. Excellent. For example, the proportion of the fibers constituting the base material containing synthetic fibers may be 50% by mass or more, preferably 60% by mass or more, and more preferably 70% by mass or more. The upper limit of the proportion of synthetic fibers is not particularly limited, but may be 100% by mass. The fibers constituting the base material may contain various natural fibers, semi-synthetic fibers and the like in addition to synthetic fibers. For example, natural fibers such as cotton, hemp, wool and pulp; regenerated fibers such as rayon, polynosic and cupra; semi-synthetic fibers such as acetate and triacetate may be contained.

基材を構成する合成繊維は非複合繊維であってもよいし、複合繊維(芯鞘型複合繊維、海島型複合繊維、サイドバイサイド型複合繊維等)であってもよい。合成繊維の断面形状は、特に限定されるものではなく、丸型断面であってもよく、丸型断面以外の扁平断面、中空断面、その他異形断面等であってもよいが、単繊維間の空間を広げる観点からは、合成繊維は、断面形状が3点以上(例えば、3点~6点)の凹部を有する異形断面である繊維を繊維束中に含んでいることが好ましい。凹部とは、単繊維断面の外周において繊維内部に向かって凹む部分を有している部分をいう。このような異形断面形状の繊維を含んでいる場合、単繊維同士が近接していても凹部によりその単繊維間で空間が生じるため、導電性樹脂を含む液体を毛細管現象により浸透させることができるとともに、導電性樹脂を多く抱き込ませることができる。なお、合成繊維には捲縮を有さないストレートな形状の合成繊維と捲縮加工を施した仮撚加工糸があり、どちらの形態でも構わないが、毛細管現象をより強く発現させるためには仮撚加工を施した捲縮形状を有することが好ましい。特に、3点以上の凹部を有する異形断面繊維に仮撚加工を施すと凹部の一部が筒状に変形しストレート形状の繊維より吸い込んだ液体を放しにくい性質を持つため更に好ましい。断面形状が3点以上の凹部を有する異形断面としては、例えば、図4に示すような、多葉状又は星形状(例えば、3~6葉状)が挙げられる。好ましくは、断面形状が4点以上の凹部を有する異形断面である繊維を含んでいてもよい。繊維束は、1種または複数種の断面形状の繊維を含んでいてもよいが、例えば、繊維束中、全繊維の総繊度に対する断面形状が3点以上の凹部を有する異形断面である繊維の総繊度の割合が、50%以上であってもよく、好ましくは60%以上、より好ましくは70%以上であってもよく、この上限は特に制限されないが、100%であってもよい。 The synthetic fiber constituting the base material may be a non-composite fiber or a composite fiber (core-sheath type composite fiber, sea-island type composite fiber, side-by-side type composite fiber, etc.). The cross-sectional shape of the synthetic fiber is not particularly limited, and may be a round cross section, a flat cross section other than the round cross section, a hollow cross section, or any other irregular cross section, but between single fibers. From the viewpoint of expanding the space, it is preferable that the synthetic fiber contains a fiber having a modified cross section having recesses having three or more cross-sectional shapes (for example, 3 to 6 points) in the fiber bundle. The concave portion means a portion having a portion recessed toward the inside of the fiber on the outer circumference of the cross section of the single fiber. When fibers having such an irregular cross-sectional shape are included, even if the single fibers are close to each other, a space is created between the single fibers due to the recesses, so that the liquid containing the conductive resin can be permeated by the capillary phenomenon. At the same time, a large amount of conductive resin can be embraced. Synthetic fibers include straight synthetic fibers without crimping and false twisted yarns that have been crimped. Either form may be used, but in order to develop the capillary phenomenon more strongly. It is preferable to have a crimped shape that has been subjected to false twisting. In particular, it is more preferable to perform false twisting on a deformed cross-section fiber having three or more recesses because a part of the recesses is deformed into a cylindrical shape and the liquid sucked in from the straight fibers is hard to be released. Examples of the deformed cross section having recesses having three or more cross-sectional shapes include a multi-leaf shape or a star shape (for example, 3 to 6-leaf shape) as shown in FIG. Preferably, the fiber may contain a fiber having a modified cross section having a recess having a cross-sectional shape of 4 points or more. The fiber bundle may contain one or more kinds of fibers having a cross-sectional shape. For example, in a fiber bundle, a fiber having a deformed cross section having a recess in which the cross-sectional shape has three or more points with respect to the total fineness of all the fibers. The ratio of the total fineness may be 50% or more, preferably 60% or more, more preferably 70% or more, and this upper limit is not particularly limited, but may be 100%.

基材を構成する合成繊維の単繊維繊度は、0.5~4dtexであってもよく、単繊維繊度がこのような範囲の合成繊維を用いることにより、単繊維間の空間を確保できるとともに、導電性繊維構造物の柔軟性を向上させることができる。基材を構成する合成繊維の単繊維繊度は、好ましくは0.7~3dtex、より好ましくは1.0~2.5dtexであってもよい。上記単繊維繊度を有する合成繊維は、基材を構成する繊維のうち40質量%以上含まれていてもよく、好ましくは50質量%以上含まれていてもよい。基材を構成する繊維のうち上記単繊維繊度を有する合成繊維の割合の上限は特に制限されないが、100質量%であってもよい。なお、単繊維繊度は、後述する実施例に記載された方法により測定される値である。 The single fiber fineness of the synthetic fiber constituting the base material may be 0.5 to 4 dtex, and by using the synthetic fiber having the single fiber fineness in such a range, the space between the single fibers can be secured and the space between the single fibers can be secured. The flexibility of the conductive fiber structure can be improved. The single fiber fineness of the synthetic fiber constituting the base material may be preferably 0.7 to 3 dtex, more preferably 1.0 to 2.5 dtex. The synthetic fiber having a single fiber fineness may be contained in an amount of 40% by mass or more, preferably 50% by mass or more, of the fibers constituting the base material. The upper limit of the proportion of the synthetic fiber having the single fiber fineness among the fibers constituting the base material is not particularly limited, but may be 100% by mass. The single fiber fineness is a value measured by the method described in Examples described later.

繊維束を構成する単繊維数は、用途に応じて調整すればよく、例えば、10~500本であってもよく、好ましくは20~200本、より好ましくは30~100本であってもよい。また、繊維束1個の繊度は、例えば、20~500dtexであってもよく、好ましくは30~200dtex、より好ましくは35~110dtexであってもよい。 The number of single fibers constituting the fiber bundle may be adjusted according to the intended use, and may be, for example, 10 to 500 fibers, preferably 20 to 200 fibers, and more preferably 30 to 100 fibers. .. Further, the fineness of one fiber bundle may be, for example, 20 to 500 dtex, preferably 30 to 200 dtex, and more preferably 35 to 110 dtex.

(導電性樹脂)
導電性樹脂は、導電性高分子を含む。導電性高分子は、導電性を有するポリマーである。導電性高分子としては、導電性繊維構造物に導電性を付与できる限り特に限定されず、公知の導電性高分子を用いることができ、例えば、ポリチオフェン、ポリピロール、ポリアニリン、ポリ(p-フェニレンスルフィド)、ポリアセチレン、ポリ(p-フェニレンビニレン)、ポリナフタレン、およびこれらの誘導体等が挙げられ、これらとドーパントとの複合体が好ましく用いられる。これらの導電性高分子は、単独でまたは二種以上組み合わせて使用してもよい。これらの導電性高分子のうち、水溶性導電性高分子(例えば、ポリチオフェン、ポリピロール、ポリアニリン、ポリ(p-フェニレンスルフィド)、およびこれらの誘導体等)が好ましく、高い導電性を有する観点からは、チオフェン誘導体を単量体成分とするポリマーが好ましく、チオフェン誘導体を単量体成分とするポリマーとドーパントとの複合体がより好ましい。
(Conductive resin)
The conductive resin contains a conductive polymer. The conductive polymer is a polymer having conductivity. The conductive polymer is not particularly limited as long as it can impart conductivity to the conductive fiber structure, and known conductive polymers can be used. For example, polythiophene, polypyrrole, polyaniline, poly (p-phenylene sulfide) can be used. ), Polyacetylene, poly (p-phenylene vinylene), polynaphthalene, derivatives thereof and the like, and a composite of these and a dopant is preferably used. These conductive polymers may be used alone or in combination of two or more. Among these conductive polymers, water-soluble conductive polymers (for example, polythiophene, polypyrrole, polyaniline, poly (p-phenylene sulfide), derivatives thereof, etc.) are preferable, and from the viewpoint of having high conductivity, they are preferable. A polymer containing a thiophene derivative as a monomer component is preferable, and a composite of a polymer containing a thiophene derivative as a monomer component and a dopant is more preferable.

チオフェン誘導体を単量体成分とするポリマーとしては、ポリ(3,4-二置換チオフェン)が好ましい。また、ポリ(3,4-二置換チオフェン)のうち、ポリ(3,4-ジC1-4アルコキシチオフェン)またはポリ(3,4-C1-4アルキレンジオキシチオフェン)が好ましく、具体的には、ポリ(3,4-エチレンジオキシチオフェン)[PEDOT]、またはその誘導体がより好ましく用いられる。 As the polymer containing a thiophene derivative as a monomer component, poly (3,4-disubstituted thiophene) is preferable. Of the poly (3,4-disubstituted thiophene), poly (3,4-diC 1-4 alkoxythiophene) or poly (3,4-C 1-4 alkylenedioxythiophene ) is preferable and specific. Poly (3,4-ethylenedioxythiophene) [PEDOT], or a derivative thereof, is more preferably used.

ドーパントとしては、例えば、ハロゲン、無機酸またはその塩、低分子スルホン酸またはその塩、低分子カルボン酸またはその塩、スルホン酸ポリマー類(例えば、ポリスチレンスルホン酸[PSS]、ポリビニルスルホン酸、ポリイソプレンスルホン酸等)、およびカルボン酸ポリマー類(例えば、ポリアクリル酸、ポリメタクリル酸、ポリマレイン酸等)等が挙げられる。これらのドーパントは、単独でまたは二種以上組み合わせて使用してもよい。チオフェン誘導体を単量体成分とするポリマーとの複合体として用いるドーパントとしては、高い導電性を付与する観点から、低分子スルホン酸またはその塩、低分子カルボン酸またはその塩、またはスルホン酸ポリマー類が好ましく用いられ、低分子スルホン酸としては、C1-12アルキルスルホン酸、ベンゼンスルホン酸、トルエンスルホン酸、パーフルオロC1-12アルキルスルホン酸等が挙げられ、低分子カルボン酸としては、トリフルオロ酢酸、サリチル酸等が挙げられ、スルホン酸ポリマー類としては、ポリスチレンスルホン酸、ポリビニルスルホン酸等が挙げられる。具体的には、ポリ(3,4-エチレンジオキシチオフェン)との複合体として用いるドーパントとしては、p-トルエンスルホン酸[pTS]またはその鉄塩、トリフルオロ酢酸またはその塩、またはポリスチレンスルホン酸が好ましく、さらに高い導電性を付与する観点から、p-トルエンスルホン酸またはその鉄塩がより好ましい。 Examples of the dopant include halogen, inorganic acid or salt thereof, low molecular weight sulfonic acid or salt thereof, low molecular weight carboxylic acid or salt thereof, sulfonic acid polymers (for example, polystyrene sulfonic acid [PSS], polyvinyl sulfonic acid, polyisoprene). Sulfuric acid and the like), and carboxylic acid polymers (for example, polyacrylic acid, polymethacrylic acid, polymaleic acid and the like) and the like can be mentioned. These dopants may be used alone or in combination of two or more. As a dopant used as a composite with a polymer containing a thiophene derivative as a monomer component, low molecular weight sulfonic acid or a salt thereof, low molecular weight carboxylic acid or a salt thereof, or sulfonic acid polymers from the viewpoint of imparting high conductivity. Is preferably used, examples of the low molecular weight sulfonic acid include C 1-12 alkyl sulfonic acid, benzene sulfonic acid, toluene sulfonic acid, and perfluoro C 1-12 alkyl sulfonic acid, and examples of the low molecular weight sulfonic acid include tri. Fluoroacetic acid, salicylic acid and the like can be mentioned, and examples of the sulfonic acid polymers include polystyrene sulfonic acid and polyvinyl sulfonic acid. Specifically, the dopant used as a complex with poly (3,4-ethylenedioxythiophene) is p-toluenesulfonic acid [pTS] or an iron salt thereof, trifluoroacetic acid or a salt thereof, or polystyrene sulfonic acid. Is preferable, and p-toluenesulfonic acid or an iron salt thereof is more preferable from the viewpoint of imparting higher conductivity.

導電性樹脂は、導電性高分子以外のものを含んでいてもよく、例えば、酸化剤が挙げられる。酸化剤は、導電性高分子を合成する重合反応に用いられる添加剤であり、例えば、塩化第二鉄、硫酸第二鉄、硝酸第二鉄等の無機酸の鉄塩;塩化第二銅、硫酸第二銅等の無機酸の銅塩;過硫酸アンモニウム、過硫酸ナトリウム、過硫酸カリウム等の過硫酸塩;過ヨウ素酸カリウム等の過ヨウ素酸塩;p-トルエンスルホン酸の鉄塩等の有機酸の鉄塩;塩化アルミニウム、テトラフルオロホウ酸ニトロソニウム、三フッ化ホウ素、臭素、ヨウ素等が挙げられる。これらの酸化剤は、単独でまたは二種以上組み合わせて使用してもよい。 The conductive resin may contain a resin other than the conductive polymer, and examples thereof include an oxidizing agent. The oxidizing agent is an additive used in a polymerization reaction for synthesizing a conductive polymer, and is, for example, an iron salt of an inorganic acid such as ferric chloride, ferric sulfate, ferrous nitrate, etc .; ferric chloride, Copper salt of inorganic acid such as cupric sulfate; persulfate such as ammonium persulfate, sodium persulfate, potassium persulfate; periodate such as potassium periodate; organic such as iron salt of p-toluenesulfonic acid Iron salts of acid; examples include aluminum chloride, nitrosonium tetrafluoroborate, boron trifluoride, bromine, iodine and the like. These oxidizing agents may be used alone or in combination of two or more.

導電性樹脂は、高い導電性を有し、例えば、1×10-2S/cm以上の電気伝導度を有していてもよく、好ましくは0.3S/cm以上、より好ましくは1.0S/cm以上の電気伝導度を有していてもよい。導電性樹脂の電気伝導度の上限は、例えば、1000S/cmであってもよい。 The conductive resin has high conductivity, for example, may have an electric conductivity of 1 × 10 −2 S / cm or more, preferably 0.3 S / cm or more, more preferably 1.0 S. It may have an electric conductivity of / cm or more. The upper limit of the electric conductivity of the conductive resin may be, for example, 1000 S / cm.

[導電性繊維構造物の製造方法]
本発明の導電性繊維構造物の製造方法は、合成繊維を含む繊維束で構成される基材に対して、導電性樹脂形成溶液を塗布する塗布工程と、基材に導電性樹脂形成溶液を繊維束に浸透させる浸透工程と、基材に浸透した導電性樹脂形成溶液において、重合して導電性高分子を合成する重合工程とを少なくとも備えていてもよい。
[Manufacturing method of conductive fiber structure]
The method for producing a conductive fiber structure of the present invention includes a coating step of applying a conductive resin forming solution to a base material composed of a fiber bundle containing synthetic fibers, and a conductive resin forming solution applied to the base material. It may include at least a permeation step of infiltrating the fiber bundle and a polymerization step of polymerizing in the conductive resin forming solution permeated into the substrate to synthesize the conductive polymer.

塗布工程では、導電性樹脂形成溶液の基材への塗布にあたり、浸漬法、コーティング法、スプレー法等の公知の塗布方法により塗布してもよい。導電性樹脂形成溶液を基材に含ませ基材内部で導電性高分子を合成する観点からは、コーティング法、スプレー法等が好ましい。導電性樹脂形成溶液は、目的に応じて、基材の全面に塗布してもよく、一部に塗布してもよい。 In the coating step, when the conductive resin forming solution is applied to the substrate, it may be applied by a known coating method such as a dipping method, a coating method, or a spraying method. From the viewpoint of immersing the conductive resin forming solution in the base material and synthesizing the conductive polymer inside the base material, a coating method, a spray method, or the like is preferable. The conductive resin forming solution may be applied to the entire surface of the base material or a part thereof, depending on the purpose.

塗布工程では、導電性樹脂形成溶液の浸透性を高める観点から、基材に張力をかけないようにしてもよい。基材に張力をかけないようにすることにより、繊維束内に導電性樹脂を多く抱き込ませるような空間を生じさせることができる。基材に張力をかけずに導電性樹脂形成溶液を塗布する方法としては、基材を所定の基盤上に静置した状態で導電性樹脂形成溶液を塗布する方法であってもよく、例えば、バッチ式で行ってもよく、ベルト搬送等による連続式で行ってもよい。 In the coating step, tension may not be applied to the substrate from the viewpoint of increasing the permeability of the conductive resin forming solution. By not applying tension to the base material, it is possible to create a space in which a large amount of the conductive resin is embraced in the fiber bundle. As a method of applying the conductive resin forming solution without applying tension to the base material, a method of applying the conductive resin forming solution while the base material is allowed to stand on a predetermined base material may be used, for example. It may be performed by a batch method or a continuous method by belt transport or the like.

導電性樹脂形成溶液は、導電性高分子を形成可能な成分を含む溶液であり、導電性高分子の単量体を含んでいてもよい。後の浸透工程において導電性樹脂形成溶液を繊維束に浸透させやすくする観点からは、導電性高分子を構成する単量体を含む溶液を用いることが好ましい。導電性樹脂形成溶液には、単量体としてチオフェン誘導体を含んでいてもよく、好ましくはポリ(3,4-エチレンジオキシチオフェン)の単量体(例えば、3,4-エチレンジオキシチオフェン)を含んでいてもよい。 The conductive resin forming solution is a solution containing a component capable of forming a conductive polymer, and may contain a monomer of the conductive polymer. From the viewpoint of facilitating the permeation of the conductive resin forming solution into the fiber bundle in the subsequent permeation step, it is preferable to use a solution containing a monomer constituting the conductive polymer. The conductive resin forming solution may contain a thiophene derivative as a monomer, preferably a poly (3,4-ethylenedioxythiophene) monomer (for example, 3,4-ethylenedioxythiophene). May include.

導電性樹脂形成溶液として導電性高分子の単量体を含む溶液を用いる場合、酸化剤、触媒、重合開始剤等の単量体の重合に寄与する成分を含んでいてもよい。例えば、単量体がチオフェン誘導体の場合、酸化剤を用いた酸化重合によりチオフェン誘導体を単量体成分とするポリマーを得ることができ、上述した酸化剤を含んでいてもよく、好ましくは無機酸の鉄塩または有機酸の鉄塩を含んでいてもよい。また、低分子スルホン酸の鉄塩または低分子カルボン酸の鉄塩を含む場合、酸化剤として機能させることができるとともに、ドーパントとしても機能させることができる。好ましくは、p-トルエンスルホン酸の鉄塩を用いることにより、酸化剤およびドーパントのいずれにも機能させることができる。 When a solution containing a monomer of a conductive polymer is used as the conductive resin forming solution, it may contain components that contribute to the polymerization of the monomer such as an oxidizing agent, a catalyst, and a polymerization initiator. For example, when the monomer is a thiophene derivative, a polymer containing the thiophene derivative as a monomer component can be obtained by oxidative polymerization using an oxidizing agent, and the above-mentioned oxidizing agent may be contained, preferably an inorganic acid. It may contain an iron salt of an organic acid or an iron salt of an organic acid. Further, when an iron salt of a low molecular weight sulfonic acid or an iron salt of a low molecular weight carboxylic acid is contained, it can function as an oxidizing agent and also as a dopant. Preferably, by using an iron salt of p-toluenesulfonic acid, it can function as both an oxidizing agent and a dopant.

導電性樹脂形成溶液に用いる溶媒は、導電性高分子を形成可能な成分を溶解させることができれば特に限定されず、例えば、水;メタノール、エタノール、2-プロパノール、1-プロパノール、グリセリン等のアルコール類;エチレングリコール、ジエチレングリコール、トリエチレングリコール等のエチレングリコール類;プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール等のプロピレングリコール類;テトラヒドロフラン;アセトン;アセトニトリル等が挙げられる。これらの溶媒は、単独でまたは二種以上組み合わせて使用してもよい。好ましくは、水、アルコール類、エチレングリコール類、およびアセトニトリルからなる群から選択される少なくとも1種の溶媒を使用してもよい。 The solvent used for the conductive resin forming solution is not particularly limited as long as it can dissolve a component capable of forming a conductive polymer, and is, for example, water; alcohols such as methanol, ethanol, 2-propanol, 1-propanol, and glycerin. Kind: Ethylene glycols such as ethylene glycol, diethylene glycol and triethylene glycol; propylene glycols such as propylene glycol, dipropylene glycol and tripropylene glycol; tetrahydrofuran; acetone; acetonitrile and the like. These solvents may be used alone or in combination of two or more. Preferably, at least one solvent selected from the group consisting of water, alcohols, ethylene glycols, and acetonitrile may be used.

導電性樹脂形成溶液として導電性高分子の単量体を含む溶液を用いる場合、溶媒としてエタノールを用いることが好ましい。エタノールを溶媒とする導電性樹脂形成溶液を基材に塗布して、導電性高分子の単量体を基材中で重合させる場合、比較的低温で溶媒を除去することが可能となる。 When a solution containing a monomer of a conductive polymer is used as the conductive resin forming solution, it is preferable to use ethanol as the solvent. When a conductive resin forming solution using ethanol as a solvent is applied to a base material and the monomer of the conductive polymer is polymerized in the base material, the solvent can be removed at a relatively low temperature.

導電性樹脂形成溶液には、導電性高分子を形成可能な成分以外に各種添加剤を含んでいてもよい。 The conductive resin forming solution may contain various additives in addition to the components capable of forming the conductive polymer.

本発明の導電性繊維構造物の製造方法では、後述するように導電性樹脂形成溶液の塗布を3回以上施すことが好ましく、導電性樹脂形成溶液の1回あたりの塗布量は、基材へ浸透する量を確保するとともに基材から液滴が落下しない最大量であることが好ましい。 In the method for producing a conductive fiber structure of the present invention, it is preferable to apply the conductive resin forming solution three times or more as described later, and the amount of the conductive resin forming solution applied to the substrate per application is preferably three times or more. It is preferable that the amount of permeation is secured and the maximum amount is such that droplets do not fall from the substrate.

浸透工程では、導電性樹脂形成溶液を繊維束に浸透させることができる。浸透工程では、導電性樹脂形成溶液を基材の繊維束の内側にまで浸透させることができれば特に限定されず、基材に浸透させる方法は公知のプレス、ロールプレス、ベルトプレス等の方法により行うことができる。 In the permeation step, the conductive resin forming solution can be permeated into the fiber bundle. The permeation step is not particularly limited as long as the conductive resin forming solution can be permeated to the inside of the fiber bundle of the base material, and the method of permeating the base material is performed by a known method such as a press, a roll press, or a belt press. be able to.

重合工程では、基材に浸透した導電性樹脂形成溶液において重合を進めて導電性高分子を合成してもよい。重合工程では、導電性高分子の単量体の重合反応を促進させる観点から、加熱してもよく、また、常温で重合進行する重合系の場合には重合反応を制御させる観点から、加熱せずに常温で反応させてもよい。例えば、3,4-エチレンジオキシチオフェンと酸化剤とを混合する場合、常温で重合反応させることが好ましい。 In the polymerization step, the polymerization may be promoted in the conductive resin forming solution permeated into the substrate to synthesize the conductive polymer. In the polymerization step, heating may be performed from the viewpoint of accelerating the polymerization reaction of the monomer of the conductive polymer, and in the case of a polymerization system in which the polymerization proceeds at room temperature, heating may be performed from the viewpoint of controlling the polymerization reaction. It may be reacted at room temperature without the reaction. For example, when 3,4-ethylenedioxythiophene and an oxidizing agent are mixed, it is preferable to carry out a polymerization reaction at room temperature.

本発明の導電性繊維構造物の製造方法では、さらに、導電性樹脂を付与した基材に対して、再度、導電性樹脂形成溶液を塗布することが好ましく、特定の繊維領域/非繊維領域の面積比および非繊維領域中の導電性樹脂の面積割合を満たす観点からは、塗布工程および浸透工程を3回以上施すことが好ましい。導電性樹脂形成溶液を基材に塗布してから導電性樹脂が付着した基材を得るまでの工程(少なくとも塗布工程および浸透工程を含み、必要に応じて重合工程を含む)を、3~5回施してもよい。 In the method for producing a conductive fiber structure of the present invention, it is preferable to apply the conductive resin forming solution again to the substrate to which the conductive resin is applied, and it is preferable to apply the conductive resin forming solution again, and the specific fiber region / non-fiber region. From the viewpoint of satisfying the area ratio and the area ratio of the conductive resin in the non-fiber region, it is preferable to perform the coating step and the permeation step three times or more. 3 to 5 steps from applying the conductive resin forming solution to the base material to obtaining a base material to which the conductive resin is attached (including at least a coating step and a permeation step, and if necessary, a polymerization step). It may be applied repeatedly.

また、導電性樹脂を1度に形成させるより複数回に分けて形成させることにより、繊維束の内側において導電性樹脂をスポンジ状および/または境界膜状の構造にすることができる。すなわち、塗布工程および浸透工程を少なくとも3回以上経ることにより導電性樹脂が存在する導電性繊維構造物が得られるが、塗布工程および浸透工程を1回施した導電性繊維構造物に対して再度塗布工程および浸透工程を施すことによって、先に存在する導電性樹脂と再度塗布した導電性樹脂形成溶液中の導電性樹脂が接着し、基材と接着あるいは剥離した連通孔のあるスポンジ状または境界膜状の構造にすることができ、繊維束の内側に空気層を形成する観点から好ましい。 Further, by forming the conductive resin in a plurality of times rather than forming the conductive resin at one time, the conductive resin can be formed into a sponge-like and / or boundary film-like structure inside the fiber bundle. That is, the conductive fiber structure in which the conductive resin is present can be obtained by going through the coating step and the permeation step at least three times, but the conductive fiber structure that has been subjected to the coating step and the permeation step once is again subjected to the coating step and the permeation step. By performing the coating step and the permeation step, the previously existing conductive resin and the conductive resin in the reapplied conductive resin forming solution adhere to each other, and the sponge-like or boundary having a communication hole adhered or peeled off from the substrate. It can have a film-like structure, which is preferable from the viewpoint of forming an air layer inside the fiber bundle.

[生体電極]
本発明の導電性繊維構造物は、生体と直接接触し電気信号を取得および/または電気信号を付与できる生体電極に用いることができる。本発明の導電性繊維構造物は、電極部材として用いられ、その形状、大きさは、生体面と面状に接触させることができれば特に限定されない。
[Bioelectrode]
The conductive fiber structure of the present invention can be used as a bioelectrode capable of directly contacting a living body to acquire an electric signal and / or to give an electric signal. The conductive fiber structure of the present invention is used as an electrode member, and its shape and size are not particularly limited as long as it can be brought into surface contact with a biological surface.

本発明の生体電極では、導電性繊維構造物に電気絶縁層として樹脂層が積層されていてもよい。樹脂層は、織物、編物、不織布等の布帛形状であってもよく、フィルム、シート等の形状であってもよい。 In the bioelectrode of the present invention, a resin layer may be laminated on the conductive fiber structure as an electrically insulating layer. The resin layer may be in the shape of a fabric such as a woven fabric, a knitted fabric, or a non-woven fabric, or may be in the shape of a film, a sheet, or the like.

本発明の生体電極は、心拍等の生体からの電気信号を検出する生体電極、または電気的筋肉刺激(EMS)等の生体に電気的刺激を付与する生体電極が挙げられる。本発明の生体電極は、用いられる導電性繊維構造物が生体のフィット性を有するため、生体と直接接触するものであれば特に限定されず、パッド、グローブ、ベルト等に加え、洗濯耐久性に優れるため、下着等の各種衣類(シャツ、ブラウス、Tシャツ、タンクトップ、キャミソール、スパゲッティストラップシャツ、チューブトップ、ホルタートップ、ブラジャー、ズボン、パンツ、ガードル、靴下、タイツ、ストッキング、シングレット、レオタード、水着、ウェットスーツ等)、履物(革靴、スニーカー、ブーツ、サンダル、パンプス、ミュール、スリッパ等)、ヘッドバンド、リストバンド、首巻、腹巻、サスペンダー、手袋、腕時計、帽子、サポーター、包帯等の衣料品の少なくとも一部を構成してもよい。 Examples of the bioelectrode of the present invention include a bioelectrode that detects an electric signal from a living body such as a heartbeat, and a bioelectrode that applies electrical stimulation to a living body such as electrical muscle stimulation (EMS). The bio-electrode of the present invention is not particularly limited as long as it is in direct contact with the living body because the conductive fiber structure used has a fit of the living body, and in addition to pads, gloves, belts, etc., it is suitable for washing durability. Various clothing such as underwear (shirts, blouses, T-shirts, tank tops, camisole, spaghetti strap shirts, tube tops, halter tops, brassieres, trousers, pants, girdles, socks, tights, stockings, singlets, leotards, swimwear. , Wet suits, etc.), footwear (leather shoes, sneakers, boots, sandals, pumps, mules, slippers, etc.), headbands, wristbands, neckbands, bellybands, suspenders, gloves, watches, hats, supporters, bandages, etc. At least a part of the above may be configured.

以下に、実施例に基づき本発明を更に詳細に説明するが、本発明はこれらにより何ら制限を受けるものではない。なお、以下の実施例及び比較例においては、下記の方法により各種物性を測定した。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto. In the following Examples and Comparative Examples, various physical properties were measured by the following methods.

[単繊維繊度]
JIS L 1013「化学繊維フィラメント糸試験方法」に準じて、基材を構成する繊維束の総繊度を測定した。その後、繊維束を構成するフィラメント数で総繊度を除した値を単繊維繊度とした。
[Single fiber fineness]
The total fineness of the fiber bundles constituting the base material was measured according to JIS L 1013 "Chemical fiber filament yarn test method". Then, the value obtained by dividing the total fineness by the number of filaments constituting the fiber bundle was taken as the single fiber fineness.

[目付]
JIS L 1096「織物及び編物の生地試験方法」の8.3に準じて、目付(g/m)を測定した。
[Metsuke]
The basis weight (g / m 2 ) was measured according to 8.3 of JIS L 1096 “Dough test method for woven fabrics and knitted fabrics”.

[面積比、面積割合]
導電性繊維構造物をまず、剃刀で切断し生地断面の露出した観察試料を作製する。その後、四酸化オスミウムを用いて室温(23℃)で気相染色処理することで試料を電子染色処理し顕微鏡観察に供する。観察は走査電子顕微鏡(SEM)((株)日立ハイテクノロジーズ製、「SU-70」)を用いて、23℃、高真空下、観察倍率800倍でオスミウム処理された導電性繊維構造物の断面を撮像した。
得られた画像を、Thermo Fisher Scientific社製の画像解析ソフト「Avizo for EM systems software」にて画像のセグメンテーションを行い、繊維領域と非繊維領域とを区分した。また、非繊維領域においては、同様のセグメンテーション化により空気層領域と導電性樹脂領域とを区分した。また、各単繊維断面の重心は画像解析ソフトにより決定した。その後、画像解析ソフトにより決定した重心のうち4点を選択し、その4点の重心を中心とする直径30μmの円を描き、当該円内に単繊維断面の重心が4点以上入る場合にその円内を対象の領域に決定した。当該領域において、上記セグメンテーションにて繊維領域と非繊維領域とを区分し、さらに非繊維領域においては空気層領域と導電性樹脂領域とを区分した後、それぞれの面積を算出し、各面積割合を求めた。以上の領域決定および面積割合算出を1点の測定数とした。同様に重心が4点以上入る別の直径30μmの円内の領域を少なくとも3カ所測定し、平均値を算出し、繊維領域/非繊維領域の面積比、および非繊維領域中で導電性樹脂の占める面積割合を求めた。
[Area ratio, area ratio]
First, the conductive fiber structure is cut with a razor to prepare an observation sample in which the cross section of the fabric is exposed. Then, the sample is subjected to electronic staining treatment by gas phase staining treatment at room temperature (23 ° C.) using osmium tetroxide and subjected to microscopic observation. Observation is performed using a scanning electron microscope (SEM) (“SU-70” manufactured by Hitachi High-Technologies Corporation), and the cross section of the conductive fiber structure treated with osmium at 23 ° C. under high vacuum and at an observation magnification of 800 times. Was imaged.
The obtained image was segmented with the image analysis software "Avizo for EM systems software" manufactured by Thermo Fisher Scientific, and the fiber region and the non-fiber region were separated. Further, in the non-fiber region, the air layer region and the conductive resin region were separated by the same segmentation. The center of gravity of each single fiber cross section was determined by image analysis software. After that, select 4 points from the center of gravity determined by the image analysis software, draw a circle with a diameter of 30 μm centered on the center of gravity of the 4 points, and if 4 or more points of the center of gravity of the single fiber cross section are included in the circle. The inside of the circle was decided as the target area. In the region, the fiber region and the non-fiber region are separated by the above segmentation, and in the non-fiber region, the air layer region and the conductive resin region are further divided, and then the respective areas are calculated and the area ratio is calculated. I asked. The above area determination and area ratio calculation were taken as the number of measurements at one point. Similarly, measure at least three regions in another circle with a diameter of 30 μm containing four or more points of center of gravity, calculate the average value, and calculate the area ratio of the fiber region / non-fiber region and the conductive resin in the non-fiber region. The area ratio to occupy was calculated.

[表面抵抗率]
導電性繊維構造物を10cm×10cmにカットした試験片をガラス板など表面凹凸のない硬質の板状物の上に乗せ、表面抵抗率(Ω/□)を、低抵抗率計((株)三菱ケミカルアナリテック製、四探針抵抗計「Loresta-AX MCP-T370」、プローブ「ESPプローブ MCP-TP08P」)を用いて20℃、40%RH環境下で測定した。
[Surface resistivity]
A test piece obtained by cutting a conductive fiber structure into a size of 10 cm × 10 cm is placed on a hard plate-like material having no surface unevenness such as a glass plate, and the surface resistivity (Ω / □) is measured by a low resistivity meter (Co., Ltd.). Measurement was performed at 20 ° C. and 40% RH environment using a four-probe resistivity meter “Loresta-AX MCP-T370” and a probe “ESP probe MCP-TP08P” manufactured by Mitsubishi Chemical Analytech.

[洗濯耐久性]
導電性繊維構造物を10cm×10cmにカットした試験片を用い、JIS L 0217(2012)103法に準拠した方法で、100回繰り返し法による洗濯後の表面抵抗率を測定した。洗濯機は、全自動洗濯機(TOSHIBA AW-6D6)を使用した。
[Washing durability]
Using a test piece obtained by cutting the conductive fiber structure into 10 cm × 10 cm, the surface resistivity after washing by the 100-time repetition method was measured by a method according to the JIS L 0217 (2012) 103 method. As the washing machine, a fully automatic washing machine (TOSHIBA AW-6D6) was used.

[実施例1]
常法で製造された酸化チタンを2.5wt%含有する〔η〕=0.657のポリエチレンテレフタレートを紡糸速度3700m/minで溶融紡糸を行い、70dtex48フィラメントの凹部を4カ所有する十字断面POY原糸を得た。次いで、本POY原糸を仮撚倍率1.32倍、ヒーター温度185℃で通常仮撚を行い、56dtex48フィラメントの仮撚加工糸を得た。当該糸と22dtexモノフィラメントのポリウレタン弾性糸(旭化成(株)製)を表面とし、裏面にSD33dtex12フィラメントのポリエステル丸断面仮撚加工糸(南亜社製)を用いたメッシュ組織の編地を作製した後、通常の染色方法により染色したベアメッシュ生地を得た。この生地の単繊維繊度0.5~4dtexの合成繊維の含有率は93質量%であった。
このベアメッシュ生地を基材とし、PEDOTの単量体溶液(Heraeus CleviosM-V2)と、酸化剤及びドーパントであるpTSの鉄塩(Heraeus CleviosC-B40V2)と、溶媒であるエタノールとを混合した導電性樹脂形成溶液を塗布工程にて基材上部に均一になるように塗布した後、浸透工程にて繊維束内側に導電性樹脂形成溶液を浸透させた。その後、12分間55℃で加熱し、その後25℃、湿度60%で恒温槽に1時間保持してPEDOTの単量体を重合させた。なお、pTSの鉄塩とPEDOTの単量体との割合は、体積比で40:2とし、エタノールと酸化剤(pTSの鉄塩)の合計に対する酸化剤(pTSの鉄塩)の割合は、30質量%とした。また塗布量は生地から液滴が落下しない最大量である1g/20cmの割合とした。このようにして基材内に浸透した状態で重合を行い、PEDOTを合成し、繊維表面および繊維束空間内に導電性樹脂を形成させ、1回塗布の導電性繊維構造物を得た。
次いで、1回の塗布で基材から液滴が落下しない最大量が1g/20cmであったため、十分な量の導電性樹脂を基材中に含ませるために、1回塗布後の導電性繊維構造物をさらなる基材とし、上記と同じ方法で2回目および3回目の塗布、浸透および重合を行い、3回塗布した導電性繊維構造物を得た。
得られた導電性繊維構造物の断面を切断後、オスミウムで染色し断面観察を行った結果、導電性樹脂は、粒状の粒子が積層された連通孔のあるスポンジ状の構造を呈していた(図1)。また、得られた導電性繊維構造物は、単繊維断面の重心が4点入る直径30μmの円内における繊維領域と非繊維領域の面積比は、55/45の範囲であった。また当該非繊維領域に占める導電性樹脂の面積割合は65%であった。なお、これらの面積比および面積割合は表面に用いた繊維束の断面を観察して算出した。また、導電性繊維構造物の表面抵抗率は5Ω/□であった。導電性繊維構造物を100回連続洗濯した後、同様に表面抵抗率を測定したところ、74Ω/□と洗濯後も低い表面抵抗率を示した。
[Example 1]
Polyethylene terephthalate containing 2.5 wt% of titanium oxide produced by a conventional method [η] = 0.657 is melt-spun at a spinning speed of 3700 m / min, and a cross-section POY raw yarn having four recesses of 70dtex48 filaments is performed. Got Next, the present POY raw yarn was subjected to normal false twisting at a false twist ratio of 1.32 times and a heater temperature of 185 ° C. to obtain a false twist processed yarn of 56dtex48 filament. After preparing a knitted fabric with a mesh structure using the yarn and a 22dtex monofilament polyurethane elastic yarn (manufactured by Asahi Kasei Corporation) on the front surface and a polyester round cross section false twisted yarn (manufactured by Nanya Co., Ltd.) of SD33dtex12 filament on the back surface. , A bare mesh fabric dyed by a usual dyeing method was obtained. The content of synthetic fibers having a single fiber fineness of 0.5 to 4 dtex in this fabric was 93% by mass.
Conductivity obtained by mixing a monomer solution of PEDOT (Heraeus CleviosM-V2), an iron salt of pTS (Heraeus CleviosC-B40V2) as an oxidizing agent and a dopant, and ethanol as a solvent using this bare mesh dough as a base material. After the sex resin forming solution was uniformly applied to the upper part of the base material in the coating step, the conductive resin forming solution was infiltrated into the inside of the fiber bundle in the infiltration step. Then, it was heated at 55 ° C. for 12 minutes and then kept in a constant temperature bath at 25 ° C. and a humidity of 60% for 1 hour to polymerize the PEDOT monomer. The ratio of the iron salt of pTS to the monomer of PEDOT was 40: 2, and the ratio of the oxidizing agent (iron salt of pTS) to the total of ethanol and the oxidizing agent (iron salt of pTS) was It was set to 30% by mass. The coating amount was set to a ratio of 1 g / 20 cm 2 , which is the maximum amount at which droplets do not fall from the fabric. In this way, polymerization was carried out in a state of being infiltrated into the substrate, PEDOT was synthesized, a conductive resin was formed on the fiber surface and in the fiber bundle space, and a once-applied conductive fiber structure was obtained.
Next, since the maximum amount of droplets not dropped from the substrate in one application was 1 g / 20 cm 2 , in order to include a sufficient amount of conductive resin in the substrate, the conductivity after one application was applied. Using the fiber structure as a further base material, the second and third coatings, permeation and polymerization were carried out in the same manner as described above to obtain a conductive fiber structure coated three times.
After cutting the cross section of the obtained conductive fiber structure, it was dyed with osmium and the cross section was observed. As a result, the conductive resin exhibited a sponge-like structure with communication holes in which granular particles were laminated (). Figure 1). Further, in the obtained conductive fiber structure, the area ratio of the fiber region to the non-fiber region in a circle having a diameter of 30 μm containing four points of the center of gravity of the cross section of the single fiber was in the range of 55/45. The area ratio of the conductive resin to the non-fiber region was 65%. These area ratios and area ratios were calculated by observing the cross section of the fiber bundle used on the surface. The surface resistivity of the conductive fiber structure was 5Ω / □. After washing the conductive fiber structure 100 times continuously, the surface resistivity was measured in the same manner, and the surface resistivity was 74Ω / □, which was low even after washing.

[実施例2]
常法で製造された酸化チタンを2.5wt%含有する〔η〕=0.657のポリエチレンテレフタレートを紡糸速度3750m/minで溶融紡糸を行い、110dtex48フィラメントの凹部を4カ所有する十字断面POY原糸を得た。次いで、本POY原糸を仮撚倍率1.34倍、ヒーター温度180℃で通常仮撚を行い、88dtex48フィラメントの1ヒーター仮撚加工糸を得た。当該糸にS方向200t/mの撚糸加工を施したものを経糸とし、緯糸にFD84dtex24フィラメントのポリエステル丸断面1ヒーター仮撚加工糸双糸(クラレトレーディング(株)製)にS方向300t/mの撚糸加工を施したものを用いた経二重組織を製織した。次いで、通常の染色方法により染色加工を施した織物を得た。この織物の単繊維繊度0.5~4dtexの合成繊維の含有率は100質量%であった。塗布量は生地から液滴が落下しない最大量である0.8g/20cmの割合とした。
この織物を基材とした場合、1回の塗布で基材から液滴が落下しない最大量が0.8g/20cmであった。そのため、十分な量の導電性樹脂を基材中に含ませるために、1回あたりの導電性樹脂形成溶液の塗布量を当該織物の最大吸収量である0.8g/20cmとして、実施例1と同じ方法で塗布・浸透・重合の一連の工程を3回行った3回塗布の導電性繊維構造物を得た。
得られた導電性繊維構造物の断面を切断後、オスミウムで染色し断面観察を行った結果、導電性樹脂は、板が分岐したような形状が形成された、合成繊維と剥離した境界膜状の構造を呈していた(図2)。得られた導電性繊維構造物は、単繊維断面の重心が4点入る直径30μmの円内における繊維領域と非繊維領域の面積比は、72/28の範囲であった。また当該非繊維領域に占める導電性樹脂の面積割合は57%であった。なお、これらの面積比および面積割合は経糸に用いた繊維束の断面を観察して算出した。また、導電性繊維構造物の表面抵抗率は3Ω/□であった。導電性繊維構造物を100回連続洗濯した後、同様に表面抵抗率を測定したところ、16Ω/□と洗濯後も低い表面抵抗率を示した。
[Example 2]
Polyethylene terephthalate containing 2.5 wt% of titanium oxide produced by a conventional method [η] = 0.657 is melt-spun at a spinning speed of 3750 m / min, and a cross-section POY raw yarn having four recesses of 110 dtex48 filaments is performed. Got Next, this POY raw yarn was subjected to normal false twisting at a false twist ratio of 1.34 times and a heater temperature of 180 ° C. to obtain a 1-heater false twist processed yarn of 88dtex48 filament. The warp is made by twisting the yarn at 200 t / m in the S direction, and the weft is made of FD84dtex24 filament with a polyester round cross section of 1 heater. A warp and double structure was woven using a twisted yarn. Then, a woven fabric that had been dyed by a usual dyeing method was obtained. The content of synthetic fibers having a single fiber fineness of 0.5 to 4 dtex in this woven fabric was 100% by mass. The coating amount was set to a ratio of 0.8 g / 20 cm 2 , which is the maximum amount at which droplets do not fall from the fabric.
When this woven fabric was used as a base material, the maximum amount at which droplets did not fall from the base material in one application was 0.8 g / 20 cm 2 . Therefore, in order to include a sufficient amount of the conductive resin in the base material, the amount of the conductive resin forming solution applied at one time is set to 0.8 g / 20 cm 2 , which is the maximum absorption amount of the textile, in the examples. A series of coating, permeation, and polymerization steps were carried out three times in the same manner as in No. 1 to obtain a three-time coated conductive fiber structure.
After cutting the cross section of the obtained conductive fiber structure, it was dyed with osmium and the cross section was observed. It exhibited the structure of (Fig. 2). In the obtained conductive fiber structure, the area ratio of the fiber region to the non-fiber region in a circle having a diameter of 30 μm containing four centers of gravity of the cross section of the single fiber was in the range of 72/28. The area ratio of the conductive resin to the non-fiber region was 57%. These area ratios and area ratios were calculated by observing the cross section of the fiber bundle used for the warp. The surface resistivity of the conductive fiber structure was 3Ω / □. After washing the conductive fiber structure 100 times continuously, the surface resistivity was measured in the same manner, and the surface resistivity was 16Ω / □, which was low even after washing.

[実施例3]
常法で製造された酸化チタンを0.4wt%含有する〔η〕=0.676のポリエチレンテレフタレートを紡糸直結延伸方法で溶融紡糸を行い、33dtex18フィラメントの沸騰水収縮率15%の高収縮丸断面延伸糸を得た。また、同樹脂を用い、紡糸速度4800m/minの高速紡糸を行い、沸騰水収縮率3.2%の凹部を3カ所有する33dtex18フィラメントの低収縮三角断面糸を得た。次いで、両方の糸を、インターレースノズルを用いた空気交絡処理を行い66dtex36フィラメントの異収縮混繊糸を得た。当該糸にS方向1800t/mの撚糸加工を施したものを経糸とし、緯糸には同じく紡糸直結延伸を行った沸騰水収縮率7%の110dtex72フィラメントの延伸糸にSおよびZ方向に2500t/mの撚糸加工を施したものを用い、サテン組織で生機を作製した。この生機を収縮率差が大きくなるようリラックス処理を施した染色加工を行い、異収縮混繊サテン織物を得た。この織物の単繊維繊度0.5~4dtexの合成繊維の含有率は100質量%であった。
この織物を基材とした場合、1回の塗布で基材から液滴が落下しない最大量が0.6g/20cmであった。そのため、十分な量の導電性樹脂を基材中に含ませるために、1回あたりの導電性樹脂形成溶液の塗布量を当該織物の最大吸収量である0.6g/20cmとして、実施例1と同じ塗布・浸透・重合の一連の工程を3回行った3回塗布の導電性繊維構造物を得た。
得られた導電性繊維構造物の断面を切断後、オスミウムで染色し断面観察を行った結果、導電性樹脂は、繊維および繊維間に張り付いた薄膜や板のような構造を呈しており、一部スポンジ状の構造を呈していた(図3)。得られた導電性繊維構造物は、単繊維断面の重心が4点入る直径30μmの円内における繊維領域と非繊維領域の面積比は、75/25の範囲であった。また当該非繊維領域に占める導電性樹脂の面積割合は68%であった。なお、これらの面積比および面積割合は経糸に用いた繊維束の断面を観察して算出した。また、導電性繊維構造物の表面抵抗率は7Ω/□であった。導電性繊維構造物を100回連続洗濯した後、同様に表面抵抗率を測定したところ、326Ω/□となり洗濯後に表面抵抗率が上昇していたが、許容範囲内であった。
[Example 3]
Polyethylene terephthalate containing 0.4 wt% of titanium oxide produced by a conventional method [η] = 0.676 is melt-spun by a direct-spinning drawing method, and a 33dtex18 filament has a high shrinkage round cross section with a boiling water shrinkage rate of 15%. A drawn yarn was obtained. Further, using the same resin, high-speed spinning at a spinning speed of 4800 m / min was carried out to obtain a low shrinkage triangular cross-section yarn of 33dtex18 filament having three recesses having a boiling water shrinkage rate of 3.2%. Next, both yarns were subjected to air entanglement treatment using an interlaced nozzle to obtain a different shrinkage mixed yarn of 66dtex36 filament. The yarn is twisted at 1800 t / m in the S direction to form a warp, and the weft is a drawn yarn of 110 dtex72 filament with a boiling water shrinkage rate of 7%, which is also directly connected and drawn by spinning, and 2500 t / m in the S and Z directions. A raw machine was made with a satin structure using the one that had been plyed. This raw machine was dyed with a relaxing treatment so that the difference in shrinkage rate became large, and a different shrinkage mixed fiber satin fabric was obtained. The content of synthetic fibers having a single fiber fineness of 0.5 to 4 dtex in this woven fabric was 100% by mass.
When this woven fabric was used as a base material, the maximum amount at which droplets did not fall from the base material in one application was 0.6 g / 20 cm 2 . Therefore, in order to include a sufficient amount of the conductive resin in the base material, the amount of the conductive resin forming solution applied at one time is set to 0.6 g / 20 cm 2 , which is the maximum absorption amount of the textile, in the examples. The same series of coating, permeation, and polymerization steps as in No. 1 was performed three times to obtain a three-time coated conductive fiber structure.
After cutting the cross section of the obtained conductive fiber structure, it was dyed with osmium and the cross section was observed. As a result, the conductive resin had a structure like a thin film or a plate stuck between the fibers. It had a partially sponge-like structure (Fig. 3). In the obtained conductive fiber structure, the area ratio of the fiber region to the non-fiber region in a circle having a diameter of 30 μm containing four points of the center of gravity of the cross section of the single fiber was in the range of 75/25. The area ratio of the conductive resin to the non-fiber region was 68%. These area ratios and area ratios were calculated by observing the cross section of the fiber bundle used for the warp. The surface resistivity of the conductive fiber structure was 7Ω / □. After washing the conductive fiber structure 100 times continuously, the surface resistivity was measured in the same manner. The surface resistivity was 326 Ω / □, and the surface resistivity increased after washing, but it was within the permissible range.

[比較例1]
常法で製造された酸化チタンを2.0wt%含有する〔η〕=0.674のポリエチレンテレフタレートを紡糸直結延伸手法で溶融紡糸を行い、84dtex72フィラメントの沸騰水収縮率7%の普通収縮丸断面延伸糸を得た。当該糸を無撚で経糸および緯糸に使用したタフタ生機を作製した。この生機を通常の染色方法で染色加工を施しタフタ織物を得た。この織物の単繊維繊度0.5~4dtexの合成繊維の含有率は100質量%であった。
この織物を基材とした場合、1回の塗布で基材から液滴が落下しない最大量が0.4g/20cmであり、浸透するための導電性樹脂含量が不足していたが、1回あたりの導電性樹脂形成溶液の塗布量を当該織物の最大吸収量である0.4g/20cmとして、実施例1と同じ塗布・浸透・重合の一連の工程を3回行った3回塗布の導電性繊維構造物を得た。
得られた導電性繊維構造物の断面を切断後、オスミウムで染色し断面観察を行った結果、導電性樹脂がほとんど存在しない領域と導電樹脂がわずかにスポンジ状の構造を呈した部分が混在していた。得られた導電性繊維構造物は、単繊維断面の重心が4点入る直径30μmの円内における繊維領域と非繊維領域の面積比は、70/30の範囲であった。また当該非繊維領域に占める導電性樹脂の面積割合は35%であった。また、導電性繊維構造物の表面抵抗率は16Ω/□であった。導電性繊維構造物を100回連続洗濯した後、同様に表面抵抗率を測定したところ測定不可となり洗濯後に導電性樹脂はほとんど脱落し導電性は失われていた。
[Comparative Example 1]
Polyethylene terephthalate containing 2.0 wt% of titanium oxide produced by a conventional method [η] = 0.674 is melt-spun by a direct-spinning drawing method, and a normal shrinkage round cross section with a boiling water shrinkage rate of 7% for 84dtex72 filaments. A drawn yarn was obtained. A taffeta raw machine was produced in which the yarn was used for warp and weft without twisting. This raw machine was dyed by a usual dyeing method to obtain a taffeta woven fabric. The content of synthetic fibers having a single fiber fineness of 0.5 to 4 dtex in this woven fabric was 100% by mass.
When this woven fabric was used as a base material, the maximum amount that droplets did not fall from the base material in one application was 0.4 g / 20 cm 2 , and the conductive resin content for permeation was insufficient. The coating amount of the conductive resin forming solution per time is 0.4 g / 20 cm 2 , which is the maximum absorption amount of the woven fabric, and the same series of coating, permeation, and polymerization steps as in Example 1 are performed three times. The conductive fiber structure of the above was obtained.
After cutting the cross section of the obtained conductive fiber structure, it was dyed with osmium and the cross section was observed. Was. In the obtained conductive fiber structure, the area ratio of the fiber region to the non-fiber region in a circle having a diameter of 30 μm containing four points of the center of gravity of the cross section of the single fiber was in the range of 70/30. The area ratio of the conductive resin to the non-fiber region was 35%. The surface resistivity of the conductive fiber structure was 16Ω / □. After washing the conductive fiber structure 100 times continuously, the surface resistivity was measured in the same manner, and the measurement became impossible. After washing, the conductive resin almost fell off and the conductivity was lost.

Figure 2022056684000002
Figure 2022056684000002

表1に示すように、実施例1~3の導電性繊維構造物は、特定の繊維領域/非繊維領域の面積比および非繊維領域中の導電性樹脂の面積割合を有しているため、実用性を鑑みた100回洗濯した後も、繊維束の内側に導電性樹脂を保持しており、導電性を維持できている。実施例1および2の導電性繊維構造物は、特に洗濯耐久性が優れていた。 As shown in Table 1, the conductive fiber structures of Examples 1 to 3 have an area ratio of a specific fiber region / non-fiber region and an area ratio of the conductive resin in the non-fiber region. Even after washing 100 times in view of practicality, the conductive resin is retained inside the fiber bundle, and the conductivity can be maintained. The conductive fiber structures of Examples 1 and 2 were particularly excellent in washing durability.

一方、比較例1では、非繊維領域中の導電性樹脂の面積割合を特定の範囲ではないため、100回洗濯したことにより導電性樹脂がほとんど脱落し、洗濯耐久性に劣っていた。 On the other hand, in Comparative Example 1, since the area ratio of the conductive resin in the non-fiber region was not within a specific range, the conductive resin was almost completely removed by washing 100 times, and the washing durability was inferior.

本発明の導電性繊維構造物は、心拍等の生体からの電気信号を検出する生体電極、または電気的筋肉刺激(EMS)等の生体に電気的刺激を付与する生体電極等として用いることができる。このような生体電極は、繊維構造に由来して生体へのフィット性がよいため、生体と直接接触するものとして好適であり、洗濯耐久性に優れるため、例えば、パッド、グローブ、ベルト等に加えて、下着等の各種衣類、履物、ヘッドバンド、リストバンド、首巻、腹巻、帽子、サスペンダー、手袋、腕時計、サポーター、マスク、包帯等の衣料品の少なくとも一部として用いることができる。 The conductive textile structure of the present invention can be used as a bioelectrode for detecting an electric signal from a living body such as heartbeat, a bioelectrode for applying electrical stimulation to a living body such as electrical muscle stimulation (EMS), and the like. .. Since such bioelectrodes are derived from the fiber structure and have good fit to the living body, they are suitable for those that come into direct contact with the living body, and because they have excellent washing durability, they are added to, for example, pads, gloves, belts and the like. It can be used as at least a part of various clothing such as underwear, footwear, headband, wristband, neckband, belly band, hat, suspenders, gloves, watches, supporters, masks, bandages and the like.

以上のとおり、本発明の好適な実施形態を説明したが、本発明の趣旨を逸脱しない範囲で、種々の追加、変更または削除が可能であり、そのようなものも本発明の範囲内に含まれる。 As described above, the preferred embodiment of the present invention has been described, but various additions, changes or deletions can be made without departing from the spirit of the present invention, and such things are also included in the scope of the present invention. Will be.

Claims (6)

合成繊維を含む繊維束で構成される基材と、前記基材内に存在する導電性樹脂とを含む導電性繊維構造物であって、
前記繊維束は、繊維が存在する繊維領域および繊維が存在しない非繊維領域で構成され、
前記繊維束を繊維長手方向に対して直交する方向で切断した切断面の繊維束内において、単繊維断面の重心が4点以上入る直径30μmの円内における繊維領域/非繊維領域の面積比が、20/80~80/20であり、かつ前記非繊維領域中で導電性樹脂の占める面積割合が40~90%である非繊維領域を含み、前記導電性樹脂が導電性高分子を含む導電性繊維構造物。
A conductive fiber structure containing a substrate composed of a fiber bundle containing synthetic fibers and a conductive resin existing in the substrate.
The fiber bundle is composed of a fiber region in which fibers are present and a non-fiber region in which fibers are not present.
In the fiber bundle of the cut surface obtained by cutting the fiber bundle in a direction orthogonal to the fiber longitudinal direction, the area ratio of the fiber region / non-fiber region in the circle having a diameter of 30 μm containing four or more points of gravity of the single fiber cross section is , 20/80 to 80/20, and the non-fiber region in which the area ratio of the conductive resin occupies 40 to 90% in the non-fiber region is included, and the conductive resin contains a conductive polymer. Sex fiber structure.
請求項1に記載の導電性繊維構造物であって、前記導電性樹脂が、離間する単繊維間において、連通孔があるスポンジ状および/または境界膜状に存在する、導電性繊維構造物。 The conductive fiber structure according to claim 1, wherein the conductive resin exists in the form of a sponge and / or a boundary film having communication holes between the separated single fibers. 請求項1または2に記載の導電性繊維構造物であって、前記基材を構成する合成繊維の断面形状が3点以上の凹部を有する異形断面である繊維を含む、導電性繊維構造物。 The conductive fiber structure according to claim 1 or 2, wherein the synthetic fiber constituting the base material has a deformed cross section having three or more recesses. 請求項1~3のいずれか一項に記載の導電性繊維構造物であって、前記基材が単繊維繊度0.5~4dtexである合成繊維を含んでなる、導電性繊維構造物。 The conductive fiber structure according to any one of claims 1 to 3, wherein the substrate contains synthetic fibers having a single fiber fineness of 0.5 to 4 dtex. 請求項1~4のいずれか一項に記載の導電性繊維構造物であって、100回洗濯後の表面抵抗率が200Ω/□以下である、導電性繊維構造物。 The conductive fiber structure according to any one of claims 1 to 4, wherein the surface resistivity after washing 100 times is 200 Ω / □ or less. 請求項1~5のいずれか一項に記載の導電性繊維構造物を電極として備える生体電極。 A bioelectrode comprising the conductive fiber structure according to any one of claims 1 to 5 as an electrode.
JP2020164562A 2020-09-30 2020-09-30 Conductive fiber structure and bioelectrode Pending JP2022056684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020164562A JP2022056684A (en) 2020-09-30 2020-09-30 Conductive fiber structure and bioelectrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020164562A JP2022056684A (en) 2020-09-30 2020-09-30 Conductive fiber structure and bioelectrode

Publications (1)

Publication Number Publication Date
JP2022056684A true JP2022056684A (en) 2022-04-11

Family

ID=81110847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020164562A Pending JP2022056684A (en) 2020-09-30 2020-09-30 Conductive fiber structure and bioelectrode

Country Status (1)

Country Link
JP (1) JP2022056684A (en)

Similar Documents

Publication Publication Date Title
JP6704949B2 (en) Biological signal detection clothing
TWI683402B (en) Electrode materials and electronic signal input/output apparatus
JP5547474B2 (en) Composite fiber with excellent antistatic, water absorption, and cool contact feeling
EP3289969B1 (en) Wearable electrode
US10966656B2 (en) Electric conductive fiber structure, electrode member, and method of producing electric conductive fiber structure
JP2022056684A (en) Conductive fiber structure and bioelectrode
WO2021020283A1 (en) Moisture-absorbing, heat-producing fabric and moisture-absorbing, heat-producing clothing material using same
JP6287265B2 (en) Multifilament yarn and fiber structure using the same
JP2002294564A (en) Ultra fine acrylic fiber and fabric

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230925