JP2022054076A - High-voltage transformer - Google Patents

High-voltage transformer Download PDF

Info

Publication number
JP2022054076A
JP2022054076A JP2020161064A JP2020161064A JP2022054076A JP 2022054076 A JP2022054076 A JP 2022054076A JP 2020161064 A JP2020161064 A JP 2020161064A JP 2020161064 A JP2020161064 A JP 2020161064A JP 2022054076 A JP2022054076 A JP 2022054076A
Authority
JP
Japan
Prior art keywords
winding
turns
voltage transformer
divided
wound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020161064A
Other languages
Japanese (ja)
Other versions
JP7114103B2 (en
Inventor
守 内山
Mamoru Uchiyama
貢 草間
Mitsugu Kusama
スハルナン シバスンタラン
Sivasundaram Suharnan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suriya Co Ltd
Original Assignee
Suriya Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suriya Co Ltd filed Critical Suriya Co Ltd
Priority to JP2020161064A priority Critical patent/JP7114103B2/en
Priority to CN202111120632.8A priority patent/CN114255978B/en
Publication of JP2022054076A publication Critical patent/JP2022054076A/en
Application granted granted Critical
Publication of JP7114103B2 publication Critical patent/JP7114103B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/323Insulation between winding turns, between winding layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/30Fastening or clamping coils, windings, or parts thereof together; Fastening or mounting coils or windings on core, casing, or other support

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Insulating Of Coils (AREA)
  • Coils Of Transformers For General Uses (AREA)

Abstract

To provide a compact and highly reliable high-voltage transformer with improved insulation in a split winding on a secondary side.SOLUTION: A high-voltage transformer has a cylindrical coil bobbin (100) with a rod-shaped soft magnetic core (203) penetrating therethrough. The outer circumference of a cylinder (101) of the coil bobbin is divided into a primary winding area (103) and a secondary winding area (104) in the longitudinal direction by a plurality of partition plates (D0 to Dn+1). The secondary winding area (104) is further divided into a plurality of split windings (S1 to Sn). Each split winding Si is wound through the insulating paint layers (V1, V2) for a predetermined number of turns. A secondary winding is composed of the plurality of split windings.SELECTED DRAWING: Figure 3

Description

本発明は1次巻線に比較的低電圧を入力し、2次巻線に高電圧を出力する高圧トランスに関する。 The present invention relates to a high voltage transformer that inputs a relatively low voltage to the primary winding and outputs a high voltage to the secondary winding.

数10V程度の低電圧を数kV程度の高電圧に昇圧する高圧トランスは高電圧を必要とする様々な電気/電子機器に用いられている。たとえば液晶モニタのバックライト、自動車のヘッドランプ、複写機の光源に用いられる放電灯の点灯装置に高圧トランスが必要である。ところが近年、電子機器の小型化に伴い高圧トランス自体の小型化も要求されている。特に数kVの高電圧を出力する高圧トランスにとって小型化と絶縁性の確保とは両立困難な課題であり、これまでに多くの解決策が提案されてきた。 A high voltage transformer that boosts a low voltage of about several tens of volts to a high voltage of about several kV is used in various electric / electronic devices that require a high voltage. For example, a high-pressure transformer is required for a lighting device for a backlight of a liquid crystal monitor, a headlamp of an automobile, and a discharge lamp used as a light source of a copier. However, in recent years, with the miniaturization of electronic devices, there is also a demand for miniaturization of the high voltage transformer itself. Especially for a high-voltage transformer that outputs a high voltage of several kV, it is difficult to achieve both miniaturization and ensuring insulation, and many solutions have been proposed so far.

たとえば、特許文献1に開示された高圧トランスは、高圧側の2次巻線を複数の分割巻線部により構成し、さらに分割巻線部の配置を工夫することで小型化と絶縁性の確保との両立を図っている。 For example, in the high-voltage transformer disclosed in Patent Document 1, the secondary winding on the high-voltage side is composed of a plurality of divided winding portions, and the arrangement of the divided winding portions is further devised to ensure miniaturization and insulation. We are trying to achieve both.

また特許文献2に開示された高圧トランスのボビンは、1次巻線と2次巻線の巻回部を長手方向に2つの領域に分け、2次巻線を複数の仕切り鍔により複数の巻回領域に分割し、各巻回領域での電位差を300V以内に設定している。2次巻線を仕切り鍔で分割することにより2次巻線間の絶縁性の向上を図り、コアの外周面に絶縁コーティング処理を施すことによりボビンを肉厚にすることなく巻線高圧側とコアとの短絡を防止している。 Further, in the bobbin of the high voltage transformer disclosed in Patent Document 2, the winding portion of the primary winding and the secondary winding is divided into two regions in the longitudinal direction, and the secondary winding is divided into a plurality of windings by a plurality of partition collars. It is divided into winding regions, and the potential difference in each winding region is set within 300V. By dividing the secondary winding with a partition collar, the insulation between the secondary windings is improved, and by applying an insulating coating treatment to the outer peripheral surface of the core, the bobbin is not thickened and the winding is on the high voltage side. It prevents a short circuit with the core.

さらに特許文献3には、1次巻線の上にクラフト紙等の絶縁膜を巻回し、その絶縁膜の外周に高圧側の2次巻線を巻回して2次側第1層を形成し、以下同様に絶縁膜と2次巻線からなる2次側第2層、第3層・・・を順次形成することで沿面放電発生の防止、すなわち絶縁性の向上を図っている。 Further, in Patent Document 3, an insulating film such as kraft paper is wound around the primary winding, and a high-voltage side secondary winding is wound around the insulating film to form a secondary side first layer. Similarly, by sequentially forming the secondary side second layer, the third layer, and the like composed of the insulating film and the secondary winding, the occurrence of creeping discharge is prevented, that is, the insulating property is improved.

特開平10-12453号公報Japanese Unexamined Patent Publication No. 10-12453 特開2009-290163号公報Japanese Unexamined Patent Publication No. 2009-290163 実開平5-73921号公報Jitsukaihei No. 5-73921

上述した特許文献1および2によれば、棒状コアの周りに1次巻線領域と2次巻線領域とに分けてコイルを巻回し、2次側を複数の仕切り鍔で分割した構成は開示されているものの、分割された2次巻線領域内での巻線間絶縁が考慮されていない。 According to Patent Documents 1 and 2 described above, a configuration is disclosed in which a coil is wound around a rod-shaped core separately in a primary winding region and a secondary winding region, and the secondary side is divided by a plurality of partition collars. However, interwinding insulation within the divided secondary winding region is not considered.

また特許文献3によれば、コアの周りに1次巻線を巻回し、更にその上に絶縁膜を挟みながら2次巻線を層状に巻回する高圧トランスが開示されているが、2次巻線を鍔部で分割巻回する構造の欠点、すなわち大型化および作業の煩雑化を解消するための考案であり、そもそも分割巻線を前提としていない。 Further, according to Patent Document 3, a high-voltage transformer in which a primary winding is wound around a core and the secondary winding is wound in a layer while sandwiching an insulating film on the primary winding is disclosed. It is a device for eliminating the drawbacks of the structure in which the winding is divided and wound at the flange, that is, the increase in size and the complexity of the work, and the divided winding is not premised in the first place.

そこで、本発明の目的は、2次側の分割巻線での絶縁性を向上させ、小型で信頼性の高い高圧トランスを提供することにある。 Therefore, an object of the present invention is to improve the insulation property of the split winding on the secondary side and to provide a compact and highly reliable high voltage transformer.

上記目的を達成するために、本発明による高圧トランスは筒状のコイルボビンの外周が複数の仕切り板により長手方向に1次巻線領域と2次巻線領域とに、さらに2次巻線領域が複数の分割巻線に分割され、隣り合う仕切り板に挟まれた領域に巻回された各分割巻線が所定巻回数ごとに絶縁塗料層を介して巻回される。
本発明の一態様によれば、棒状の軟磁性体コアが貫通した筒状のコイルボビンを有する高圧トランスは、前記コイルボビンの筒部の外周が複数の仕切り板により長手方向に1次巻線領域と2次巻線領域とに分割され、さらに前記2次巻線領域が複数の分割巻線の領域に分割されており、前記複数の分割巻線の各々が所定巻回数ごとに絶縁塗料からなる塗布層を介して巻回され、前記複数の分割巻線により2次巻線が構成されている、ことを特徴とする。これにより、高電圧出力であっても絶縁破壊を防止でき、小型で信頼性の高い高圧トランスを実現できる。
前記コイルボビンの筒部および前記複数の仕切り板は一定の厚さの絶縁性樹脂により形成され得る。これにより絶縁性と製造工程の簡略化が可能となる。
前記塗布層は所定巻回数だけ巻回される毎に巻線の上に高周波ワニスをコーティングすることで形成され得る。ワニスの塗布により形成されるので絶縁紙を用いるよりも製造が容易になり、更に小型化を促進できる。
前記1次巻線領域に1次巻線を24~48ターン、前記2次巻線領域に各分割巻線を350~500ターン合計5000~10000ターン巻回し、各分割巻線において100ターン毎に前記塗布層が形成されることができる。また、前記1次巻線の両端に24~48Vのパルス電圧を入力することで前記2次巻線の両端に4000~5000Vを出力することができる。このように分割巻線を開会することで4000~5000Vの高電圧出力を絶縁破壊なく実現することが可能となる。
In order to achieve the above object, in the high voltage transformer according to the present invention, the outer circumference of the tubular coil bobbin is divided into a primary winding region and a secondary winding region in the longitudinal direction by a plurality of partition plates, and a secondary winding region is further formed. Each of the divided windings, which is divided into a plurality of divided windings and wound in a region sandwiched between adjacent partition plates, is wound via an insulating coating layer every predetermined number of turns.
According to one aspect of the present invention, in a high-voltage transformer having a tubular coil bobbin through which a rod-shaped soft magnetic core penetrates, the outer periphery of the cylindrical portion of the coil bobbin has a primary winding region in the longitudinal direction due to a plurality of partition plates. It is divided into a secondary winding region, and the secondary winding region is further divided into a plurality of divided winding regions, and each of the plurality of divided windings is coated with an insulating paint for each predetermined number of turns. It is characterized in that it is wound through a layer and a secondary winding is formed by the plurality of divided windings. As a result, dielectric breakdown can be prevented even with a high voltage output, and a compact and highly reliable high-voltage transformer can be realized.
The cylinder portion of the coil bobbin and the plurality of partition plates may be formed of an insulating resin having a certain thickness. This enables insulation and simplification of the manufacturing process.
The coating layer can be formed by coating a high-frequency varnish on the windings each time the windings are wound a predetermined number of times. Since it is formed by applying varnish, it is easier to manufacture than using insulating paper, and further miniaturization can be promoted.
The primary winding is wound in the primary winding region for 24 to 48 turns, and each split winding is wound in the secondary winding region for 350 to 500 turns in total for 5000 to 10000 turns, and every 100 turns in each split winding. The coating layer can be formed. Further, by inputting a pulse voltage of 24 to 48V to both ends of the primary winding, 4000 to 5000V can be output to both ends of the secondary winding. By opening the split winding in this way, it is possible to realize a high voltage output of 4000 to 5000 V without dielectric breakdown.

本発明によれば2次側の分割巻線での絶縁性を向上させ小型で信頼性の高い高圧トランスを実現できる。 According to the present invention, it is possible to improve the insulation property of the split winding on the secondary side and realize a compact and highly reliable high voltage transformer.

本発明の一実施形態による高圧トランスのコイルボビンのI-I線断面図(A)および正面図(B)である。It is sectional drawing (A) and front view (B) of line I-I of the coil bobbin of the high voltage transformer according to one Embodiment of this invention. 本実施形態による高圧トランスにおける2次側分割巻線の巻回層構造の一例を示す拡大断面図である。It is an enlarged sectional view which shows an example of the winding layer structure of the secondary side split winding in the high voltage transformer by this embodiment. 図2における1つの巻回層の拡大図である。It is an enlarged view of one winding layer in FIG. 本実施形態による高圧トランスの一例を示す側面図である。It is a side view which shows an example of the high voltage transformer by this embodiment. 本実施形態による高圧トランスを用いた高圧電源回路の一例を示すブロック図である。It is a block diagram which shows an example of the high voltage power supply circuit using the high voltage transformer by this embodiment.

以下、本発明の実施形態について図面を参照して詳細に説明する。ただし、以下の実施形態に記載されている構成要素は単なる例示であって、本発明の技術範囲をそれらのみに限定する趣旨ではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the components described in the following embodiments are merely examples, and the technical scope of the present invention is not limited to them.

1.構成
本発明の一実施形態による高圧トランスは、筒形状のコイルボビンとコイルボビンの筒内に挿入される棒状の軟磁性体コア(フェライトコア)とからなる。以下、コイルボビンに巻回される絶縁銅線(エナメル線)の積層構造について詳細に説明する。
1. 1. Configuration The high-voltage transformer according to one embodiment of the present invention comprises a tubular coil bobbin and a rod-shaped soft magnetic core (ferrite core) inserted into the cylinder of the coil bobbin. Hereinafter, the laminated structure of the insulated copper wire (enamel wire) wound around the coil bobbin will be described in detail.

図1に例示するように、本実施形態におけるコイルボビン100は絶縁樹脂で形成され、長さL、厚さdの筒部101と、筒部101の外周に高さH、厚さdの複数の仕切り板D~Dn+1を有する。筒部101の貫通孔102は一辺がHdの正方形状を有し、そのなかに棒状のコアが配置される。図1では貫通孔102の断面が矩形状であるが、これに限定されるものではなく円形の断面であってもよい。 As illustrated in FIG. 1, the coil bobbin 100 in the present embodiment is formed of an insulating resin, and has a tubular portion 101 having a length L and a thickness d, and a plurality of cylinder portions 101 having a height H and a thickness d on the outer periphery of the tubular portion 101. It has a partition plate D 0 to D n + 1 . The through hole 102 of the tubular portion 101 has a square shape with Hd on one side, and a rod-shaped core is arranged therein. In FIG. 1, the cross section of the through hole 102 is rectangular, but the cross section is not limited to this and may be a circular cross section.

複数の仕切り板D~Dn+1のうち間隔wpで隣り合う仕切り板DとDn+1の間が1次巻線領域103であり、仕切り板DからDの間が2次巻線領域104である。1次巻線領域103には1次巻線Pが巻回数tpで巻回されている。なお、仕切り板D~Dn+1も矩形状でなく円形状であってもよい。 Of the plurality of partition plates D 0 to D n + 1 , the primary winding region 103 is between the partition plates D n and D n + 1 , which are adjacent to each other at intervals wp, and the secondary winding region is between the partition plates D 0 and D n . 104. The primary winding P is wound in the primary winding region 103 at the number of turns tp. The partition plates D 0 to D n + 1 may also have a circular shape instead of a rectangular shape.

2次巻線領域104は仕切り板D~Dn-1により更に分割され、間隔wsで隣り合う仕切り板Di-1とD(i=1,・・・,n)の間に分割巻線Sが巻回されている。分割巻線Sは、前段の分割巻線Si-1から仕切り板Di-1の渡り溝を通してエナメル線を引き継いで巻回され、以下同様にして続く分割巻線Si+1から分割巻線Sまで順次巻回される。分割巻線Sの巻回数をtdターンとすれば、2次巻線領域104の合計巻回数tsは(td×n)ターンとなる。 The secondary winding region 104 is further divided by the partition plates D 1 to D n-1 , and is divided between the partition plates Di -1 and Di ( i = 1, ..., N) adjacent to each other at the interval ws. Winding Si is wound. The split winding S i is wound by taking over the enamel wire from the split winding S i-1 in the previous stage through the crossover groove of the partition plate D i-1 , and is similarly wound from the split winding S i + 1 . It is wound sequentially up to Sn . Assuming that the number of turns of the split winding Si is td turns, the total number of turns ts of the secondary winding region 104 is (td × n) turns.

たとえば、コイルボビン100の長さLは100~150mm程度、間隔wpは5mm程度、1次側巻回数tpは24~48ターン程度、2次側巻回数tsは5000~10000ターン程度、分割巻線Sの巻回数tdは350~600ターン程度である。次に任意の分割巻線Sの積層巻回構造について図2および図3を参照しながら詳細に説明する。 For example, the length L of the coil bobbin 100 is about 100 to 150 mm, the interval wp is about 5 mm, the primary side winding number tp is about 24 to 48 turns, the secondary side winding number ts is about 5000 to 10000 turns, and the split winding S. The number of turns td of i is about 350 to 600 turns. Next, the laminated winding structure of the arbitrary split winding Si will be described in detail with reference to FIGS. 2 and 3.

2.積層巻回構造
図2に例示するように、巻回数tdの分割巻線Sは仕切り板Di-1とDの間に筒部101上の底面から所定感化数tdd毎に絶縁塗料層Vを介して順次巻回されるが、エナメル線は前段の分割巻線Si-1から仕切り板Di-1の渡り溝105を通して引き継がれ、側面の絶縁層106により絶縁保護された状態で低面まで導かれる。絶縁層106は前段から引き継いだエナメル線と分割巻線Sとの間の電位差による絶縁破壊を防止するために設けられる。絶縁106には絶縁テープを用いることができる。
2. 2. Laminated winding structure As illustrated in FIG. 2, the split winding S i having the number of turns td is an insulating paint layer between the partition plates Di -1 and Di from the bottom surface on the tubular portion 101 for each predetermined number of sensitizations tdd . The enamel wire is wound sequentially through V, but the enamel wire is taken over from the split winding S i-1 in the previous stage through the crossover 105 of the partition plate D i-1 , and is insulated and protected by the insulating layer 106 on the side surface. Guided to the low side. The insulating layer 106 is provided to prevent dielectric breakdown due to a potential difference between the enamel wire inherited from the previous stage and the split winding Si . Insulation tape can be used for the insulation 106.

図3に例示するように、巻回数tdの分割巻線Sは所定巻回数tdd毎に絶縁塗料層Vを介して巻回される。絶縁塗料層Vは液状の絶縁樹脂を塗布することで形成され、一例として高周波ワニスを用いる。以下、隣り合う仕切り板Di-1とDの間隔ws=5mm、仕切り板Dの高さHを6.75mm、巻線に使用するエナメル線の直径φcを0.16mm、各層の所定巻回数tddを略100ターン、分割巻線Sの合計巻回数tdを略500ターンとして、具体的な巻回手順について説明する。 As illustrated in FIG. 3, the split winding Si with the number of turns td is wound via the insulating coating layer V every predetermined number of turns tdd. The insulating coating layer V is formed by applying a liquid insulating resin, and a high-frequency varnish is used as an example. Hereinafter, the distance ws = 5 mm between the adjacent partition plates Di -1 and Di, the height H of the partition plate D is 6.75 mm, the diameter φc of the enamel wire used for winding is 0.16 mm, and the predetermined winding of each layer is performed. A specific winding procedure will be described assuming that the number of turns tdd is approximately 100 turns and the total number of turns td of the split winding Si is approximately 500 turns.

まず最下層の巻線をtdd=略100ターンだけ巻回すると、その表面に高周波ワニスを塗布し、それを乾燥させて高周波ワニス塗布層V1を形成する。続いて、高周波ワニス塗布層V1の上に巻線を同じくtdd=略100ターンだけ巻回し、その表面に高周波ワニスを塗布し、それを乾燥させて高周波ワニス塗布層V2を形成する。以下同様に略100ターンの巻線ごとに高周波ワニス塗布層Vを形成しながら、所定の合計巻回数tdになるまで積層巻回工程を繰り返す。同様の積層巻回工程が2次側の全ての分割巻線Sで繰り返されることで2次巻線が形成される。各分割巻線Sの巻回数td=500ターンとすれば100ターンごとに4層の高周波ワニス塗布層V1~V4が形成される。仕切り板の間隔ws=5mmの間に直径0.16mmの巻線を500ターン巻回するので、100ターンごとに高周波ワニス塗布層Vを形成することにより絶縁性が向上し巻線が安定化するという利点がある。 First, when the winding of the lowermost layer is wound for tdd = about 100 turns, a high-frequency varnish is applied to the surface thereof and dried to form a high-frequency varnish coating layer V1. Subsequently, the winding is similarly wound on the high frequency varnish coating layer V1 for tdd = about 100 turns, the high frequency varnish is applied to the surface thereof, and the high frequency varnish is dried to form the high frequency varnish coating layer V2. Similarly, while forming the high frequency varnish coating layer V for each winding of approximately 100 turns, the laminated winding step is repeated until the predetermined total number of windings td is reached. The secondary winding is formed by repeating the same laminated winding process on all the split windings Si on the secondary side. Assuming that the number of turns of each divided winding Si is dt = 500 turns, four high-frequency varnish coating layers V1 to V4 are formed every 100 turns. Since a winding with a diameter of 0.16 mm is wound for 500 turns while the interval ws = 5 mm of the partition plate, the insulation is improved and the winding is stabilized by forming the high frequency varnish coating layer V every 100 turns. There is an advantage.

一例として、2次側分割巻線Sの巻回数td=500ターンとすれば、1次巻線Pの巻回数tp=24ターン、2次側分割巻線Sの巻回数td=500ターン、2次側の分割数n=10とすれば、2次巻線の合計巻回数ts=td×n=5000ターンとなる。したがって、このコイルボビン100を用いた高圧トランスの1次側に24Vのパルス電圧を印加すると、2次側に24×(5000/24)=5000Vの高電圧を得ることができる。 As an example, if the number of turns of the secondary split winding S i is dt = 500 turns, the number of turns of the primary winding P is tp = 24 turns, and the number of turns of the secondary split winding S i is dt = 500 turns. If the number of divisions on the secondary side is n = 10, the total number of turns of the secondary winding is ts = td × n = 5000 turns. Therefore, when a pulse voltage of 24 V is applied to the primary side of the high voltage transformer using the coil bobbin 100, a high voltage of 24 × (5000/24) = 5000 V can be obtained on the secondary side.

本実施形態によれば、高圧側の2次巻線が仕切り板D~Dにより複数の分割巻線S~Sに分割され、さらに各分割巻線Sが所定巻回数tdd毎に絶縁塗料層Vを介して巻回されることで、上述したような高電圧であっても絶縁破壊が生じ難く安定した高電圧出力を得ることができ、かつ小型の電源を構成することができる。なお、分割巻線S~Sの分割数n、仕切り板の間隔ws、各分割巻線Sの巻回数tdおよび絶縁塗料層Vを形成する巻回数tddは、2次側の出力電圧および各分割巻線Sでの昇圧電圧等を考慮して設定することができる。 According to the present embodiment, the secondary winding on the high voltage side is divided into a plurality of divided windings S1 to Sn by the partition plates D 0 to Dn , and each divided winding S i is further divided by a predetermined number of turns tdd . By being wound through the insulating coating layer V, it is possible to obtain a stable high voltage output in which insulation breakdown is unlikely to occur even at the high voltage as described above, and it is possible to configure a small power supply. can. The number of divisions n of the divided windings S1 to Sn, the interval ws of the partition plates, the number of turns dt of each divided winding Si , and the number of turns dtd forming the insulating coating layer V are the output voltages on the secondary side. And it can be set in consideration of the boosted voltage and the like in each split winding Si .

3.実施例
図4に例示するように、本発明の一実施例による高圧トランス200は1次巻線Pのリード線に接続した1次側端子201と、2次巻線のリード線に接続した2次側端子202と、上述したコイルボビン100の貫通孔102内に配置したフェライトコア203と、からなる。ここではコイルボビン100の長さL=140mmとし、ほぼ同じ長さのフェライトコア203を用意する。ただし、短いフェライトコアを貫通孔102内で4~5段直列につなげてフェライトコア203を構成しても良い。この場合、短いフェライトコア間のギャップを調整して高圧トランス200の性能を最適化することも可能である。
3. 3. Example As illustrated in FIG. 4, the high-voltage transformer 200 according to the embodiment of the present invention has a primary terminal 201 connected to the lead wire of the primary winding P and 2 connected to the lead wire of the secondary winding. It is composed of a next-side terminal 202 and a ferrite core 203 arranged in the through hole 102 of the coil bobbin 100 described above. Here, the length L of the coil bobbin 100 is set to 140 mm, and a ferrite core 203 having substantially the same length is prepared. However, a short ferrite core may be connected in series in 4 to 5 stages in the through hole 102 to form the ferrite core 203. In this case, it is also possible to optimize the performance of the high voltage transformer 200 by adjusting the gap between the short ferrite cores.

コイルボビン100の1次巻線Pは24~48ターン、2次巻線は20分割して各分割巻線(S~S20)を500ターンとして合計10000ターンとする。その際、各分割巻線Sは所定巻回数100ターン毎に高周波ワニスでコーティングして高周波ワニス塗布層Vを形成する。最後にリード線を取り付け、端子201および202を接続する。 The primary winding P of the coil bobbin 100 has 24 to 48 turns, the secondary winding is divided into 20 turns, and each divided winding (S 1 to S 20 ) has 500 turns, for a total of 10000 turns. At that time, each split winding Si is coated with a high-frequency varnish every 100 turns of a predetermined number of turns to form a high-frequency varnish coating layer V. Finally, a lead wire is attached and terminals 201 and 202 are connected.

なお、フェライトコア203が4~5段の短いフェライトコアで形成されている場合、1次側端子201に通電して2次側端子202に所定の電圧が得られるようにフェライトコアのギャップを調整しても良い。 When the ferrite core 203 is formed of a short ferrite core having 4 to 5 stages, the gap of the ferrite core is adjusted so that the primary side terminal 201 is energized and a predetermined voltage is obtained at the secondary side terminal 202. You may.

最後に、高圧トランス200をモールドケースに入れ、モールド材を流し込んで固化させ完成する。 Finally, the high-voltage transformer 200 is placed in a mold case, and the mold material is poured and solidified to complete the process.

4.高圧電源回路
以下、本実施形態による高圧トランス200を適用した高圧電源回路の一例について説明する。ここでは1次巻線Pの巻回数tp=24ターン、2次巻線の分割数n=18、分割巻線Sの巻回数td=350ターン、絶縁塗布層Vの形成巻回数tdd=100ターンとし、1次側端子201に24Vを印加することで、2次側端子202に4200Vの高電圧を生成させるものとする。
4. High-voltage power supply circuit Hereinafter, an example of a high-voltage power supply circuit to which the high-voltage transformer 200 according to the present embodiment is applied will be described. Here, the number of turns of the primary winding P is tp = 24 turns, the number of divisions of the secondary winding is n = 18, the number of turns of the divided winding Si is dt = 350 turns, and the number of turns of the insulating coating layer V is tdd = 100. By making a turn and applying 24V to the primary side terminal 201, it is assumed that a high voltage of 4200V is generated in the secondary side terminal 202.

図5に例示するように、発振周波数1kHzの発振器301はパルス信号をANDゲート302を介してパルス増幅器303へ出力する。なお発振器301の発振周波数は1k~10kHzの範囲内の所定の周波数に設定してもよい。パルス増幅器303はパルス信号に従って24Vのパルス電圧を高圧トランス200の一次側端子201に印加する。ANDゲート302は制御部304からの制御信号(ON/OFF)に従ってパルス信号を導通あるいは遮断する。すなわち制御部304からの制御信号がONであれば、発振器301からのパルス信号がパルス増幅器303へ出力され、パルス増幅器303から24Vのパルス電圧が高圧トランス200へ出力される。制御部304からの制御信号がOFFであれば、発振器301からのパルス信号はパルス増幅器303へ出力されず、したがってパルス増幅器303は高圧トランス200へパルス電圧を出力しない。 As illustrated in FIG. 5, the oscillator 301 having an oscillation frequency of 1 kHz outputs a pulse signal to the pulse amplifier 303 via the AND gate 302. The oscillation frequency of the oscillator 301 may be set to a predetermined frequency within the range of 1 k to 10 kHz. The pulse amplifier 303 applies a pulse voltage of 24 V to the primary terminal 201 of the high voltage transformer 200 according to the pulse signal. The AND gate 302 conducts or cuts off the pulse signal according to the control signal (ON / OFF) from the control unit 304. That is, if the control signal from the control unit 304 is ON, the pulse signal from the oscillator 301 is output to the pulse amplifier 303, and the pulse voltage of 24 V is output from the pulse amplifier 303 to the high voltage transformer 200. If the control signal from the control unit 304 is OFF, the pulse signal from the oscillator 301 is not output to the pulse amplifier 303, and therefore the pulse amplifier 303 does not output the pulse voltage to the high voltage transformer 200.

制御部304は、アラームラッチ制御部305からアラーム信号ALARMを入力すると制御信号をOFFに設定し、アラーム信号ALARMを入力しないときは制御信号をONに設定する。 The control unit 304 sets the control signal to OFF when the alarm signal ALARM is input from the alarm latch control unit 305, and sets the control signal to ON when the alarm signal ALARM is not input.

高圧トランス200の2次側端子202には電流検出部306および電圧検出部307が設けられる。上限電流検出部308は高圧トランス200の出力電流が上限を超えたか否かを検出し、上限を超えた時にALARMをアラームラッチ制御部305へ出力する。上限電圧検出部309は出力電圧が上限電圧を超えたか否かを検出し、上限を超えた時にALARMをアラームラッチ制御部305へ出力する。下限電圧検出部310は出力電圧が下限電圧を下回ったか否かを検出し、下限を下回った時にALARMをアラームラッチ制御部305へ出力する。 The secondary side terminal 202 of the high voltage transformer 200 is provided with a current detection unit 306 and a voltage detection unit 307. The upper limit current detection unit 308 detects whether or not the output current of the high voltage transformer 200 exceeds the upper limit, and outputs ALARM to the alarm latch control unit 305 when the upper limit is exceeded. The upper limit voltage detection unit 309 detects whether or not the output voltage exceeds the upper limit voltage, and outputs ALARM to the alarm latch control unit 305 when the output voltage exceeds the upper limit. The lower limit voltage detection unit 310 detects whether or not the output voltage has fallen below the lower limit voltage, and outputs ALARM to the alarm latch control unit 305 when the output voltage falls below the lower limit voltage.

アラームラッチ制御部305は、上限電流検出部308、上限電圧検出部309および下限電圧検出部310の少なくとも1つからALARMを入力すると、ALARMをラッチし、手動あるいは所定の回復処理によりアラームが解除されるまでアラーム信号ALRAMを制御部304へ出力する。したがって、高電圧の出力側で何らかの原因により過剰電流が流れたり、あるいは出力電圧が異常に上昇あるいは降下したりした場合には、高圧トランス200の1次側入力が遮断され、正常に復帰するまで高電圧出力が停止する。 When the alarm latch control unit 305 inputs ALARM from at least one of the upper limit current detection unit 308, the upper limit voltage detection unit 309, and the lower limit voltage detection unit 310, the alarm latch control unit 305 latches the ALARM and cancels the alarm manually or by a predetermined recovery process. The alarm signal ALLAM is output to the control unit 304 until. Therefore, if an excess current flows on the high voltage output side for some reason, or if the output voltage rises or falls abnormally, the primary side input of the high voltage transformer 200 is cut off until it returns to normal. High voltage output stops.

本発明の一実施形態による高圧トランス200を用いることで高電圧であっても絶縁破壊を生じることなく、安定した高電圧出力を得ることができ、さらに、異常(ALARM)が検知されると即座に出力を停止することで安全性を更に高めることができる。 By using the high voltage transformer 200 according to the embodiment of the present invention, stable high voltage output can be obtained without causing dielectric breakdown even at high voltage, and further, when an abnormality (ALARM) is detected, it is immediately possible. Safety can be further enhanced by stopping the output.

本実施形態による高圧トランス200は、電場中に食品等を保存することにより鮮度を長期間維持することができる冷蔵保存庫における電場形成用の高圧電源に使用することができ、高圧電源の小型化を促進できる。 The high-voltage transformer 200 according to the present embodiment can be used as a high-voltage power source for forming an electric field in a refrigerated storage that can maintain freshness for a long period of time by storing food or the like in an electric field, and the high-voltage power source can be downsized. Can be promoted.

本発明は数kV程度の高電圧を必要とする電源回路の高圧トランスに適用可能である。 The present invention is applicable to a high voltage transformer of a power supply circuit that requires a high voltage of about several kV.

100 コイルボビン
101 筒部
102 貫通孔
103 1次巻線領域
104 2次巻線領域
105 渡り溝
106 絶縁層
200 高圧トランス
201 1次側端子
202 2次側端子
203 フェライトコア
~Dn+1 仕切り板
P 1次巻線
~S 分割巻線
V、V1~V3 絶縁塗料層(高周波ワニス塗布層)
100 Coil bobbin 101 Cylinder 102 Through hole 103 Primary winding area 104 Secondary winding area 105 Cross groove 106 Insulation layer 200 High voltage transformer 201 Primary side terminal 202 Secondary side terminal 203 Ferrite core D 0 to D n + 1 Partition plate P Primary winding S 1 to Sn Divided winding V, V1 to V3 Insulation coating layer (high frequency varnish coating layer)

Claims (5)

棒状の軟磁性体コアが貫通した筒状のコイルボビンを有する高圧トランスであって、
前記コイルボビンの筒部の外周が複数の仕切り板により長手方向に1次巻線領域と2次巻線領域とに分割され、さらに前記2次巻線領域が複数の分割巻線の領域に分割されており、
前記複数の分割巻線の各々が所定巻回数ごとに絶縁塗料からなる塗布層を介して巻回され、前記複数の分割巻線により2次巻線が構成されている、
ことを特徴とする高圧トランス。
A high-voltage transformer with a cylindrical coil bobbin through which a rod-shaped soft magnetic core penetrates.
The outer circumference of the cylinder portion of the coil bobbin is divided into a primary winding region and a secondary winding region in the longitudinal direction by a plurality of partition plates, and the secondary winding region is further divided into a plurality of divided winding regions. And
Each of the plurality of divided windings is wound through a coating layer made of an insulating paint every predetermined number of turns, and the plurality of divided windings constitute a secondary winding.
A high voltage transformer characterized by that.
前記コイルボビンの筒部および前記複数の仕切り板が一定の厚さの絶縁性樹脂からなることを特徴とする請求項1に記載の高圧トランス。 The high-voltage transformer according to claim 1, wherein the cylinder portion of the coil bobbin and the plurality of partition plates are made of an insulating resin having a constant thickness. 前記塗布層は所定巻回数だけ巻回される毎に巻線の上に高周波ワニスをコーティングすることで形成されることを特徴とする請求項1または2に記載の高圧トランス。 The high-voltage transformer according to claim 1 or 2, wherein the coating layer is formed by coating a high-frequency varnish on the windings each time the coating layer is wound a predetermined number of times. 前記1次巻線領域に1次巻線を24~48ターン、前記2次巻線領域に各分割巻線を350~500ターン合計5000~10000ターン巻回し、各分割巻線において100ターン毎に前記塗布層が形成されることを特徴とする請求項1-請求項3のいずれか1項に記載の高圧トランス。 The primary winding is wound in the primary winding region for 24 to 48 turns, and each split winding is wound in the secondary winding region for 350 to 500 turns in total for 5000 to 10000 turns, and every 100 turns in each split winding. The high voltage transformer according to any one of claims 1 to 3, wherein the coating layer is formed. 前記1次巻線の両端に24~48Vのパルス電圧を入力することで前記2次巻線の両端に4000~5000Vを出力することを特徴とする請求項1-請求項4のいずれか1項に記載の高圧トランス。 One of claims 1 to 4, wherein a pulse voltage of 24 to 48 V is input to both ends of the primary winding to output 4000 to 5000 V to both ends of the secondary winding. High voltage transformer described in.
JP2020161064A 2020-09-25 2020-09-25 high voltage transformer Active JP7114103B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020161064A JP7114103B2 (en) 2020-09-25 2020-09-25 high voltage transformer
CN202111120632.8A CN114255978B (en) 2020-09-25 2021-09-24 High-voltage transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020161064A JP7114103B2 (en) 2020-09-25 2020-09-25 high voltage transformer

Publications (2)

Publication Number Publication Date
JP2022054076A true JP2022054076A (en) 2022-04-06
JP7114103B2 JP7114103B2 (en) 2022-08-08

Family

ID=80792141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020161064A Active JP7114103B2 (en) 2020-09-25 2020-09-25 high voltage transformer

Country Status (2)

Country Link
JP (1) JP7114103B2 (en)
CN (1) CN114255978B (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0223063A (en) * 1988-07-12 1990-01-25 Sony Corp Switching power supply device
JPH0623224U (en) * 1992-08-25 1994-03-25 ティーディーケイ株式会社 High voltage transformer
JPH1012453A (en) * 1996-06-21 1998-01-16 Nagano Japan Radio Co High voltage transformer
JPH11111537A (en) * 1997-09-30 1999-04-23 Sumida Denki Kk Compact high-voltage transformer
KR20100095210A (en) * 2009-02-20 2010-08-30 삼성전기주식회사 Integrated transformer
EP3007190A1 (en) * 2014-10-09 2016-04-13 ABB Technology AG Pre-product for a dry transformer high voltage coil
CN210606903U (en) * 2019-12-12 2020-05-22 乐清市精密电子电器有限公司 EFD type switching transformer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2781529Y (en) * 2005-04-12 2006-05-17 南通大东电子有限公司 Surface adhesive inverse transformer
CN102522194B (en) * 2011-12-12 2013-09-11 陕西宝成航空仪表有限责任公司 Ladder winding method for transformer type sensor coil

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0223063A (en) * 1988-07-12 1990-01-25 Sony Corp Switching power supply device
JPH0623224U (en) * 1992-08-25 1994-03-25 ティーディーケイ株式会社 High voltage transformer
JPH1012453A (en) * 1996-06-21 1998-01-16 Nagano Japan Radio Co High voltage transformer
JPH11111537A (en) * 1997-09-30 1999-04-23 Sumida Denki Kk Compact high-voltage transformer
KR20100095210A (en) * 2009-02-20 2010-08-30 삼성전기주식회사 Integrated transformer
EP3007190A1 (en) * 2014-10-09 2016-04-13 ABB Technology AG Pre-product for a dry transformer high voltage coil
CN210606903U (en) * 2019-12-12 2020-05-22 乐清市精密电子电器有限公司 EFD type switching transformer

Also Published As

Publication number Publication date
CN114255978B (en) 2024-05-07
CN114255978A (en) 2022-03-29
JP7114103B2 (en) 2022-08-08

Similar Documents

Publication Publication Date Title
US7733208B2 (en) High voltage pulse type transformer with increased coupling coefficient through primary and secondary winding proximity
US4931761A (en) Compact transformer
KR100961314B1 (en) Discharge lamp lighting apparatus
US8179223B2 (en) Sheet type transformer and discharge lamp lighting apparatus
US5266916A (en) Compact transformer
US7737814B1 (en) Electrostatic shield and voltage transformer
RU2535838C2 (en) Inductance coil and method of its fabrication
US20120133475A1 (en) Segmented core transformer
JP7114103B2 (en) high voltage transformer
US1360752A (en) Stationary induction apparatus
JPH05198446A (en) High voltage transformer
JP2004303746A (en) Thin transformer
JPH05283248A (en) High frequency booster transformer
JP2010199223A (en) Pulse transformer and pulsed power supply device
JP2004253814A (en) Small-sized transformer
JP2004207405A (en) Electromagnetic apparatus and high-voltage generator
RU2764648C1 (en) Small-sized high-voltage pulse transformer and method of its manufacture
JPH118142A (en) Electronic component
JP2585000Y2 (en) Coil bobbin device for high-voltage pulse transformer
JP4453289B2 (en) High voltage transformer
JP2630716B2 (en) Winding method of electric winding parts
JPH0342810A (en) Pulse transformer
JPS5940724Y2 (en) Trance
JP4935553B2 (en) Trance
KR100308495B1 (en) Thin film type transformer and Process Method Thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220120

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220720

R150 Certificate of patent or registration of utility model

Ref document number: 7114103

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150