JP2022050797A - Ceramic-metal conjugate and manufacturing method thereof, dielectric circuit board, and power module - Google Patents

Ceramic-metal conjugate and manufacturing method thereof, dielectric circuit board, and power module Download PDF

Info

Publication number
JP2022050797A
JP2022050797A JP2020156921A JP2020156921A JP2022050797A JP 2022050797 A JP2022050797 A JP 2022050797A JP 2020156921 A JP2020156921 A JP 2020156921A JP 2020156921 A JP2020156921 A JP 2020156921A JP 2022050797 A JP2022050797 A JP 2022050797A
Authority
JP
Japan
Prior art keywords
ceramic
brazing material
metal
active metal
ceramic member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020156921A
Other languages
Japanese (ja)
Inventor
玄也 能川
Genya Nokawa
俊 高野
Takashi Takano
賢次 沖代
Kenji Okishiro
光 戸部
Hikari Tobe
富生 岩崎
Tomio Iwasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2020156921A priority Critical patent/JP2022050797A/en
Publication of JP2022050797A publication Critical patent/JP2022050797A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Products (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

To provide a structure for reduction of strain in an interface reaction layer formed between a ceramic and a ceramic surface.SOLUTION: A structure includes a ceramic member, a metallic member, and an active metal brazing material involving at least one kinds selected from Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mg, Ca, Y, Ce, La, Sm, Yb, Nd, Gd, and Er as an active metal species, wherein the ceramic member and the metallic member is bonded to each other via the active metal brazing material, an interface reaction layer is formed between the active metal brazing material and the ceramic member, and the closest same species atomic distance of crystal planes in a bonding interface of the interface reaction layer and the ceramic member is 30% or under based on the closest same species atomic distance of crystal planes of the ceramic member.SELECTED DRAWING: Figure 4

Description

特許法第30条第2項適用申請有り 開催日 令和2年9月9日~11日 集会名、開催場所 一般社団法人溶接学会 2020年度秋季全国大会 WEB開催(オンデマンド方式)Application for application of Article 30, Paragraph 2 of the Patent Law Date: September 9-11, 2nd year of Reiwa Meeting name and venue Japan Welding Society 2020 Autumn National Convention WEB held (on-demand method)

本発明は、セラミックスと金属との接合体及びその製造方法、それを用いた絶縁回路基板、パワーモジュールに関する。 The present invention relates to a junction of ceramics and metal, a method for manufacturing the same, an insulated circuit board using the same, and a power module.

セラミックスと金属の接合にはMo-Mn法や活性金属ろう材による活性金属法などの接合法が知られており、特に半導体装置に用いられる回路基板に関しては、DCB(Direct Copper Bonding)と呼ばれる酸化物-Cu間を直接加熱圧着する接合法やAMB(Active Metal Brazing)と呼ばれる活性金属ろう材を用いた接合法が用いられている。 Bonding methods such as the Mo-Mn method and the active metal method using an active metal brazing material are known for joining ceramics and metals. Especially for circuit boards used in semiconductor devices, oxidation called DCB (Direct Copper Bonding) is known. A joining method in which an object and Cu are directly heat-bonded and a joining method using an active metal brazing material called AMB (Active Metal Brazing) are used.

これらの接合技術を用いたセラミックス-金属複合体は、広く気密封止や摺動部材、加工工具にも使われており、いずれも構造的に応力のかかりやすいセラミックスと金属の接合界面を高強度化することが必要である。 Ceramic-metal composites using these bonding technologies are widely used in airtight sealing, sliding members, and processing tools, and all of them have high strength at the bonding interface between ceramics and metal, which are structurally susceptible to stress. It is necessary to make it.

また、セラミックスを絶縁回路基板として用いる装置は、インバーターやコンバーターに代表されるパワーエレクトロニクス向け半導体装置があって、高電流密度化、小型化が進められており、より高い熱応力となるため、長寿命、高強度の回路基板、ひいては高強度なセラミックス―金属接合体が必要とされている。 In addition, devices that use ceramics as an insulating circuit board include semiconductor devices for power electronics such as inverters and converters, and are being promoted to increase current density and miniaturization, resulting in higher thermal stress. There is a need for longevity, high strength circuit boards, and thus high strength ceramics-metal joints.

この高強度化が可能な接合法として活性金属ろう材を用いた接合法が注目されており、代表的な接合材としてAg-Cu-Ti系ろう材が用いられている。Ag-Cu-Ti系ろう材は、In、Bi、Sn、Znなどの添加物により融点を700~800℃に調整し、700~900℃の接合温度で用いられている。(例えば、特許文献1) A joining method using an active metal brazing material is attracting attention as a joining method capable of increasing the strength, and an Ag-Cu-Ti brazing material is used as a typical joining material. The Ag—Cu—Ti brazing material has a melting point adjusted to 700 to 800 ° C. with additives such as In, Bi, Sn, and Zn, and is used at a bonding temperature of 700 to 900 ° C. (For example, Patent Document 1)

特開2005-112677号公報Japanese Unexamined Patent Publication No. 2005-12677

活性金属ろう材を用いたセラミックスと金属との界面では活性金属とセラミックスが反応し、界面反応層を作ることで接合を形成する。しかしながら、接合界面で、同時に複数の反応が発生するため、界面反応層においてひずみ、欠陥が増大し、強度低下や寿命低下につながる場合がある。 At the interface between ceramics using an active metal brazing material and the metal, the active metal reacts with the ceramics to form an interface reaction layer to form a bond. However, since a plurality of reactions occur at the same time at the bonding interface, strain and defects increase in the interface reaction layer, which may lead to a decrease in strength and a decrease in life.

そこで、本発明ではセラミックスとセラミックス表面に形成する界面反応層のひずみが低減される構造を提供することを目的とする。 Therefore, an object of the present invention is to provide a structure in which the strain of the ceramic and the interface reaction layer formed on the surface of the ceramic is reduced.

本発明のセラミックス-金属接合体は、セラミックス部材と、金属部材と、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mg、Ca、Y、Ce、La、Sm、Yb、Nd、Gd、Erのいずれか1種以上を活性金属種として含む活性金属ろう材と、を有し、前記セラミックス部材と前記金属部材とが、前記活性金属ろう材を介して接合されており、前記活性金属ろう材と前記セラミックス部材との間に界面反応層が形成されており、前記界面反応層と前記セラミックス部材との接合界面の結晶面の最近接同種原子間距離が、前記セラミックス部材の結晶面の最近接同種原子間距離を基準として30%以内である
ことを特徴とする。
The ceramic-metal joint of the present invention includes a ceramic member, a metal member, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mg, Ca, Y, Ce, La, Sm, Yb, It has an active metal brazing material containing at least one of Nd, Gd, and Er as an active metal type, and the ceramic member and the metal member are joined via the active metal brazing material. An interfacial reaction layer is formed between the active metal brazing material and the ceramic member, and the closest homogenous atomic distance between the crystal planes at the bonding interface between the interfacial reaction layer and the ceramic member is the distance between the ceramic members. It is characterized in that it is within 30% based on the distance between the closest homologous atoms on the crystal plane.

また、前記セラミックス部材が窒化物セラミックスもしくは酸化物セラミックスであり、前記セラミックス-金属接合体を用いる絶縁回路基板とすることができる。 Further, the ceramic member is a nitride ceramic or an oxide ceramic, and an insulating circuit board using the ceramic-metal joint can be used.

また、前記セラミックス部材がAlNもしくはSi34であり、前記セラミックス-金属接合体を用いる絶縁回路基板とすることができる。 Further, the ceramic member is Al N or Si 3 N 4 , and an insulating circuit board using the ceramic-metal joint can be used.

また、前記絶縁回路基板を用いるパワーモジュールとすることができる。 Further, the power module can be a power module using the insulated circuit board.

また、前記セラミックス-金属接合体の製造方法は、セラミックス部材の表面に活性金属ろう材を配置する工程と、前記活性金属ろう材上に、前記セラミックス基板と対向して金属部材を配置し、接触した状態を形成する工程と、接触した前記セラミックス部材、前記活性金属ろう材、前記金属部材を、真空、不活性雰囲気、もしくは還元雰囲気で同時に加熱し、前記活性金属ろう材のみを溶融し、セラミックス-金属接合体を形成する工程と、を有することを特徴とする。 Further, the method for manufacturing the ceramic-metal joint includes a step of arranging an active metal brazing material on the surface of the ceramic member and a metal member placed on the active metal brazing material so as to face the ceramic substrate and contacting the ceramic member. The step of forming the above-mentioned state and the contacting ceramic member, the active metal brazing material, and the metal member are simultaneously heated in a vacuum, an inert atmosphere, or a reducing atmosphere, and only the active metal brazing material is melted to melt the ceramics. -It is characterized by having a step of forming a metal joint.

本発明によれば、ひずみを低減し、接合強度の高いセラミックス-金属接合体を提供することができ、高強度、長寿命の絶縁回路基板を提供することができる。 According to the present invention, it is possible to provide a ceramic-metal bonded body having reduced strain and high bonding strength, and to provide an insulated circuit board having high strength and long life.

ひずみの発生している結晶構造の一例を表した模式図Schematic diagram showing an example of a crystal structure in which strain is generated ひずみの発生していない結晶構造の一例を表した模式図Schematic diagram showing an example of a crystal structure without strain 本実施例のSi34-Cu接合体の接合界面の断面写真Cross-sectional photograph of the bonding interface of the Si 3 N 4 -Cu bonded body of this example 本実施例で結晶面を観察したIPFマップの一例An example of an IPF map in which a crystal plane is observed in this example.

以下、本発明の実施形態について詳細に説明する Hereinafter, embodiments of the present invention will be described in detail.

まず、本実施形態における構成部材である、セラミックス部材、活性金属ろう材、金属部材について説明する。
セラミックス部材としては、窒化物、炭化物、ホウ化物、酸化物等を用いることができ、例えば、AlN、Si34,、SiC、B4C、Al23、ダイヤモンド等を用いることができる。絶縁回路基板の用途としては、AlN、Si34、ダイヤモンドが特に望ましい。
活性金属ろう材は、活性金属種として、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mg、Ca、Y、Ce、La、Sm、Yb、Nd、Gd、Erのいずれか1種以上を含んでいればよい。絶縁回路基板にAlNやSi34を用いる場合、特にTi、V、Nb、Cr、Mo、Ta、Caが望ましい。活性金属ろう材の主相としては、金属部材より融点が低い材料系であればよく、Ag-Cu、Cu-Pd、Cu-Sn、Cu-Zn等に代表される合金やTi-Zr-Cuのような金属ガラスを用いてもよい。
金属部材は、純金属や合金等に限定されるものではないが、絶縁回路基板の用途としては、Cu、Niが望ましい。
First, a ceramic member, an active metal brazing material, and a metal member, which are constituent members in the present embodiment, will be described.
As the ceramic member, nitrides, carbides, borides, oxides and the like can be used, and for example, AlN, Si3N4 , SiC , B4C , Al2O3 , diamond and the like can be used. .. AlN, Si 3N 4 , and diamond are particularly desirable for the use of insulated circuit boards.
The active metal brazing material may be any of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mg, Ca, Y, Ce, La, Sm, Yb, Nd, Gd and Er as the active metal species. It may contain one or more kinds. When Al N or Si 3 N 4 is used for the insulating circuit board, Ti, V, Nb, Cr, Mo, Ta, and Ca are particularly desirable. The main phase of the active metal brazing material may be a material system having a melting point lower than that of the metal member, and alloys typified by Ag-Cu, Cu-Pd, Cu-Sn, Cu-Zn, etc. and Ti-Zr-Cu Metallic glass such as may be used.
The metal member is not limited to pure metal, alloy, or the like, but Cu and Ni are desirable for the use of the insulating circuit board.

セラミックと金属の接合において、一方は共有結合またはイオン結合を有し、もう一方は金属結合を有している。加えて異なる元素によって構成される結晶構造を有するため、セラミック、金属の中間的な性質もしくは結晶構造となる界面反応層が、セラミック部材と活性金属ろう材との間に形成される。たとえば活性金属であるTiと窒化物セラミックスもしくは炭化物セラミックスの反応においてはTiNやTiCのような自由電子をもつ中間的な物性を持つセラミックスが界面反応層として形成されることで接合する機構を持つ。 In a ceramic-metal bond, one has a covalent or ionic bond and the other has a metal bond. In addition, since it has a crystal structure composed of different elements, an interfacial reaction layer having an intermediate property or crystal structure between ceramic and metal is formed between the ceramic member and the active metal brazing material. For example, in the reaction between Ti, which is an active metal, and nitride ceramics or carbide ceramics, ceramics having intermediate physical characteristics such as TiN and TiC are formed as an interfacial reaction layer to form a bonding mechanism.

次に、セラミックス-金属接合体の製造方法について説明する。
まず、セラミックス部材として、例えば平面を持つセラミックス基板としたとき、セラミックス基板の表面に活性金属ろう材ペーストをスクリーン印刷により配置する。この活性金属ろう材を配置する工程は、ディスペンスないし転写、スプレーコートでもよく、また活性金属ろう材の形態はペーストに限定されるものではなく、たとえば箔材または線材であってもよい。
次に、セラミックス基板上に配置された活性金属ろう材上に、セラミックス基板と対向して金属部材を配置し、接触した状態を形成する。この三部材を接触させたまま、活性金属ろう材の融点以上の温度で同時に加熱することで、セラミックス-金属接合体が形成される。加熱温度は絶対温度基準でろう材の融点以上、金属部材の融点以下であることが望ましい。さらには活性金属ろう材の融点の125%以下であることがより望ましく、さらにより好ましくは活性金属ろう材の融点の101%以上、110%以下で加熱接合することが望ましい。
加えて、接合界面での反応が極めて速い反応となる場合、目的の反応以外の副反応による接合が生じ、強度が向上しない場合がある。そのため昇温速度は一定の温度範囲が望ましく100℃/min以下が望ましい。さらに好ましくは50℃/min以下が望ましく、さらにより好ましくは10℃/min以下が望ましい。
ここで、加熱時の雰囲気は活性金属ろう材の組成が変化しないことが必要であり、真空、不活性雰囲気、還元雰囲気のいずれかであればよい。本接合方法において、配置される活性金属の融点以上であれば、溶融した金属中における活性金属種の拡散性もよく、セラミックス界面で界面反応層を形成することができる。
Next, a method for manufacturing a ceramic-metal joint will be described.
First, when the ceramic member is, for example, a ceramic substrate having a flat surface, the active metal brazing material paste is arranged on the surface of the ceramic substrate by screen printing. The step of arranging the active metal brazing material may be dispensation, transfer, or spray coating, and the form of the active metal brazing material is not limited to the paste, and may be, for example, a foil material or a wire material.
Next, a metal member is arranged on the active metal brazing material arranged on the ceramic substrate so as to face the ceramic substrate and form a contact state. A ceramic-metal joint is formed by simultaneously heating the three members at a temperature equal to or higher than the melting point of the active metal brazing material while keeping them in contact with each other. It is desirable that the heating temperature is equal to or higher than the melting point of the brazing material and lower than the melting point of the metal member on an absolute temperature basis. Further, it is more desirable that the melting point of the active metal brazing material is 125% or less, and even more preferably, heat bonding is performed at 101% or more and 110% or less of the melting point of the active metal brazing material.
In addition, if the reaction at the bonding interface is extremely fast, there may be cases where bonding is caused by a side reaction other than the desired reaction, and the strength is not improved. Therefore, the temperature rise rate is preferably in a constant temperature range and preferably 100 ° C./min or less. It is more preferably 50 ° C./min or less, and even more preferably 10 ° C./min or less.
Here, the atmosphere at the time of heating needs to be the same as the composition of the active metal brazing material, and may be any of vacuum, inert atmosphere, and reducing atmosphere. In this joining method, as long as it is equal to or higher than the melting point of the activated metal to be arranged, the diffusibility of the active metal species in the molten metal is good, and the interface reaction layer can be formed at the ceramic interface.

界面反応層及びセラミックスの結晶構造を解析する手法としてTEM-PED(transmission electron microscopy precession electron diffraction)と呼ばれる解析手法がある。この手法は歳差運動する電子線を入射することで高次の電子線回折パターンを得ることが可能な手法であり、この手法を用いれば、10 nm以下の結晶構造を把握することが可能になる。 There is an analysis method called TEM-PED (transmission electron microscopy precession electron diffraction) as a method for analyzing the crystal structure of the interfacial reaction layer and ceramics. This method is a method that can obtain a high-order electron diffraction pattern by incidenting an electron beam that moves with precession, and by using this method, it is possible to grasp the crystal structure of 10 nm or less. Become.

本実施形態における界面反応層をTEM-PED、EDS(Energy Dispersive X-ray Spectroscopy:エネルギー分散型X線分光)、EELS(Electron Energy Loss Spectroscopy:電子エネルギー損失分光)を用いて観察し、界面反応層の組成及び結晶構造を同定する。その後、IPF(Inverse pole figure)マップより、接触する界面反応層の結晶面とセラミックスの結晶面を決定し、その面における同種原子の原子間距離を比較する。 The interfacial reaction layer in the present embodiment was observed using TEM-PED, EDS (Energy Dispersive X-ray Spectroscopy), and EELS (Electron Energy Loss Spectroscopy), and the interfacial reaction layer was observed. Identifies the composition and crystal structure of the. Then, from the IPF (Inverse pole figure) map, the crystal plane of the interface reaction layer in contact and the crystal plane of the ceramics are determined, and the interatomic distances of the same kind of atoms on the plane are compared.

原子間距離は、ひずみ及び欠陥のない理想的な結晶状態における原子間距離、つまりセラミックス側の原子間距離を基準とし、セラミックス側の原子間距離に対する界面反応層の原子間距離を評価する。セラミックとの接合界面において共有結合もしくはイオン結合を有していることが重要であり、イオン結合もしくは共有結合をする原子同士のペアが面内でどれだけ多く作られるかが重要である。そのためペアを形成する原子において、それぞれの結晶面内で原子間距離が同等の系であるほど接合強度が高く、同種原子の最近接距離を評価することでその効果を想定することが可能である。
評価の指標としてセラミックスと界面反応層の原子間距離の差を抽出し、これをミスマッチと呼ぶ。ミスマッチを次式(1)のように定義する。
ミスマッチ=(界面反応層の最近接同種原子の原子間距離-セラミックスの最近接同種原子の原子間距離)/セラミックスの最近接同種原子の原子間距離・・・・(1)
ミスマッチが大きいほど、結晶界面でのひずみが大きくなり、界面の接合強度が下がる。そして、ミスマッチが小さいほど界面の接合強度は上がる。
The interatomic distance is based on the interatomic distance in an ideal crystal state without strain and defects, that is, the interatomic distance on the ceramic side, and the interatomic distance of the interfacial reaction layer with respect to the interatomic distance on the ceramic side is evaluated. It is important to have a covalent bond or an ionic bond at the bonding interface with the ceramic, and it is important how many pairs of atoms having an ionic bond or a covalent bond are formed in the plane. Therefore, in the atoms forming a pair, the stronger the interatomic distance in each crystal plane, the higher the bonding strength, and it is possible to assume the effect by evaluating the closest distance of the same kind of atoms. ..
The difference in the interatomic distance between the ceramics and the interfacial reaction layer is extracted as an index for evaluation, and this is called a mismatch. The mismatch is defined by the following equation (1).
Mismatch = (distance between atoms of closest homozygous atoms in the interface reaction layer-distance between atoms of closest homologous atoms of ceramics) / interatomic distance of closest homologous atoms of ceramics ... (1)
The larger the mismatch, the greater the strain at the crystal interface and the lower the bonding strength at the interface. The smaller the mismatch, the higher the joint strength at the interface.

図1にひずみの発生している結晶構造の一例を模式的に表したものを示す。図2には、結晶面が整合し、ひずみの発生していない結晶構造の一例を模式的に表したものを示す。図1では、セラミックス部材1と界面反応層2の結晶格子の格子定数(原子間距離)が異なり、結晶面が整合していない様子を示している。このようにミスマッチが発生している場合、界面でひずみが発生し、ヤング率に対応した残留応力が負荷されるため接合強度が低下する。図2のように結晶面が整合し、ミスマッチが発生してない接合においてはひずみ、残留応力共に発生せず強固な接合体が得られる。このミスマッチが30%以下であれば望ましく、より好ましくは10%以下が望ましい。 FIG. 1 shows a schematic representation of an example of a crystal structure in which strain is generated. FIG. 2 shows a schematic representation of an example of a crystal structure in which the crystal planes are aligned and no strain is generated. FIG. 1 shows how the crystal planes of the ceramic member 1 and the interface reaction layer 2 have different lattice constants (interatomic distances) and are not matched. When such a mismatch occurs, strain is generated at the interface, and residual stress corresponding to Young's modulus is applied, so that the joint strength is lowered. As shown in FIG. 2, in the case where the crystal planes are aligned and no mismatch occurs, neither strain nor residual stress is generated, and a strong bonded body can be obtained. It is desirable if this mismatch is 30% or less, and more preferably 10% or less.

本実施例では、セラミックス部材としてSi34、金属部材としてCuを使用した接合体について説明する。活性金属ろう材は、Ag71質量%、In3.0質量%、Ti2.0質量%、残部Cuとなる組成で、かつAg-Cu-In合金、Ag、TiH2、アクリル樹脂、テルピネオールで構成される活性金属ろう材ペーストを用いた。
まず、活性金属ろう材ペーストを印刷し、ペースト中に含まれる有機溶媒を100℃以上の加熱乾燥により揮発させた。乾燥させた活性金属ろう材ペースト上にCuの板を配置し、1.0x10-2Pa以下の真空中において、845℃で20分、加熱し、Si34-Cu接合体を得た。接合時の昇温速度は50℃/min以下で行った。
In this embodiment, a bonded body using Si 3 N 4 as a ceramic member and Cu as a metal member will be described. The active metal brazing material has a composition of Ag71% by mass, In3.0% by mass, Ti2.0% by mass, and the balance Cu, and is composed of Ag—Cu—In alloy, Ag, TiH 2 , acrylic resin, and terpineol. An active metal brazing paste was used.
First, the active metal brazing paste was printed, and the organic solvent contained in the paste was volatilized by heating and drying at 100 ° C. or higher. A plate of Cu was placed on the dried active metal brazing paste and heated at 845 ° C. for 20 minutes in a vacuum of 1.0x10-2Pa or less to obtain a Si 3N 4 - Cu bonded body. The heating rate at the time of joining was 50 ° C./min or less.

Si34-Cu接合体のTEMによる接合界面の断面写真を図3に示す。図3よりSi34接合界面上にTiNの界面反応層を形成していることが確認された。この接合界面から視野をいくつか抽出し、TEM-PEDを用いて結晶面を観察した。観察したIPFマップの一例を図4示す。このIPFマップは接合面に対して垂直なRD方向を抽出している。(a)はTiNの結晶に着目したIPFマップを、(b)はSi34の結晶に着目したIPFマップを、(C)はAgの結晶に着目したIPFマップを示している。TiN、Agは立方晶系であり、(e)に示す立方晶系のステレオ投影図から結晶面を同定し、Si34は六方晶系であるため(f)に示す六方晶系のステレオ投影図から結晶面を同定した。加えて(d)に示す(a)、(b)、(c)の重ね合わせ像から各結晶に対してどの面が接合しているかを評価した。Si34においてRD方向では(11-20)及び(11-20)と等価な(2-1-10)が観察され、TiNにおいては(112)(110)(100)(111)の4種類の面が観察された。これらの面のミスマッチはTiNの(112)(100)(111)において2.5%であり、TiNの(110)において25.5%であり、これらの面が出ていることで高強度化することができる。 FIG. 3 shows a cross-sectional photograph of the bonding interface of the Si 3 N 4 -Cu bonded body by TEM. From FIG. 3, it was confirmed that a TiN interfacial reaction layer was formed on the Si 3 N 4 interface. Some fields of view were extracted from this junction interface, and the crystal plane was observed using TEM-PED. FIG. 4 shows an example of the observed IPF map. This IPF map extracts the RD direction perpendicular to the joint surface. (A) shows an IPF map focusing on TiN crystals, (b) shows an IPF map focusing on Si 3 N 4 crystals, and (C) shows an IPF map focusing on Ag crystals. Since TiN and Ag are cubic, and the crystal plane is identified from the cubic stereo projection shown in (e), Si 3 N 4 is hexagonal, so the hexagonal stereo shown in (f). The crystal plane was identified from the projection. In addition, from the superposition images of (a), (b), and (c) shown in (d), it was evaluated which surface was joined to each crystal. In Si 3 N 4 , (11-20) and (11-20) equivalent to (2-1-10) were observed in the RD direction, and in TiN, 4 of (112) (110) (100) (111). Kind aspects were observed. The mismatch of these surfaces is 2.5% at (112) (100) (111) of TiN and 25.5% at (110) of TiN. can do.

以上、本発明について上記実施形態を用いて説明してきたが、本発明は上記実施形態に限定されるものではない。本発明の特許請求の範囲に示された技術範囲において、変更することが可能である。 Although the present invention has been described above using the above-described embodiment, the present invention is not limited to the above-mentioned embodiment. It is possible to make changes within the technical scope indicated in the claims of the present invention.

1:セラミックス部材
2:界面反応層
3:最近接同種原子間距離


1: Ceramic member 2: Interface reaction layer 3: Closest close-to-homogeneous interatomic distance


Claims (5)

セラミックス部材と、金属部材と、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mg、Ca、Y、Ce、La、Sm、Yb、Nd、Gd、Erのいずれか1種以上を活性金属種として含む活性金属ろう材と、を有し、
前記セラミックス部材と前記金属部材とが、前記活性金属ろう材を介して接合されており、前記活性金属ろう材と前記セラミックス部材との間に界面反応層が形成されており、
前記界面反応層と前記セラミックス部材との接合界面の結晶面の最近接同種原子間距離が、前記セラミックス部材の結晶面の最近接同種原子間距離を基準として30%以内である
ことを特徴とするセラミックス-金属接合体。
Ceramic member, metal member, and any one of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mg, Ca, Y, Ce, La, Sm, Yb, Nd, Gd, Er. With an active metal brazing material containing the above as an active metal species,
The ceramic member and the metal member are joined via the active metal brazing material, and an interface reaction layer is formed between the active metal brazing material and the ceramic member.
The closest homozygous atom-to-atomic distance of the crystal plane at the junction interface between the interface reaction layer and the ceramic member is within 30% with respect to the closest homozygous atom-to-atom distance of the crystal plane of the ceramic member. Ceramics-metal joint.
前記セラミックス部材が窒化物セラミックスもしくは酸化物セラミックスであり、請求項1に記載のセラミックス-金属接合体を用いることを特徴とした絶縁回路基板。 An insulating circuit board characterized in that the ceramic member is a nitride ceramic or an oxide ceramic, and the ceramic-metal joint according to claim 1 is used. 前記セラミックス部材がAlNもしくはSi34であり、請求項1に記載のセラミックス-金属接合体を用いることを特徴とした絶縁回路基板。 An insulating circuit board characterized in that the ceramic member is Al N or Si 3 N 4 , and the ceramic-metal joint according to claim 1 is used. 請求項2または3に記載の絶縁回路基板を用いることを特徴としたパワーモジュール。 A power module characterized by using the insulated circuit board according to claim 2 or 3. 請求項1に記載のセラミックス-金属接合体の製造方法であって、
前記セラミックス部材の表面に前記活性金属ろう材を配置する工程と、
前記活性金属ろう材上に、前記セラミックス部材と対向して金属部材を配置し、接触した状態を形成する工程と、
接触した前記セラミックス部材、前記活性金属ろう材、前記金属部材を、真空、不活性雰囲気、もしくは還元雰囲気で同時に加熱し、前記活性金属ろう材のみを溶融し、前記セラミックス-金属接合体を形成する工程と、
を有することを特徴とするセラミックス-金属接合体の製造方法。



The method for manufacturing a ceramic-metal joint according to claim 1.
The step of arranging the active metal brazing material on the surface of the ceramic member, and
A step of arranging a metal member on the active metal brazing material so as to face the ceramic member and forming a contact state.
The ceramic member, the active metal brazing material, and the metal member that have come into contact with each other are simultaneously heated in a vacuum, an inert atmosphere, or a reducing atmosphere, and only the active metal brazing material is melted to form the ceramics-metal joint. Process and
A method for producing a ceramic-metal bonded body, which comprises the above.



JP2020156921A 2020-09-18 2020-09-18 Ceramic-metal conjugate and manufacturing method thereof, dielectric circuit board, and power module Pending JP2022050797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020156921A JP2022050797A (en) 2020-09-18 2020-09-18 Ceramic-metal conjugate and manufacturing method thereof, dielectric circuit board, and power module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020156921A JP2022050797A (en) 2020-09-18 2020-09-18 Ceramic-metal conjugate and manufacturing method thereof, dielectric circuit board, and power module

Publications (1)

Publication Number Publication Date
JP2022050797A true JP2022050797A (en) 2022-03-31

Family

ID=80854798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020156921A Pending JP2022050797A (en) 2020-09-18 2020-09-18 Ceramic-metal conjugate and manufacturing method thereof, dielectric circuit board, and power module

Country Status (1)

Country Link
JP (1) JP2022050797A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115894064A (en) * 2022-11-18 2023-04-04 大连海外华昇电子科技有限公司 AMB slurry for metallization of low-silver ceramic and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115894064A (en) * 2022-11-18 2023-04-04 大连海外华昇电子科技有限公司 AMB slurry for metallization of low-silver ceramic and preparation method thereof
CN115894064B (en) * 2022-11-18 2023-11-14 大连海外华昇电子科技有限公司 AMB slurry for low-silver ceramic-containing metallization and preparation method thereof

Similar Documents

Publication Publication Date Title
EP3590909B1 (en) Copper/ceramic joined body insulated circuit board, method for producing copper/ceramic joined body, and method for producing insulated circuit board
EP3057125A1 (en) Substrate for heat sink-equipped power module, and production method for same
US20200384579A1 (en) Soldering material for active soldering and method for active soldering
JP4936261B2 (en) BORON CARBIDE-CONTAINING CERAMIC BODY AND METHOD FOR PRODUCING THE BODY
US20160243636A1 (en) Brazing joining method of cnt assemblies on substrates using an at least ternary brazing alloy; corresponding brazing material and device comprising such assembly
JP4104253B2 (en) Board integrated structure
TW201500327A (en) Joint Material, and Jointed Body
JP2022050797A (en) Ceramic-metal conjugate and manufacturing method thereof, dielectric circuit board, and power module
KR102466817B1 (en) Ceramics/aluminum junction, insulated circuit board, LED module, ceramic member, method for manufacturing ceramics/aluminum junction, method for manufacturing insulated circuit board
JPH06268117A (en) Heat radiating substrate for semiconductor device and its manufacture
JP6870767B2 (en) Copper / ceramic joints and insulated circuit boards
KR19990045105A (en) Board
JP2022023954A (en) Ceramic/aluminum bonded body, insulating circuit board, led module and ceramic member
JP6786090B2 (en) Heat dissipation plate material
Terasaki et al. Growth mechanism of TiN reaction layers produced on AlN via active metal bonding
JP4124497B2 (en) Metal-ceramic composite substrate and manufacturing method thereof
JPH022836B2 (en)
JP2021503433A (en) How to make metal semi-finished products, how to make metal-ceramic substrates and metal-ceramic substrates
KR102413017B1 (en) Copper/ceramic bonded body, insulated circuit board, and copper/ceramic bonded body manufacturing method, insulated circuit board manufacturing method
JP6908173B2 (en) Copper / Ceramics Joint, Insulated Circuit Board, Copper / Ceramics Joint Manufacturing Method, Insulated Circuit Board Manufacturing Method
JP2021165227A (en) Copper/ceramic conjugate, and insulated circuit board
JP5809896B2 (en) BORON CARBIDE-CONTAINING CERAMIC-OXIDE CERAMIC BODY AND METHOD FOR PRODUCING THE BODY
JP3797823B2 (en) Circuit board composite
WO2023008565A1 (en) Copper/ceramic bonded body and insulated circuit board
JP5050070B2 (en) Ceramic copper circuit board and semiconductor device

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20201007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201207

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240527