JP2022048605A - Mist nozzle - Google Patents

Mist nozzle Download PDF

Info

Publication number
JP2022048605A
JP2022048605A JP2020154502A JP2020154502A JP2022048605A JP 2022048605 A JP2022048605 A JP 2022048605A JP 2020154502 A JP2020154502 A JP 2020154502A JP 2020154502 A JP2020154502 A JP 2020154502A JP 2022048605 A JP2022048605 A JP 2022048605A
Authority
JP
Japan
Prior art keywords
liquid
gas discharge
atomization
discharge ports
mist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020154502A
Other languages
Japanese (ja)
Other versions
JP7282389B2 (en
Inventor
俊彦 江口
Toshihiko Eguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aura Tec Co Ltd
Original Assignee
Aura Tec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aura Tec Co Ltd filed Critical Aura Tec Co Ltd
Priority to JP2020154502A priority Critical patent/JP7282389B2/en
Publication of JP2022048605A publication Critical patent/JP2022048605A/en
Application granted granted Critical
Publication of JP7282389B2 publication Critical patent/JP7282389B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a mist nozzle which improves cleaning capacity and cooling capacity.SOLUTION: A mist nozzle 1 which jets a liquid which is made into mist by pressurized gas includes a liquid suction port 9 for sucking the liquid arranged on a center line of a jetting flow passage 6, and a plurality of gas discharge ports 10 for discharging the gas arranged on a concentric circle with the liquid suction port on an outer side of the liquid suction port. An inner side atomization area 16 atomizes liquid droplets by forming a vortex flow on an inner side of the plurality of gas discharge ports on the concentric circle. An outer side atomization area 17 widens a middle part of the jetting flow passage toward an outer side from the plurality of gas discharge ports, and atomizes the liquid droplets by forming the vertex on an outer side of the plurality of gas discharge ports on the concentric circle.SELECTED DRAWING: Figure 2

Description

本発明は、加圧した気体で液体をミスト化させて噴射するミストノズルに関するものである。 The present invention relates to a mist nozzle in which a liquid is mist-ized and injected with a pressurized gas.

従来より、洗浄能力や冷却能力の向上等のために加圧した気体(空気)によって液体(水)をミスト化させて高速で噴射するミスト噴射装置が利用されている。ミスト噴射装置では、液滴を微粒化するために、2流体ノズルであるミストノズルが用いられている。 Conventionally, a mist injection device has been used in which a liquid (water) is made into a mist by a pressurized gas (air) and injected at a high speed in order to improve the cleaning ability and the cooling ability. In the mist injection device, a mist nozzle, which is a two-fluid nozzle, is used to atomize the droplets.

従来のミストノズルは、加圧した気体の吐出口の前方に直線状の噴射流路を形成するとともに、噴射流路の途中に液体の吐出口を形成し、噴射流路と直交する向きから液体を供給することで液体と加圧した気体とを衝突させてミストを形成している(たとえば、特許文献1参照。)。 In the conventional mist nozzle, a linear jet flow path is formed in front of the pressurized gas discharge port, and a liquid discharge port is formed in the middle of the jet flow path, and the liquid is formed from a direction orthogonal to the jet flow path. Is supplied to cause the liquid and the pressurized gas to collide with each other to form a mist (see, for example, Patent Document 1).

特開2019-147087号公報Japanese Unexamined Patent Publication No. 2019-147087

ところが、上記従来のミストノズルでは、加圧した気体と液体とが直交して衝突することでミストを形成しているために、衝突によるエネルギー損失が生じてミストの噴射速度が低減してしまい、ミストの洗浄能力や冷却能力が低減してしまうおそれがある。 However, in the above-mentioned conventional mist nozzle, since the pressurized gas and the liquid collide orthogonally with each other to form the mist, energy loss due to the collision occurs and the mist injection speed is reduced. There is a risk that the cleaning capacity and cooling capacity of the mist will decrease.

そこで、請求項1に係る本発明では、加圧した気体で液体をミスト化させて噴射するミストノズルにおいて、噴射流路の中心線上に液体を吸入するための液体吸入口を設けるとともに、液体吸入口の外側に気体を吐出するための気体吐出口を液体吸入口と同心円上に複数設けて、同心円上の複数の気体吐出口の内側で渦流となって液滴を微粒化させる内側微粒化領域を形成し、噴射流路の中途部を複数の気体吐出口よりも外側に拡幅させて、同心円上の複数の気体吐出口の外側で渦流となって液滴を微粒化させる外側微粒化領域を形成することにした。 Therefore, in the present invention according to claim 1, in the mist nozzle for injecting a liquid by turning it into a mist with a pressurized gas, a liquid suction port for sucking the liquid is provided on the center line of the injection flow path, and the liquid is sucked. An inner atomization region in which a plurality of gas discharge ports for discharging gas are provided on the outside of the mouth on a concentric circle with the liquid suction port, and a vortex is formed inside the plurality of gas discharge ports on the concentric circle to atomize the droplets. Is formed, the middle part of the injection flow path is widened to the outside of the plurality of gas discharge ports, and an outer atomization region that becomes a vortex on the outside of the plurality of gas discharge ports on concentric circles and atomizes the droplets is formed. I decided to form it.

また、請求項2に係る本発明では、前記請求項1に係る本発明において、前記内側微粒化領域と外側微粒化領域の間に噴射流路に沿って溝状に形成することで液滴の微粒化を促進するための微粒化促進溝を設けることにした。 Further, in the present invention according to claim 2, in the present invention according to claim 1, the droplet is formed in a groove shape along the jet flow path between the inner atomization region and the outer atomization region. It was decided to provide an atomization promotion groove for promoting atomization.

また、請求項3に係る本発明では、前記請求項1又は請求項2に係る本発明において、前記外側微粒化領域よりも先端側を漸次縮幅させて液滴を加速するための加速室を形成することにした。 Further, in the present invention according to claim 3, in the present invention according to claim 1 or 2, an acceleration chamber for accelerating the droplet by gradually narrowing the tip side of the outer atomization region is provided. I decided to form it.

そして、本発明では、以下に記載する効果を奏する。 Then, in the present invention, the effects described below are obtained.

すなわち、本発明では、加圧した気体で液体をミスト化させて噴射するミストノズルにおいて、噴射流路の中心線上に液体を吸入するための液体吸入口を設けるとともに、液体吸入口の外側に気体を吐出するための気体吐出口を液体吸入口と同心円上に複数設けて、同心円上の複数の気体吐出口の内側で渦流となって液滴を微粒化させる内側微粒化領域を形成し、噴射流路の中途部を複数の気体吐出口よりも外側に拡幅させて、同心円上の複数の気体吐出口の外側で渦流となって液滴を微粒化させる外側微粒化領域を形成することにしているために、従来のような加圧した気体と液体との直交衝突によるエネルギー損失の発生を抑制することができ、高速で微粒化したミストを噴射することができるので、ミストノズルによる洗浄能力や冷却能力を向上させることができる。 That is, in the present invention, in the mist nozzle for injecting a liquid by turning it into a mist with a pressurized gas, a liquid suction port for sucking the liquid is provided on the center line of the injection flow path, and the gas is provided outside the liquid suction port. A plurality of gas discharge ports for discharging the liquid are provided on a concentric circle with the liquid suction port to form an inner atomization region in which a vortex is formed inside the plurality of gas discharge ports on the concentric circle to atomize the droplets. We decided to widen the middle part of the flow path to the outside of the multiple gas discharge ports to form an outer atomization region that forms a vortex and atomizes the droplets outside the multiple gas discharge ports on the concentric circles. Therefore, it is possible to suppress the generation of energy loss due to the orthogonal collision between the pressurized gas and the liquid as in the past, and it is possible to inject atomized mist at high speed, so that the cleaning ability by the mist nozzle and The cooling capacity can be improved.

特に、内側微粒化領域と外側微粒化領域の間に噴射流路に沿って溝状に形成することで液滴の微粒化を促進するための微粒化促進溝を設けることにした場合には、より微粒化したミストを噴射することができるので、より一層ミストノズルによる洗浄能力や冷却能力を向上させることができる。 In particular, when it is decided to provide an atomization promoting groove for promoting the atomization of the droplet by forming a groove along the jet flow path between the inner atomizing region and the outer atomizing region. Since it is possible to inject more atomized mist, it is possible to further improve the cleaning capacity and cooling capacity of the mist nozzle.

また、外側微粒化領域よりも先端側を漸次縮幅させて液滴を加速するための加速室を形成することにした場合には、より高速化したミストを噴射することができるので、より一層ミストノズルによる洗浄能力や冷却能力を向上させることができる。 Further, when it is decided to gradually reduce the width of the tip side of the outer atomization region to form an acceleration chamber for accelerating the droplet, it is possible to inject a faster mist, which further increases the speed. The cleaning capacity and cooling capacity of the mist nozzle can be improved.

本発明に係るミストノズルを示す正面図(a)、右側面図(b)、背面図(c)。A front view (a), a right side view (b), and a rear view (c) showing a mist nozzle according to the present invention. 同右側面断面図(a)、A-A断面図(b)、B-B断面図(c)。The right side sectional view (a), AA sectional view (b), BB sectional view (c). ミストノズルを用いたミスト噴射装置を示す説明図。Explanatory drawing which shows the mist injection device using a mist nozzle.

以下に、本発明に係るミストノズルの具体的な構成について図面を参照しながら説明する。 Hereinafter, a specific configuration of the mist nozzle according to the present invention will be described with reference to the drawings.

図1及び図2に示すように、ミストノズル1は、先細り円筒形状のノズル本体2の後端部に加圧した気体が供給される気体供給連結部3を形成するとともに、ノズル本体2の後側下部に液体が供給される液体供給連結部4を形成し、さらに、ノズル本体2の前端部にミストを噴射するミスト噴射口5を形成している。 As shown in FIGS. 1 and 2, the mist nozzle 1 forms a gas supply connecting portion 3 to which a pressurized gas is supplied to the rear end portion of the tapered cylindrical nozzle body 2, and is rear of the nozzle body 2. A liquid supply connecting portion 4 to which liquid is supplied is formed in the lower portion of the side, and a mist injection port 5 for injecting mist is further formed in the front end portion of the nozzle body 2.

また、ミストノズル1は、ノズル本体2の内部中心線上にミストを噴射するための前後に水平方向へ向けて直線状に伸延する噴射流路6を形成している。 Further, the mist nozzle 1 forms an injection flow path 6 that extends linearly in the horizontal direction in the front-rear direction for injecting mist onto the internal center line of the nozzle body 2.

この噴射流路6は、後端側に液滴の微粒化を促進するための微粒化促進室7を形成するとともに、前端側に液滴を加速するための加速室8を形成している。 The jet flow path 6 forms an atomization promotion chamber 7 for promoting atomization of the droplet on the rear end side, and an acceleration chamber 8 for accelerating the droplet on the front end side.

微粒化促進室7は、後端垂直面(ノズル本体2の内部中心線と直交する面)の中央(ノズル本体2の内部中心線上)に加圧した気体の負圧を利用して液体を吸入するための液体吸入口9を形成するとともに、液体吸入口9の外側に加圧した気体を吐出するための気体吐出口10を複数個(ここでは、3個)形成している。この複数の気体吐出口10は、液体吸入口9と同一面上(後端垂直面上)に液体吸入口9を中心にして同心円上に等間隔で配置している。 The atomization promotion chamber 7 sucks the liquid by using the negative pressure of the gas pressurized to the center (on the internal center line of the nozzle body 2) of the vertical surface at the rear end (the surface orthogonal to the internal center line of the nozzle body 2). In addition to forming the liquid suction port 9 for discharging the liquid suction port 9, a plurality of gas discharge ports 10 (here, three) for discharging the pressurized gas are formed on the outside of the liquid suction port 9. The plurality of gas discharge ports 10 are arranged on the same surface as the liquid suction port 9 (on the vertical surface at the rear end) on concentric circles centered on the liquid suction port 9 at equal intervals.

液体吸入口9は、液体供給連結部4に形成した液体供給口11と逆L字状に屈曲する液体供給流路12を介して連通している。一方、各気体吐出口10は、気体供給連結部3に形成した気体供給口13と前後に水平方向へ向けて直線状に伸延する気体供給流路14を介して連通している。ここで、気体供給流路14は、加圧した気体が抵抗なく(減速されることなく)流れるために直線状に形成している。 The liquid suction port 9 communicates with the liquid supply port 11 formed in the liquid supply connecting portion 4 via a liquid supply flow path 12 that bends in an inverted L shape. On the other hand, each gas discharge port 10 communicates with the gas supply port 13 formed in the gas supply connecting portion 3 via a gas supply flow path 14 extending linearly in the horizontal direction in the front-rear direction. Here, the gas supply flow path 14 is formed linearly so that the pressurized gas flows without resistance (without deceleration).

微粒化促進室7は、複数の気体吐出口10の外接円よりも小さい円形断面が前後に水平方向に伸延する筒型形状に形成されているとともに、各気体吐出口10の前方に噴射流路6に沿って前後に水平方向に直線状に伸延する溝状の微粒化促進溝15が形成され、さらに、前端垂直面(ノズル本体2の内部中心線と直交する面)を後端垂直面よりも拡径(拡幅)させて加速室8に連設させている。 The atomization promotion chamber 7 is formed in a cylindrical shape in which a circular cross section smaller than the circumscribed circles of the plurality of gas discharge ports 10 extends horizontally in the front-rear direction, and the injection flow path is in front of each gas discharge port 10. A groove-shaped atomization promoting groove 15 that extends linearly in the horizontal direction in the front-rear direction is formed along No. 6, and further, the front end vertical surface (the surface orthogonal to the internal center line of the nozzle body 2) is formed from the rear end vertical surface. Is also expanded (widened) and connected to the acceleration chamber 8.

加速室8は、噴射流路6を噴射流路6の上流側から下流側へ向けて2段階で漸次縮径(縮幅)させている。 The acceleration chamber 8 gradually reduces the diameter (reduction width) of the jet flow path 6 from the upstream side to the downstream side of the jet flow path 6 in two steps.

上記ミストノズル1では、微粒化促進室7の後端垂直面において、複数の気体吐出口10よりも内側に垂直面が形成されており、各気体吐出口10から加圧した気体を吐出させると、複数の気体吐出口10の内側に剥離域(図2(b)中にグレーで示した部分)が形成され無数の渦流が生成される。 In the mist nozzle 1, a vertical surface is formed inside the plurality of gas discharge ports 10 on the rear end vertical surface of the atomization promotion chamber 7, and when the pressurized gas is discharged from each gas discharge port 10. , A peeling region (a portion shown in gray in FIG. 2B) is formed inside the plurality of gas discharge ports 10, and innumerable eddy currents are generated.

そして、ミストノズル1では、各気体吐出口10から加圧した気体を吐出させることで生じた負圧によって中心の液体吸入口9から液体が吸入される。液体吸入口9から吸入された液体は、複数の気体吐出口10の内側に形成された剥離域の無数の渦流によって均一に微粒化される。 Then, in the mist nozzle 1, the liquid is sucked from the central liquid suction port 9 by the negative pressure generated by discharging the pressurized gas from each gas discharge port 10. The liquid sucked from the liquid suction port 9 is uniformly atomized by the innumerable vortices in the peeling area formed inside the plurality of gas discharge ports 10.

このように、ミストノズル1では、微粒化促進室7の後端垂直面において、同心円上の複数の気体吐出口10の内側に剥離域が生成され、渦流によって液滴の微粒化を促進させる内側微粒化領域16が形成される。 As described above, in the mist nozzle 1, in the rear end vertical plane of the atomization promotion chamber 7, a peeling region is generated inside the plurality of gas discharge ports 10 on the concentric circles, and the inner side that promotes the atomization of the droplets by the vortex flow. The atomized region 16 is formed.

さらに、ミストノズル1では、微粒化促進室7の前端垂直面において、複数の気体吐出口10(微粒化促進溝15)よりも外側に垂直面が形成されており、微粒化促進溝15に沿って流れる気体が外側に向けて広がり、複数の気体吐出口10(微粒化促進溝15)の外側に剥離域(図2(c)中にグレーで示した部分)が形成され、液滴が剥離域の無数の渦流によってさらに均一に微粒化される。 Further, in the mist nozzle 1, a vertical surface is formed on the front end vertical surface of the atomization promotion chamber 7 outside the plurality of gas discharge ports 10 (atomization promotion grooves 15), and is formed along the atomization promotion grooves 15. The flowing gas spreads outward, and a peeling area (the part shown in gray in FIG. 2C) is formed on the outside of the plurality of gas discharge ports 10 (atomization promoting grooves 15), and the droplets are separated. It is further evenly atomized by the myriad vortices of the region.

このように、ミストノズル1では、微粒化促進室7の前端垂直面において、同心円上の複数の気体吐出口10の外側に渦流が形成され、無数の渦流によって液滴の微粒化を促進させる外側微粒化領域17が形成される。 As described above, in the mist nozzle 1, a vortex is formed on the outer side of the plurality of gas discharge ports 10 on the concentric circles on the front end vertical plane of the atomization promotion chamber 7, and the outer side that promotes the atomization of the droplet by the innumerable vortex flows. The atomized region 17 is formed.

ミストノズル1は、以上に説明したように構成しており、図3に示すように、気体供給連結部3に加圧した気体を供給する圧縮機18を調整バルブ19等を介して接続するとともに、液体供給連結部4に液体を貯留したタンク20を調整バルブ21等を介して接続することで、ミスト噴射装置22として利用することができる。 The mist nozzle 1 is configured as described above, and as shown in FIG. 3, a compressor 18 that supplies pressurized gas to the gas supply connecting portion 3 is connected via an adjusting valve 19 and the like. By connecting the tank 20 storing the liquid to the liquid supply connecting portion 4 via the adjusting valve 21 or the like, the tank 20 can be used as the mist injection device 22.

以上に説明したように、上記ミストノズル1は、噴射流路6の中心線上に液体を吸入するための液体吸入口9を設けるとともに、液体吸入口9の外側に気体を吐出するための気体吐出口10を液体吸入口9と同心円上に複数設けて、同心円上の複数の気体吐出口10の内側で渦流となって液滴を微粒化させる内側微粒化領域16を形成し、噴射流路6の中途部を複数の気体吐出口10よりも外側に拡幅させて、同心円上の複数の気体吐出口10の外側で渦流となって液滴を微粒化させる外側微粒化領域17を形成した構成となっている。 As described above, the mist nozzle 1 is provided with a liquid suction port 9 for sucking a liquid on the center line of the injection flow path 6, and is a gas discharge port for discharging a gas to the outside of the liquid suction port 9. A plurality of outlets 10 are provided concentrically with the liquid suction port 9 to form an inner atomization region 16 that forms a vortex and atomizes droplets inside the plurality of gas discharge ports 10 on the concentric circles. A configuration in which the middle portion is widened to the outside of the plurality of gas discharge ports 10 to form an outer atomization region 17 that forms a vortex on the outside of the plurality of gas discharge ports 10 on concentric circles to atomize the droplets. It has become.

そのため、上記構成のミストノズル1では、従来のような加圧した気体と液体との直交衝突によるエネルギー損失の発生を抑制することができ、高速で微粒化したミストを噴射することができるので、ミストノズル1による洗浄能力や冷却能力を向上させることができる。 Therefore, in the mist nozzle 1 having the above configuration, it is possible to suppress the generation of energy loss due to the orthogonal collision between the pressurized gas and the liquid as in the conventional case, and it is possible to inject the atomized mist at high speed. The cleaning capacity and cooling capacity of the mist nozzle 1 can be improved.

また、上記ミストノズル1は、内側微粒化領域16と外側微粒化領域17の間に噴射流路6に沿って溝状に形成することで液滴の微粒化を促進するための微粒化促進溝15を設けた構成となっている。 Further, the mist nozzle 1 is formed in a groove shape between the inner atomization region 16 and the outer atomization region 17 along the jet flow path 6 to promote atomization of droplets. It has a configuration with 15.

そのため、上記構成のミストノズル1では、より微粒化したミストを噴射することができるので、より一層ミストノズル1による洗浄能力や冷却能力を向上させることができる。 Therefore, since the mist nozzle 1 having the above configuration can inject more atomized mist, the cleaning ability and cooling ability of the mist nozzle 1 can be further improved.

また、上記ミストノズル1は、外側微粒化領域17よりも先端側を漸次縮幅させて液滴を加速するための加速室8を形成した構成となっている。 Further, the mist nozzle 1 has a configuration in which an acceleration chamber 8 for accelerating the droplet is formed by gradually narrowing the tip side of the outer atomization region 17 to accelerate the droplet.

そのため、上記構成のミストノズル1では、より高速化したミストを噴射することができるので、より一層ミストノズル1による洗浄能力や冷却能力を向上させることができる。 Therefore, since the mist nozzle 1 having the above configuration can inject the mist at a higher speed, the cleaning capacity and the cooling capacity of the mist nozzle 1 can be further improved.

1 ミストノズル 2 ノズル本体
3 気体供給連結部 4 液体供給連結部
5 ミスト噴射口 6 噴射流路
7 微粒化促進室 8 加速室
9 液体吸入口 10 気体吐出口
11 液体供給口 12 液体供給流路
13 気体供給口 14 気体供給流路
15 微粒化促進溝 16 内側微粒化領域
17 外側微粒化領域 18 圧縮機
19 調整バルブ 20 タンク
21 調整バルブ 22 ミスト噴射装置
1 Mist nozzle 2 Nozzle body 3 Gas supply connection part 4 Liquid supply connection part 5 Mist injection port 6 Jet flow path 7 Agglomeration promotion room 8 Acceleration room 9 Liquid suction port 10 Gas discharge port
11 Liquid supply port 12 Liquid supply flow path
13 Gas supply port 14 Gas supply flow path
15 Agglomeration promotion groove 16 Inner atomization area
17 Outer atomization area 18 Compressor
19 Adjustment valve 20 Tank
21 Adjustment valve 22 Mist injection device

Claims (3)

加圧した気体で液体をミスト化させて噴射するミストノズルにおいて、
噴射流路の中心線上に液体を吸入するための液体吸入口を設けるとともに、液体吸入口の外側に気体を吐出するための気体吐出口を液体吸入口と同心円上に複数設けて、同心円上の複数の気体吐出口の内側で渦流となって液滴を微粒化させる内側微粒化領域を形成し、
噴射流路の中途部を複数の気体吐出口よりも外側に拡幅させて、同心円上の複数の気体吐出口の外側で渦流となって液滴を微粒化させる外側微粒化領域を形成したことを特徴とするミストノズル。
In a mist nozzle that mistizes a liquid with a pressurized gas and injects it.
A liquid suction port for sucking liquid is provided on the center line of the jet flow path, and a plurality of gas discharge ports for discharging gas are provided on the outside of the liquid suction port on a concentric circle with the liquid suction port. Inside multiple gas outlets, a vortex is formed to form an inner atomization region that atomizes the droplets.
It was found that the middle part of the injection flow path was widened to the outside of the plurality of gas discharge ports to form an outer atomization region in which a vortex flow was formed outside the plurality of gas discharge ports on the concentric circles to atomize the droplets. Characterized mist nozzle.
前記内側微粒化領域と外側微粒化領域の間に噴射流路に沿って溝状に形成することで液滴の微粒化を促進するための微粒化促進溝を設けたことを特徴とする請求項1に記載のミストノズル。 The claim is characterized in that an atomization promoting groove for promoting atomization of a droplet is provided between the inner atomizing region and the outer atomizing region in a groove shape along an injection flow path. The mist nozzle according to 1. 前記外側微粒化領域よりも先端側を漸次縮幅させて液滴を加速するための加速室を形成したことを特徴とする請求項1又は請求項2に記載のミストノズル。 The mist nozzle according to claim 1 or 2, wherein an acceleration chamber for accelerating the droplet is formed by gradually narrowing the tip side of the outer atomization region.
JP2020154502A 2020-09-15 2020-09-15 mist nozzle Active JP7282389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020154502A JP7282389B2 (en) 2020-09-15 2020-09-15 mist nozzle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020154502A JP7282389B2 (en) 2020-09-15 2020-09-15 mist nozzle

Publications (2)

Publication Number Publication Date
JP2022048605A true JP2022048605A (en) 2022-03-28
JP7282389B2 JP7282389B2 (en) 2023-05-29

Family

ID=80844150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020154502A Active JP7282389B2 (en) 2020-09-15 2020-09-15 mist nozzle

Country Status (1)

Country Link
JP (1) JP7282389B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08243443A (en) * 1995-03-10 1996-09-24 Nitto Kohki Co Ltd Spray nozzle
US5732885A (en) * 1994-10-07 1998-03-31 Spraying Systems Co. Internal mix air atomizing spray nozzle
JP2007224930A (en) * 1999-11-15 2007-09-06 Aura Tec:Kk Fuel-air mixture manufacturing injection nozzle
JP2007296486A (en) * 2006-05-01 2007-11-15 Aura Tec:Kk Liquid injecting nozzle and liquid injecting/mixing device using the same
US20090285996A1 (en) * 2004-08-23 2009-11-19 F. W. Gartner Thermal Spraying, Ltd. High performance kinetic spray nozzle
JP2011103814A (en) * 2009-11-18 2011-06-02 Suntory Holdings Ltd Method for producing carbonated beverage

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5732885A (en) * 1994-10-07 1998-03-31 Spraying Systems Co. Internal mix air atomizing spray nozzle
JPH08243443A (en) * 1995-03-10 1996-09-24 Nitto Kohki Co Ltd Spray nozzle
JP2007224930A (en) * 1999-11-15 2007-09-06 Aura Tec:Kk Fuel-air mixture manufacturing injection nozzle
US20090285996A1 (en) * 2004-08-23 2009-11-19 F. W. Gartner Thermal Spraying, Ltd. High performance kinetic spray nozzle
JP2007296486A (en) * 2006-05-01 2007-11-15 Aura Tec:Kk Liquid injecting nozzle and liquid injecting/mixing device using the same
JP2011103814A (en) * 2009-11-18 2011-06-02 Suntory Holdings Ltd Method for producing carbonated beverage

Also Published As

Publication number Publication date
JP7282389B2 (en) 2023-05-29

Similar Documents

Publication Publication Date Title
US5456414A (en) Suction feed nozzle assembly for HVLP spray gun
JP6487041B2 (en) Atomizer nozzle
JP4417245B2 (en) Internal mixed air atomizing spray nozzle assembly
JP2001276678A (en) Air atomizing nozzle assembly having advanced air cap
KR101122289B1 (en) Internal mixing typed atomizing nozzle
JPH0418952A (en) Low-pressure atomization air spray gun
CN105521720A (en) Foam generator
JP4341864B2 (en) Gas-liquid mixed flow injection device
CN111097611A (en) Water-gas mixing atomizing nozzle and atomizing device
JPH08173861A (en) Nozzle with improved air cap for spray gun
WO2016076038A1 (en) Spray nozzle and humidifier provided with said spray nozzle
JPH08210606A (en) Premix type burner
EP1234611B1 (en) Jetting apparatus for mixed flow of gas and liquid
JP2004216320A (en) Spray nozzle
JP2022048605A (en) Mist nozzle
JP2011098284A (en) Nozzle for mixing gas and liquid
JP2019209414A (en) Nozzle and dry ice injection device
JP4766622B2 (en) Gas-liquid mixed flow injection device
CN211801733U (en) Water-gas mixing atomizing nozzle and atomizing device
KR20060128289A (en) Ultra-fine spray-jetting nozzle
JP4766623B2 (en) Gas-liquid mixed flow injection device
JP2017056401A (en) nozzle
JP6741959B1 (en) spray nozzle
CN214515563U (en) Supersonic speed gas atomization device and supersonic speed gas atomizer
JP2013017933A (en) Coating spray gun

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220609

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20220609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230510

R150 Certificate of patent or registration of utility model

Ref document number: 7282389

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150