JP2007224930A - Fuel-air mixture manufacturing injection nozzle - Google Patents

Fuel-air mixture manufacturing injection nozzle Download PDF

Info

Publication number
JP2007224930A
JP2007224930A JP2007154842A JP2007154842A JP2007224930A JP 2007224930 A JP2007224930 A JP 2007224930A JP 2007154842 A JP2007154842 A JP 2007154842A JP 2007154842 A JP2007154842 A JP 2007154842A JP 2007224930 A JP2007224930 A JP 2007224930A
Authority
JP
Japan
Prior art keywords
fuel
air
fuel mixture
pressurized gas
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007154842A
Other languages
Japanese (ja)
Inventor
Toshihiko Eguchi
俊彦 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AURA TEC KK
Aura Tec Co Ltd
Original Assignee
AURA TEC KK
Aura Tec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AURA TEC KK, Aura Tec Co Ltd filed Critical AURA TEC KK
Priority to JP2007154842A priority Critical patent/JP2007224930A/en
Publication of JP2007224930A publication Critical patent/JP2007224930A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fuel-Injection Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel-air mixture manufacturing injection nozzle capable of providing a uniformized fuel-air mixture by simple structure. <P>SOLUTION: A pressurized gas connection part 502 connected to a pressurizing source and a nozzle connection part 502 connected to the intake part of an internal combustion engine are formed at both ends of the cylindrical shape of the injection nozzle, and fuel connection parts 505 are formed on side surfaces thereof. A fuel-air mixture manufacturing space 507 is formed in the cylindrical shape. A pressurized gas introduction hole 503 extending through the inside of the pressurized gas connection part and a fuel-air mixture, a fuel introduction hole extending through the inside of the fuel connection part 505, and a fuel-air mixture discharge hole 508 extending through the inside of the nozzle connection part are open to the space. The diameter of the fuel-air mixture manufacturing space 507 at least near the fuel connection part 505 is set larger than the diameter of the pressurized gas introduction hole 503. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、内燃機関に用いられる燃料噴射装置の混合気製造噴射ノズルに関する。   The present invention relates to an air-fuel mixture production injection nozzle of a fuel injection device used for an internal combustion engine.

従来、燃料噴射装置としてキャブレター方式、機械式燃料噴射方式、電子制御式燃料噴射方式が知られている。近年一般的に用いられている、電子制御式燃料噴射方式では、インテークマニホールドに燃料噴射弁を設け、運転状況等に応じた最適な空燃比になるように、吸入空気量、スロットル開度等を検出し、燃料噴射量を運転状態に応じて細かく制御することが行われている。   Conventionally, a carburetor system, a mechanical fuel injection system, and an electronically controlled fuel injection system are known as fuel injection devices. In an electronically controlled fuel injection system that is generally used in recent years, a fuel injection valve is provided in the intake manifold, and the intake air amount, throttle opening, etc. are adjusted so as to obtain an optimal air-fuel ratio according to the operating conditions. It is detected and the fuel injection amount is finely controlled according to the operation state.

しかしながら、これらの従来の装置では、10μm程度のマイクロバブルの発生が極めて困難であり、この種のマイクロバブル発生には大容量(5kg/cm2程度)のポンプを必要とした。 However, in these conventional apparatuses, the generation of microbubbles of about 10 μm is extremely difficult, and a large capacity (about 5 kg / cm 2 ) pump is required for this type of microbubble generation.

また、マイクロバブルの発生には、主に加圧溶解法を用いているため、マイクロバブル発生に重点を置いた装置の場合、100μm以上の大径の気泡の発生が出来ない。すなわち、気泡サイズの選択が出来ない。   In addition, since the pressure dissolution method is mainly used for the generation of microbubbles, in the case of an apparatus that focuses on the generation of microbubbles, it is not possible to generate bubbles having a large diameter of 100 μm or more. That is, the bubble size cannot be selected.

さらに、上記従来の燃料噴射装置は、何れも構造が複雑であるとともに、性能面でも満足できるものではなかった。出願人による研究の結果、従来のものにおいては、燃料噴射弁から噴射される燃料と送り込まれる空気の混合状態において、燃料の微細化及び空気との均一化が充分でないことが判明した。混合状態の微細化及び均一化が充分でないと、燃費、エミッション性能の向上は達成できないばかりか、出力性能の向上にも限界がある。通常、燃料噴射弁はインテークマニホールドの吸気バルブ近傍に設けられているため、燃料噴射弁から噴射された燃料は、上流から送り込まれてくる吸入空気と混じり合いながら下流に搬送され、シリンダに導入される。この際、吸入空気は層流であるため両者を良好に混合させるには限界がある。   Further, none of the conventional fuel injection devices has a complicated structure and is not satisfactory in terms of performance. As a result of the research by the applicant, it has been found that, in the conventional system, the fuel is not sufficiently refined and uniformized with the air in the mixed state of the fuel injected from the fuel injection valve and the air sent. If the mixing state is not sufficiently miniaturized and uniform, not only fuel efficiency and emission performance can be improved, but also output performance is limited. Normally, since the fuel injection valve is provided near the intake valve of the intake manifold, the fuel injected from the fuel injection valve is conveyed downstream while being mixed with the intake air sent from the upstream and introduced into the cylinder. The At this time, since the intake air is a laminar flow, there is a limit to mix them well.

本発明が解決しようとする課題は、簡単な構造でありながら均一化された混合気体を得ることができる混合気製造噴射ノズルを提供することにある。   The problem to be solved by the present invention is to provide an air-fuel mixture production injection nozzle capable of obtaining a uniform gas mixture with a simple structure.

本発明の混合気製造噴射ノズルは、円筒状の両端に、加圧源に接続される加圧気体接続部と内燃機関の吸気部に接続されるノズル接続部とが形成され、側面に燃料接続部を有するものであって、円筒内には混合気製造空間を有し、この空間に前記加圧気体接続部内を貫通する加圧気体導入孔と前記燃料接続部内を貫通する燃料導入孔及び前記ノズル接続部内を貫通する混合気排出孔とを開口し、少なくとも前記混合気製造空間の前記燃料接続部近傍の径は、前記加圧気体導入孔の径より大きく設定されていることを特徴としている。   The air-fuel mixture production injection nozzle of the present invention is formed with a pressurized gas connecting portion connected to a pressurizing source and a nozzle connecting portion connected to an intake portion of an internal combustion engine at both ends of a cylindrical shape, and a fuel connection on a side surface Having a gas mixture production space in the cylinder, a pressurized gas introduction hole penetrating through the pressurized gas connection portion in the space, a fuel introduction hole penetrating through the fuel connection portion, and the An air-fuel mixture discharge hole penetrating the inside of the nozzle connection portion is opened, and at least the diameter in the vicinity of the fuel connection portion of the air-fuel mixture production space is set larger than the diameter of the pressurized gas introduction hole. .

この混合気製造噴射ノズルにおいて、前記混合気製造空間の下方位置に縮径部分を設けていることを特徴としている。   In this air-fuel mixture production injection nozzle, a reduced diameter portion is provided at a position below the air-fuel mixture production space.

前記燃料導入部と前記加圧気体導入孔との間には環状凹部が形成されていることを特徴としている。   An annular recess is formed between the fuel introduction part and the pressurized gas introduction hole.

また、前記加圧気体導入孔の開口は、混合気製造空間の内壁に形成され、混合気体の流れ方向下流に伸びるガイド手段に接続されていることを特徴としている。   The opening of the pressurized gas introduction hole is formed on the inner wall of the air-fuel mixture production space, and is connected to guide means extending downstream in the flow direction of the air-fuel mixture.

さらに、前記混合気排気孔を噴射孔に行くにつれて不連続的に径が大きくなる段差部を設けたことを特徴としている。   Further, the step is characterized in that a stepped portion having a diameter that increases discontinuously as the gas mixture exhaust hole goes to the injection hole is provided.

前記混合気排出孔の内壁に、山の位置が噴射孔側に偏倚しているタップを形成したことを特徴としている。   The inner wall of the air-fuel mixture discharge hole is characterized in that a tap whose peak position is biased toward the injection hole is formed.

加圧気体導入孔の開口から混合気製造空間内に導入された加圧気体は、高圧の下で空間内に吐出されて剥がれ域を生じる。この剥がれ域では燃料と空気との混合を加速するような流体エネルギーが発生しており、この剥がれ現象により製造された混合気体は、燃料と空気が満遍なく均一に混合された状態となる。   Pressurized gas introduced into the air-fuel mixture manufacturing space from the opening of the pressurized gas introduction hole is discharged into the space under high pressure to generate a peeling area. In this exfoliation region, fluid energy is generated to accelerate the mixing of fuel and air, and the mixed gas produced by this exfoliation phenomenon is in a state where the fuel and air are uniformly mixed.

本発明のノズルは燃料接続部に接続した燃料導入管に導入する燃料を加圧して使用することも出来るが、ノズル自体の自吸作用により加圧することなく燃料を供給することが可能である。   The nozzle of the present invention can be used by pressurizing the fuel introduced into the fuel introduction pipe connected to the fuel connecting portion, but it is possible to supply the fuel without pressurizing by the self-priming action of the nozzle itself.

さらに、本発明のノズルを使用することにより、従来使用されているインテークマニホールドの吸気側配管、スタートバルブ等の機器類及び吸気バルブが不要となるものである。   Furthermore, the use of the nozzle of the present invention eliminates the need for the intake side piping of the intake manifold, the equipment such as the start valve, and the intake valve that are conventionally used.

本発明のノズルによって、簡単な構造でありながら均一化された混合気体の製造が可能となり、また吸気側の構造においても吸気ポートの形状を混合気噴射副室に変更、もしくは吸気バルブを廃止して、本発明のノズルによりシリンダー内に直接混合気を噴射させることが可能となる。   The nozzle of the present invention makes it possible to produce a uniform gas mixture with a simple structure, and also changes the shape of the intake port to the mixture injection sub-chamber or eliminates the intake valve in the intake side structure. Thus, the air-fuel mixture can be directly injected into the cylinder by the nozzle of the present invention.

本発明の実施例について図面を参照しながら説明する。   Embodiments of the present invention will be described with reference to the drawings.

以下、本発明の実施の形態を導入圧力気体として、圧力が2.0kg/cm2の空気を導入燃料としてガソリンを用いた4サイクル内燃機関を例にして図面に基づいて説明する。 Hereinafter, an embodiment of the present invention will be described based on the drawings, taking as an example a four-cycle internal combustion engine using gasoline as an introduction pressure gas and air as an introduction fuel with an air pressure of 2.0 kg / cm 2 .

図1は本発明に係る混合気製造ノズル500の構造の第1実施例を示す。図1(b)において、A−Bは加圧気体導入側から見た加圧気体接続部502及び加圧気体導入孔503の形態を、C−Dは燃料接続部505及び加圧気体導入孔503の形態を、E−Fは混合気製造空間507から見た燃料導入部506及び加圧気体導入孔503の形態を、G−Hは混合気噴射面から見た混合気噴射孔509を示す。   FIG. 1 shows a first embodiment of the structure of an air-fuel mixture production nozzle 500 according to the present invention. In FIG. 1 (b), AB is the form of the pressurized gas connecting portion 502 and the pressurized gas introducing hole 503 viewed from the pressurized gas introducing side, and CD is the fuel connecting portion 505 and the pressurized gas introducing hole. 503 shows the form of the fuel introduction portion 506 and the pressurized gas introduction hole 503 viewed from the air-fuel mixture production space 507, and GH shows the air-fuel mixture injection hole 509 seen from the air-fuel mixture injection surface. .

図1(a)に示すように、混合気製造ノズル500は混合気製造空間507に加圧気体導入孔503、燃料導入部506、混合気排出孔508を開口している。この加圧気体導入孔503は、加圧気体導入管501と混合気製造空間507との間の隔壁に燃料導入部506を中心とする円周上に設けられている。各加圧気体導入孔503は等間隔に6個配置されている。加圧気体導入孔の数は互いに等間隔であれば6個に限定されるものではない。図1(b)のE−F断面から明らかなように、加圧気体導入孔503の混合気製造空間507側出口は、この混合気製造空間507の内壁に設けられた混合気の流れ方向に沿って形成された直線状の溝507aに連続している。この溝507aは混合気製造空間507の断面縮小部507b近傍まで延び、その後、徐々に消失しており、その形状は半円形状であることが望ましい。この溝507aは加圧気体を下流方向に縦渦のみを発生し得るよう導くガイド手段を構成するものである。加圧気体導入孔503と燃料導入部506との間には円周方向に連続する環状凹部507cが形成されており、凹部507cは半円形状を有している。また混合気排出孔508は混合気製造空間507が縮径を伴い混合気噴射孔509と連通し開口されている。混合気排出孔508の内部には噴射孔に行くにつれて不連続的に径が大きくなる段差部と、山の位置が噴射孔側に偏倚しているタップが形成されている。   As shown in FIG. 1A, the air-fuel mixture production nozzle 500 has a pressurized gas introduction hole 503, a fuel introduction part 506, and an air-fuel mixture discharge hole 508 in the air-fuel mixture production space 507. The pressurized gas introduction hole 503 is provided on the circumference centered on the fuel introduction part 506 in the partition wall between the pressurized gas introduction pipe 501 and the air-fuel mixture production space 507. Six pressurized gas introduction holes 503 are arranged at equal intervals. The number of pressurized gas introduction holes is not limited to six as long as they are equally spaced from each other. As is clear from the EF cross section of FIG. 1B, the outlet of the pressurized gas introduction hole 503 on the side of the air-fuel mixture production space 507 is in the flow direction of the air-fuel mixture provided on the inner wall of the air-fuel mixture production space 507. It continues to the linear groove 507a formed along. The groove 507a extends to the vicinity of the cross-sectional reduction portion 507b of the air-fuel mixture production space 507, and then gradually disappears, and the shape is preferably a semicircular shape. The groove 507a constitutes guide means for guiding the pressurized gas so that only a vertical vortex can be generated in the downstream direction. An annular recess 507c that is continuous in the circumferential direction is formed between the pressurized gas introduction hole 503 and the fuel introduction portion 506, and the recess 507c has a semicircular shape. In addition, the air-fuel mixture discharge hole 508 has an air-fuel mixture production space 507 that is open in communication with the air-fuel mixture injection hole 509 with a reduced diameter. Inside the air-fuel mixture discharge hole 508, a step portion whose diameter increases discontinuously as it goes to the injection hole and a tap whose peak position is biased toward the injection hole are formed.

図1(b)に示すように、燃料接続部505は混合気製造空間の中心に、混合気の流れ方向に沿って燃料を噴射するよう配置されている。混合気製造空間の中心に対してオフセットした場合は、燃料の噴射に伴い、空気の流れに対して螺旋状のエネルギーが付与され混合過程のコントロールが難しくなり、結果として安定した燃焼状態は得られない。   As shown in FIG. 1B, the fuel connection portion 505 is arranged at the center of the air-fuel mixture production space so as to inject fuel along the flow direction of the air-fuel mixture. When offset with respect to the center of the air-fuel mixture production space, spiral energy is applied to the air flow as the fuel is injected, making it difficult to control the mixing process, resulting in a stable combustion state. Absent.

加圧気体導入管501から加圧気体接続部502に導入され、その後加圧気体導入孔503までの間で絞られた空気は、混合気製造空間507に吐出される。この際、急激な膨張が起こり、乱流を伴った流れとなり、いわゆる剥がれ域が燃料導入部506近傍に生じる。この剥がれ現象により、空気と燃料とは満遍なく均一に混合される。本実施例の場合、溝507aにより螺旋の流れが抑制された状態で混合気排出孔508から上流側に戻って前記の乱流を伴った空気流が凹部507cにより燃料導入部506周りに集中され、よって、空気と燃料との混合が著しく向上するものである。さらに、混合気排出孔508の内部には噴射孔に行くにつれて不連続的に径が大きくなる段差部と、山の位置が噴射孔側に偏倚しているタップが形成されているので、燃料と空気とが良好に混合した状態で、混合気は混合気排出孔508から螺旋を伴ってシリンダ内に導入されるために、燃焼状態がより改善されるものである。   The air introduced from the pressurized gas introduction pipe 501 to the pressurized gas connection portion 502 and then throttled to the pressurized gas introduction hole 503 is discharged into the air-fuel mixture manufacturing space 507. At this time, rapid expansion occurs and the flow is accompanied by a turbulent flow, and a so-called peeling region is generated in the vicinity of the fuel introduction portion 506. Due to this peeling phenomenon, air and fuel are uniformly mixed. In the case of the present embodiment, the air flow accompanied by the turbulent flow is concentrated around the fuel introduction portion 506 by the concave portion 507c while returning to the upstream side from the mixture discharge hole 508 in a state where the spiral flow is suppressed by the groove 507a. Therefore, mixing of air and fuel is remarkably improved. Further, the air-fuel mixture discharge hole 508 has a stepped portion whose diameter increases discontinuously as it goes to the injection hole, and a tap whose peak is biased toward the injection hole. Since the air-fuel mixture is introduced into the cylinder with a spiral from the air-fuel mixture discharge hole 508 in a state where the air is well mixed, the combustion state is further improved.

図2は本発明に係る混合気製造ノズル500の構造の第2実施例を示す。図2(b)において、A−Bは加圧気体導入側から見た加圧気体接続部502及び加圧気体導入孔503の形態を、C−Dは燃料接続部505及び加圧気体導入孔503の形態を、E−Fは混合気製造空間から見た燃料導入部506及び加圧気体導入孔503の形態を、G−Hは混合気噴射面から見た混合気噴射孔509を示す。   FIG. 2 shows a second embodiment of the structure of the air-fuel mixture production nozzle 500 according to the present invention. In FIG. 2 (b), AB is the form of the pressurized gas connecting portion 502 and the pressurized gas introducing hole 503 viewed from the pressurized gas introducing side, and CD is the fuel connecting portion 505 and the pressurized gas introducing hole. 503 shows the form of the fuel introduction portion 506 and the pressurized gas introduction hole 503 viewed from the air-fuel mixture production space, and GH shows the air-fuel mixture injection hole 509 viewed from the air-fuel mixture injection surface.

図2(a)に示すように、混合気製造ノズル510は混合気製造空間507に加圧気体導入孔503、燃料導入部506、混合気排出孔508を開口している。この加圧気体導入孔503は加圧気体接続面を底辺とする円錐台の形状をなし、混合気製造空間507に開口している。燃料導入部506は、側面の燃料接続部505に接続された燃料導入管で形成され、混合気製造空間507に開口され、混合気の流れ方向に沿った方向、つまり流れ方向に平行に指向している。燃料導入部506は加圧気体導入孔503の周りに形成された半円形状の環状凹部507dの底面部に開口している。また混合気排出孔508は混合気製造空間507が縮径を伴い混合気噴射孔509と連通し開口されている混合気排出孔508の内部には噴射孔に行くにつれて不連続的に径が大きくなる段差部と、山の位置が噴射孔側に偏倚しているタップが形成されている。   As shown in FIG. 2A, the air-fuel mixture production nozzle 510 has a gas mixture production space 507 with a pressurized gas introduction hole 503, a fuel introduction part 506, and an air-fuel mixture discharge hole 508. The pressurized gas introduction hole 503 has a truncated cone shape with the pressurized gas connection surface as the bottom, and opens into the air-fuel mixture manufacturing space 507. The fuel introduction portion 506 is formed of a fuel introduction pipe connected to the fuel connection portion 505 on the side surface, and is opened to the air-fuel mixture production space 507, and is directed in a direction along the flow direction of the air-fuel mixture, that is, parallel to the flow direction. ing. The fuel introduction part 506 opens at the bottom part of a semicircular annular recess 507d formed around the pressurized gas introduction hole 503. The mixture discharge hole 508 is discontinuously increased in diameter as it goes to the injection hole inside the mixture discharge hole 508 that is open in communication with the mixture injection hole 509 with a reduced diameter of the mixture production space 507. The step part which becomes and the tap in which the position of the peak is biased to the injection hole side is formed.

図2(b)に示すように、燃料導入部506は、加圧気体導入孔503の周りに3個配置されており、各燃料導入孔は506は等間隔かつ加圧気体導入孔503と等距離の関係にある。燃料導入部506の数は互いに等間隔であれば3個に限定されるものではない。   As shown in FIG. 2B, three fuel introduction portions 506 are arranged around the pressurized gas introduction hole 503, and each fuel introduction hole 506 is equally spaced from the pressurized gas introduction hole 503. There is a relationship of distance. The number of fuel introducing portions 506 is not limited to three as long as they are equally spaced from each other.

加圧気体導入管501から加圧気体接続部502に導入され、その後加圧気体導入孔503までの間で絞られた空気は、混合気製造空間507に吐出される。この際急激な膨張が起こり、乱流を伴った流れとなり、いわゆる剥がれ域が燃料導入孔506近傍に生じる。この剥がれ現象により、空気と燃料とは満遍なく均一に混合される。本実施例の場合、混合気排出孔508から上流側に戻ってきた乱流を伴った空気流が凹部507dにより燃料導入部506に集中される。そのため空気と燃料との混合が向上する。さらに、混合気排出孔508の内部には噴射孔に行くにつれて不連続的に径が大きくなる段差部と、山の位置が噴射孔側に偏倚しているタップが形成されているので、燃料と空気とが良好に混合した状態で、混合気は混合気排出孔508から螺旋を伴ってシリンダ内に導入されるために、燃焼状態がより改善されるものである。   The air introduced from the pressurized gas introduction pipe 501 to the pressurized gas connection portion 502 and then throttled to the pressurized gas introduction hole 503 is discharged into the air-fuel mixture manufacturing space 507. At this time, rapid expansion occurs, resulting in a flow with turbulent flow, and a so-called peeling region is generated in the vicinity of the fuel introduction hole 506. Due to this peeling phenomenon, air and fuel are uniformly mixed. In the case of the present embodiment, the air flow accompanied by the turbulent flow returning to the upstream side from the mixture discharge hole 508 is concentrated on the fuel introduction portion 506 by the concave portion 507d. Therefore, mixing of air and fuel is improved. Further, the air-fuel mixture discharge hole 508 has a stepped portion whose diameter increases discontinuously as it goes to the injection hole, and a tap whose peak is biased toward the injection hole. Since the air-fuel mixture is introduced into the cylinder with a spiral from the air-fuel mixture discharge hole 508 in a state where the air is well mixed, the combustion state is further improved.

図3は混合気製造ノズル500の構造の第3実施例を示す。図3(b)において、A−Bは加圧気体導入側から見た加圧気体接続部502及び加圧気体導入孔503の形態を、C−Dは混合気製造空間507における燃料接続部505、燃料導入部506及び加圧気体導入孔503の形態を、E−Fは混合気噴射面から見た混合気噴射孔509を示す。   FIG. 3 shows a third embodiment of the structure of the air-fuel mixture production nozzle 500. In FIG. 3B, AB is a configuration of the pressurized gas connection portion 502 and the pressurized gas introduction hole 503 viewed from the pressurized gas introduction side, and CD is a fuel connection portion 505 in the air-fuel mixture manufacturing space 507. In addition, E-F indicates the mixture injection hole 509 viewed from the mixture injection surface in the form of the fuel introduction unit 506 and the pressurized gas introduction hole 503.

図3(a)に示すように、混合気製造ノズル500は混合気製造空間507に加圧気体導入孔503、燃料導入部506、混合気排出孔508を開口している。この加圧気体導入孔503は、加圧気体接続面を底辺とする円錐台の形状をなし、混合気製造空間507に開口している。燃料導入部506は、側面の燃料接続部505に接続された燃料導入管504で形成され、混合気製造空間507に開口される。また混合気排出孔508は混合気製造空間507が縮径を伴い加圧気体導入孔503と同程度の径で混合気噴射孔509と連通し開口される。混合気排出孔508の内部には噴射孔に行くにつれて不連続的に径が大きくなる段差部と、山の位置が噴射孔側に偏倚しているタップが形成されている。   As shown in FIG. 3A, the air-fuel mixture production nozzle 500 has a pressurized gas introduction hole 503, a fuel introduction part 506, and an air-fuel mixture discharge hole 508 in the air-fuel mixture production space 507. The pressurized gas introduction hole 503 has a truncated cone shape with the pressurized gas connection surface as the bottom, and opens into the air-fuel mixture manufacturing space 507. The fuel introduction part 506 is formed by a fuel introduction pipe 504 connected to the fuel connection part 505 on the side surface, and is opened to the air-fuel mixture production space 507. The air-fuel mixture discharge hole 508 is opened to communicate with the air-fuel mixture injection hole 509 with the diameter of the air-fuel mixture production space 507 having the same diameter as the pressurized gas introduction hole 503 with a reduced diameter. Inside the air-fuel mixture discharge hole 508, a step portion whose diameter increases discontinuously as it goes to the injection hole and a tap whose peak position is biased toward the injection hole are formed.

図3(b)に示すように、燃料接続部505は円周方向に120度毎に均等に3個設けられ、燃料接続部505は混合気の流れと直行する方向で、混合気製造空間の中心に指向している。燃料導入部506の数は互いに等間隔であれば3個に限定されるものではない。   As shown in FIG. 3 (b), three fuel connection portions 505 are provided evenly at 120 degrees in the circumferential direction, and the fuel connection portions 505 are perpendicular to the flow of the air-fuel mixture, Oriented to the center. The number of fuel introducing portions 506 is not limited to three as long as they are equally spaced from each other.

加圧気体導入管501から加圧気体接続部502に導入され、その後加圧気体導入孔503までの間で絞られた空気は、混合気製造空間507に吐出される。この際、急激な膨張が起こり、乱流を伴った流れとなり、いわゆる、剥がれ域が燃料導入部506近傍に生じる。この剥がれ現象により、空気と燃料とは満遍なく均一に混合される。なお、加圧気体導入孔503の径と、混合気排出孔508の径とは、ほぼ等しいことが好ましい。さらに、混合気排出孔508の内部には噴射孔に行くにつれて不連続的に径が大きくなる段差部と、山の位置が噴射孔側に偏倚しているタップが形成されているので、燃料と空気とが良好に混合した状態で、混合気は混合気排出孔508から螺旋を伴ってシリンダ内に導入されるために、燃焼状態がより改善されるものである。   The air introduced from the pressurized gas introduction pipe 501 to the pressurized gas connection portion 502 and then throttled to the pressurized gas introduction hole 503 is discharged into the air-fuel mixture manufacturing space 507. At this time, rapid expansion occurs and the flow is accompanied by turbulent flow, and a so-called peeling region is generated in the vicinity of the fuel introduction portion 506. Due to this peeling phenomenon, air and fuel are uniformly mixed. Note that the diameter of the pressurized gas introduction hole 503 and the diameter of the air-fuel mixture discharge hole 508 are preferably substantially equal. Further, the air-fuel mixture discharge hole 508 has a stepped portion whose diameter increases discontinuously as it goes to the injection hole, and a tap whose peak is biased toward the injection hole. Since the air-fuel mixture is introduced into the cylinder with a spiral from the air-fuel mixture discharge hole 508 in a state where the air is well mixed, the combustion state is further improved.

図4は、本発明に係る混合気製造ノズルを適用した燃料内燃機関の全体システムの実施例を示す。シリンダ561には吸気ポート564、排気ポート565が設けられており、各ポートには吸気バルブ531、排気バルブ551が設けられている。吸気ポート564と排気ポート565との間には、点火プラグ571が設けられている。吸気ポート564は混合気噴射副室530に連通しており、この混合気噴射副室530はインテークマニホールドを構成する。混合気噴射副室530には、混合気製造噴射ノズル500が取り付けられている。排気ポート565はエギゾーストマニホールド552に連通している。562、563は各々ピストン、コンロッドを示している。   FIG. 4 shows an embodiment of an overall system of a fuel internal combustion engine to which the air-fuel mixture production nozzle according to the present invention is applied. The cylinder 561 is provided with an intake port 564 and an exhaust port 565, and an intake valve 531 and an exhaust valve 551 are provided at each port. A spark plug 571 is provided between the intake port 564 and the exhaust port 565. The intake port 564 communicates with the mixture injection subchamber 530, and this mixture injection subchamber 530 constitutes an intake manifold. An air-fuel mixture production injection nozzle 500 is attached to the air-fuel mixture injection sub-chamber 530. The exhaust port 565 communicates with the exhaust manifold 552. Reference numerals 562 and 563 denote a piston and a connecting rod, respectively.

混合気製造噴射ノズル500には、コンプレッサー541で加圧された空気を、スロットルバルブ524を介して混合気製造噴射ノズル500に送る、加圧気体導入管501が接続され、また、リザーバタンク522からの燃料をシャットアウトバルブ523とスロットルバルブ524を介して混合気製造噴射ノズル500に送る燃料導入管504が接続されている。リザーバタンク522は燃料タンク521から燃料の供給を受ける。   The air-fuel mixture production injection nozzle 500 is connected with a pressurized gas introduction pipe 501 that sends the air pressurized by the compressor 541 to the air-fuel mixture production injection nozzle 500 through the throttle valve 524, and from the reservoir tank 522. A fuel introduction pipe 504 is connected to the fuel mixture injection nozzle 500 through a shut-out valve 523 and a throttle valve 524. The reservoir tank 522 receives fuel from the fuel tank 521.

図5は、図4に係る混合気噴射副室530の拡大図を示すものであり、吸気弁が貫通するバルブガイド532と混合気製造噴射ノズル500の噴射部533が挿入され固定されるノズル取付け部534が設けられており、シリンダヘッドにシール部材を介して締結されている。   FIG. 5 is an enlarged view of the air-fuel mixture injection sub-chamber 530 according to FIG. 4, in which the valve guide 532 through which the intake valve passes and the nozzle portion 533 of the air-fuel mixture production injection nozzle 500 are inserted and fixed. A portion 534 is provided and is fastened to the cylinder head via a seal member.

図6は、本発明に係る混合気製造ノズルを適用した燃料内燃機関の全体システムの別実施例を示す。本実施例では、図4による第1実施例の吸気バルブが省略されたものであって、シャットアウトバルブ523はスロットルバルブ524の下流側の燃料導入管504に設けられた点と、加圧空気導入管501にシャットアウトバルブ523が追加された点で第1実施例と相違している。   FIG. 6 shows another embodiment of the entire system of the fuel internal combustion engine to which the air-fuel mixture production nozzle according to the present invention is applied. In this embodiment, the intake valve of the first embodiment shown in FIG. 4 is omitted, and the shutout valve 523 is provided in the fuel introduction pipe 504 on the downstream side of the throttle valve 524, and the pressurized air. This is different from the first embodiment in that a shutout valve 523 is added to the introduction pipe 501.

図7は、図6に係る混合気製造噴射バルブ500の接続部の拡大図であり、シリンダ561に形成されたノズル取付け部534に混合気製造噴射ノズル500の噴射部533が嵌合されている。混合気製造噴射バルブ500と噴射部533との間にはシャットアウトバルブ523が設けられている。   FIG. 7 is an enlarged view of the connection part of the mixture production injection valve 500 according to FIG. 6, and the injection part 533 of the mixture production injection nozzle 500 is fitted to the nozzle mounting part 534 formed in the cylinder 561. . A shut-out valve 523 is provided between the air-fuel mixture production injection valve 500 and the injection unit 533.

本発明のノズルによれば、コンプレッサー541からの加圧空気を混合気噴射副室530又はシリンダ561に直接導入しているので、従来必要とされたインテークマニホールドの吸気側配管及びスタートバルブ等の機械類が不要となり、コンパクトな内燃機関を得ることが可能になる。また、本発明のノズルは均一化された混合気体が製造できるため、2サイクルエンジン、ロータリーエンジン、ディーゼルエンジンにおいても使用が可能である。   According to the nozzle of the present invention, since the pressurized air from the compressor 541 is directly introduced into the air-fuel mixture injection subchamber 530 or the cylinder 561, the intake manifold piping and the start valve, etc. of the intake manifold that are conventionally required It becomes possible to obtain a compact internal combustion engine. Further, since the nozzle of the present invention can produce a uniform mixed gas, it can be used in a two-cycle engine, a rotary engine, and a diesel engine.

本発明の混合気製造ノズルの第1実施例を示す。1 shows a first embodiment of an air-fuel mixture production nozzle according to the present invention. 本発明の混合気製造ノズルの第2実施例を示す。2 shows a second embodiment of the air-fuel mixture production nozzle of the present invention. 本発明の混合気製造ノズルの第3実施例を示す。3 shows a third embodiment of the air-fuel mixture production nozzle of the present invention. 本発明が適用される内燃機関の第1の実施例を示す。1 shows a first embodiment of an internal combustion engine to which the present invention is applied. 本発明の混合気噴射副室の拡大図を示す。The enlarged view of the air-fuel | gaseous mixture injection subchamber of this invention is shown. 本発明が適用される内燃機関の第2の実施例を示す。2 shows a second embodiment of an internal combustion engine to which the present invention is applied. 本発明の混合気製造ノズルの接続部を示す。The connection part of the air-fuel | gaseous mixture production nozzle of this invention is shown.

符号の説明Explanation of symbols

500:混合気製造ノズル
501:加圧気体導入管
502:加圧気体接続部
503:加圧気体導入孔
504:噴射部
505:燃料接続部
506:燃料導入部
507:混合気製造空間
508:混合気排出孔
509:混合気噴射孔
521:燃料タンク
522:リザーバタンク
523:シャットアウトバルブ
524:スロットルバルブ
530:混合気噴射副室
533:噴射部
534:ノズル取付け部
541:コンプレッサー
531:吸気バルブ
551:排気バルブ
552:エギゾーストマニホールド
561:シリンダ
562:ピストン
563:コンロッド
564:吸気ポート
565:排気ポート
571:点火プラグ
500: Air-fuel mixture production nozzle 501: Pressurized gas introduction pipe 502: Pressurized gas connection part 503: Pressurized gas introduction hole 504: Injection part 505: Fuel connection part 506: Fuel introduction part 507: Air mixture production space 508: Mixing Air discharge hole 509: Air mixture injection hole 521: Fuel tank 522: Reservoir tank 523: Shutout valve 524: Throttle valve 530: Air mixture injection subchamber 533: Injection part 534: Nozzle mounting part 541: Compressor 531: Intake valve 551 : Exhaust valve 552: Exhaust manifold 561: Cylinder 562: Piston 563: Connecting rod 564: Intake port 565: Exhaust port 571: Spark plug

Claims (6)

内燃機関に用いられる燃料噴射装置であって、円筒状の両端に、加圧源に接続される加圧気体接続部と内燃機関の吸気部に接続されるノズル接続部とが形成され、側面に燃料接続部を有するものであって、円筒内には混合気製造空間を有し、該空間に前記加圧気体接続部内を貫通する加圧気体導入孔と前記燃料接続部内を貫通する燃料導入孔及び前記ノズル接続部内を貫通する混合気排出孔とを開口し、少なくとも前記混合気製造空間の前記燃料導入部近傍の径は、前記加圧気体導入孔の径より大きく設定されていることを特徴とする混合気製造噴射ノズル。   A fuel injection device for use in an internal combustion engine, in which both ends of a cylinder are formed with a pressurized gas connection portion connected to a pressurization source and a nozzle connection portion connected to an intake portion of the internal combustion engine. A fuel connection portion having an air-fuel mixture production space in a cylinder, a pressurized gas introduction hole penetrating through the pressurized gas connection portion and a fuel introduction hole penetrating through the fuel connection portion in the space And an air-fuel mixture discharge hole penetrating through the nozzle connection portion, and at least a diameter of the air-fuel mixture production space in the vicinity of the fuel introduction portion is set larger than a diameter of the pressurized gas introduction hole. Air-fuel mixture production injection nozzle. 前記混合気製造空間の下方位置に縮径部分を設けていることを特徴とする請求項1記載の混合気製造噴射ノズル。   2. The air-fuel mixture production injection nozzle according to claim 1, wherein a reduced diameter portion is provided at a lower position of the air-fuel mixture production space. 前記燃料導入部と前記加圧気体導入孔との間には環状凹部が形成されていることを特徴とする請求項1記載の混合気製造噴射ノズル。   The air-fuel mixture production injection nozzle according to claim 1, wherein an annular recess is formed between the fuel introduction part and the pressurized gas introduction hole. 前記加圧気体導入孔の開口は、混合気製造空間の内壁に形成され、混合気体の流れ方向下流に伸びるガイド手段に接続されていることを特徴とする請求項1から3のいずれか1項に記載の混合気製造噴射ノズル。   The opening of the pressurized gas introduction hole is formed on the inner wall of the air-fuel mixture production space, and is connected to guide means extending downstream in the flow direction of the air-fuel mixture. The air-fuel mixture production injection nozzle described in 1. 前記混合気排気孔を噴射孔に行くにつれて不連続的に径が大きくなる段差部を設けたことを特徴とする請求項1から4のいずれか1項に記載の混合気製造噴射ノズル。   The air-fuel mixture production injection nozzle according to any one of claims 1 to 4, further comprising a stepped portion whose diameter increases discontinuously as the air-fuel mixture exhaust hole goes to the injection hole. 前記混合気排出孔の内壁に、山の位置が噴射孔側に偏倚しているタップを形成したことを特徴とする請求項1から5のいずれか1項に記載の混合気製造噴射ノズル。   The air-fuel mixture production injection nozzle according to any one of claims 1 to 5, wherein a tap whose peak is biased toward the injection hole is formed on an inner wall of the air-fuel mixture discharge hole.
JP2007154842A 1999-11-15 2007-06-12 Fuel-air mixture manufacturing injection nozzle Pending JP2007224930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007154842A JP2007224930A (en) 1999-11-15 2007-06-12 Fuel-air mixture manufacturing injection nozzle

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP32458299 1999-11-15
JP2000095664 2000-03-30
JP2000121407 2000-04-21
JP2000139150 2000-05-11
JP2000236567 2000-08-04
JP2007154842A JP2007224930A (en) 1999-11-15 2007-06-12 Fuel-air mixture manufacturing injection nozzle

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001538084A Division JP4002439B2 (en) 1999-11-15 2000-11-13 Microbubble generating nozzle and its application device

Publications (1)

Publication Number Publication Date
JP2007224930A true JP2007224930A (en) 2007-09-06

Family

ID=38546932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007154842A Pending JP2007224930A (en) 1999-11-15 2007-06-12 Fuel-air mixture manufacturing injection nozzle

Country Status (1)

Country Link
JP (1) JP2007224930A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009042800A2 (en) * 2007-09-27 2009-04-02 Continental Controls Corporation Fuel control system and method for gas engines
US8320191B2 (en) 2007-08-30 2012-11-27 Infineon Technologies Ag Memory cell arrangement, method for controlling a memory cell, memory array and electronic device
JP2022048605A (en) * 2020-09-15 2022-03-28 株式会社オ-ラテック Mist nozzle

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8320191B2 (en) 2007-08-30 2012-11-27 Infineon Technologies Ag Memory cell arrangement, method for controlling a memory cell, memory array and electronic device
US9030877B2 (en) 2007-08-30 2015-05-12 Infineon Technologies Ag Memory cell arrangement, method for controlling a memory cell, memory array and electronic device
WO2009042800A2 (en) * 2007-09-27 2009-04-02 Continental Controls Corporation Fuel control system and method for gas engines
WO2009042800A3 (en) * 2007-09-27 2009-05-14 Continental Controls Corp Fuel control system and method for gas engines
US8005603B2 (en) 2007-09-27 2011-08-23 Continental Controls Corporation Fuel control system and method for gas engines
JP2022048605A (en) * 2020-09-15 2022-03-28 株式会社オ-ラテック Mist nozzle
JP7282389B2 (en) 2020-09-15 2023-05-29 株式会社オ-ラテック mist nozzle

Similar Documents

Publication Publication Date Title
KR101625837B1 (en) Pre-chamber arrangement
US7077341B2 (en) Fuel injection device
JP4105739B2 (en) Piston internal combustion engine
RU2005129654A (en) FOAMING INJECTOR FOR THE AEROMECHANICAL SYSTEM OF INJECTING A FUEL-AIR MIXTURE TO THE TURBO MACHINE COMBUSTION CAMERA, THE AEROMECHANICAL INJECTION SYSTEM, TURBO MACHINE COMBUSTION CAMERA AND TURBO MACHINE
US11549429B2 (en) Engine mixing structures
RU2005129655A (en) FOAMING AERODYNAMIC SYSTEM FOR INJECTING A FUEL-AIR MIXTURE TO A TURBO MACHINE COMBUSTION CAMERA, TURBO MACHINE COMBUSTION CAMERA AND TURBO MACHINE
JP5225110B2 (en) Diesel engine fuel processing apparatus and method
JP2007224930A (en) Fuel-air mixture manufacturing injection nozzle
US6561172B1 (en) Nitrous oxide plate system for engines
CA2176129C (en) Carburettor
US4224792A (en) Internal combustion engine equipped with an improved air injection system
CA2392966A1 (en) Mixer for multicylinder gas engine
EP0244972A2 (en) Liquid fuel combustor
JPH0281925A (en) Sub-chamber type gas engine
KR980002796A (en) Fuel mixing device
US20230015517A1 (en) Engine mixing structures
JP2005273600A (en) Fuel injection device
KR200169740Y1 (en) Mixer of lpg fuel system for automobile
JPH0515532Y2 (en)
SU1327947A1 (en) Apparatus for making emulsion
JP2002364365A (en) Air assist type fuel injection means and engine provided with air supply means integrated with engine
JPH053862Y2 (en)
KR0132164Y1 (en) Intake apparatus for engines
JPH04234565A (en) Fuel injection device for internal combustion engine
KR200218432Y1 (en) Wave infuser equipped with oil and air providing pipes therein

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070621

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20090410

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20090807

Free format text: JAPANESE INTERMEDIATE CODE: A02