JP2022045088A - EXPANSION SUPPRESSION TREATMENT METHOD OF STEELMAKING SLAG, UTILIZATION METHOD OF STEELMAKING SLAG, AND PRODUCTION METHOD OF LOW f-CAO-CONTAINING SLAG - Google Patents

EXPANSION SUPPRESSION TREATMENT METHOD OF STEELMAKING SLAG, UTILIZATION METHOD OF STEELMAKING SLAG, AND PRODUCTION METHOD OF LOW f-CAO-CONTAINING SLAG Download PDF

Info

Publication number
JP2022045088A
JP2022045088A JP2020150587A JP2020150587A JP2022045088A JP 2022045088 A JP2022045088 A JP 2022045088A JP 2020150587 A JP2020150587 A JP 2020150587A JP 2020150587 A JP2020150587 A JP 2020150587A JP 2022045088 A JP2022045088 A JP 2022045088A
Authority
JP
Japan
Prior art keywords
steelmaking slag
cao
slag
expansion
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020150587A
Other languages
Japanese (ja)
Other versions
JP7401415B2 (en
Inventor
達弥 佐々木
Tatsuya Sasaki
佑輔 高橋
Yusuke Takahashi
宣裕 小林
Yoshihiro Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2020150587A priority Critical patent/JP7401415B2/en
Publication of JP2022045088A publication Critical patent/JP2022045088A/en
Priority to JP2023191482A priority patent/JP2023184715A/en
Application granted granted Critical
Publication of JP7401415B2 publication Critical patent/JP7401415B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

To provide an expansion suppression treatment method of steelmaking slag in which the treatment can be performed at low cost and in a short time.SOLUTION: The expansion suppression treatment method of the steelmaking slag includes a step of immersing the steelmaking slag containing f-CaO in a polyol compound or a mixture of the polyol compound with water. Preferably, the polio compound comprises one or more selected from a diol compound and a triol compound. Furthermore, the triol compound preferably contains glycerin.SELECTED DRAWING: None

Description

本発明は、f‐CaOを含む製鋼スラグの膨張抑制処理方法および当該方法で膨張抑制処理された製鋼スラグの利用方法、ならびに低f‐CaO含有スラグの製造方法に関する。 The present invention relates to a method for suppressing expansion of steelmaking slag containing f-CaO, a method for utilizing the steelmaking slag subjected to the expansion suppression treatment by the method, and a method for producing low f-CaO-containing slag.

鉄鋼スラグは、高炉から副生される高炉スラグと、製鋼工程で副生される転炉系スラグや電気炉系スラグのような製鋼スラグとに区別される。副産物の有効利用や天然資源の保存・維持の観点から、このような鉄鋼スラグを、セメント原料、コンクリート用細骨材、路盤材、土工資材等へ利用することが注目されている。特に、路盤材や土工資材の用途には、製鋼スラグが利用される。 Steelmaking slag is divided into blast furnace slag produced as a by-product from the blast furnace and steelmaking slag such as converter slag and electric furnace slag produced as a by-product in the steelmaking process. From the viewpoint of effective utilization of by-products and preservation / maintenance of natural resources, attention is being paid to the use of such steel slag as a raw material for cement, fine aggregate for concrete, roadbed material, earthwork material and the like. In particular, steelmaking slag is used for roadbed materials and earthwork materials.

製鋼スラグは、未反応石灰(以下、単に「f‐CaO」とも称する)や未反応酸化マグネシウム(以下、単に「f‐MgO」とも称する)等を含む場合があり、これらは水と反応して体積膨張を起こす性質を有する。そのため、例えば製鋼スラグをそのまま路盤材に適用すると、路盤材上に敷設したアスファルトが隆起したり、亀裂が生じる場合がある。従って、路盤材等の用途で製鋼スラグを使用する場合には、膨張抑制処理を施した製鋼スラグを用いる必要がある。 Steelmaking slag may contain unreacted lime (hereinafter, also simply referred to as “f-CaO”), unreacted magnesium oxide (hereinafter, also simply referred to as “f-MgO”), etc., which react with water. It has the property of causing volume expansion. Therefore, for example, if steelmaking slag is applied to the roadbed material as it is, the asphalt laid on the roadbed material may rise or crack. Therefore, when steelmaking slag is used for roadbed materials and the like, it is necessary to use steelmaking slag that has been subjected to expansion suppression treatment.

製鋼スラグの膨張抑制処理方法は、数多く開発されている。代表的には、製鋼スラグの水和反応を予め促進させておくエージング処理方法として、長期間大気に暴露する方法(大気エージング)、水蒸気に暴露する方法(蒸気エージング)および加圧水蒸気中に暴露する方法(加圧蒸気エージング)が存在する。具体的には、例えば、特許文献1には、所定粒度に破砕された、山積み状態の製鋼スラグを、水分を含有する高温度のガスの吹込みによって加熱しながら、大気中で48時間以上暴露することを特徴とする製鋼スラグのエージング処理方法が記載されている。また、特許文献2には、粒径25mm以下のものが80%以上となるように破砕した常温の製鋼スラグを圧力容器に装入し、該圧力容器を密閉して容器内に加圧水蒸気を供給して容器およびスラグを加熱することによって凝縮した熱水を排出しつつ圧力容器内を昇温・昇圧し、次いで容器内を2~10kg/cmGの圧力の飽和水蒸気雰囲気に1~5時間保持した後、圧力容器内を大気圧まで減圧して製鋼スラグを排出することを特徴とする製鋼スラグのエージング方法が記載されている。 Many methods for suppressing expansion of steelmaking slag have been developed. Typically, as an aging treatment method for accelerating the hydration reaction of steelmaking slag in advance, a method of long-term exposure to the atmosphere (atmospheric aging), a method of exposure to steam (steam aging), and exposure to pressurized steam. There is a method (pressurized steam aging). Specifically, for example, in Patent Document 1, a pile of steelmaking slag crushed to a predetermined particle size is exposed to the atmosphere for 48 hours or more while being heated by blowing a high-temperature gas containing water. A method for aging steelmaking slag is described. Further, in Patent Document 2, a steel slag at room temperature crushed so that a particle size of 25 mm or less is 80% or more is charged into a pressure vessel, the pressure vessel is sealed, and pressurized steam is supplied into the vessel. By heating the vessel and slag, the pressure inside the pressure vessel is raised and increased while discharging the condensed hot water, and then the inside of the vessel is placed in a saturated steam atmosphere with a pressure of 2 to 10 kg / cm 2 G for 1 to 5 hours. A method for aging steelmaking slag is described, which comprises reducing the pressure inside the pressure vessel to atmospheric pressure and discharging the steelmaking slag after holding the pressure vessel.

特開昭61-101441号公報Japanese Unexamined Patent Publication No. 61-101441 特開平8-165151号公報Japanese Unexamined Patent Publication No. 8-165151

しかしながら、特許文献1の方法によると、多量の水蒸気を含む高温ガスを使用するため高コストであり、かつ、エージング処理に長時間を要する。また、特許文献2の方法によっても、加圧のための装置および多量の加圧水蒸気が使用されるため、より高コストとなってしまうことが明らかである。さらに、処理時間についても、製鋼スラグのエージング処理の際の昇温および昇圧時間ならびに加圧保持時間を加算すると、まだ十分に短縮されているとは言い難い。 However, according to the method of Patent Document 1, since a high temperature gas containing a large amount of water vapor is used, the cost is high and the aging treatment requires a long time. Further, it is clear that the method of Patent Document 2 also uses a device for pressurization and a large amount of pressurized steam, resulting in higher cost. Furthermore, it cannot be said that the processing time is sufficiently shortened by adding the temperature rise and pressurization time and the pressure holding time during the aging treatment of the steelmaking slag.

このように、特にコスト面および処理時間の観点から、より効率的な新たな製鋼スラグの膨張抑制処理方法が求められる。 As described above, a new more efficient method for suppressing expansion of steelmaking slag is required, especially from the viewpoint of cost and processing time.

そこで、本発明は、低コストかつ短時間で処理を行うことができる製鋼スラグの膨張抑制処理方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a method for suppressing expansion of steelmaking slag, which can be processed at low cost and in a short time.

本発明者らは、上記課題を解決すべく鋭意検討を行った結果、本発明に到達した。すなわち、本発明は以下の好適な態様を包含する。 The present inventors have reached the present invention as a result of diligent studies to solve the above problems. That is, the present invention includes the following preferred embodiments.

本発明の第一の局面に係る製鋼スラグの膨張抑制処理方法は、f‐CaOを含む製鋼スラグを、ポリオール化合物またはポリオール化合物と水との混合物に浸漬する工程を含む。 The method for suppressing expansion of steelmaking slag according to the first aspect of the present invention includes a step of immersing the steelmaking slag containing f-CaO in a polyol compound or a mixture of a polyol compound and water.

前述の製鋼スラグの膨張抑制処理方法において、前記ポリオール化合物は、ジオール化合物およびトリオール化合物から選択される1つ以上を含むことが好ましい。 In the above-mentioned method for suppressing expansion of steelmaking slag, the polyol compound preferably contains one or more selected from a diol compound and a triol compound.

前述の製鋼スラグの膨張抑制処理方法において、前記トリオール化合物は、グリセリンを含むことが好ましい。 In the above-mentioned method for suppressing expansion of steelmaking slag, the triol compound preferably contains glycerin.

前述の製鋼スラグの膨張抑制処理方法において、前記ジオール化合物は、エチレングリコール、プロピレングリコールおよびジエチレングリコールから選択される1つ以上を含むことが好ましい。 In the above-mentioned method for suppressing expansion of steelmaking slag, the diol compound preferably contains one or more selected from ethylene glycol, propylene glycol and diethylene glycol.

前述の製鋼スラグの膨張抑制処理方法において、前記ポリオール化合物と水との混合物において、前記水に対する前記ポリオール化合物の質量比は0.2以上であることがより好ましい。 In the above-mentioned method for suppressing expansion of steelmaking slag, the mass ratio of the polyol compound to the water in the mixture of the polyol compound and water is more preferably 0.2 or more.

本発明の第二の局面に係る製鋼スラグの利用方法は、前述の第一の局面に係る方法で膨張抑制処理された製鋼スラグを路盤材として用いる。 In the method of using the steelmaking slag according to the second aspect of the present invention, the steelmaking slag subjected to the expansion suppression treatment by the method according to the first aspect described above is used as the roadbed material.

本発明の第三の局面に係る低f‐CaO含有スラグの製造方法は、f‐CaOを含む製鋼スラグを、ポリオール化合物またはポリオール化合物と水との混合物に浸漬する工程と、浸漬工程後において低f‐CaO含有スラグを得る工程とを含む。 The method for producing low f-CaO-containing slag according to the third aspect of the present invention is a step of immersing a steelmaking slag containing f-CaO in a polyol compound or a mixture of a polyol compound and water, and a step of immersing the slag after the immersing step. Includes a step of obtaining f-CaO-containing slag.

本発明によれば、低コストかつ短時間で処理を行うことができる製鋼スラグの膨張抑制処理方法を提供することができる。 According to the present invention, it is possible to provide a method for suppressing expansion of steelmaking slag, which can be processed at low cost and in a short time.

本発明者らは、水蒸気または加圧水蒸気を用いない、より効率的な製鋼スラグの膨張抑制処理方法について様々な研究を重ね、製鋼スラグ中のf‐CaOのみを効率よく選択的に抽出する方法に着目し、本発明を完成した。詳細には、例えばグリセリンまたはエチレングリコールと水とを含む溶媒を用いることにより、水のみの溶媒を用いた場合と比較して、製鋼スラグ中のf‐CaOを約1時間程度の短時間で最大で約7~8倍程度抽出できることが分かった。加えて、その際、一般的な製鋼スラグに含有されるf‐CaOのほぼ全量を抽出できていたことが分かった。さらに、製鋼スラグはf‐CaO以外にもf‐MgO等のように膨張源となる他の鉱物も多く含むが、f‐CaOのみを選択的に抽出することにより、スラグの膨張率を効率よく十分低下できることが分かった。 The present inventors have conducted various studies on a more efficient method for suppressing expansion of steelmaking slag without using steam or pressurized steam, and have developed a method for efficiently and selectively extracting only f-CaO in steelmaking slag. Focusing on it, the present invention was completed. Specifically, for example, by using a solvent containing glycerin or ethylene glycol and water, f-CaO in the steelmaking slag can be maximized in a short time of about 1 hour as compared with the case where a solvent containing only water is used. It was found that about 7 to 8 times can be extracted. In addition, at that time, it was found that almost all of f-CaO contained in general steelmaking slag could be extracted. Furthermore, steelmaking slag contains many other minerals that are expansion sources such as f-MgO in addition to f-CaO, but by selectively extracting only f-CaO, the expansion rate of slag can be efficiently increased. It turned out that it could be lowered sufficiently.

以下、本発明の実施形態について、詳細に説明する。なお、本発明の範囲はここで説明する実施形態に限定されるものではなく、本発明の趣旨を損なわない範囲で種々の変更をすることができる。 Hereinafter, embodiments of the present invention will be described in detail. The scope of the present invention is not limited to the embodiments described here, and various modifications can be made without impairing the gist of the present invention.

<製鋼スラグの膨張抑制処理方法>
本実施形態における製鋼スラグの膨張抑制処理方法は、f‐CaOを含む製鋼スラグを、ポリオール化合物またはポリオール化合物と水との混合物に浸漬する工程(以下、「浸漬工程」または「浸漬処理」とも称する)を含む。
<Method of suppressing expansion of steelmaking slag>
The method for suppressing the expansion of steelmaking slag in the present embodiment is a step of immersing the steelmaking slag containing f-CaO in a polyol compound or a mixture of a polyol compound and water (hereinafter, also referred to as “immersion step” or “immersion treatment”). )including.

本実施形態における膨張抑制処理方法によると、従来のような水蒸気または加圧水蒸気を利用するのではなく、ポリオール化合物を含む溶媒を用いる浸漬処理を行うため、製鋼スラグ中のf‐CaOを効率よく選択的に抽出することができる。そのため、極めて短時間で製鋼スラグの膨張率を効率的かつ安定的に低下させることができる。 According to the expansion suppression treatment method in the present embodiment, f-CaO in the steelmaking slag is efficiently selected because the immersion treatment uses a solvent containing a polyol compound instead of using the conventional steam or pressurized steam. Can be extracted as a target. Therefore, the expansion rate of the steelmaking slag can be efficiently and stably reduced in an extremely short time.

加えて、ポリオール化合物を含む溶媒は、必要に応じて水を加え、二酸化炭素に曝露することによって、使用後の溶媒から抽出したカルシウムに二酸化炭素を固定化し、炭酸カルシウムとして回収することができる。カルシウムを取り除いた溶媒は、繰り返し溶媒として再利用することができる。従って、例えば製鋼スラグ中のf‐CaOの質量比が高い場合であっても、カルシウムを回収しながら溶媒を繰り返し再利用することによって、溶媒を大量に追加しなくても、好ましくは3%以下、より好ましくは1%以下、さらに好ましくは0.5%以下、最も好ましくは検出限界以下までf‐CaOの含有質量を下げることができ、低コスト化が実現できる。 In addition, the solvent containing the polyol compound can be recovered as calcium carbonate by immobilizing carbon dioxide in the calcium extracted from the solvent after use by adding water as needed and exposing it to carbon dioxide. The solvent from which calcium has been removed can be reused as a solvent repeatedly. Therefore, for example, even when the mass ratio of f-CaO in steelmaking slag is high, it is preferably 3% or less by repeatedly reusing the solvent while recovering calcium without adding a large amount of solvent. The mass content of f-CaO can be reduced to 1% or less, more preferably 0.5% or less, and most preferably to the detection limit or less, and cost reduction can be realized.

まず、本実施形態における製鋼スラグの膨張抑制処理方法で用いる材料について説明する。 First, the material used in the expansion suppressing treatment method for steelmaking slag in the present embodiment will be described.

本明細書において、「f‐CaO」とは、一般的に製鋼スラグに含まれる未反応のCaOおよび未反応のCa(OH)を意味する。 As used herein, the term "f-CaO" generally means unreacted CaO and unreacted Ca (OH) 2 contained in steelmaking slag.

本明細書において、「製鋼スラグ」とは、予備処理工程、転炉、二次精錬工程等から副生される転炉系スラグや電気炉系スラグのような製鋼スラグを意味する。製鋼スラグの成分は、f‐CaOを含んでいれば特に限定されない。例えば、FeO、Fe、Fe、CaO、SiO、MgO、Al、MnO、P、TiO等の化合物が、β‐Ca(SiO)、CaFe、γ-Ca(SiO)、2CaO・MgO・2SiO、2CaO・Al・SiO等の成分として鉱物の状態で凝固して含まれ得る。また、f‐MgOも含んでいても構わない。 As used herein, the term "steelmaking slag" means steelmaking slag such as converter slag and electric furnace slag produced as a by-product from the pretreatment process, converter, secondary refining process and the like. The composition of the steelmaking slag is not particularly limited as long as it contains f-CaO. For example, compounds such as FeO, Fe 2 O 3 , Fe 3 O 4 , CaO, SiO 2 , MgO, Al 2 O 3 , MnO, P 2 O 5 , and TiO 2 are β-Ca 2 (SiO 4 ), Ca. 2 Fe 2 O 5 , γ-Ca 2 (SiO 4 ), 2CaO / MgO / 2SiO 2 , 2CaO / Al 2O 3 , SiO 2 and the like can be solidified and contained in the form of minerals. Further, f-MgO may also be included.

本実施形態における膨張抑制処理方法の処理対象に用いられる製鋼スラグ中のf‐CaOの質量比も特に限定されない。当該処理対象に用いられる製鋼スラグは、その全質量に対し、f‐CaOを、例えば、上限値としては20質量%、好ましくは15質量%、より好ましくは10質量%含有し、下限値としては1.0質量%、好ましくは0.5質量%、より好ましくは0.2質量%含有する。 The mass ratio of f-CaO in the steelmaking slag used as the treatment target of the expansion suppression treatment method in the present embodiment is also not particularly limited. The steelmaking slag used for the treatment target contains f-CaO in an amount of, for example, 20% by mass, preferably 15% by mass, more preferably 10% by mass as an upper limit value, and as a lower limit value, based on the total mass thereof. It contains 1.0% by mass, preferably 0.5% by mass, and more preferably 0.2% by mass.

本実施形態における膨張抑制処理前および膨張抑制処理後(または浸漬処理前および浸漬処理後)の製鋼スラグの成分、ならびに後述する低f‐CaO含有スラグの成分は、後述する実施例の方法と同様の方法によって測定することができる。すなわち、X線回折装置を用いて分析したスペクトルから各成分を同定し、各成分の定量解析を行うことにより値を得ることができる。 The components of the steelmaking slag before the expansion suppression treatment and after the expansion suppression treatment (or before and after the immersion treatment) in the present embodiment, and the components of the low f-CaO-containing slag described later are the same as those in the method of the example described later. It can be measured by the method of. That is, a value can be obtained by identifying each component from the spectrum analyzed using the X-ray diffractometer and performing a quantitative analysis of each component.

本明細書において、「ポリオール化合物」とは、製鋼スラグ中のf‐CaOと反応可能である複数のアルコール性水酸基(脂肪族炭化水素の水素原子をヒドロキシ基(‐OH)で置換した基)を有する有機化合物をいう。本実施形態における処理方法で使用されるポリオール化合物の純度(質量%)は、特に限定されないが、浸漬工程におけるf‐CaOの抽出効率の観点からは、95質量%以上が好ましく、98質量%以上がさらに好ましく、99.5質量%以上がよりさらに好ましい。あるいは、低コスト化および廃棄物低減を重視する場合には、製鋼スラグ中のf‐CaOを抽出可能であれば、高純度ではない副産物由来のポリオール化合物を使用してもよい。 As used herein, the term "polypoly compound" refers to a plurality of alcoholic hydroxyl groups (groups in which a hydrogen atom of an aliphatic hydrocarbon is substituted with a hydroxy group (-OH)) capable of reacting with f-CaO in steelmaking slag. An organic compound that has. The purity (% by mass) of the polyol compound used in the treatment method in the present embodiment is not particularly limited, but is preferably 95% by mass or more, preferably 98% by mass or more, from the viewpoint of the extraction efficiency of f-CaO in the dipping step. Is even more preferable, and 99.5% by mass or more is even more preferable. Alternatively, when cost reduction and waste reduction are emphasized, a polyol compound derived from a by-product having low purity may be used as long as f-CaO in the steelmaking slag can be extracted.

ポリオール化合物は、好ましくは、ジオール化合物およびトリオール化合物から選択される1つ以上を含む。これは、ジオール化合物およびトリオール化合物は、常温常圧で通常液体であるため、製鋼スラグを浸漬し易く、かつ、水との混合物を容易に製造できるためである。 The polyol compound preferably comprises one or more selected from diol compounds and triol compounds. This is because the diol compound and the triol compound are usually liquids at normal temperature and pressure, so that the steelmaking slag can be easily immersed and a mixture with water can be easily produced.

なお、「ジオール化合物」とは2個の前述したアルコール性水酸基を有する有機化合物をいい、「トリオール化合物」とは3個の前述したアルコール性水酸基を有する有機化合物をいう。 The "diol compound" refers to an organic compound having two of the above-mentioned alcoholic hydroxyl groups, and the "triol compound" refers to an organic compound having three of the above-mentioned alcoholic hydroxyl groups.

ジオール化合物としては、例えば、エチレングリコール、プロピレングリコール、ジエチレングリコール、ブタンジオール、ジエタノールアミン等を挙げることができる。これらのうち、好ましくは、ジオール化合物は、エチレングリコール、プロピレングリコールおよびジエチレングリコールから選択される1つ以上を含む。 Examples of the diol compound include ethylene glycol, propylene glycol, diethylene glycol, butanediol, and diethanolamine. Of these, the diol compound preferably comprises one or more selected from ethylene glycol, propylene glycol and diethylene glycol.

より好ましくは、ジオール化合物は、エチレングリコール(例えば富士フィルム和光純薬製の市販品の試薬において、密度:1.11g/cm)を含む。エチレングリコールを用いることによって、膨張抑制処理後の製鋼スラグの膨張率をより顕著に低下させることができる。これは、エチレングリコールに対するカルシウムの溶解度が水と比べて10倍以上であるとの理由だけでなく、エチレングリコールの製鋼スラグ中のf‐CaOに対する高い選択溶解作用によって、製鋼スラグの膨張率を極めて効率的に低下できるためである。 More preferably, the diol compound contains ethylene glycol (for example, in a commercially available reagent manufactured by Fuji Film Wako Pure Chemical Industries, Ltd., density: 1.11 g / cm 3 ). By using ethylene glycol, the expansion rate of the steelmaking slag after the expansion suppression treatment can be more significantly reduced. This is not only because the solubility of calcium in ethylene glycol is more than 10 times that of water, but also because of the high selective dissolution action of ethylene glycol on f-CaO in the steelmaking slag, the expansion rate of the steelmaking slag is extremely high. This is because it can be reduced efficiently.

トリオール化合物は、好ましくは、グリセリン(例えば富士フィルム和光純薬製の試薬において、密度:1.26g/cm)を含む。グリセリンを用いることによって、膨張抑制処理後の製鋼スラグの膨張率を顕著に低下させることができる。これも、グリセリンに対するカルシウムの溶解度が水と比べて10倍以上であるとの理由だけでなく、グリセリンの製鋼スラグ中のf‐CaOに対する高い選択溶解作用によって、製鋼スラグの膨張率を極めて効率的に低下できるためである。さらに、グリセリンは、バイオ燃料製造過程等の副生成物として生成することから産業副産物の有効利用および入手容易性の観点から、エチレングリコールよりもさらに好ましい。 The triol compound preferably contains glycerin (for example, in a reagent manufactured by Fuji Film Wako Pure Chemical Industries, Ltd., density: 1.26 g / cm 3 ). By using glycerin, the expansion rate of the steelmaking slag after the expansion suppression treatment can be significantly reduced. This is not only because the solubility of calcium in glycerin is more than 10 times that of water, but also because of the high selective dissolution action of glycerin on f-CaO in the steelmaking slag, the expansion rate of the steelmaking slag is extremely efficient. This is because it can be reduced to. Further, glycerin is more preferable than ethylene glycol from the viewpoint of effective utilization and availability of industrial by-products because it is produced as a by-product in the biofuel production process and the like.

ポリオール化合物と水との混合物に用いられる水としては、例えば純水でよい。 The water used in the mixture of the polyol compound and water may be, for example, pure water.

次いで、本実施形態における製鋼スラグの膨張抑制処理方法について説明する。なお、本実施形態における膨張抑制処理方法では、浸漬工程後、必要に応じて、ろ過、相分離、粉砕、乾燥等の当業者に公知である任意の工程をさらに含んでも構わない。 Next, a method for suppressing expansion of the steelmaking slag in the present embodiment will be described. The expansion suppressing treatment method in the present embodiment may further include any steps known to those skilled in the art such as filtration, phase separation, pulverization, and drying, if necessary, after the dipping step.

浸漬工程の具体的手法は当業者に公知である任意の手法を用いればよく、特に限定されない。例えば、容器内に適当な大きさに粉砕したf‐CaOを含む製鋼スラグを入れ、次いでポリオール化合物またはポリオール化合物と水との混合物を添加することにより、浸漬を行えばよい。浸漬処理後の製鋼スラグを後述するような路盤材としての用途に利用する場合には、当該浸漬前の粉砕の際に、粉砕粒径を好ましくは40mm以下、より好ましくは20mm以下、さらに好ましくは10mm以下、よりさらに好ましくは2mm以下にしておくとよい。これにより、浸漬後において製鋼スラグを再破砕しなくても路盤材用途に供することができる。なお、浸漬処理後の製鋼スラグは、必要に応じてろ過、相分離、さらなる粉砕、洗浄、乾燥等の処理を施しても構わない。なお、前述したように、カルシウムを回収することにより溶媒は再利用することができるため、浸漬工程の回数は2回以上でも構わない。 The specific method of the dipping step may be any method known to those skilled in the art, and is not particularly limited. For example, a steelmaking slag containing f-CaO crushed to an appropriate size may be placed in a container, and then a polyol compound or a mixture of a polyol compound and water may be added for immersion. When the steelmaking slag after the dipping treatment is used as a roadbed material as described later, the crushed particle size is preferably 40 mm or less, more preferably 20 mm or less, still more preferably, when crushing before the dipping. It is preferably 10 mm or less, more preferably 2 mm or less. As a result, it can be used as a roadbed material without re-crushing the steelmaking slag after immersion. The steelmaking slag after the immersion treatment may be subjected to treatments such as filtration, phase separation, further pulverization, washing, and drying, if necessary. As described above, since the solvent can be reused by recovering calcium, the number of dipping steps may be two or more.

浸漬時間は、特に限定されず、浸漬処理前の製鋼スラグ中のf‐CaOの質量比、浸漬処理前の製鋼スラグの形状、溶媒中のポリオール化合物の質量比、溶媒の添加量、浸漬工程を行う回数等の要素を考慮しながら、所望する膨張率の製鋼スラグが得られるように適宜調整すればよい。例えば、一般的な製鋼スラグ中のf‐CaOを1回の浸漬工程で1%以下まで抽出させる場合、浸漬時間は、上限値としては10時間、好ましくは5時間に設定することができ、また、下限値としては0.5時間、好ましくは0.1時間まで短縮することができる。 The immersion time is not particularly limited, and the mass ratio of f-CaO in the steelmaking slag before the immersion treatment, the shape of the steelmaking slag before the immersion treatment, the mass ratio of the polyol compound in the solvent, the amount of the solvent added, and the immersion step can be determined. It may be appropriately adjusted so that a steelmaking slag having a desired expansion ratio can be obtained while considering factors such as the number of times the slag is performed. For example, when f-CaO in a general steelmaking slag is extracted to 1% or less in one dipping step, the dipping time can be set as an upper limit of 10 hours, preferably 5 hours, and also. The lower limit can be shortened to 0.5 hours, preferably 0.1 hours.

浸漬時の温度は特に限定されず、使用する溶媒のポリオール化合物またはポリオール化合物と水との混合物に適した温度に設定すると好ましい。 The temperature at the time of immersion is not particularly limited, and it is preferable to set the temperature to be suitable for the polyol compound of the solvent used or a mixture of the polyol compound and water.

浸漬時の製鋼スラグ全質量に対する溶媒としてのポリオール化合物またはポリオール化合物と水との混合物の質量比(体積比)、すなわち添加量は、特に限定されない。具体的には、添加量は、浸漬処理前の製鋼スラグ中のf‐CaOの質量比、浸漬処理前の製鋼スラグの形状、溶媒中のポリオール化合物の質量比、浸漬時間、浸漬工程を行う回数等の要素を考慮しながら、所望する膨張率の製鋼スラグが得られるように適宜調整すればよい。あるいは、例えば、処理対象である製鋼スラグの全量が十分浸漬する量に設定しても構わない。 The mass ratio (volume ratio) of the polyol compound or the mixture of the polyol compound and water as a solvent to the total mass of the steelmaking slag at the time of immersion, that is, the addition amount is not particularly limited. Specifically, the addition amount is the mass ratio of f-CaO in the steelmaking slag before the dipping treatment, the shape of the steelmaking slag before the dipping treatment, the mass ratio of the polyol compound in the solvent, the dipping time, and the number of times the dipping step is performed. It may be appropriately adjusted so as to obtain a steelmaking slag having a desired expansion ratio while considering factors such as the above. Alternatively, for example, the amount may be set so that the entire amount of the steelmaking slag to be treated is sufficiently immersed.

溶媒としてポリオール化合物と水との混合物を用いる場合、混合物に対するポリオール化合物の質量比は、浸漬処理前の製鋼スラグ中のf‐CaOの質量比、浸漬処理前の製鋼スラグの形状、溶媒の添加量、浸漬時間、浸漬工程を行う回数等の要素を考慮しながら、所望する膨張率の製鋼スラグが得られるように適宜調整すればよい。具体的には、例えば、当該混合物に対するポリオール化合物の質量比は、0.2以上であると好ましい。当該質量比を0.2以上とすることによって、1回または複数回の浸漬工程において一般的な製鋼スラグ中のf‐CaOを十分量または検出限界以下まで抽出することができる。当該ポリオール化合物の質量比の上限値は特に限定されないが、低コスト化の観点からは1.0未満であることが好ましい。 When a mixture of a polyol compound and water is used as the solvent, the mass ratio of the polyol compound to the mixture is the mass ratio of f-CaO in the steelmaking slag before the dipping treatment, the shape of the steelmaking slag before the dipping treatment, and the amount of the solvent added. It may be appropriately adjusted so that a steelmaking slag having a desired expansion ratio can be obtained, taking into consideration factors such as the dipping time and the number of dipping steps. Specifically, for example, the mass ratio of the polyol compound to the mixture is preferably 0.2 or more. By setting the mass ratio to 0.2 or more, f-CaO in a general steelmaking slag can be extracted in a sufficient amount or below the detection limit in one or a plurality of dipping steps. The upper limit of the mass ratio of the polyol compound is not particularly limited, but is preferably less than 1.0 from the viewpoint of cost reduction.

当該ポリオール化合物の質量比は、より好ましくは0.4以上、さらに好ましくは0.5以上であり、よりさらに好ましくは0.7以上である。当該ポリオール化合物の質量比をより高めることによって、1回の浸漬工程において製鋼スラグ中のf‐CaOをより十分量抽出することができる。また、当該ポリオール化合物の質量比は、より好ましくは0.9以下、さらに好ましくは0.8以下である。当該ポリオール化合物の質量比をより低くすることによって、低コスト化に繋がる。換言すると、ポリオール化合物の質量比が低い場合には、溶媒を再利用して複数回浸漬および抽出を行うことによりf‐CaOの質量比を低下させればよい。 The mass ratio of the polyol compound is more preferably 0.4 or more, further preferably 0.5 or more, still more preferably 0.7 or more. By further increasing the mass ratio of the polyol compound, a more sufficient amount of f-CaO in the steelmaking slag can be extracted in one dipping step. The mass ratio of the polyol compound is more preferably 0.9 or less, still more preferably 0.8 or less. Lowering the mass ratio of the polyol compound leads to cost reduction. In other words, when the mass ratio of the polyol compound is low, the mass ratio of f-CaO may be lowered by reusing the solvent and performing dipping and extraction a plurality of times.

さらに、浸漬工程において、より短時間で膨張率を低下させるとの観点から、後の実施例で述べるように振とう機等を用いて振とう浸漬処理を行うと好ましい。あるいは、撹拌機等を用いて攪拌浸漬処理を行ってもかまわない。または、固液界面で流れが生じるようなスラグ充填層への液体の流通浸漬処理やスラグ充填層の液体への浸漬処理を行ってもかまわない。 Further, from the viewpoint of reducing the expansion rate in a shorter time in the dipping step, it is preferable to perform the shaking dipping treatment using a shaker or the like as described in a later example. Alternatively, the stirring and dipping treatment may be performed using a stirrer or the like. Alternatively, a liquid flow immersion treatment in the slag packed bed or a liquid immersion treatment in the slag packed bed may be performed so that a flow occurs at the solid-liquid interface.

本実施形態における製鋼スラグの膨張抑制処理方法によると、膨張抑制処理後の製鋼スラグは、例えば、JIS A 5015:2018(道路用鉄鋼スラグ)に準じて測定される水浸膨張率が、好ましくは1.0%以下、より好ましくは0.8%以下、さらに好ましくは0.7%以下、よりさらに好ましくは0.5%以下である。当該水浸膨張率の下限値は特に限定されないが、例えば0.01%以上である。 According to the method for suppressing expansion of steelmaking slag in the present embodiment, the steelmaking slag after the expansion suppression treatment preferably has a water immersion expansion rate measured according to, for example, JIS A 5015: 2018 (steel slag for roads). It is 1.0% or less, more preferably 0.8% or less, still more preferably 0.7% or less, still more preferably 0.5% or less. The lower limit of the water immersion expansion rate is not particularly limited, but is, for example, 0.01% or more.

本実施形態における製鋼スラグの膨張抑制処理方法によると、膨張抑制処理後の製鋼スラグのf‐CaOの質量比を、例えば、膨張抑制処理後の製鋼スラグの全質量に対して、好ましくは3質量%以下、より好ましくは1質量%以下、さらに好ましくは0.5質量%以下、最も好ましくは検出限界以下にすることができる。当該膨張抑制処理後の製鋼スラグに含まれる他の成分は、特に限定されず、当該膨張抑制処理前の製鋼スラグの成分と概ね変化がなくても構わない。 According to the method for suppressing expansion of steelmaking slag in the present embodiment, the mass ratio of f-CaO of the steelmaking slag after the expansion suppression treatment is preferably 3 mass with respect to the total mass of the steelmaking slag after the expansion suppression treatment, for example. % Or less, more preferably 1% by mass or less, still more preferably 0.5% by mass or less, and most preferably the detection limit or less. The other components contained in the steelmaking slag after the expansion suppression treatment are not particularly limited, and may be substantially unchanged from the components of the steelmaking slag before the expansion suppression treatment.

<製鋼スラグの利用方法>
本実施形態における製鋼スラグの利用方法は、前述の実施形態における方法で膨張抑制処理された製鋼スラグを路盤材として用いることを含む。
<How to use steelmaking slag>
The method of using the steelmaking slag in the present embodiment includes using the steelmaking slag that has been subjected to the expansion suppression treatment by the method in the above-described embodiment as a roadbed material.

本実施形態では、前述の実施形態における方法で膨張抑制処理された製鋼スラグを、粉砕、篩等の当業者に公知である任意の手法を用いて所望の粒度等に調整し、路盤材(道路用材料)として用いる。なお、路盤材の用途で用いられるため、当該膨張抑制処理された製鋼スラグは、JIS A 5015:2018(道路用鉄鋼スラグ)に規定されている水浸膨張率1.0%以下の条件を満たす。製鋼スラグの水浸膨張率は、前述したように、浸漬処理前の製鋼スラグ中のf‐CaOの質量比、浸漬処理前の製鋼スラグの形状、溶媒中のポリオール化合物の質量比、溶媒の添加量、浸漬時間、浸漬工程を行う回数等の要素を考慮しながら適宜調整等することによって、1.0%以下に制御することができる。 In the present embodiment, the steelmaking slag subjected to the expansion suppression treatment by the method in the above-described embodiment is adjusted to a desired particle size or the like by using an arbitrary method known to those skilled in the art such as pulverization and sieving, and the roadbed material (road). Used as a material). Since it is used for roadbed materials, the expansion-suppressed steelmaking slag satisfies the condition of water immersion expansion rate of 1.0% or less specified in JIS A 5015: 2018 (road steel slag). .. As described above, the water immersion expansion rate of the steelmaking slag is the mass ratio of f-CaO in the steelmaking slag before the dipping treatment, the shape of the steelmaking slag before the dipping treatment, the mass ratio of the polyol compound in the solvent, and the addition of the solvent. It can be controlled to 1.0% or less by appropriately adjusting the amount, the soaking time, the number of times the soaking step is performed, and the like.

<低f‐CaO含有スラグの製造方法>
本実施形態における低f‐CaO含有スラグの製造方法は、f‐CaOを含む製鋼スラグを、ポリオール化合物またはポリオール化合物と水との混合物に浸漬する工程と、浸漬工程後において低f‐CaO含有スラグを得る工程とを含む。
<Manufacturing method of low f-CaO-containing slag>
The method for producing low f-CaO-containing slag in the present embodiment includes a step of immersing a steelmaking slag containing f-CaO in a polyol compound or a mixture of a polyol compound and water, and a step of immersing the low f-CaO-containing slag after the immersion step. Including the step of obtaining.

本実施形態では、前述した実施形態における製鋼スラグの膨張抑制処理方法の浸漬工程と同様の工程を行った後に、低f‐CaO含有スラグを得る工程を含む。なお、浸漬工程後、必要に応じてろ過、相分離、粉砕、乾燥等の当業者に公知である任意の手法をさらに施した後に、低f‐CaO含有スラグを得ても構わない。 The present embodiment includes a step of obtaining a low f-CaO-containing slag after performing the same step as the dipping step of the expansion suppressing treatment method for steelmaking slag in the above-described embodiment. After the dipping step, if necessary, any method known to those skilled in the art such as filtration, phase separation, pulverization, and drying may be further applied to obtain low f-CaO-containing slag.

前述したように、浸漬処理前の製鋼スラグ中のf‐CaOの質量比、浸漬処理前の製鋼スラグの形状、溶媒中のポリオール化合物の質量比、溶媒の添加量、浸漬時間、浸漬工程を行う回数等の要素を考慮しながら適宜調整等することによって、所望する低f‐CaO含有量のスラグを製造することができる。 As described above, the mass ratio of f-CaO in the steelmaking slag before the dipping treatment, the shape of the steelmaking slag before the dipping treatment, the mass ratio of the polyol compound in the solvent, the amount of the solvent added, the dipping time, and the dipping step are performed. A slag having a desired low f-CaO content can be produced by appropriately adjusting the slag while considering factors such as the number of times.

本実施形態における製造方法によって得られる低f‐CaO含有スラグのf‐CaO質量比は、例えば、スラグの全質量に対して、好ましくは3質量%以下、より好ましくは1質量%以下、さらに好ましくは0.5質量%以下、最も好ましくは検出限界以下である。当該低f‐CaO含有スラグに含まれる他の成分としては、特に限定されないが、例えば、FeO、Fe、Fe、CaO、SiO、MgO、Al、MnO、P、TiO等の化合物が、β‐Ca(SiO)、CaFe、γ-Ca(SiO)、2CaO・MgO・2SiO、2CaO・Al・SiO等の成分として鉱物の状態で凝固して含まれ得る。また、f‐MgOが含まれていても構わない。 The f-CaO mass ratio of the low f-CaO-containing slag obtained by the production method in the present embodiment is, for example, preferably 3% by mass or less, more preferably 1% by mass or less, still more preferably, with respect to the total mass of the slag. Is 0.5% by mass or less, most preferably not more than the detection limit. The other components contained in the low f-CaO-containing slag are not particularly limited, but are, for example, FeO, Fe 2 O 3 , Fe 3 O 4 , CaO, SiO 2 , MgO, Al 2 O 3 , MnO, P. Compounds such as 2O 5 and TiO 2 are β-Ca 2 (SiO 4 ), Ca 2 Fe 2 O 5 , γ-Ca 2 (SiO 4 ), 2CaO · MgO · 2SiO 2 , 2CaO · Al 2 O 3 ·. As a component such as SiO 2 , it may be solidified and contained in the state of a mineral. Further, f-MgO may be contained.

本実施形態における方法によって製造される低f‐CaO含有スラグは、顕著に膨張率が低いため、そのまま、あるいは必要に応じて粉砕、篩等の処理を行った後、路盤材、セメント原料、コンクリート用細骨材、土工資材等に好適に利用される。具体的には、製造された低f‐CaO含有スラグは、JIS A 5015:2018(道路用鉄鋼スラグ)に準じて測定される水浸膨張率が、好ましくは1.0%以下、より好ましくは0.8%以下、さらに好ましくは0.7%以下、よりさらに好ましくは0.5%以下である。当該水浸膨張率の下限値は特に限定されないが、例えば0.01%以上である。 Since the low f-CaO-containing slag produced by the method in the present embodiment has a remarkably low expansion rate, it can be used as it is, or after being crushed or sieved as necessary, the roadbed material, cement raw material, concrete. It is suitably used for fine aggregates, earthwork materials, etc. Specifically, the produced low f-CaO-containing slag has a water immersion expansion rate of preferably 1.0% or less, more preferably 1.0% or less, as measured according to JIS A 5015: 2018 (road steel slag). It is 0.8% or less, more preferably 0.7% or less, still more preferably 0.5% or less. The lower limit of the water immersion expansion rate is not particularly limited, but is, for example, 0.01% or more.

以下に、実施例により本発明をさらに具体的に説明するが、本発明は実施例により何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to the examples.

本実施例では、処理サンプルとして、以下の表1に示す製鋼スラグA1を用いた。ここで、本実施例におけるf‐CaOは、(未反応の)CaOおよび(未反応の)Ca(OH)とした。以下の表1に示す通り、製鋼スラグA1は、CaOおよびCa(OH)を含んでいる。なお、各成分の質量%の数値の小数点以下は切り捨てて記載している。 In this example, the steelmaking slag A1 shown in Table 1 below was used as the treated sample. Here, the f-CaO in this example was (unreacted) CaO and (unreacted) Ca (OH) 2 . As shown in Table 1 below, the steelmaking slag A1 contains CaO and Ca (OH) 2 . In addition, the value after the decimal point of the mass% of each component is rounded down.

Figure 2022045088000001
Figure 2022045088000001

上記表1の製鋼スラグA1の各成分は、X線回折装置を用いて分析した。分析条件の詳細を以下に示す。得られたスペクトルから、各成分を同定し、リートベルト解析法によって各成分の定量解析を行った。なお、リートベルト解析法に用いたソフトウェアとしてMDI社製「JADE PRO」を用いた。
<分析条件>
分析装置:水平型X線回折装置「SmartLab」(株式会社リガク製)
ターゲット:Cu
単色化:モノクロメーターを使用(Kα)
ターゲット出力:45kV-200mA
走査方法:θ/2θ(集中法)
スリット:発散2/3°、散乱2/3°、受光0.6mm
モノクロメーター受光スリット:0.8mm
走査速度:2.0°/min
サンプリング幅:0.02°
測定角度(2θ):5°~90°
Each component of the steelmaking slag A1 in Table 1 was analyzed using an X-ray diffractometer. The details of the analysis conditions are shown below. Each component was identified from the obtained spectrum, and each component was quantitatively analyzed by the Rietveld analysis method. As the software used for the Rietveld analysis method, "JADE PRO" manufactured by MDI Corporation was used.
<Analysis conditions>
Analytical device: Horizontal X-ray diffractometer "SmartLab" (manufactured by Rigaku Co., Ltd.)
Target: Cu
Monochromator: Use a monochromator (Kα)
Target output: 45kV-200mA
Scanning method: θ / 2θ (concentration method)
Slit: divergence 2/3 °, scattering 2/3 °, light reception 0.6mm
Monochromator light receiving slit: 0.8 mm
Scanning speed: 2.0 ° / min
Sampling width: 0.02 °
Measurement angle (2θ): 5 ° to 90 °

本実施例では、サンプルである製鋼スラグA1を浸漬するための溶媒として、以下の表2に示す、溶媒B1、溶媒B2および溶媒C1をそれぞれ組み合わせて混合して用いた。具体的には、溶媒B1はグリセリン(富士フィルム和光純薬製の試薬(純度:min99.5質量%、密度:1.26g/cm))であり、溶媒B2はエチレングリコール(富士フィルム和光純薬製の試薬(純度:min99.5質量%、密度:1.11g/cm))であり、溶媒C1は超純水製造装置(メルクミリポア社製のEliX(登録商標)Essential10(UV)およびMilli-Q(登録商標)Reference)を用いて製造した純水である。 In this example, the solvent B1, the solvent B2, and the solvent C1 shown in Table 2 below were mixed and used as the solvent for immersing the steelmaking slag A1 as a sample. Specifically, the solvent B1 is glycerin (reagent manufactured by Fuji Film Wako Pure Chemical Industries, Ltd. (purity: min99.5% by mass, density: 1.26 g / cm 3 )), and the solvent B2 is ethylene glycol (Fuji Film Wako Pure Chemical Industries, Ltd.). It is a medicinal reagent (purity: min99.5% by mass, density: 1.11 g / cm 3 ), and the solvent C1 is an ultrapure water production device (EliX® Essential 10 (UV) manufactured by Merck Millipore) and Pure water produced using Milli-Q (registered trademark) Reference).

Figure 2022045088000002
Figure 2022045088000002

(実施例1)
実施例1では、容器内に、粒径約2mm未満に粉砕した40gの製鋼スラグA1および合計400mLの溶媒B1と溶媒C1との混合液を添加して、当該容器を密閉した。溶媒B1と溶媒C1との混合液の溶媒比(体積比)は、後の表3に浸漬処理の条件および膨張率の測定結果と共にまとめて示す。その後、密閉した容器を、振とう機(予め振とう回数を毎分約200回、振とう幅を4cm以上5cm以下に調整した振とう機)を用いて、1時間振とう浸漬処理を行った。振とう浸漬処理後、フィルターでろ過してろ液を取り除き、製鋼スラグA2(溶媒B1+溶媒C1浸漬処理後)を得た。
(Example 1)
In Example 1, 40 g of steelmaking slag A1 crushed to a particle size of less than about 2 mm and a total of 400 mL of a mixed solution of solvent B1 and solvent C1 were added to seal the container. The solvent ratio (volume ratio) of the mixed solution of the solvent B1 and the solvent C1 is shown in Table 3 below together with the conditions of the immersion treatment and the measurement results of the expansion rate. Then, the closed container was shaken and immersed for 1 hour using a shaker (a shaker in which the number of shakes was adjusted to about 200 times per minute and the shake width was adjusted to 4 cm or more and 5 cm or less in advance). .. After the shaking dipping treatment, the filtrate was removed by filtering with a filter to obtain steelmaking slag A2 (after the solvent B1 + solvent C1 dipping treatment).

次いで、実施例1における製鋼スラグA2の膨張率を測定した。製鋼スラグA2を、目開き250μmの篩を用いて、篩下から粒径250μm未満の製鋼スラグA1を得た。得られた粒径250μm未満の製鋼スラグA2を、内径Φ20.5mm×高さ100mmの容器に約8g入れ、3KNにて加圧成形を行った後、80℃の水槽において96時間浸漬した。膨張率は、加圧成形した試料上面に設置した円板の変位差をレーザー変位計で測定し、その変位から算出した。実施例1における膨張率の測定結果は、後の表3に示す。 Next, the expansion rate of the steelmaking slag A2 in Example 1 was measured. The steelmaking slag A2 was obtained from under the sieve using a sieve having an opening of 250 μm to obtain a steelmaking slag A1 having a particle size of less than 250 μm. About 8 g of the obtained steelmaking slag A2 having a particle size of less than 250 μm was placed in a container having an inner diameter of Φ20.5 mm and a height of 100 mm, pressure-molded at 3 KN, and then immersed in a water tank at 80 ° C. for 96 hours. The expansion rate was calculated from the displacement difference of the disk installed on the upper surface of the pressure-molded sample by measuring it with a laser displacement meter. The measurement results of the expansion rate in Example 1 are shown in Table 3 below.

さらに、実施例1で得られた製鋼スラグA2の各成分を、浸漬処理前と同様に、X線回折装置を用いて分析した。分析条件、成分同定および成分定量解析等の詳細な方法は、浸漬処理前の製鋼スラグA1をサンプルとした方法と同じである。製鋼スラグA2の各成分の測定結果は、後の表4に示す。 Further, each component of the steelmaking slag A2 obtained in Example 1 was analyzed using an X-ray diffractometer in the same manner as before the immersion treatment. The detailed methods such as analysis conditions, component identification, and component quantitative analysis are the same as the method using the steelmaking slag A1 before the dipping treatment as a sample. The measurement results of each component of the steelmaking slag A2 are shown in Table 4 below.

(実施例2)
実施例2では、溶媒として溶媒B2と溶媒C1との混合液を添加したこと以外は実施例1と同様の方法で処理を行い、製鋼スラグA3(溶媒B2+溶媒C1浸漬処理後)を得て、膨張率のみ測定した。実施例2における溶媒B2と溶媒C1との混合液の溶媒比(体積比)、浸漬処理の処理条件および膨張率の測定結果は、後の表3にまとめて示す。
(Example 2)
In Example 2, the treatment was carried out in the same manner as in Example 1 except that the mixed solution of the solvent B2 and the solvent C1 was added as the solvent to obtain steelmaking slag A3 (after the solvent B2 + solvent C1 immersion treatment). Only the expansion rate was measured. The measurement results of the solvent ratio (volume ratio) of the mixed solution of the solvent B2 and the solvent C1 in Example 2, the treatment conditions of the dipping treatment, and the expansion rate are summarized in Table 3 below.

(比較例1)
比較例1では、溶媒を添加せず振とう浸漬処理を行わなかったこと以外は実施例1と同様の方法で膨張率を測定した。比較例1における処理条件および膨張率の測定結果は、後の表3にまとめて示す。比較例1では浸漬処理を行っていないため、その成分は浸漬処理前の製鋼スラグA1の成分と同じである。比較のために、実施例1の製鋼スラグA2の成分と共に、後の表4に示す。
(Comparative Example 1)
In Comparative Example 1, the expansion rate was measured by the same method as in Example 1 except that no solvent was added and the shaking immersion treatment was not performed. The treatment conditions and the measurement results of the expansion rate in Comparative Example 1 are summarized in Table 3 below. Since the dipping treatment is not performed in Comparative Example 1, the component thereof is the same as that of the steelmaking slag A1 before the dipping treatment. For comparison, it is shown in Table 4 below together with the components of the steelmaking slag A2 of Example 1.

Figure 2022045088000003
Figure 2022045088000003

Figure 2022045088000004
Figure 2022045088000004

<考察>
上記表3の実施例1および2の結果から分かる通り、溶媒B1または溶媒B2と溶媒C1との混合液で浸漬処理を行うことによって、製鋼スラグの膨張率を低減可能であり、製鋼スラグA2(溶媒B1+溶媒C1浸漬処理後)および製鋼スラグA3(溶媒B2+溶媒C1浸漬処理後)は1.0%を十分に下回る低膨張率を達成していた。また、表4に示す通り、浸漬処理を行った製鋼スラグのf-CaOは浸漬処理前の1%以下の量まで低減されており、処理時間は1時間の短時間にも関わらず、製鋼スラグ中のf‐CaOが効率よく選択的に抽出され、従来の方法と比べて顕著に短い時間で製鋼スラグの膨張抑制が可能となっていることが分かる。さらに、溶媒B1または溶媒B2の混合液、すなわちグリセリンまたはエチレングリコールの混合液は、使用後にカルシウムを回収することにより、再利用することができるため、コストを大幅に削減することができる。加えて、実施例1および2の結果から、グリセリンやエチレングリコールだけでなく、溶媒として他のポリオール化合物を含ませて用いた場合でも同様に製鋼スラグ中のf‐CaOに対する選択溶解作用を高めることができ、製鋼スラグの膨張率が顕著に低下し得ると考えられる。
<Discussion>
As can be seen from the results of Examples 1 and 2 in Table 3 above, the expansion rate of the steelmaking slag can be reduced by performing the dipping treatment with the solvent B1 or the mixed solution of the solvent B2 and the solvent C1, and the steelmaking slag A2 ( Solvent B1 + after soaking in solvent C1) and steelmaking slag A3 (after soaking in solvent B2 + solvent C1) achieved low expansion rates well below 1.0%. Further, as shown in Table 4, the amount of f-CaO of the steelmaking slag subjected to the dipping treatment was reduced to 1% or less of the amount before the dipping treatment, and the treatment time was as short as 1 hour, but the steelmaking slag was reduced. It can be seen that the f-CaO inside is efficiently and selectively extracted, and the expansion of the steelmaking slag can be suppressed in a significantly shorter time than the conventional method. Further, the mixed solution of the solvent B1 or the solvent B2, that is, the mixed solution of glycerin or ethylene glycol can be reused by recovering calcium after use, so that the cost can be significantly reduced. In addition, from the results of Examples 1 and 2, not only glycerin and ethylene glycol but also other polyol compounds as a solvent are used to enhance the selective dissolution action on f-CaO in the steelmaking slag. It is considered that the expansion rate of the steelmaking slag can be significantly reduced.

また、従来の蒸気エージングまたは加圧蒸気エージング等の方法によると、大量の製鋼スラグを同時に処理することが多いため、f‐CaOの水和反応の速度に差が生じ、処理ムラが生じる場合がある。実施例1および2の方法によると、対象の製鋼スラグからf‐CaO自体を抽出するという手法を用いるため、所望する値まで製鋼スラグの膨張率を安定的に下げることができる。 Further, according to the conventional methods such as steam aging or pressurized steam aging, a large amount of steelmaking slag is often processed at the same time, so that the speed of the hydration reaction of f-CaO may differ and uneven processing may occur. be. According to the methods of Examples 1 and 2, since the method of extracting f-CaO itself from the target steelmaking slag is used, the expansion rate of the steelmaking slag can be stably reduced to a desired value.

今回開示された実施形態および実施例は、全ての点で例示であって制限的なものではないと解されるべきである。本発明の範囲は、上記した説明ではなくて特許請求の範囲により示され、特許請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。 It should be understood that the embodiments and examples disclosed this time are exemplary in all respects and not restrictive. The scope of the present invention is shown by the scope of claims rather than the above description, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.

Claims (7)

f‐CaOを含む製鋼スラグを、ポリオール化合物またはポリオール化合物と水との混合物に浸漬する工程を含む、製鋼スラグの膨張抑制処理方法。 A method for suppressing expansion of steelmaking slag, which comprises a step of immersing a steelmaking slag containing f-CaO in a polyol compound or a mixture of a polyol compound and water. 前記ポリオール化合物は、ジオール化合物およびトリオール化合物から選択される1つ以上を含む、請求項1に記載の製鋼スラグの膨張抑制処理方法。 The method for suppressing expansion of steelmaking slag according to claim 1, wherein the polyol compound contains one or more selected from a diol compound and a triol compound. 前記トリオール化合物は、グリセリンを含む、請求項2に記載の製鋼スラグの膨張抑制処理方法。 The method for suppressing expansion of steelmaking slag according to claim 2, wherein the triol compound contains glycerin. 前記ジオール化合物は、エチレングリコール、プロピレングリコールおよびジエチレングリコールから選択される1つ以上を含む、請求項2に記載の製鋼スラグの膨張抑制処理方法。 The method for suppressing expansion of steelmaking slag according to claim 2, wherein the diol compound contains one or more selected from ethylene glycol, propylene glycol and diethylene glycol. 前記ポリオール化合物と水との混合物において、前記混合物に対する前記ポリオール化合物の質量比は0.2以上である、請求項1~4のいずれか1項に記載の製鋼スラグの膨張抑制処理方法。 The method for suppressing expansion of steelmaking slag according to any one of claims 1 to 4, wherein in the mixture of the polyol compound and water, the mass ratio of the polyol compound to the mixture is 0.2 or more. 請求項1~5のいずれか1項に記載の方法で膨張抑制処理された製鋼スラグを路盤材として用いる、製鋼スラグの利用方法。 A method for using steelmaking slag, which uses the steelmaking slag subjected to the expansion suppression treatment by the method according to any one of claims 1 to 5 as a roadbed material. f‐CaOを含む製鋼スラグを、ポリオール化合物またはポリオール化合物と水との混合物に浸漬する工程と、
浸漬工程後において低f‐CaO含有スラグを得る工程とを含む、低f‐CaO含有スラグの製造方法。
A step of immersing a steelmaking slag containing f-CaO in a polyol compound or a mixture of a polyol compound and water, and
A method for producing low f-CaO-containing slag, which comprises a step of obtaining low f-CaO-containing slag after the dipping step.
JP2020150587A 2020-09-08 2020-09-08 Method for suppressing expansion of steelmaking slag, method for utilizing steelmaking slag, and method for producing low f-CaO-containing slag Active JP7401415B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020150587A JP7401415B2 (en) 2020-09-08 2020-09-08 Method for suppressing expansion of steelmaking slag, method for utilizing steelmaking slag, and method for producing low f-CaO-containing slag
JP2023191482A JP2023184715A (en) 2020-09-08 2023-11-09 EXPANSION INHIBITION PROCESSING METHOD OF STEEL SLAG, USE METHOD OF STEEL SLAG, AND MANUFACTURING METHOD OF LOW f-CaO-CONTAINING SLAG

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020150587A JP7401415B2 (en) 2020-09-08 2020-09-08 Method for suppressing expansion of steelmaking slag, method for utilizing steelmaking slag, and method for producing low f-CaO-containing slag

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023191482A Division JP2023184715A (en) 2020-09-08 2023-11-09 EXPANSION INHIBITION PROCESSING METHOD OF STEEL SLAG, USE METHOD OF STEEL SLAG, AND MANUFACTURING METHOD OF LOW f-CaO-CONTAINING SLAG

Publications (2)

Publication Number Publication Date
JP2022045088A true JP2022045088A (en) 2022-03-18
JP7401415B2 JP7401415B2 (en) 2023-12-19

Family

ID=80682031

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020150587A Active JP7401415B2 (en) 2020-09-08 2020-09-08 Method for suppressing expansion of steelmaking slag, method for utilizing steelmaking slag, and method for producing low f-CaO-containing slag
JP2023191482A Pending JP2023184715A (en) 2020-09-08 2023-11-09 EXPANSION INHIBITION PROCESSING METHOD OF STEEL SLAG, USE METHOD OF STEEL SLAG, AND MANUFACTURING METHOD OF LOW f-CaO-CONTAINING SLAG

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023191482A Pending JP2023184715A (en) 2020-09-08 2023-11-09 EXPANSION INHIBITION PROCESSING METHOD OF STEEL SLAG, USE METHOD OF STEEL SLAG, AND MANUFACTURING METHOD OF LOW f-CaO-CONTAINING SLAG

Country Status (1)

Country Link
JP (2) JP7401415B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024043046A1 (en) * 2022-08-22 2024-02-29 株式会社神戸製鋼所 Method for extracting calcium, method for fixing carbon dioxide, and apparatus for fixing carbon dioxide

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002508404A (en) * 1997-12-15 2002-03-19 ヨーゼフ エー. ドウメ Method for producing water-repellent product, and product and method for waterproofing surface of structural material
KR20050065937A (en) * 2003-12-26 2005-06-30 재단법인 포항산업과학연구원 Stabilization method of steel making slag
JP2014209101A (en) * 2013-03-26 2014-11-06 Jfeスチール株式会社 Quantifying method for magnesium oxide and magnesium hydroxide in inorganic compound sample
JP2016020296A (en) * 2014-06-20 2016-02-04 新日鐵住金株式会社 Iron and steel slag treatment method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002508404A (en) * 1997-12-15 2002-03-19 ヨーゼフ エー. ドウメ Method for producing water-repellent product, and product and method for waterproofing surface of structural material
KR20050065937A (en) * 2003-12-26 2005-06-30 재단법인 포항산업과학연구원 Stabilization method of steel making slag
JP2014209101A (en) * 2013-03-26 2014-11-06 Jfeスチール株式会社 Quantifying method for magnesium oxide and magnesium hydroxide in inorganic compound sample
JP2016020296A (en) * 2014-06-20 2016-02-04 新日鐵住金株式会社 Iron and steel slag treatment method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024043046A1 (en) * 2022-08-22 2024-02-29 株式会社神戸製鋼所 Method for extracting calcium, method for fixing carbon dioxide, and apparatus for fixing carbon dioxide

Also Published As

Publication number Publication date
JP2023184715A (en) 2023-12-28
JP7401415B2 (en) 2023-12-19

Similar Documents

Publication Publication Date Title
TWI679282B (en) Method for recovering calcium-containing solid content from steelmaking slag
US20190078170A1 (en) Method for eluting calcium from steel slag and method for recovering calcium from steel slag
JP2023184715A (en) EXPANSION INHIBITION PROCESSING METHOD OF STEEL SLAG, USE METHOD OF STEEL SLAG, AND MANUFACTURING METHOD OF LOW f-CaO-CONTAINING SLAG
RU2596930C2 (en) Reducing method for continuous extraction of calcium and producing precipitated calcium carbonate
Singh Treatment of spent catalyst from the nitrogenous fertilizer industry—A review of the available methods of regeneration, recovery and disposal
Chen et al. CO2 mineralization and utilization using various calcium-containing wastewater and refining slag via a high-gravity carbonation process
Boyarintsev et al. Evaluation of main factors for improvement of the scandium leaching process from Russian bauxite residue (Red mud) in carbonate media
KR101870152B1 (en) Manufacturing method of calcium carbonate using the recycling water of ready-mixed concrete
JP2019529721A (en) Process for the production of concentrates of metals, rare metals and rare earth metals from residues of alumina production by the Bayer process or from materials having a similar chemical composition to the residue, and purification of the concentrates thus obtained
DK2928624T3 (en) PROCEDURE FOR TREATMENT OF SOLID ALKALIC RESIDUAL INCLUDING CALCIUM, HEAVY METALS AND SULPHATE
JP2005000875A (en) Method for recycling acidic waste water component and acidic waste water treatment system
JP5562606B2 (en) Method for treating radioactive ammonia-containing effluent
Owais et al. Detailed performance analysis of the wet extractive grinding process for higher calcium yields from steelmaking slags
JP7326111B2 (en) Method for extracting calcium, method for recovering calcium, and method for immobilizing carbon dioxide
KR101833493B1 (en) Method for extracting calcium from slag using fabrication for calcium carbonate thin film and mineral carbonation method
KR101210357B1 (en) Method for absorbing heavy metals within a pollutants using co2 gas solidificating waste cement
JP5522133B2 (en) Regeneration method of slag
JP2008007606A (en) Method for producing biomass fuel and biomass fuel system using the same
JP2019162610A (en) Method and apparatus for removing selenium from slag, method for reutilizing slag and method for producing regenerated slag
WO2024075414A1 (en) Method for producing calcium carbonate
JP5954265B2 (en) Method for sulfur removal treatment of steel slag
Biava et al. Accelerated Carbonation of Steel Slag and Their Valorisation in Cement Products: A Review
RU2783711C2 (en) Method for extracting copper from chrysocolla
WO2019107115A1 (en) Method for eluting calcium from steel-making slag, method for collecting calcium from steel-making slag, and device for eluting calcium from steel-making slag
Lyu et al. Comprehensive Utilization of Red Mud Through the Recovery of Valuable Metals and Reuse of the Residue

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230720

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231109

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20231117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231207

R150 Certificate of patent or registration of utility model

Ref document number: 7401415

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150