JP2022043713A - Light-emitting device - Google Patents

Light-emitting device Download PDF

Info

Publication number
JP2022043713A
JP2022043713A JP2020149152A JP2020149152A JP2022043713A JP 2022043713 A JP2022043713 A JP 2022043713A JP 2020149152 A JP2020149152 A JP 2020149152A JP 2020149152 A JP2020149152 A JP 2020149152A JP 2022043713 A JP2022043713 A JP 2022043713A
Authority
JP
Japan
Prior art keywords
light
fluorescent
groove
fluorescent member
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020149152A
Other languages
Japanese (ja)
Other versions
JP7506316B2 (en
Inventor
靖長 小谷
Yasunaga Kotani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP2020149152A priority Critical patent/JP7506316B2/en
Publication of JP2022043713A publication Critical patent/JP2022043713A/en
Application granted granted Critical
Publication of JP7506316B2 publication Critical patent/JP7506316B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

To provide a light-emitting device capable of reducing light leakage from a light-reflecting member.SOLUTION: The light-emitting device includes a laser element, a fluorescent member that converts a wavelength of at least a portion of the light from the laser element, and a light-reflecting member made of ceramics fixed directly or via a translucent bonding member to the side of the fluorescent member. The fluorescent member has a light-extraction surface that is the main surface from which light is extracted. The light-reflecting member has grooves on the surface of the fluorescent member on the side of the light-extraction surface.SELECTED DRAWING: Figure 1

Description

本発明は、発光装置に関する。 The present invention relates to a light emitting device.

半導体レーザ素子と蛍光部材とを組み合わせた発光装置が知られている。特許文献1には、励起光を出射する励起光源と、励起光を受光して蛍光を発する発光部と、を有する発光装置が記載されている。特許文献1の発光装置では、蛍光体層の周囲に反射体を形成する等、発光部の発光パターンを規定するための構造を設けている。反射体の材料は例えば白色顔料やセラミックスである。 A light emitting device that combines a semiconductor laser element and a fluorescent member is known. Patent Document 1 describes a light emitting device having an excitation light source that emits excitation light and a light emitting unit that receives the excitation light and emits fluorescence. The light emitting device of Patent Document 1 is provided with a structure for defining the light emitting pattern of the light emitting portion, such as forming a reflector around the phosphor layer. The material of the reflector is, for example, a white pigment or ceramics.

特開2015-002160号公報Japanese Patent Application Laid-Open No. 2015-002160

しかしながら、セラミックスのように屈折率差によって光を反射する部品は、光の一部がその部品の内部に入射する。このため、セラミックスを光反射部材として用いた発光装置では、光反射部材の表面から光が漏れる場合がある。 However, in a component such as ceramics that reflects light due to the difference in refractive index, a part of the light is incident on the inside of the component. Therefore, in a light emitting device using ceramics as a light reflecting member, light may leak from the surface of the light reflecting member.

本開示は、以下の発明を含む。レーザ素子と、前記レーザ素子からの光の少なくとも一部を波長変換する蛍光部材と、前記蛍光部材の側面に直接的に又は透光性の接合部材を介して固定されたセラミックスからなる光反射部材と、を備え、前記蛍光部材は、前記蛍光部材からの光が取り出される主面となる光取出面を有し、前記光反射部材には、前記蛍光部材の前記光取出面の側にある表面に溝が設けられている発光装置。 The present disclosure includes the following inventions. A light reflecting member composed of a laser element, a fluorescent member that converts at least a part of the light from the laser element into wavelength, and ceramics fixed directly to the side surface of the fluorescent member or via a translucent bonding member. The fluorescent member has a light extraction surface as a main surface from which light from the fluorescent member is taken out, and the light reflecting member has a surface on the side of the light extraction surface of the fluorescent member. A light emitting device provided with a groove in.

本開示の発光装置によれば、光反射部材からの光の漏れを低減することができる。 According to the light emitting device of the present disclosure, it is possible to reduce the leakage of light from the light reflecting member.

本発明の実施形態に係る発光装置を示す模式的な断面図である。It is a schematic sectional drawing which shows the light emitting device which concerns on embodiment of this invention. 図2BのIIA-IIA線における模式的な断面図である。2B is a schematic cross-sectional view taken along the line IIA-IIA of FIG. 2B. 本発明の実施形態に係る蛍光部材および光反射部材を示す模式的な上面図である。It is a schematic top view which shows the fluorescent member and the light reflection member which concerns on embodiment of this invention. 実験例1~5の観察結果を示す表である。It is a table which shows the observation result of Experimental Examples 1-5.

以下、発明の実施の形態について適宜図面を参照して説明する。ただし、以下に説明する発光装置の製造方法は、本発明の技術思想を具体化するためのものであって、特定的な記載がない限り、本発明を以下のものに限定しない。各図面が示す部材の大きさや位置関係等は、説明を明確にするため、誇張していることがある。 Hereinafter, embodiments of the invention will be described with reference to the drawings as appropriate. However, the method for manufacturing a light emitting device described below is for embodying the technical idea of the present invention, and the present invention is not limited to the following unless otherwise specified. The size and positional relationship of the members shown in each drawing may be exaggerated for the sake of clarity.

図1は、実施形態に係る発光装置100を示す模式的な断面図である。図2Aは、図2BのIIA-IIA線における模式的な断面図である。図2Bは、実施形態に係る蛍光部材12および光反射部材11を示す模式的な上面図である。実施形態の発光装置100は、レーザ素子21と、蛍光部材12と、光反射部材11とを有する。蛍光部材12は、レーザ素子21からの光の少なくとも一部を波長変換する部材である。蛍光部材12は、蛍光部材12からの光が取り出される主面となる光取出面12aを有する。光反射部材11は、セラミックスからなり、蛍光部材12の側面に直接的に又は透光性の接合部材を介して固定されている。光反射部材11には、蛍光部材12の光取出面12aの側にある表面(第1面11a)に溝11cが設けられている。 FIG. 1 is a schematic cross-sectional view showing a light emitting device 100 according to an embodiment. FIG. 2A is a schematic cross-sectional view taken along the line IIA-IIA of FIG. 2B. FIG. 2B is a schematic top view showing the fluorescent member 12 and the light reflecting member 11 according to the embodiment. The light emitting device 100 of the embodiment includes a laser element 21, a fluorescent member 12, and a light reflecting member 11. The fluorescent member 12 is a member that wavelength-converts at least a part of the light from the laser element 21. The fluorescent member 12 has a light extraction surface 12a which is a main surface from which light from the fluorescent member 12 is taken out. The light reflecting member 11 is made of ceramic and is fixed to the side surface of the fluorescent member 12 directly or via a translucent joining member. The light reflecting member 11 is provided with a groove 11c on the surface (first surface 11a) of the fluorescent member 12 on the side of the light extraction surface 12a.

発光装置100によれば、溝11cが設けられていることで、蛍光部材12からの光を溝11cによって反射することができるため、光反射部材11の第1面11aからの光の漏れを低減することができる。したがって、光反射部材11からの光の漏れを低減することができる。 According to the light emitting device 100, since the groove 11c is provided, the light from the fluorescent member 12 can be reflected by the groove 11c, so that the leakage of light from the first surface 11a of the light reflecting member 11 is reduced. can do. Therefore, it is possible to reduce the leakage of light from the light reflecting member 11.

図2A及び図2Bに示すように、光反射部材11は、第1面11aと、第1面11aの反対の側の第2面11bとを有する。第1面11aは蛍光部材12の光取出面12aの側にある表面であり、第2面11bは蛍光部材12の光入射面12bの側にある表面である。 As shown in FIGS. 2A and 2B, the light reflecting member 11 has a first surface 11a and a second surface 11b on the opposite side of the first surface 11a. The first surface 11a is a surface on the side of the light extraction surface 12a of the fluorescent member 12, and the second surface 11b is a surface on the side of the light incident surface 12b of the fluorescent member 12.

図2Aに示すように、光反射部材11は、貫通孔を有することができる。この貫通孔が光の通路となるため、この場合、貫通孔の内壁を反射面とする。光反射部材11の材料としては、高熱伝導率及び高反射率であるアルミナ(Al)セラミックスを用いることが好ましい。光反射部材11の厚みは、強度を考慮すると0.2mm以上であることが好ましい。また、光反射部材11は蛍光部材12を保持できる程度の厚みがあればよく、コスト増大及び発光装置100の高さの増大を抑えるため、光反射部材11の厚みは2mm以下とすることができる。 As shown in FIG. 2A, the light reflecting member 11 can have a through hole. Since this through hole serves as a light passage, in this case, the inner wall of the through hole is used as a reflective surface. As the material of the light reflecting member 11, it is preferable to use alumina (Al 2 O 3 ) ceramics having high thermal conductivity and high reflectance. The thickness of the light reflecting member 11 is preferably 0.2 mm or more in consideration of the strength. Further, the light reflecting member 11 may be thick enough to hold the fluorescent member 12, and the thickness of the light reflecting member 11 can be 2 mm or less in order to suppress an increase in cost and an increase in the height of the light emitting device 100. ..

図2Aでは、光反射部材11の貫通孔の内壁は、光の進行方向に沿って拡がる形状である。このような形状とすることにより、入射した光の戻り光を貫通孔の内壁によって反射させて、光出射側に効率的に取り出すことができる。貫通孔の開口の形状としては、三角形及び四角形等の多角形のほか、円形又は楕円形であるものが挙げられる。貫通孔の形状としては、柱状、錐形状又はこれらを組み合わせた形状が挙げられる。 In FIG. 2A, the inner wall of the through hole of the light reflecting member 11 has a shape that expands along the traveling direction of light. With such a shape, the return light of the incident light can be reflected by the inner wall of the through hole and efficiently taken out to the light emitting side. Examples of the shape of the opening of the through hole include polygons such as triangles and quadrangles, as well as circular or elliptical shapes. Examples of the shape of the through hole include a columnar shape, a cone shape, or a shape in which these are combined.

光反射部材11の第1面11aには溝11cが設けられている。図2Bに示すように、上面視において、すなわち、蛍光部材12の光取出面12aの側から視て、溝11cの内縁の形状は、蛍光部材12の外縁の形状と同じであることが好ましい。これにより、蛍光部材12の光取出面12aの上面視形状と同じ形状の発光パターンを得ることができる。光取出面12aの側から視て、溝11cの内縁の形状及び蛍光部材12の外縁の形状は、円形とすることができる。これらの形状が円形であることにより、発光パターンの形状も円形となるため、レンズとの組み合わせに適している。例えば、溝11cは、蛍光部材12の外縁と同じ中心であって直径が異なる円形で設けることができる。図2Bにおいて、溝11cは、蛍光部材12の全周囲に亘って途切れなく設けられている。これにより、蛍光部材12の全周囲において光反射部材11の第1面11aからの光漏れを低減することができる。 A groove 11c is provided on the first surface 11a of the light reflecting member 11. As shown in FIG. 2B, it is preferable that the shape of the inner edge of the groove 11c is the same as the shape of the outer edge of the fluorescent member 12 when viewed from above, that is, when viewed from the side of the light extraction surface 12a of the fluorescent member 12. As a result, it is possible to obtain a light emission pattern having the same shape as the top view of the light extraction surface 12a of the fluorescent member 12. When viewed from the light extraction surface 12a side, the shape of the inner edge of the groove 11c and the shape of the outer edge of the fluorescent member 12 can be circular. Since these shapes are circular, the shape of the light emitting pattern is also circular, which is suitable for combination with a lens. For example, the groove 11c can be provided in a circular shape having the same center as the outer edge of the fluorescent member 12 and having a different diameter. In FIG. 2B, the groove 11c is provided seamlessly over the entire circumference of the fluorescent member 12. As a result, it is possible to reduce light leakage from the first surface 11a of the light reflecting member 11 around the entire circumference of the fluorescent member 12.

図2Aに示すように、溝11cの深さd1は、光反射部材11の第1面11aから第2面11bまでの距離d2よりも小さい。光反射部材11の第1面11aから第2面11bまでの距離d2は、光反射部材11の厚みと言い換えることができる。図2Aに示すように光反射部材11の厚みが一定でない場合は、溝11cが設けられた部分の厚みを距離d2とする。溝11cの深さd1は、光反射部材11の第1面11aから第2面11bまでの距離d2の1/10以上1/3以下の範囲内とすることができる。1/10以上とすることにより、溝11cによる光の漏れ低減の効果をより確実に得ることができる。1/3以下とすることにより、溝11cに起因する光反射部材11の破損の可能性を低減することができる。溝11cの深さd1は、0.07mm以上とすることができる。溝11cの深さd1は、0.2mm以下であってもよい。 As shown in FIG. 2A, the depth d1 of the groove 11c is smaller than the distance d2 from the first surface 11a to the second surface 11b of the light reflecting member 11. The distance d2 from the first surface 11a to the second surface 11b of the light reflecting member 11 can be rephrased as the thickness of the light reflecting member 11. When the thickness of the light reflecting member 11 is not constant as shown in FIG. 2A, the thickness of the portion provided with the groove 11c is defined as the distance d2. The depth d1 of the groove 11c can be within the range of 1/10 or more and 1/3 or less of the distance d2 from the first surface 11a to the second surface 11b of the light reflecting member 11. By setting the value to 1/10 or more, the effect of reducing light leakage due to the groove 11c can be obtained more reliably. By setting the value to 1/3 or less, the possibility of damage to the light reflecting member 11 due to the groove 11c can be reduced. The depth d1 of the groove 11c can be 0.07 mm or more. The depth d1 of the groove 11c may be 0.2 mm or less.

図2Bに示すように、蛍光部材12の光取出面12aの側から視て、溝11cは、蛍光部材12と接しない位置に設ける。蛍光部材12の光取出面12aの側から視て、溝11cと蛍光部材12との距離は、0.07mm以上とすることができ、0.1mm以下とすることができる。溝11cと蛍光部材12との距離を0.1mm以下とすることにより、光反射部材11からの光の漏れをより効果的に低減することができる。また、蛍光部材12が光反射部材11の貫通孔の内壁に固定されている場合、蛍光部材12の光取出面12aの側から視て、溝11cと貫通孔との距離d3は、溝11cと蛍光部材12との距離と等しくしてよい。溝11cと貫通孔との距離d3は、0.07mm以上とすることができ、0.1mm以下とすることができる。 As shown in FIG. 2B, the groove 11c is provided at a position not in contact with the fluorescent member 12 when viewed from the light extraction surface 12a side of the fluorescent member 12. When viewed from the light extraction surface 12a side of the fluorescent member 12, the distance between the groove 11c and the fluorescent member 12 can be 0.07 mm or more, and can be 0.1 mm or less. By setting the distance between the groove 11c and the fluorescent member 12 to 0.1 mm or less, it is possible to more effectively reduce the leakage of light from the light reflecting member 11. When the fluorescent member 12 is fixed to the inner wall of the through hole of the light reflecting member 11, the distance d3 between the groove 11c and the through hole is the groove 11c when viewed from the light extraction surface 12a side of the fluorescent member 12. It may be equal to the distance to the fluorescent member 12. The distance d3 between the groove 11c and the through hole can be 0.07 mm or more, and can be 0.1 mm or less.

溝11cは、例えば空気で満たされている。この場合、空気と光反射部材11との屈折率差により、光反射部材の内部の光を溝11cにおいて反射することができる。上面視において、溝11cの幅は、例えば15μm以上とすることができ、40μm以下とすることができる。図2Aにおいて、溝11cの内壁は、第2面11bから第1面11aに向けて溝11cの内径が拡がるように傾斜している。溝11cの内壁がこのような形状であることにより、溝11cにおいて光を第2面11bに向かう方向に反射させ易い。このため、光反射部材11の第1面11aからの光漏れをより低減することができる。溝11cは、例えば、レーザ照射によるレーザ加工によって形成することができる。 The groove 11c is filled with, for example, air. In this case, the light inside the light reflecting member can be reflected in the groove 11c due to the difference in refractive index between the air and the light reflecting member 11. In top view, the width of the groove 11c can be, for example, 15 μm or more, and 40 μm or less. In FIG. 2A, the inner wall of the groove 11c is inclined so that the inner diameter of the groove 11c expands from the second surface 11b toward the first surface 11a. Since the inner wall of the groove 11c has such a shape, it is easy to reflect light in the groove 11c in the direction toward the second surface 11b. Therefore, it is possible to further reduce the light leakage from the first surface 11a of the light reflecting member 11. The groove 11c can be formed, for example, by laser processing by laser irradiation.

光反射部材11は、蛍光部材12の側面に直接的に又は透光性の接合部材を介して固定されている。透光性の接合部材としては、例えば、ホウケイ酸ガラス、ソーダ石灰ガラス、ソーダガラス、鉛ガラス等のガラスが挙げられる。例えば、500℃~900℃の間に軟化点を有するホウ珪酸ガラスを透光性の接合部材として用いることができる。図2A及び図2Bにおいて、光反射部材11には貫通孔が設けられ、蛍光部材12は貫通孔の内壁に固定されている。 The light reflecting member 11 is fixed to the side surface of the fluorescent member 12 directly or via a translucent joining member. Examples of the translucent joining member include glass such as borosilicate glass, soda-lime glass, soda glass, and lead glass. For example, borosilicate glass having a softening point between 500 ° C. and 900 ° C. can be used as a translucent bonding member. In FIGS. 2A and 2B, the light reflecting member 11 is provided with a through hole, and the fluorescent member 12 is fixed to the inner wall of the through hole.

蛍光部材12は、励起光によって蛍光を発する蛍光体を含有する。励起光とは、レーザ素子21が出射する光である。蛍光体としては、例えば、セリウムで賦活されたイットリウム・アルミニウム・ガーネット(YAG)、セリウムで賦活されたルテチウム・アルミニウム・ガーネット(LAG)、ユウロピウム及び/又はクロムで賦活された窒素含有アルミノ珪酸カルシウム(CaO-Al-SiO)、ユウロピウムで賦活されたシリケート((Sr,Ba)SiO)、αサイアロン蛍光体、βサイアロン蛍光体などが挙げられる。蛍光体としては、耐熱性が良好な蛍光体であるYAG蛍光体を用いることが好ましい。 The fluorescent member 12 contains a phosphor that emits fluorescence by excitation light. The excitation light is light emitted by the laser element 21. Examples of the phosphor include cerium-activated yttrium aluminum garnet (YAG), cerium-activated lutetium aluminum garnet (LAG), europium and / or chromium-activated nitrogen-containing calcium aluminosilicate (. Examples thereof include CaO-Al 2 O 3 -SiO 2 ), europium-activated silicate ((Sr, Ba) 2 SiO 4 ), α-sialon phosphor, β-sialon phosphor and the like. As the fluorescent substance, it is preferable to use a YAG fluorescent substance, which is a fluorescent substance having good heat resistance.

図2Aに示すように、蛍光部材12は、光反射部材11の貫通孔内に配置することができる。蛍光部材12は、光取出面12aと光入射面12bとを有する。蛍光部材12は、さらに、光取出面12aと光入射面12bとを繋ぐ側面を有することができる。側面は、図2Aに示すように、貫通孔の内壁と略一致した形状とすることにより、光反射部材11との密着性を向上させ、蛍光部材12で生じる熱を効果的に光反射部材11側に逃がすことができる。 As shown in FIG. 2A, the fluorescent member 12 can be arranged in the through hole of the light reflecting member 11. The fluorescent member 12 has a light extraction surface 12a and a light incident surface 12b. The fluorescent member 12 can further have a side surface connecting the light extraction surface 12a and the light incident surface 12b. As shown in FIG. 2A, the side surface has a shape that substantially matches the inner wall of the through hole to improve the adhesion to the light reflecting member 11 and effectively dissipate the heat generated by the fluorescent member 12 to the light reflecting member 11. Can escape to the side.

蛍光部材12としては、蛍光体を含有するセラミックス又は蛍光体の単結晶が挙げられる。蛍光部材12がこのような耐光性及び耐熱性の良好な材料によって形成されていることにより、レーザ光のような高密度の光が照射されても変質が生じ難い。蛍光部材12の厚みは、例えば、0.1mm~1.5mm程度が挙げられる。蛍光部材12は、例えば、蛍光体と酸化アルミニウム(Al、融点:約1900℃~2100℃)等の透光性材料とを焼結させた蛍光体セラミックスとすることができる。この場合、蛍光体の含有量は、蛍光部材12の総重量に対して0.05~50重量%とすることが好ましく、1~30重量%がより好ましい。また、このような透光性材料を用いずに蛍光体の紛体を焼結させることにより形成する、実質的に蛍光体のみからなる蛍光体セラミックスを蛍光部材12として用いてもよい。また、蛍光部材12として、蛍光体からなる単結晶を用いてもよい。なお、蛍光部材12の表面には、バンドパスフィルター等のコーティングが施されていてもよい。蛍光部材12は、単一層から構成されていてもよく、2以上の複数層から構成されていてもよい。 Examples of the fluorescent member 12 include ceramics containing a fluorescent substance or a single crystal of the fluorescent substance. Since the fluorescent member 12 is made of such a material having good light resistance and heat resistance, deterioration is unlikely to occur even when irradiated with high-density light such as laser light. The thickness of the fluorescent member 12 is, for example, about 0.1 mm to 1.5 mm. The fluorescent member 12 can be, for example, a fluorescent ceramic in which a fluorescent material and a translucent material such as aluminum oxide (Al 2 O 3 , melting point: about 1900 ° C to 2100 ° C) are sintered. In this case, the content of the phosphor is preferably 0.05 to 50% by weight, more preferably 1 to 30% by weight, based on the total weight of the fluorescent member 12. Further, the fluorescent ceramics formed by sintering the powder of the phosphor without using such a translucent material may be used as the fluorescent member 12. Further, as the fluorescent member 12, a single crystal made of a fluorescent substance may be used. The surface of the fluorescent member 12 may be coated with a bandpass filter or the like. The fluorescent member 12 may be composed of a single layer or may be composed of two or more layers.

レーザ素子21は、出射するレーザ光が蛍光部材12の光入射面12bに照射されるように配置される。レーザ素子21は、例えば半導体レーザ素子である。なお、蛍光部材12の光入射面12b側にサファイア等の蛍光体を含有しない透光性部材を配置してもよい。この場合、レーザ素子21からの光が透光性部材を介して蛍光部材12に照射することになる。 The laser element 21 is arranged so that the emitted laser light is applied to the light incident surface 12b of the fluorescent member 12. The laser element 21 is, for example, a semiconductor laser element. A translucent member that does not contain a phosphor such as sapphire may be arranged on the light incident surface 12b side of the fluorescent member 12. In this case, the light from the laser element 21 irradiates the fluorescent member 12 via the translucent member.

発光装置100は、図1に示すように、レーザ素子21を有するパッケージを有する。光反射部材11は、押さえ部15と蓋部16とに挟まれて固定されている。光反射部材11は貫通孔を有し、その貫通孔内には、蛍光部材12が配置されている。図1に示すように、蓋部16は、光反射部材11の下面である第2面11bに配置される第1蓋部16Aと、第1蓋部16Aの下面に接続された第2蓋部16Bとの2つの部分からなってもよい。 As shown in FIG. 1, the light emitting device 100 has a package having a laser element 21. The light reflecting member 11 is sandwiched and fixed between the holding portion 15 and the lid portion 16. The light reflecting member 11 has a through hole, and the fluorescent member 12 is arranged in the through hole. As shown in FIG. 1, the lid portion 16 has a first lid portion 16A arranged on the second surface 11b which is the lower surface of the light reflecting member 11 and a second lid portion connected to the lower surface of the first lid portion 16A. It may consist of two parts with 16B.

パッケージは、図1に示すように、ステム24と、ステム24を貫通するリード端子25と、ステム24が有する凸部の側面に固定されたサブマウント26と、サブマウント26に固定されたレーザ素子21を有する。パッケージは、さらに、ステム24に固定されたキャップ22と、キャップ22が有する開口に固定されたレンズ23とを有する。蓋部16は、ステム24に固定されている。図1に一点鎖線で示すように、レーザ素子21から出射したレーザ光は、レンズ23で集光され、蛍光部材12の手前で焦点を結び、蛍光部材12に入射する。発光装置100の発光が白色光である場合、例えば、蛍光部材12が発する蛍光を黄色光とし、レーザ素子21が出射するレーザ光を青色光(ピーク波長が420nm~470nm程度)とする。蛍光部材12が含有する蛍光体としては、YAG蛍光体等の黄色蛍光体が挙げられる。青色レーザ光を出射するレーザ素子21としては、InGaN井戸層の活性層を有するGaN系レーザ素子が挙げられる。パッケージは、レーザ素子21とリード端子25のそれぞれとを電気的に接続するワイヤを有してよい。 As shown in FIG. 1, the package includes a stem 24, a lead terminal 25 penetrating the stem 24, a submount 26 fixed to the side surface of a convex portion of the stem 24, and a laser element fixed to the submount 26. Has 21. The package further has a cap 22 fixed to the stem 24 and a lens 23 fixed to the opening of the cap 22. The lid portion 16 is fixed to the stem 24. As shown by the alternate long and short dash line in FIG. 1, the laser light emitted from the laser element 21 is focused by the lens 23, focused in front of the fluorescent member 12, and incident on the fluorescent member 12. When the light emitted by the light emitting device 100 is white light, for example, the fluorescence emitted by the fluorescent member 12 is yellow light, and the laser light emitted by the laser element 21 is blue light (peak wavelength is about 420 nm to 470 nm). Examples of the fluorescent substance contained in the fluorescent member 12 include a yellow fluorescent substance such as a YAG fluorescent substance. Examples of the laser element 21 that emits blue laser light include a GaN-based laser element having an active layer of an InGaN well layer. The package may have wires that electrically connect the laser element 21 and each of the lead terminals 25.

(実験例)
実験例1~5として、図2A及び図2Bに示す蛍光部材12及び光反射部材11を作製した。実験例1~5において、光反射部材11の厚みは0.67mmであった。実験例1~5において、光反射部材11の上面視形状は直径4mmの円形であり、蛍光部材12の上面視形状は直径0.65mmの円形であった。溝11cは、蛍光部材12の外縁と同じ中心であって直径が異なる円形で設けた。溝11cについて、実験例1~3は直径0.8mmの位置にレーザ加工によって形成し、実験例4及び5は直径1.2mmの位置にレーザ加工によって形成した。上面視における溝11cと蛍光部材12の距離は、実験例1~3で約0.07mmであり、実験例4及び5で約0.27mmであった。溝11cの深さは、実験例1は0.07mm、実験例2は0.14mm、実験例3は0.2mm、実験例4は0.14mm、実験例5は0.2mmで形成した。実験例1~5の蛍光部材12の光入射面12bに励起光を照射し、光取出面12a側から観察した。その結果を図3に示す。
(Experimental example)
As Experimental Examples 1 to 5, the fluorescent member 12 and the light reflecting member 11 shown in FIGS. 2A and 2B were produced. In Experimental Examples 1 to 5, the thickness of the light reflecting member 11 was 0.67 mm. In Experimental Examples 1 to 5, the top view shape of the light reflecting member 11 was a circle with a diameter of 4 mm, and the top view shape of the fluorescent member 12 was a circle with a diameter of 0.65 mm. The groove 11c is provided in a circular shape having the same center as the outer edge of the fluorescent member 12 and having a different diameter. Regarding the grooves 11c, Experimental Examples 1 to 3 were formed by laser machining at a position having a diameter of 0.8 mm, and Experimental Examples 4 and 5 were formed by laser machining at a position having a diameter of 1.2 mm. The distance between the groove 11c and the fluorescent member 12 in the top view was about 0.07 mm in Experimental Examples 1 to 3 and about 0.27 mm in Experimental Examples 4 and 5. The depth of the groove 11c was 0.07 mm for Experimental Example 1, 0.14 mm for Experimental Example 2, 0.2 mm for Experimental Example 3, 0.14 mm for Experimental Example 4, and 0.2 mm for Experimental Example 5. The light incident surface 12b of the fluorescent members 12 of Experimental Examples 1 to 5 was irradiated with excitation light and observed from the light extraction surface 12a side. The results are shown in FIG.

図3から、溝11cと蛍光部材12の距離が近いほど、また、溝11cの深さが大きいほど、光反射部材11の表面からの光漏れを低減可能であるといえる。 From FIG. 3, it can be said that the shorter the distance between the groove 11c and the fluorescent member 12, and the larger the depth of the groove 11c, the more the light leakage from the surface of the light reflecting member 11 can be reduced.

11 光反射部材
11a 第1面
11b 第2面
11c 溝
12 蛍光部材
12a 光取出面
12b 光入射面
15 押さえ部
16 蓋部
16A 第1蓋部
16B 第2蓋部
21 レーザ素子
22 キャップ
23 レンズ
24 ステム
25 リード端子
26 サブマウント
100 発光装置
11 Light reflecting member 11a First surface 11b Second surface 11c Groove 12 Fluorescent member 12a Light extraction surface 12b Light incident surface 15 Holding part 16 Cover part 16A First lid part 16B Second lid part 21 Laser element 22 Cap 23 Lens 24 Stem 25 Lead terminal 26 Submount 100 Light emitting device

Claims (7)

レーザ素子と、
前記レーザ素子からの光の少なくとも一部を波長変換する蛍光部材と、
前記蛍光部材の側面に直接的に又は透光性の接合部材を介して固定されたセラミックスからなる光反射部材と、
を備え、
前記蛍光部材は、前記蛍光部材からの光が取り出される主面となる光取出面を有し、
前記光反射部材には、前記蛍光部材の前記光取出面の側にある表面に溝が設けられている発光装置。
Laser element and
A fluorescent member that converts at least a part of the light from the laser element into wavelength,
A light-reflecting member made of ceramics fixed directly to the side surface of the fluorescent member or via a translucent bonding member, and a light-reflecting member.
Equipped with
The fluorescent member has a light extraction surface which is a main surface from which light from the fluorescent member is taken out.
The light reflecting member is a light emitting device having a groove on the surface of the fluorescent member on the side of the light extraction surface.
前記光取出面の側から視て、前記溝の内縁の形状は、前記蛍光部材の外縁の形状と同じである請求項1に記載の発光装置。 The light emitting device according to claim 1, wherein the shape of the inner edge of the groove is the same as the shape of the outer edge of the fluorescent member when viewed from the side of the light extraction surface. 前記光取出面の側から視て、前記溝の内縁の形状及び前記蛍光部材の外縁の形状は、円形である請求項2に記載の発光装置。 The light emitting device according to claim 2, wherein the shape of the inner edge of the groove and the shape of the outer edge of the fluorescent member are circular when viewed from the side of the light extraction surface. 前記光反射部材は、前記溝が設けられた第1面と、前記第1面とは反対の側の第2面と、を有し、
前記溝の深さは、前記光反射部材の前記第1面から前記第2面までの距離の1/10以上1/3以下の範囲内である請求項1~3のいずれか1項に記載の発光装置。
The light reflecting member has a first surface provided with the groove and a second surface on the side opposite to the first surface.
The one according to any one of claims 1 to 3, wherein the depth of the groove is within the range of 1/10 or more and 1/3 or less of the distance from the first surface to the second surface of the light reflecting member. Light emitting device.
前記光反射部材には貫通孔が設けられており、
前記蛍光部材は前記貫通孔の内壁に固定されている請求項1~4のいずれか1項に記載の発光装置。
The light reflecting member is provided with a through hole and has a through hole.
The light emitting device according to any one of claims 1 to 4, wherein the fluorescent member is fixed to the inner wall of the through hole.
前記光取出面の側から視て、前記溝と前記貫通孔との距離は、0.07mm以上0.1mm以下の範囲内である請求項5に記載の発光装置。 The light emitting device according to claim 5, wherein the distance between the groove and the through hole is within a range of 0.07 mm or more and 0.1 mm or less when viewed from the side of the light extraction surface. 前記溝は空気で満たされている請求項1~6のいずれか1項に記載の発光装置。 The light emitting device according to any one of claims 1 to 6, wherein the groove is filled with air.
JP2020149152A 2020-09-04 2020-09-04 Light-emitting device Active JP7506316B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020149152A JP7506316B2 (en) 2020-09-04 2020-09-04 Light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020149152A JP7506316B2 (en) 2020-09-04 2020-09-04 Light-emitting device

Publications (2)

Publication Number Publication Date
JP2022043713A true JP2022043713A (en) 2022-03-16
JP7506316B2 JP7506316B2 (en) 2024-06-26

Family

ID=80668690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020149152A Active JP7506316B2 (en) 2020-09-04 2020-09-04 Light-emitting device

Country Status (1)

Country Link
JP (1) JP7506316B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201440566U (en) 2009-06-10 2010-04-21 宏瞻科技股份有限公司 Laser device with high wavelength conversion efficiency
JP6135032B2 (en) 2013-02-19 2017-05-31 スタンレー電気株式会社 Light emitting device, vehicle lamp, and stress relief part molding method
JP6122674B2 (en) 2013-03-21 2017-04-26 スタンレー電気株式会社 Wavelength converter
JP6742684B2 (en) 2014-09-30 2020-08-19 日亜化学工業株式会社 Optical component, method of manufacturing the same, light emitting device, and method of manufacturing the same
JP6296024B2 (en) 2015-08-28 2018-03-20 日亜化学工業株式会社 Semiconductor laser device
JP6460189B2 (en) 2017-09-06 2019-01-30 日亜化学工業株式会社 Light emitting device and manufacturing method thereof
JP6909695B2 (en) 2017-10-02 2021-07-28 株式会社小糸製作所 Wavelength conversion member and light source module
US10622524B2 (en) 2018-08-10 2020-04-14 Osram Opto Semiconductors Gmbh Converter for an optoelectronic component, optoelectronic component, method for forming a converter for an optoelectronic component and material for a reflector of an optoelectronic component

Also Published As

Publication number Publication date
JP7506316B2 (en) 2024-06-26

Similar Documents

Publication Publication Date Title
EP2933884B1 (en) Light emitting device
US10879430B2 (en) Light-emitting device and method of manufacturing the same
CN109817784B (en) Light emitting device and method of manufacturing the same
KR102231580B1 (en) Light conversion element, Lamp package and automobile lamp using the same
US11128099B2 (en) Light-emitting device
JP2014528148A (en) Light emitting module, lamp, lighting fixture and display device
US10174925B2 (en) Wavelength conversion member and light source device having wavelength conversion member
US11162645B2 (en) Light emitting device including heat dissipation member
JP7057486B2 (en) Light source device
JP6631553B2 (en) Light emitting device manufacturing method
US10991859B2 (en) Light-emitting device and method of manufacturing the same
JP6597809B2 (en) Light source device
JP2019016763A (en) Light-emitting device and method for manufacturing the same
JP2016082014A (en) Light-emitting device
JP2022043713A (en) Light-emitting device
US11043789B2 (en) Light emitting device
JP6266796B2 (en) Light emitting device, lighting device, spotlight, vehicle headlamp, and endoscope
JP6879290B2 (en) Light emitting device
JP7485955B2 (en) Method for manufacturing a light emitting device
JP7339521B2 (en) light emitting device
JP7421050B2 (en) Fluorescent module and lighting device
JP2023135681A (en) Optical member and light-emitting device, and method of producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240527