JP2022042982A - Method for separating cobalt and nickel - Google Patents

Method for separating cobalt and nickel Download PDF

Info

Publication number
JP2022042982A
JP2022042982A JP2021138132A JP2021138132A JP2022042982A JP 2022042982 A JP2022042982 A JP 2022042982A JP 2021138132 A JP2021138132 A JP 2021138132A JP 2021138132 A JP2021138132 A JP 2021138132A JP 2022042982 A JP2022042982 A JP 2022042982A
Authority
JP
Japan
Prior art keywords
cobalt
nickel
solution
hydrogen sulfide
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021138132A
Other languages
Japanese (ja)
Other versions
JP7121885B2 (en
Inventor
淳 宮崎
Atsushi Miyazaki
弘樹 村岡
Hiroki Muraoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to KR1020237006098A priority Critical patent/KR20230061356A/en
Priority to PCT/JP2021/031833 priority patent/WO2022050248A1/en
Priority to CN202180053662.3A priority patent/CN116096929A/en
Priority to US18/023,050 priority patent/US20230313337A1/en
Priority to AU2021337975A priority patent/AU2021337975A1/en
Priority to EP21864306.2A priority patent/EP4209606A1/en
Priority to TW110132412A priority patent/TW202221145A/en
Publication of JP2022042982A publication Critical patent/JP2022042982A/en
Application granted granted Critical
Publication of JP7121885B2 publication Critical patent/JP7121885B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

To enable cobalt and nickel to be recovered from a lithium ion secondary battery at a low cost.SOLUTION: A method for separating cobalt and nickel comprises: a heat treatment step of heating a lithium ion secondary battery thereby performing heat treatment; a grinding and sorting step of grinding and sorting the lithium ion secondary battery after the heat treatment, thereby obtaining an electrode material including at least cobalt, nickel, copper and lithium; a leaching step of immersing the electrode material in treatment solution including sulfuric acid and hydrogen peroxide thereby obtaining leachate; a copper separation step of adding hydrogen sulfide compound to the leachate and stirring the solution, and then performing solid-liquid separation thereby obtaining elution solution including cobalt and nickel and residue including copper sulfide; and a cobalt/nickel separation step of adding alkali metal hydroxide to the elution solution and performing pH adjustment, and then adding hydrogen sulfide compound and stirring the liquid, and performing solid-liquid separation, thereby obtaining a sediment including cobalt sulfide and nickel sulfide and residual liquid including lithium.SELECTED DRAWING: Figure 1

Description

本発明は、リチウムイオン二次電池に含まれるコバルトおよびニッケルを、他の金属から正確に分離、回収することを可能にするコバルトおよびニッケルの分離方法に関する。 The present invention relates to a method for separating cobalt and nickel, which enables accurate separation and recovery of cobalt and nickel contained in a lithium ion secondary battery from other metals.

リチウムイオン二次電池は、各種電子機器等の小型の物から電気自動車等の大型の物まで、幅広い分野の電源として利用されている。こうしたリチウムイオン二次電池が廃棄された際には、有用な金属を回収して再利用することが求められている。 Lithium-ion secondary batteries are used as power sources in a wide range of fields, from small ones such as various electronic devices to large ones such as electric vehicles. When such a lithium ion secondary battery is discarded, it is required to recover and reuse useful metals.

リチウムイオン二次電池は、負極材と正極材とを、多孔質のポリプロピレン等のセパレータで分画し層状に重ね、六フッ化リン酸リチウム(LiPF)等の電解質および電解液と共にアルミニウムやステンレス等のケースに封入して形成されている。 In a lithium ion secondary battery, a negative electrode material and a positive electrode material are separated by a separator such as porous polypropylene and layered, and aluminum or stainless steel is used together with an electrolyte such as lithium hexafluorophosphate (LiPF 6 ) and an electrolytic solution. It is formed by enclosing it in a case such as.

リチウムイオン二次電池の負極材は銅箔などからなる負極集電体にバインダーが混合された黒鉛などの負極活物質を塗布して形成されている。また、正極材はアルミニウム箔などからなる正極集電体にバインダーが混合されたマンガン酸リチウム、コバルト酸リチウム、ニッケル酸リチウムなどの正極活物質を塗布して形成されている。 The negative electrode material of a lithium ion secondary battery is formed by applying a negative electrode active material such as graphite mixed with a binder to a negative electrode current collector made of copper foil or the like. Further, the positive electrode material is formed by applying a positive electrode active material such as lithium manganate, lithium cobalt oxide, or lithium nickel oxide mixed with a binder to a positive electrode current collector made of aluminum foil or the like.

このようにリチウムイオン二次電池の正極活物質にはコバルトおよびニッケルが多く含まれているが、リサイクル過程で予め粉砕分離された正極活物質には、コバルト、ニッケル以外にも、マンガン、銅、アルミニウム、リチウムなどが含まれている。このため、リチウムイオン二次電池からコバルトおよびニッケルを高い収率で分離、回収するためには、これら以外の金属を正確に取り除く必要がある。 As described above, the positive electrode active material of the lithium ion secondary battery contains a large amount of cobalt and nickel, but the positive electrode active material previously crushed and separated in the recycling process includes manganese, copper, in addition to cobalt and nickel. Contains aluminum, lithium, etc. Therefore, in order to separate and recover cobalt and nickel from the lithium ion secondary battery in high yield, it is necessary to accurately remove metals other than these.

従来、リチウムイオン二次電池に含まれるコバルトおよびニッケルを分離、回収する方法として、例えば、特許文献1、2には、使用済みのリチウムイオン二次電池から有価金属を回収する方法として、リチウムイオン二次電池から正極材活物質を取り出し、この正極活物質から酸浸出によって金属が浸出した浸出液を得て、この浸出液から溶媒抽出によってコバルトとニッケルとを分離する回収方法が開示されている。 Conventionally, as a method for separating and recovering cobalt and nickel contained in a lithium ion secondary battery, for example, Patent Documents 1 and 2 describe lithium ion as a method for recovering a valuable metal from a used lithium ion secondary battery. A recovery method is disclosed in which a positive electrode material active material is taken out from a secondary battery, a leachate in which a metal is leached out from the positive electrode active material by acid leaching is obtained, and cobalt and nickel are separated from the leachate by solvent extraction.

特開2016-113672号公報Japanese Unexamined Patent Publication No. 2016-113672 特開2016-186118号公報Japanese Unexamined Patent Publication No. 2016-186118

特許文献1、2に開示された回収方法では、不純物元素の除去方法として、酸化剤の添加や、pH調整によって水酸化物を含む沈殿物を形成して固液分離を行っている。しかしながら、この時、コバルトおよびニッケルと、それ以外の金属(銅、アルミニウム、マンガン、鉄など)とが同時に除去されるため、その後の複数の工程でコバルトおよびニッケルと、それ以外の金属とを分離する必要があり、分離工程が複雑で手間が掛かり、コバルトおよびニッケルの回収が高コストになるという課題があった。 In the recovery method disclosed in Patent Documents 1 and 2, as a method for removing impurity elements, a precipitate containing a hydroxide is formed by adding an oxidizing agent or adjusting the pH to perform solid-liquid separation. However, at this time, cobalt and nickel and other metals (copper, aluminum, manganese, iron, etc.) are removed at the same time, so that cobalt and nickel and other metals are separated in the subsequent multiple steps. There is a problem that the separation process is complicated and time-consuming, and the recovery of cobalt and nickel is expensive.

この発明は、前述した事情に鑑みてなされたものであって、リチウムイオン二次電池に含まれるコバルトおよびニッケルと、それ以外の金属とを、少ない工程で高精度に分離して、リチウムイオン二次電池から低コストでコバルトおよびニッケルを回収することが可能なコバルトおよびニッケルの分離方法を提供することを目的とする。 The present invention has been made in view of the above-mentioned circumstances, in which cobalt and nickel contained in a lithium ion secondary battery and other metals are separated with high accuracy in a small number of steps, and the lithium ion secondary battery is used. It is an object of the present invention to provide a method for separating cobalt and nickel capable of recovering cobalt and nickel from a secondary battery at low cost.

上記の課題を解決するために、本発明は、リチウムイオン二次電池からコバルトおよびニッケルを分離する、コバルトおよびニッケルの分離方法であって、前記リチウムイオン二次電池を粉砕および分級し、少なくともコバルト、ニッケル、銅、およびリチウムを含む電極材料を得る粉砕選別工程、硫酸および過酸化水素を含む処理液に前記電極材料を浸漬して浸出液を得る浸出工程、前記浸出液に硫化水素化合物を加えて撹拌した後、固液分離を行い、コバルトおよびニッケルを含む溶出液と、硫化銅を含む残渣とを得る銅分離工程、前記溶出液にアルカリ金属水酸化物を加えてpH調整をした後、硫化水素化合物を加えて撹拌、固液分離を行い、硫化コバルトおよび硫化ニッケルを含む沈殿物と、リチウムを含む残液とを得るコバルト・ニッケル分離工程、を備えることを特徴とする。 In order to solve the above problems, the present invention is a method for separating cobalt and nickel from a lithium ion secondary battery, wherein the lithium ion secondary battery is crushed and classified, and at least copper is used. , A crushing and sorting step to obtain an electrode material containing nickel, copper, and lithium, a leaching step of immersing the electrode material in a treatment liquid containing sulfuric acid and hydrogen peroxide to obtain a leachate, and stirring by adding a hydrogen sulfide compound to the leachate. After that, solid-liquid separation is performed to obtain an eluent containing cobalt and nickel and a residue containing copper sulfide. Copper separation step, alkali metal hydroxide is added to the eluate to adjust the pH, and then hydrogen sulfide is used. It is characterized by comprising a cobalt-nickel separation step of adding a compound, stirring and solid-liquid separation to obtain a precipitate containing cobalt sulfide and nickel sulfide and a residual liquid containing lithium.

本発明によれば、硫酸および過酸化水素を含む処理液によって電極材料から金属成分の溶出を行い、得られた浸出液に水溶性の硫化水素化合物を加えて撹拌することで、浸出液に含まれる金属成分のうち、銅のみを選択的に不溶性の硫化物として沈殿させ分離する。そして、pHを調整した上で、水溶性の硫化水素化合物を加えて撹拌することで、溶出液に含まれる金属成分のうち、コバルトおよびニッケルだけを選択的に不溶性の硫化物として沈殿させるので、リチウムイオン二次電池からコバルトおよびニッケルを、少ない工程で高精度に分離することができる。 According to the present invention, a metal component is eluted from the electrode material with a treatment liquid containing sulfuric acid and hydrogen peroxide, a water-soluble hydrogen sulfide compound is added to the obtained leachate, and the mixture is stirred to contain the metal contained in the leachate. Of the components, only copper is selectively precipitated as an insoluble sulfide and separated. Then, after adjusting the pH, a water-soluble hydrogen sulfide compound is added and stirred to selectively precipitate only cobalt and nickel among the metal components contained in the eluent as insoluble sulfides. Cobalt and nickel can be separated from the lithium ion secondary battery with high accuracy in a small number of steps.

また、本発明では、前記粉砕選別工程の前に、前記リチウムイオン二次電池を加熱して熱処理を行う熱処理工程を備えていてもよい。
さらに前記コバルト・ニッケル分離工程で分離した前記沈殿物に硫酸を含む再溶解液を加えて攪拌した後、固液分離を行い、コバルトおよびニッケルを含むコバルト・ニッケル溶液を得る再溶解工程と、前記コバルト・ニッケル溶液に抽出剤溶液を添加して、コバルト抽出液と、ニッケル抽出液とを得る溶媒抽出工程を備えていてもよい。
Further, in the present invention, a heat treatment step of heating the lithium ion secondary battery to perform a heat treatment may be provided before the crushing and sorting step.
Further, a redissolving solution containing sulfuric acid is added to the precipitate separated in the cobalt-nickel separation step, and the mixture is stirred and then solid-liquid separated to obtain a cobalt-nickel solution containing cobalt and nickel. A solvent extraction step may be provided in which an extractant solution is added to the cobalt-nickel solution to obtain a cobalt extract and a nickel extract.

また、本発明は、前記再溶解工程では、前記沈殿物の前記再溶解液に対する浸漬時間が1時間以上であってもよい。 Further, in the present invention, in the redissolution step, the immersion time of the precipitate in the redissolution solution may be 1 hour or more.

また、本発明は、前記浸出工程では、前記処理液の液温が60℃以上、硫酸濃度が2mol/L以上であってもよい。 Further, in the present invention, in the leaching step, the liquid temperature of the treatment liquid may be 60 ° C. or higher and the sulfuric acid concentration may be 2 mol / L or higher.

また、本発明は、前記銅分離工程では、前記硫化水素化合物の添加開始から終了に至るまでの間の前記浸出液のpHを1.0以下に維持し、酸化・還元電位(vs Ag/AgCl)が0mV以下になるまで、前記硫化水素化合物として硫化水素ナトリウム水溶液を加えてもよい。 Further, in the present invention, in the copper separation step, the pH of the leachate is maintained at 1.0 or less from the start to the end of the addition of the hydrogen sulfide compound, and the oxidation / reduction potential (vs Ag / AgCl). An aqueous solution of sodium hydrogen sulfide may be added as the hydrogen sulfide compound until the pH becomes 0 mV or less.

また、本発明は、前記コバルト・ニッケル分離工程では、前記硫化水素化合物として硫化水素ナトリウム水溶液を用い、前記硫化水素化合物の添加開始から終了に至るまでの間の前記溶出液のpHを2.0~5.0の範囲内に維持し、酸化・還元電位(vs Ag/AgCl)が-400mV以下になるまで、前記溶出液に前記硫化水素化合物を加えてもよい。 Further, in the present invention, in the cobalt-nickel separation step, an aqueous solution of sodium hydrogen sulfide is used as the hydrogen sulfide compound, and the pH of the eluent from the start to the end of addition of the hydrogen sulfide compound is 2.0. The hydrogen sulfide compound may be added to the eluent until the oxidation / reduction potential (vs Ag / AgCl) is −400 mV or less while maintaining the range of about 5.0.

また、本発明は、前記硫化水素化合物の添加開始から終了に至るまでの間の前記溶出液のpHを2.0~3.5の範囲内に維持してもよい。 Further, in the present invention, the pH of the eluate from the start to the end of the addition of the hydrogen sulfide compound may be maintained within the range of 2.0 to 3.5.

また、本発明は、前記コバルト・ニッケル分離工程におけるpH調整では、前記溶出液のpHを3.0~4.0の範囲内に調整してもよい。 Further, in the present invention, in the pH adjustment in the cobalt / nickel separation step, the pH of the eluate may be adjusted in the range of 3.0 to 4.0.

また、本発明は、前記再溶解工程では、硫酸及び過酸化水素水を含む前記再溶解液で前記沈殿物を溶解させるか、または硫酸を含む前記再溶解液に前記沈殿物を加えた後、エアバブリングを行うことによって溶解させてもよい。 Further, in the present invention, in the re-dissolution step, the precipitate is dissolved in the re-dissolution solution containing sulfuric acid and hydrogen peroxide solution, or the precipitate is added to the re-dissolution solution containing sulfuric acid, and then the precipitate is added. It may be dissolved by performing air bubbling.

また、本発明は、前記再溶解工程では、前記再溶解液の液温が60℃以上、硫酸濃度が0.5mol/L以上であってもよい。 Further, in the present invention, in the redissolving step, the liquid temperature of the redissolving solution may be 60 ° C. or higher and the sulfuric acid concentration may be 0.5 mol / L or higher.

また、本発明は、前記粉砕選別工程の前工程として、前記リチウムイオン二次電池を加熱して熱処理を行う熱処理工程を備えていてもよい。 Further, the present invention may include a heat treatment step of heating the lithium ion secondary battery to perform a heat treatment as a pre-step of the crushing and sorting step.

本発明によれば、リチウムイオン二次電池に含まれるコバルトおよびニッケルと、それ以外の金属とを、少ない工程で高精度に分離して、リチウムイオン二次電池から低コストでコバルトおよびニッケルを回収することが可能なコバルトおよびニッケルの分離方法を提供することができる。 According to the present invention, cobalt and nickel contained in a lithium ion secondary battery and other metals are separated with high accuracy in a small number of steps, and cobalt and nickel can be recovered from the lithium ion secondary battery at low cost. It is possible to provide a method for separating cobalt and nickel that can be used.

本発明のコバルトおよびニッケルの分離方法を含むリチウムイオン二次電池の電極材料のリサイクル方法を段階的に示したフローチャートである。It is a flowchart which showed the recycling method of the electrode material of the lithium ion secondary battery including the separation method of cobalt and nickel of this invention step by step.

以下、図面を参照して、本発明の一実施形態のコバルトおよびニッケルの分離方法について説明する。なお、以下に示す各実施形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。 Hereinafter, a method for separating cobalt and nickel according to an embodiment of the present invention will be described with reference to the drawings. It should be noted that each of the embodiments shown below is specifically described in order to better understand the gist of the invention, and is not limited to the present invention unless otherwise specified.

図1は、本発明のコバルトおよびニッケルの分離方法を含むリチウムイオン二次電池の電極材料のリサイクル方法を段階的に示したフローチャートである。 FIG. 1 is a flowchart showing a stepwise recycling method of an electrode material of a lithium ion secondary battery including the method for separating cobalt and nickel of the present invention.

(熱処理工程S1)
廃棄されたリチウムイオン二次電池(以下、廃LIBと称する)を構成する電極材料を分離する前処理工程として、廃LIBを加熱炉で例えば過熱水蒸気で約500℃程度まで加熱して熱処理を行う。
(Heat treatment step S1)
As a pretreatment step for separating the electrode material constituting the discarded lithium ion secondary battery (hereinafter referred to as waste LIB), the waste LIB is heated in a heating furnace, for example, with superheated steam to about 500 ° C. for heat treatment. ..

熱処理は、真空でも常圧でもよいが、酸素を含まない不活性雰囲気中の加熱が好ましい。廃LIBは、バインダー及び電解液の存在により正極活物質や負極活物質と、集電体であるアルミニウム箔や銅箔との付着力が大きい。このため、400℃以上の熱処理工程を行うことによって、これら活物質と集電体との分離を容易にする。廃LIBの加熱温度を650℃以下にすることにより、アルミニウムが溶融して活物質を巻き込んで冷却固化して、活物質だけを取り出すことが困難になることを防止できる。 The heat treatment may be vacuum or normal pressure, but heating in an oxygen-free inert atmosphere is preferable. The waste LIB has a large adhesive force between the positive electrode active material and the negative electrode active material and the aluminum foil and the copper foil which are the current collectors due to the presence of the binder and the electrolytic solution. Therefore, by performing a heat treatment step of 400 ° C. or higher, the separation between these active materials and the current collector is facilitated. By setting the heating temperature of the waste LIB to 650 ° C. or lower, it is possible to prevent aluminum from melting, entraining the active material, cooling and solidifying, and making it difficult to take out only the active material.

(粉砕選別工程S2)
次に、熱処理後の廃LIBを粉砕した後、篩分けによって電極材料を選別分離する。廃LIBの粉砕は、例えば、二軸剪断破砕機やハンマーミルを用いて行う。
(Crushing and sorting step S2)
Next, after pulverizing the waste LIB after heat treatment, the electrode material is sorted and separated by sieving. The waste LIB is crushed by using, for example, a twin-screw shear crusher or a hammer mill.

そして、粉砕した廃LIBを、適切な目開きの篩を用いて分級し,電池容器,アルミニウム箔,銅箔,ニッケル端子を篩の上産物として、正極活物質(LiCoOなど)および負極活物質(グラファイト)を含む電極材料を篩の下産物として回収する。こうした電極材料は、例えば、目開きが0.5mm程度の篩を通過したものであればよい。 Then, the crushed waste LIB is classified using a sieve having an appropriate opening, and the positive electrode active material (LiCoO 2 , etc.) and the negative electrode active material are classified by using a battery container, an aluminum foil, a copper foil, and a nickel terminal as a sieve. The electrode material containing (graphite) is recovered as a product of the sieve. Such an electrode material may be, for example, a material that has passed through a sieve having an opening of about 0.5 mm.

分離された電極材料は、主に正極活物質の構成材料および不純物であるコバルト、ニッケル、マンガン、銅、鉄、アルミニウム、リチウム、カルシウム等、および負極活物質の構成材料である炭素等を含んでいる。 The separated electrode material mainly contains the constituent materials of the positive electrode active material and impurities such as cobalt, nickel, manganese, copper, iron, aluminum, lithium and calcium, and carbon which is a constituent material of the negative electrode active material. There is.

(浸出工程S3)
次に、粉砕選別工程S2で分離された電極材料を処理液に浸漬して浸出液を得る。処理液としては、硫酸(HSO)と過酸化水素(H)とを混合したものを用いる。
(Leaching step S3)
Next, the electrode material separated in the pulverization and sorting step S2 is immersed in the treatment liquid to obtain a leachate. As the treatment liquid, a mixture of sulfuric acid (H 2 SO 4 ) and hydrogen peroxide (H 2 O 2 ) is used.

廃LIBに含まれるCo,Niは硫酸に溶解しにくい3価,4価の状態も含まれるため、過酸化水素を還元剤として用いることで、より硫酸に溶解しやすい2価のCo,Niに還元することができる。
処理液の一例としては、濃度が2mol/L以上の希硫酸100mlに対し、濃度が30wt%の過酸化水素水を5ml以上の比率で混合したものが挙げられる。希硫酸の濃度を2mol/L以上、過酸化水素水の添加量を5ml以上とすることで、コバルトおよびニッケルの浸出率を高めることができる。特に制限はないが、それ以上にしても浸出率のさらなる向上は望めないため、硫酸濃度の上限は18mol/L、過酸化水素水の添加量の上限は30mlである。
Co and Ni contained in the waste LIB also contain trivalent and tetravalent states that are difficult to dissolve in sulfuric acid. Therefore, by using hydrogen peroxide as a reducing agent, divalent Co and Ni that are more easily dissolved in sulfuric acid can be obtained. Can be reduced.
As an example of the treatment liquid, 100 ml of dilute sulfuric acid having a concentration of 2 mol / L or more is mixed with hydrogen peroxide solution having a concentration of 30 wt% at a ratio of 5 ml or more. By setting the concentration of dilute sulfuric acid to 2 mol / L or more and the addition amount of hydrogen peroxide solution to 5 ml or more, the leaching rate of cobalt and nickel can be increased. Although there is no particular limitation, the upper limit of the sulfuric acid concentration is 18 mol / L and the upper limit of the amount of hydrogen peroxide solution added is 30 ml because further improvement in the leaching rate cannot be expected.

浸出工程S3の具体例としては、例えば60℃以上に加熱した処理液に、粉砕選別工程S2で分離された粉末状の電極材料を加え、4時間以上浸漬する。この時、更に攪拌することが好ましい。
処理液温度を60℃以上、浸出(浸漬)時間を4時間以上とすることで、コバルトおよびニッケルの浸出率を高めることができる。特に制限はないが、それ以上にしても浸出率のさらなる向上は望めないため、処理液温度の上限は90℃、浸出時間の上限は15時間である。
こうした浸出工程S3によって、電極材料のうち、正極活物質由来の金属成分(コバルト、ニッケル、マンガン、銅、鉄、アルミニウム、リチウム、カルシウム等)は処理液に溶解し、負極活物質由来の炭素は、溶解せずに炭素残渣として残る。
As a specific example of the leaching step S3, for example, the powdery electrode material separated in the pulverizing and sorting step S2 is added to the treatment liquid heated to 60 ° C. or higher, and the mixture is immersed for 4 hours or more. At this time, it is preferable to further stir.
By setting the treatment liquid temperature to 60 ° C. or higher and the leaching (immersion) time to 4 hours or longer, the leaching rate of cobalt and nickel can be increased. Although there is no particular limitation, the upper limit of the treatment liquid temperature is 90 ° C. and the upper limit of the leaching time is 15 hours because further improvement in the leaching rate cannot be expected.
By such leaching step S3, among the electrode materials, the metal components derived from the positive electrode active material (cobalt, nickel, manganese, copper, iron, aluminum, lithium, calcium, etc.) are dissolved in the treatment liquid, and the carbon derived from the negative electrode active material is dissolved. , Does not dissolve and remains as a carbon residue.

(銅分離工程S4)
次に、浸出工程S3で得られた浸出液に、硫化水素化合物を加えて撹拌した後、固液分離を行い、コバルトおよびニッケルを含む溶出液と、硫化銅(CuS)を含む残渣とを得る。
(Copper Separation Step S4)
Next, a hydrogen sulfide compound is added to the leachate obtained in the leachation step S3, and the mixture is stirred and then solid-liquid separated to obtain an eluent containing cobalt and nickel and a residue containing copper sulfide (CuS).

本発明において硫化水素化合物とは、硫黄分を含み、水に溶解させたときにその硫黄分がHS、HSまたはS2-の形態をとる化合物を意味する。
銅分離工程S4で用いる硫化水素化合物としては、水溶性のアルカリ金属硫化水素化物、本実施形態では硫化水素ナトリウム(NaSH)の水溶液を用いている。銅分離工程S4の具体例としては、浸出液をイオン交換水で希釈した後、硫化水素ナトリウムの水溶液を、この希釈した浸出液に添加して攪拌する。
In the present invention, the hydrogen sulfide compound means a compound containing sulfur and having the sulfur content in the form of H2S , HS- or S2- when dissolved in water.
As the hydrogen sulfide compound used in the copper separation step S4, a water-soluble alkali metal hydride is used, and in this embodiment, an aqueous solution of sodium hydrogen sulfide (NaSH) is used. As a specific example of the copper separation step S4, after diluting the leachate with ion-exchanged water, an aqueous solution of sodium hydrogen sulfide is added to the diluted leachate and stirred.

硫化水素ナトリウムの水溶液の添加は、例えば、酸化・還元電位(vs Ag/AgCl)が0mV以下になるまで行う。酸化・還元電位が0mV以下になるまで硫化水素ナトリウムを添加することで、浸出液に含まれる銅をほぼ全量沈殿させることができる。
硫化水素化合物の添加開始から終了に至るまでの浸出液のpHを1.0以下に維持することが好ましい。浸出液のpHが1.0を超えると、コバルト、ニッケルの硫化物が生じて、これらの溶出液への回収率が低下するおそれがある。
硫化水素化合物としては、硫化水素ナトリウム以外にも、例えば、硫化ナトリウム、チオ硫酸ナトリウム、または亜ジチオン酸ナトリウムであってもよい。
The addition of the aqueous solution of sodium hydrogen sulfide is carried out, for example, until the oxidation / reduction potential (vs Ag / AgCl) becomes 0 mV or less. By adding sodium hydrogen sulfide until the oxidation / reduction potential becomes 0 mV or less, almost all of the copper contained in the leachate can be precipitated.
It is preferable to maintain the pH of the leachate from the start to the end of the addition of the hydrogen sulfide compound to 1.0 or less. If the pH of the leachate exceeds 1.0, sulfides of cobalt and nickel may be generated, and the recovery rate of these eluates may decrease.
The hydrogen sulfide compound may be, for example, sodium sulfide, sodium thiosulfate, or sodium dithionite, in addition to sodium hydrogen sulfide.

浸出液に硫化水素化合物を加えることにより、浸出液に溶解している金属成分のうち、銅と硫黄とが反応し、硫化銅(CuS)が生成して沈殿する。一方、銅を除いた金属成分(コバルト、ニッケル、マンガン、鉄、アルミニウム、リチウム、カルシウム等)は、液相に残留し、コバルトおよびニッケルを含む溶出液が得られる。 By adding the hydrogen sulfide compound to the leachate, copper and sulfur among the metal components dissolved in the leachate react with each other to generate copper sulfide (CuS) and precipitate. On the other hand, the metal components (cobalt, nickel, manganese, iron, aluminum, lithium, calcium, etc.) excluding copper remain in the liquid phase, and an eluent containing cobalt and nickel can be obtained.

この後、濾材などを用いて固液分離することにより、浸出工程S3で生じた炭素残渣および銅分離工程S4で生じた残渣よりなる固相と、溶出液(液相)とが分離される。 After that, by solid-liquid separation using a filter medium or the like, the solid phase consisting of the carbon residue generated in the leaching step S3 and the residue generated in the copper separation step S4 and the eluate (liquid phase) are separated.

なお、本実施形態では、銅分離工程S4での固液分離によって、浸出工程S3で生成した炭素残渣も濾別しているが、浸出工程S3においても固液分離を行うことで、銅分離工程S4を行う前に、予め炭素残渣を分離しておくこともできる。 In the present embodiment, the carbon residue generated in the leaching step S3 is also filtered off by the solid-liquid separation in the copper separation step S4, but the copper separation step S4 is performed by performing the solid-liquid separation also in the leaching step S3. It is also possible to separate the carbon residue in advance before performing this.

また、銅分離工程S4において、固液分離を行う前に、水酸化ナトリウム(NaOH)を用いて浸出液のpHを3.0~4.0程度にして、浸出液に含まれるアルミニウムを水酸化アルミニウム(Al(OH))にして沈殿させ、炭素残渣および残渣とともに、固液分離によって浸出液から分離することもできる。 Further, in the copper separation step S4, before performing solid-liquid separation, the pH of the leachate is set to about 3.0 to 4.0 using sodium hydroxide (NaOH), and the aluminum contained in the leachate is aluminum hydroxide (aluminum hydroxide). It can also be precipitated in Al (OH) 3 ) and separated from the leachate by solid-liquid separation together with the carbon residue and the residue.

分離された固相は、リパルプ(固相に水を加えて再懸濁させた後、脱水することにより精製)してから廃棄物として処理されればよい。 The separated solid phase may be treated as waste after being repulped (purified by adding water to the solid phase, resuspending it, and then dehydrating it).

(コバルト・ニッケル分離工程S5)
次に、溶出液にアルカリ金属水酸化物を加えてpH調整をした後、硫化水素化合物を加えて撹拌、固液分離を行い、硫化コバルトおよび硫化ニッケルを含む沈殿物と、リチウムを含む残液とを得る。
(Cobalt / Nickel Separation Step S5)
Next, after adjusting the pH by adding an alkali metal hydroxide to the eluent, a hydrogen sulfide compound is added and stirred to perform solid-liquid separation. A precipitate containing cobalt sulfide and nickel sulfide and a residual liquid containing lithium. And get.

コバルト・ニッケル分離工程S5の初期に溶出液のpH調整を行うためのアルカリ金属水酸化物としては、例えば、水酸化ナトリウム(NaOH)、水酸化カリウム(KOH)が挙げられる。本実施形態では、25wt%の水酸化ナトリウム水溶液を用いた。
こうしたpH調整によって、溶出液のpHを3.0~4.0の範囲内、例えば3.5にする。
Examples of the alkali metal hydroxide for adjusting the pH of the eluent in the initial stage of the cobalt-nickel separation step S5 include sodium hydroxide (NaOH) and potassium hydroxide (KOH). In this embodiment, a 25 wt% sodium hydroxide aqueous solution was used.
By such pH adjustment, the pH of the eluate is set in the range of 3.0 to 4.0, for example, 3.5.

この時、pHが低いと硫化水素化合物とコバルト、ニッケルが反応しにくくなる虞があるが、硫化水素化合物の添加に伴って、溶出液のpHは低下していく。pH調整後、硫化水素化合物の添加開始時のpHが3.0未満であると、硫化水素化合物の添加終了に至る前に過度のpH低下が生じ、再度のpH調整が必要になる。このため、硫化の前処理であるpH調整時にpHを3.0以上にした方が効率的である。
また、pH調整時にpHを4.0を超える値にすると、pH調整に時間がかかるが、硫化水素化合物を添加するとすぐにpH4.0以下となるため、非効率である。そのため、pH調整範囲としては3.0~4.0の範囲が望ましい。
At this time, if the pH is low, the hydrogen sulfide compound may not easily react with cobalt and nickel, but the pH of the eluent decreases with the addition of the hydrogen sulfide compound. If the pH at the start of the addition of the hydrogen sulfide compound is less than 3.0 after the pH adjustment, an excessive pH drop occurs before the end of the addition of the hydrogen sulfide compound, and the pH adjustment needs to be performed again. Therefore, it is more efficient to set the pH to 3.0 or higher at the time of pH adjustment, which is a pretreatment for sulfurization.
Further, if the pH is set to a value exceeding 4.0 at the time of pH adjustment, it takes time to adjust the pH, but it is inefficient because the pH becomes 4.0 or less immediately after the addition of the hydrogen sulfide compound. Therefore, the pH adjustment range is preferably in the range of 3.0 to 4.0.

そして、pH調整後の溶出液に、水溶性の硫化水素化合物を添加することによって、溶出液に含まれるコバルトおよびニッケルは、それぞれ水に不溶性の硫化コバルト(CoS)および硫化ニッケル(NiS)になり沈殿する。 By adding a water-soluble hydrogen sulfide compound to the pH-adjusted eluate, the cobalt and nickel contained in the eluent become water-insoluble cobalt sulfide (CoS) and nickel sulfide (NiS), respectively. Precipitate.

コバルト・ニッケルを硫化するための硫化水素化合物としては、例えば、水溶性のアルカリ金属硫化水素化物が挙げられる。硫化水素化合物は、銅分離工程S4で用いるものと同じであってもよく、異なっていてもよい。本実施形態では、濃度が250g/Lの硫化水素ナトリウムの水溶液を用いた。
硫化水素ナトリウムの水溶液の添加は、例えば、酸化・還元電位(vs Ag/AgCl)が-400mV以下になるまで行う。酸化・還元電位が-400mV以下になるまで硫化水素ナトリウムを添加することで、溶出液に含まれるコバルト、ニッケルをほぼ全量沈殿させることができる。
Examples of the hydrogen sulfide compound for sulfurizing cobalt / nickel include water-soluble alkali metal sulfide compounds. The hydrogen sulfide compound may be the same as that used in the copper separation step S4, or may be different. In this embodiment, an aqueous solution of sodium hydrogen sulfide having a concentration of 250 g / L was used.
The addition of the aqueous solution of sodium hydrogen sulfide is carried out, for example, until the oxidation / reduction potential (vs Ag / AgCl) becomes −400 mV or less. By adding sodium hydrosulfide until the oxidation / reduction potential becomes −400 mV or less, almost all of the cobalt and nickel contained in the eluate can be precipitated.

硫化水素化合物の添加開始から終了に至るまでの間の浸出液のpHは2.0~5.0、好ましくは2.0~3.5の範囲内に維持することが好ましい。浸出液のpHが2.0未満となった場合、硫化水素ナトリウムと硫酸との反応(NaSH+HSO→HS+NaSO)が生じ、硫化水素ナトリウムが消費されてコバルト、ニッケルの硫化が進みにくくなる。一方、浸出液のpHが5.0を超えると、他の金属の水酸化物が生じて沈殿物の純度が低下するおそれがある。また、高い領域でpHをコントロールすることは困難である。 The pH of the leachate from the start to the end of the addition of the hydrogen sulfide compound is preferably maintained in the range of 2.0 to 5.0, preferably 2.0 to 3.5. When the pH of the leachate is less than 2.0, a reaction between sodium hydrogen sulfide and sulfuric acid (NaSH + H 2 SO 4 → H 2 S + Na 2 SO 4 ) occurs, sodium hydrogen sulfide is consumed, and cobalt and nickel are sulfurized. It becomes difficult to proceed. On the other hand, if the pH of the leachate exceeds 5.0, hydroxides of other metals may be generated and the purity of the precipitate may decrease. Also, it is difficult to control the pH in the high range.

なお、ここでいう硫化コバルトには、硫化コバルト(II)、二硫化コバルト(CoS)、八硫化九コバルト(Co)など、各種組成の硫化コバルト化合物が含まれていてもよい。同様に、硫化ニッケル(NiS)には、硫化ニッケル(II)、二硫化ニッケル(NiS)、四硫化三ニッケル(Ni)、二硫化三ニッケル(Ni)など、各種組成の硫化ニッケル化合物が含まれていてもよい。 The cobalt sulfide referred to here may contain cobalt sulfide compounds having various compositions such as cobalt sulfide (II), cobalt disulfide (CoS 2 ), and cobalt octasulfide (Co 9 S 8 ). Similarly, nickel sulfide (NiS) has various compositions such as nickel sulfide (II), nickel disulfide (NiS 2 ), trinickel tetrasulfide (Ni 3 S 4 ), and trinickel disulfide (Ni 3 S 2 ). Nickel sulfide compound may be contained.

一方、硫化水素化合物を添加後の液相(残液)には、コバルトおよびニッケルを除いた金属成分(マンガン、鉄、アルミニウム、リチウム、カルシウム等)が残留する。ここで得られた液相は、その後、pH調整による溶媒抽出等によって、含有するマンガン、鉄、アルミニウム、リチウム、カルシウム等をそれぞれ分離、回収することができる。 On the other hand, metal components (manganese, iron, aluminum, lithium, calcium, etc.) excluding cobalt and nickel remain in the liquid phase (residual liquid) after the addition of the hydrogen sulfide compound. The liquid phase obtained here can be separated and recovered from manganese, iron, aluminum, lithium, calcium and the like contained therein by solvent extraction or the like by adjusting the pH.

(再溶解工程S6)
次に、コバルト・ニッケル分離工程S5で得られた沈殿物に硫酸を含む再溶解液を加えて攪拌した後、固液分離を行い、コバルトおよびニッケルを含むコバルト・ニッケル溶液を得る。
(Redissolution step S6)
Next, a redissolved solution containing sulfuric acid is added to the precipitate obtained in the cobalt-nickel separation step S5 and stirred, and then solid-liquid separation is performed to obtain a cobalt-nickel solution containing cobalt and nickel.

再溶解液としては、例えば、硫酸と酸化剤として過酸化水素とを混合したものを用いる。再溶解液の一例としては、濃度が1.5mol/Lの希硫酸100mlに対し、濃度が30wt%の過酸化水素水を20mlの比率で混合したものが挙げられる。 As the resolving solution, for example, a mixture of sulfuric acid and hydrogen peroxide as an oxidizing agent is used. An example of the redissolved solution is a mixture of 100 ml of dilute sulfuric acid having a concentration of 1.5 mol / L and 20 ml of hydrogen peroxide solution having a concentration of 30 wt%.

再溶解工程S6の具体例としては、例えば60℃以上に加熱した再溶解液に、沈殿物を加え、4時間以上浸漬する。この時、更に攪拌することが好ましい。また、再溶解液に過酸化水素水を入れずに、沈殿物を浸漬する際にエアバブリングを行うこともできる。
この時、処理液温度を60℃以上、浸出時間を1時間以上とすることで、コバルトおよびニッケルの溶解率を高めることができる。特に制限はないが、それ以上にしても溶解率のさらなる向上は望めないため、処理液温度の上限は90℃、浸出時間の上限は15時間である。
As a specific example of the redissolving step S6, for example, a precipitate is added to the redissolving solution heated to 60 ° C. or higher, and the mixture is immersed for 4 hours or longer. At this time, it is preferable to further stir. It is also possible to perform air bubbling when immersing the precipitate without adding hydrogen peroxide solution to the redissolution solution.
At this time, the dissolution rate of cobalt and nickel can be increased by setting the treatment liquid temperature to 60 ° C. or higher and the leaching time to 1 hour or longer. Although there is no particular limitation, the upper limit of the treatment liquid temperature is 90 ° C. and the upper limit of the leaching time is 15 hours because further improvement in the dissolution rate cannot be expected.

こうした再溶解液を用いた沈殿物の処理によって、コバルトおよびニッケルが再溶解液に溶解する。また、再溶解液に溶解しない不純物、コバルト・ニッケル分離工程S5で生成する単体硫黄などが固相として残る。この後、濾材などを用いて固液分離を行うことにより、コバルトおよびニッケルの純度が高められた(精製された)コバルト・ニッケル溶液が得られる。 Cobalt and nickel are dissolved in the redissolved solution by treating the precipitate with such a redissolved solution. In addition, impurities that do not dissolve in the redissolution solution, elemental sulfur generated in the cobalt / nickel separation step S5, and the like remain as a solid phase. After that, solid-liquid separation is performed using a filter medium or the like to obtain a (purified) cobalt-nickel solution in which the purity of cobalt and nickel is increased.

こうして得られた、コバルト・ニッケル溶液は、コバルトおよびニッケル以外の電極材料の他の成分(銅、鉄、アルミニウム、リチウム、カルシウム等)は殆ど含まれておらず、コバルトおよびニッケルの高純度な回収原料として好適である。 The cobalt-nickel solution thus obtained contains almost no other components (copper, iron, aluminum, lithium, calcium, etc.) of the electrode material other than cobalt and nickel, and high-purity recovery of cobalt and nickel. Suitable as a raw material.

なお、再溶解工程S6の前工程として、沈殿物をリパルプすることにより、コバルト硫化物、ニッケル硫化物以外の不純物を取り除いておくことも好ましい。
銅分離工程S4において、固液分離を行う前にアルミニウムを除去する手順について上述したが、そのような手順を実施していない場合、沈殿物にはアルミニウム化合物が含まれている場合がある。この場合、沈殿物をリパルプすることにより、アルミニウム化合物を除去することができる。
As a pre-step of the redissolution step S6, it is also preferable to remove impurities other than cobalt sulfide and nickel sulfide by repulping the precipitate.
The procedure for removing aluminum before performing solid-liquid separation in the copper separation step S4 has been described above, but if such a procedure is not performed, the precipitate may contain an aluminum compound. In this case, the aluminum compound can be removed by repulping the precipitate.

(溶媒抽出工程S7)
次に、再溶解工程S6で得られたコバルト・ニッケル溶液に抽出剤溶液を添加して、コバルト抽出液と、ニッケル抽出液とを得る。
抽出剤溶液としては、金属抽出剤と希釈剤を混合した混合溶液を用いることができる。例えば、2-エチルヘキシル2-エチルヘキシルホスホネート(PC88A:大八化学株式会社製)を20vol%、ケロシン(希釈剤)を80vol%の割合で混合した混合溶液を用いることができる。
(Solvent extraction step S7)
Next, an extractant solution is added to the cobalt-nickel solution obtained in the redissolution step S6 to obtain a cobalt extract and a nickel extract.
As the extractant solution, a mixed solution in which a metal extractant and a diluent are mixed can be used. For example, a mixed solution in which 2-ethylhexyl 2-ethylhexylphosphonate (PC88A: manufactured by Daihachi Chemical Co., Ltd.) is mixed at a ratio of 20 vol% and kerosene (diluent) at a ratio of 80 vol% can be used.

上述した抽出剤溶液を用いて、ミキサーセトラーによりコバルト・ニッケル溶液から硫酸コバルト(CoSO)溶液と、硫酸ニッケル(NiSO)溶液として分離回収する。 Using the above-mentioned extractant solution, the cobalt-nickel solution is separated and recovered as a cobalt sulfate (CoSO 4 ) solution and a nickel sulfate (NiSO 4 ) solution by a mixer settler.

以上の工程により、廃LIBからコバルトとニッケルとを高収率で回収することができる。例えば、廃LIBから取り出した電極材料中のコバルト、ニッケルの量をそれぞれ100%とした時、本実施形態のコバルトおよびニッケルの分離方法によって、コバルトとニッケルをそれぞれ95%以上の高収率で回収することができる。 By the above steps, cobalt and nickel can be recovered from the waste LIB in high yield. For example, when the amounts of cobalt and nickel in the electrode material taken out from the waste LIB are 100% each, cobalt and nickel are recovered in high yields of 95% or more by the method for separating cobalt and nickel of the present embodiment. can do.

以上、本発明の実施形態を説明したが、これら実施形態は例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although the embodiments of the present invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and variations thereof are included in the scope of the invention described in the claims and the equivalent scope thereof, as are included in the scope and gist of the invention.

本発明のコバルトおよびニッケルの分離方法の効果を検証した。
(本発明例の手順)
廃LIBから取り出した電極材料14.5gを、濃度2mol/Lの硫酸100mLおよび濃度30%の過酸化水素水5mLの処理液に加え、液温60℃で加熱撹拌を4時間行った(浸出工程)。その後、室温まで放冷し、浸出液に対して、250g/Lになるようイオン交換水に撹拌溶解した硫化水素ナトリウム水溶液を、浸出液の酸化・還元電位(ORP)が0mV(vs Ag/AgCl)以下になるまで添加し撹拌した(銅分離工程)。
The effect of the cobalt and nickel separation method of the present invention was verified.
(Procedure of the Example of the Present Invention)
14.5 g of the electrode material taken out from the waste LIB was added to a treatment solution containing 100 mL of sulfuric acid having a concentration of 2 mol / L and 5 mL of a hydrogen peroxide solution having a concentration of 30%, and the mixture was heated and stirred at a solution temperature of 60 ° C. for 4 hours (leaching step). ). After that, the solution was allowed to cool to room temperature, and the sodium hydrogen sulfide aqueous solution was stirred and dissolved in ion-exchanged water so as to reach 250 g / L of the leachate. The oxidation / reduction potential (ORP) of the leachate was 0 mV (vs Ag / AgCl) or less. It was added and stirred until it became (copper separation step).

この段階で、硫酸浸出時に不溶である廃LIBの負極材のカーボンおよび、生成した残渣(硫化銅)を濾過して固液分離を行った。ここで得られた溶出液に、濃度25wt%の水酸化ナトリウム溶液を添加してpHを3.5に調整し、これに、濃度250g/Lの硫化水素ナトリウム水溶液を、ORPが-400mV(vs Ag/AgCl)以下になるまで添加しつつ撹拌した。 At this stage, the carbon of the negative electrode material of the waste LIB, which is insoluble at the time of sulfuric acid leaching, and the generated residue (copper sulfide) were filtered to perform solid-liquid separation. To the eluate obtained here, a sodium hydroxide solution having a concentration of 25 wt% was added to adjust the pH to 3.5, and a sodium hydrogen sulfide aqueous solution having a concentration of 250 g / L was added to the pH at -400 mV (vs). Ag / AgCl) The mixture was stirred while being added until the concentration became less than or equal to.

そして、黒色の沈殿物(硫化コバルト、硫化ニッケル)が十分生成したことを確認後、固液分離を行うことにより、沈殿物を回収した(コバルト・ニッケル分離工程)。一方、残液にはマンガン、アルミニウム、鉄、リチウム、カルシウムなどの不純物が残留しており、金属含有廃液として処分した。 Then, after confirming that a black precipitate (cobalt sulfide, nickel sulfide) was sufficiently produced, the precipitate was recovered by performing solid-liquid separation (cobalt-nickel separation step). On the other hand, impurities such as manganese, aluminum, iron, lithium, and calcium remained in the residual liquid, and the liquid was disposed of as a metal-containing waste liquid.

沈殿物を、濃度が1.5mol/Lの硫酸100mLおよび濃度が30wt%の過酸化水素水20mLの再溶解液中に加え、液温60℃で加熱、撹拌を1時間行った(再溶解工程)。その後、室温下まで放冷後、未溶解分および前工程での反応で生成した単体硫黄を濾過によって除去した。 The precipitate was added to a redissolution solution of 100 mL of sulfuric acid having a concentration of 1.5 mol / L and 20 mL of hydrogen peroxide solution having a concentration of 30 wt%, heated at a solution temperature of 60 ° C., and stirred for 1 hour (redissolution step). ). Then, after allowing to cool to room temperature, the undissolved component and the elemental sulfur produced by the reaction in the previous step were removed by filtration.

このようにして得られたコバルト・ニッケル溶液から、金属抽出剤であるPC88A(大八化学株式会社製)が20vol%、ケロシンが80vol%の割合で混合された抽出剤溶液を用いて、ミキサーセトラーにより硫酸コバルト溶液と、硫酸ニッケル溶液として分離回収した(溶媒抽出工程)。 From the cobalt-nickel solution thus obtained, the metal extractor PC88A (manufactured by Daihachi Chemical Co., Ltd.) was mixed at a ratio of 20 vol% and kerosine at a ratio of 80 vol%, and a mixer settler was used. The solution was separated and recovered as a cobalt sulfate solution and a nickel sulfate solution (solvent extraction step).

以上の本発明例の手順では、廃LIBから取り出した電極材料中のコバルト、ニッケルを100%とした時に、溶媒抽出で逆抽出液中に得られたコバルトは96.4%、ニッケルは95.3%であった。よって、本実施形態のコバルトおよびニッケルの分離方法によれば、廃LIBから高い歩留まりでコバルト、ニッケルを回収できることが確認された。
なお、金属濃度はICP-AES、pHはpH計、ORPはORP計によって測定した。%の数値は質量基準である。
In the above procedure of the example of the present invention, when cobalt and nickel in the electrode material taken out from the waste LIB are 100%, the cobalt obtained in the back extract by solvent extraction is 96.4%, and the nickel is 95. It was 3%. Therefore, it was confirmed that the cobalt and nickel separation method of the present embodiment can recover cobalt and nickel from the waste LIB with a high yield.
The metal concentration was measured by ICP-AES, the pH was measured by a pH meter, and the ORP was measured by an ORP meter. The% value is based on mass.

(浸出工程)
上述した本発明例の浸出工程に関して、処理液の濃度、過酸化水素水の液量、温度、浸出時間を互いに変化させた実験例1~9について、コバルトおよびニッケルの液相への浸出率を測定した。この結果を表1に示す。
(Leaching process)
Regarding the leaching step of the above-mentioned example of the present invention, the leaching rate of cobalt and nickel into the liquid phase was determined for Experimental Examples 1 to 9 in which the concentration of the treatment liquid, the amount of the hydrogen peroxide solution, the temperature, and the leaching time were changed with each other. It was measured. The results are shown in Table 1.

Figure 2022042982000002
Figure 2022042982000002

表1に示す結果によれば、実験例1~3により、処理液の硫酸濃度は2mol/L以上にすることが好ましいことが確認された。また、実験例3~5により、処理液の過酸化水素水の液量は5mL(濃度30wt%において)以上が好ましいことが確認された。また、実験例3、6、7より、処理液の温度(液温)は60℃以上が好ましいことが確認された。更に、実験例5、8、9より、浸出時間は4時間以上が好ましいことが確認された。 According to the results shown in Table 1, it was confirmed from Experimental Examples 1 to 3 that the sulfuric acid concentration of the treatment liquid was preferably 2 mol / L or more. Further, from Experimental Examples 3 to 5, it was confirmed that the amount of the hydrogen peroxide solution of the treatment liquid is preferably 5 mL (at a concentration of 30 wt%) or more. Further, from Experimental Examples 3, 6 and 7, it was confirmed that the temperature (liquid temperature) of the treatment liquid is preferably 60 ° C. or higher. Further, from Experimental Examples 5, 8 and 9, it was confirmed that the leaching time is preferably 4 hours or more.

(銅分離工程)
次に、上述した本発明例の銅分離工程に関して、実験例5で得られた浸出液に硫化水素ナトリウム水溶液を添加し、それに伴うpH、ORP、浸出液中の金属濃度の変化を調べた。実験例10では、添加前の浸出液について測定を実施した。硫化水素ナトリウム水溶液の添加と測定を繰り返し、ORPが0mV以下となったところで工程終了とした(実験例11~13)。なお、pH測定は、硫化水素ナトリウム水溶液の添加開始から継続して実施し、各回の添加後にpHが安定した段階で、その時点のpHと、初回の添加開始からの経過時間とを記録するとともに、その他の項目の測定を実施した。
この結果を表2に示す。
(Copper separation process)
Next, regarding the copper separation step of the above-mentioned example of the present invention, an aqueous sodium hydrogen sulfide solution was added to the leachate obtained in Experimental Example 5, and changes in pH, ORP, and metal concentration in the leachate were investigated. In Experimental Example 10, measurement was carried out for the leachate before addition. The addition and measurement of the aqueous sodium hydrogen sulfide solution were repeated, and the process was terminated when the ORP became 0 mV or less (Experimental Examples 11 to 13). The pH measurement is continuously carried out from the start of the addition of the sodium hydrosulfide aqueous solution, and when the pH stabilizes after each addition, the pH at that time and the elapsed time from the start of the first addition are recorded. , Other items were measured.
The results are shown in Table 2.

Figure 2022042982000003
Figure 2022042982000003

表2に示す結果によれば、浸出液のpHを1.0以下に維持しつつ、ORPが0mV以下となるまで硫化水素化合物を加えれば、浸出液に含まれる銅をほぼ全量沈殿させ、ニッケル、コバルト等の他成分と固液分離できることが確認された。 According to the results shown in Table 2, if the hydrogen sulfide compound is added until the ORP becomes 0 mV or less while maintaining the pH of the leachate at 1.0 or less, almost all of the copper contained in the leachate is precipitated, and nickel and cobalt are deposited. It was confirmed that solid-liquid separation was possible with other components such as.

(コバルト・ニッケル分離工程)
次に上述した本発明例のコバルト・ニッケル分離工程に関して、硫化水素化合物の添加中の溶出液のpHによる反応への影響を調べた。
[pH2.0~3.0]
実験例14では、溶出液として実験例13で得られたものを用い、添加前の溶出液について測定を実施した。次に、水酸化ナトリウム水溶液を添加して、pH調整した溶解液について測定を実施した(実験例15)。その後、硫化水素ナトリウム水溶液の添加と測定を繰り返した(実験例16~23)。添加中のpHを2.0~3.0の範囲内に維持するため、硫化水素ナトリウム水溶液とあわせて、水酸化ナトリウム水溶液と硫酸も適宜、添加した。
硫化水素ナトリウム水溶液の添加開始以降の、各種水溶液の累積添加量と、その時点の溶解液の液量、pH、ORP、金属濃度を表3に示す。
なお、pH測定は、硫化水素ナトリウム水溶液の添加開始から継続して実施し、各回の添加後にpHが安定した段階で、その時点のpHと、初回の添加開始からの経過時間とを記録するとともに、その他の項目の測定を実施した。
(Cobalt / nickel separation process)
Next, regarding the cobalt-nickel separation step of the above-mentioned example of the present invention, the influence of the pH of the eluate during the addition of the hydrogen sulfide compound on the reaction was investigated.
[PH 2.0-3.0]
In Experimental Example 14, the eluate obtained in Experimental Example 13 was used, and the eluate before addition was measured. Next, a pH-adjusted solution was measured by adding an aqueous sodium hydroxide solution (Experimental Example 15). After that, the addition and measurement of the aqueous sodium hydrogen sulfide solution were repeated (Experimental Examples 16 to 23). In order to maintain the pH during the addition in the range of 2.0 to 3.0, an aqueous sodium hydroxide solution and sulfuric acid were appropriately added together with the aqueous sodium hydrogen sulfide solution.
Table 3 shows the cumulative amount of various aqueous solutions added after the start of the addition of the sodium hydrosulfide aqueous solution, the amount of the solution at that time, the pH, the ORP, and the metal concentration.
The pH measurement is continuously carried out from the start of the addition of the sodium hydrogen sulfide aqueous solution, and when the pH stabilizes after each addition, the pH at that time and the elapsed time from the start of the first addition are recorded. , Other items were measured.

Figure 2022042982000004
Figure 2022042982000004

[pH2.5~3.5]
pHを変更した以外は、実験例14~23と同様の水溶液添加、測定を実施した。実験例24が添加前の溶出液、実験例25がpH調整後の溶解液、実験例26~33が添加の各段階の溶出液である。測定の結果を表4に示す。
[PH 2.5-3.5]
The same aqueous solution addition and measurement as in Experimental Examples 14 to 23 were carried out except that the pH was changed. Experimental Example 24 is an eluate before addition, Experimental Example 25 is a solution after pH adjustment, and Experimental Examples 26 to 33 are eluates at each stage of addition. The measurement results are shown in Table 4.

Figure 2022042982000005
Figure 2022042982000005

表3、4に示す結果によれば、硫化水素ナトリウム水溶液の添加により、溶出液中のマンガン濃度が変化しない中で、ニッケル濃度、コバルト濃度が低下する。ORPが-400mV以下まで硫化水素ナトリウム水溶液を添加すると、マンガンが沈殿しないで、ニッケル、コバルトが硫化物として沈殿するので、ニッケル、コバルトを固液分離することができる。 According to the results shown in Tables 3 and 4, the addition of the aqueous sodium hydrogen sulfide solution reduces the nickel concentration and the cobalt concentration while the manganese concentration in the eluate does not change. When an aqueous sodium hydrogen sulfide solution is added to an ORP of −400 mV or less, nickel and cobalt precipitate as sulfides without precipitating manganese, so that nickel and cobalt can be separated into solid and liquid.

[pH3.5~5.0]
pHを変更した以外は、実験例14~23と同様の水溶液添加、測定を実施した。実験例34がpH調整後の溶解液、実験例35~38が添加の各段階の溶出液である。測定の結果を表5に示す。
[PH 3.5-5.0]
The same aqueous solution addition and measurement as in Experimental Examples 14 to 23 were carried out except that the pH was changed. Experimental Example 34 is a solution after adjusting the pH, and Experimental Examples 35 to 38 are eluates at each stage of addition. The measurement results are shown in Table 5.

Figure 2022042982000006
Figure 2022042982000006

表5に示す結果によれば、硫化水素ナトリウム水溶液の添加により、溶出液中のマンガン濃度が変化しない中で、ニッケル濃度、コバルト濃度が低下する。ORPが-400mVまで硫化水素ナトリウム水溶液を添加するとマンガン等が沈殿しないで、ニッケル、コバルトが硫化物として沈殿するので、ニッケル、コバルトを固液分離できる。
なお、pHが3.5~5.0の領域ではpHをコントロールすることが容易ではなく、各回の硫化水素ナトリウム水溶液の添加後、pHが安定までの時間が、他の実験例に比べて長い。また、pHが3.5以上になるとニッケル、コバルト以外の溶解度の低い水酸化物が生成し始める可能性がある。
According to the results shown in Table 5, the addition of the aqueous sodium hydrogen sulfide solution reduces the nickel concentration and the cobalt concentration while the manganese concentration in the eluate does not change. When an aqueous sodium hydrogen sulfide solution is added to ORP up to −400 mV, manganese and the like do not precipitate, and nickel and cobalt precipitate as sulfides, so that nickel and cobalt can be separated into solid and liquid.
It is not easy to control the pH in the pH range of 3.5 to 5.0, and the time until the pH stabilizes after each addition of the sodium hydrosulfide aqueous solution is longer than in other experimental examples. .. Further, when the pH becomes 3.5 or higher, hydroxides having low solubility other than nickel and cobalt may start to be produced.

[pH1.6~2.3]
pHを変更した以外は、実験例14~23と同様の水溶液添加、測定を実施した。実験例39がpH調整後の溶解液、実験例40~43が添加の各段階の溶出液である。測定の結果を表6に示す。
[PH 1.6-2.3]
The same aqueous solution addition and measurement as in Experimental Examples 14 to 23 were carried out except that the pH was changed. Experimental Example 39 is a solution after adjusting the pH, and Experimental Examples 40 to 43 are eluates at each stage of addition. The measurement results are shown in Table 6.

Figure 2022042982000007
Figure 2022042982000007

表6に示す結果によれば、溶出液のpHが2.0以上に維持されず、一時的にでも2.0未満となった場合、pHが2.0以上に維持された場合(表3~5)と比べて、コバルトおよびニッケルを硫化物にするために多量の硫化水素ナトリウムが必要となることがわかる。試験後半段階の実験例42,43ではpHが2.0以上に達しているが、試験前半の実験例40,41ではpHが2.0未満であったので、硫化水素ナトリウムが硫酸と反応し、コバルト、ニッケルの硫化、沈殿生成に有効に利用できなかった。表3、表4、表5に比して表6では最も硫化水素ナトリウム水溶液を使用したにも関わらず液中にコバルト、ニッケルが残存した。また、ORPも-400mV以上となった。 According to the results shown in Table 6, when the pH of the eluate was not maintained above 2.0 and was temporarily below 2.0, or when the pH was maintained above 2.0 (Table 3). It can be seen that a large amount of sodium hydrogen sulfide is required to convert cobalt and nickel into sulfides as compared with 5). In Experimental Examples 42 and 43 in the latter half of the test, the pH reached 2.0 or higher, but in Experimental Examples 40 and 41 in the first half of the test, the pH was less than 2.0, so sodium hydrogen sulfide reacted with sulfuric acid. , Cobalt, nickel sulfurization, could not be effectively used for precipitation formation. Compared to Tables 3, 4, and 5, in Table 6, cobalt and nickel remained in the liquid even though the sodium hydrogen sulfide aqueous solution was used most. The ORP was also -400 mV or higher.

以上より、コバルト・ニッケル分離工程は、溶出液のpHを2.0~5.0の範囲内、より好ましくは、pHを2.0~3.5の範囲内に維持し、ORPが-400mV以下になるまで硫化水素ナトリウム水溶液を添加すればよいことが分かった。 From the above, in the cobalt-nickel separation step, the pH of the eluate is maintained in the range of 2.0 to 5.0, more preferably the pH is maintained in the range of 2.0 to 3.5, and the ORP is -400 mV. It was found that the aqueous solution of sodium hydrogen sulfide should be added until the following results were obtained.

(従来例の手順)
本発明例の手順と同様に、浸出工程と銅分離工程を実施して溶出液を得た。続いて、コバルト・ニッケル分離工程にかえて、従来技術で実施されていたマンガン分離工程、アルミニウム分離工程を実施した。
(Procedure of the conventional example)
A leaching step and a copper separation step were carried out in the same manner as in the procedure of the example of the present invention to obtain an eluate. Subsequently, instead of the cobalt-nickel separation step, the manganese separation step and the aluminum separation step, which were carried out in the prior art, were carried out.

溶出液に、濃度12wt%の次亜塩素酸ナトリウム水溶液を添加し、マンガンを酸化処理することで二酸化マンガン(MnO)として沈殿生成させ、濾材で固液分離することによりマンガンを除去した(マンガン分離工程)。 An aqueous solution of sodium hypochlorite having a concentration of 12 wt% was added to the eluent, manganese was oxidized to form a precipitate as manganese dioxide (MnO 2 ), and manganese was removed by solid-liquid separation with a filter medium (manganese). Separation process).

このマンガン分離工程では、コバルトおよびニッケルの一部も3価に酸化されて水酸化物として沈殿し、二酸化マンガンと共に固液分離され、コバルトおよびニッケルの収率が低下する。 In this manganese separation step, a part of cobalt and nickel is also trivalently oxidized and precipitated as a hydroxide, and solid-liquid separation is performed together with manganese dioxide, so that the yields of cobalt and nickel decrease.

次に、マンガン分離工程で得られた濾液に濃度25%の水酸化ナトリウム水溶液を添加して濾液のpHを5.5に調整することで、アルミニウムを水酸化物の沈殿として分離する操作を行った(アルミニウム分離工程)。 Next, an operation of separating aluminum as a precipitate of hydroxide was performed by adding a 25% aqueous solution of sodium hydroxide to the filtrate obtained in the manganese separation step to adjust the pH of the filtrate to 5.5. (Aluminum separation process).

このアルミニウム分離工程においても、コバルトおよびニッケルの一部が水酸化物として沈殿し、水酸化アルミニウムと共に固液分離され、コバルトおよびニッケルの収率が更に低下する。 Also in this aluminum separation step, a part of cobalt and nickel are precipitated as hydroxides, and solid-liquid separation is performed together with aluminum hydroxide, further lowering the yields of cobalt and nickel.

以上の従来例の手順では、廃LIBから取り出した電極材料中のコバルト、ニッケルを100%とした時に、工程の途中でコバルトが38.2%、ニッケルが41.3%それぞれ系外へ排出され、直接歩留まりはコバルトが61.8%、ニッケルが58.7%に留まった。 In the above conventional procedure, when cobalt and nickel in the electrode material taken out from the waste LIB are 100%, 38.2% of cobalt and 41.3% of nickel are discharged to the outside of the system in the middle of the process. The direct yield was 61.8% for cobalt and 58.7% for nickel.

[マンガン分離工程]
上述した従来例のマンガン分離工程に関して、溶出液に濃度5%の次亜塩素酸ナトリウム水溶液と、濃度25%の水酸化ナトリウム水溶液を添加し、それに伴う溶出液中の金属濃度の変化を測定した。従来実験例1で添加前の溶出液を測定した後、従来実験例2~6で各水溶液の添加と測定を繰り返した。この結果を表7に示す。
[Manganese separation process]
Regarding the above-mentioned conventional manganese separation step, a sodium hypochlorite aqueous solution having a concentration of 5% and a sodium hydroxide aqueous solution having a concentration of 25% were added to the eluate, and the change in the metal concentration in the eluate was measured. .. After measuring the eluate before addition in Conventional Experimental Example 1, addition and measurement of each aqueous solution were repeated in Conventional Experimental Examples 2 to 6. The results are shown in Table 7.

Figure 2022042982000008
Figure 2022042982000008

表7に示す結果によれば、各水溶液の添加量が増加して、マンガンの沈殿が進むほど、コバルトおよびニッケルの一部も沈殿し、最大で15%程度、マンガン分離工程においてコバルトおよびニッケルがロスすることが分かった。 According to the results shown in Table 7, as the amount of each aqueous solution added increases and the precipitation of manganese progresses, a part of cobalt and nickel also precipitates, and up to about 15% of cobalt and nickel are contained in the manganese separation step. It turned out to be a loss.

[アルミニウム分離工程]
次に、上述した従来例のアルミニウム分離工程に関して、濾液に加える水酸化ナトリウム水溶液の添加量を変化させた従来実験例7~10について、濾液に残る金属(コバルト、ニッケル、マンガン、アルミニウム)の濃度とpHとを測定した。従来実験例7は、水酸化ナトリウム水溶液の添加前である。従来実験例10では、硫酸も添加した。この結果を表8に示す。
[Aluminum separation process]
Next, regarding the aluminum separation step of the above-mentioned conventional example, the concentration of the metal (cobalt, nickel, manganese, aluminum) remaining in the filtrate with respect to the conventional experimental examples 7 to 10 in which the amount of the sodium hydroxide aqueous solution added to the filtrate was changed. And pH were measured. Conventional Experimental Example 7 is before the addition of the sodium hydroxide aqueous solution. In the conventional experimental example 10, sulfuric acid was also added. The results are shown in Table 8.

Figure 2022042982000009
Figure 2022042982000009

表8に示す結果によれば、アルミニウムが水酸化物としてほぼ全量沈殿するpH5.46(従来実験例9)において、コバルトおよびニッケルの一部もそれぞれ水酸化物として沈殿し、その結果、ニッケルが23%、コバルトが17%ロスすることが分かった。また、水酸化アルミニウムはゲル状になるため、濾材による固液分離が困難である。 According to the results shown in Table 8, at pH 5.46 (conventional Experimental Example 9) in which almost all of aluminum precipitates as hydroxide, a part of cobalt and nickel also precipitate as hydroxide, and as a result, nickel is deposited. It was found that 23% and 17% of cobalt were lost. Further, since aluminum hydroxide becomes a gel, it is difficult to separate solid and liquid with a filter medium.

本発明のコバルトおよびニッケルの分離方法は、使用済みのリチウムウムイオン二次電池に含まれる有価金属のうち、特にコバルトおよびニッケルを、他の金属から正確に分離、回収することを可能にし、これにより、リチウムウムイオン二次電池から純度の高いリサイクル資源を効率的に得ることができる。従って、産業上の利用可能性を有する。 The method for separating cobalt and nickel of the present invention makes it possible to accurately separate and recover valuable metals contained in a used lithium ion secondary battery, particularly cobalt and nickel, from other metals. , High-purity recycled resources can be efficiently obtained from lithium-ion secondary batteries. Therefore, it has industrial applicability.

Claims (11)

リチウムイオン二次電池からコバルトおよびニッケルを分離する、コバルトおよびニッケルの分離方法であって、
前記リチウムイオン二次電池を粉砕および分級し、少なくともコバルト、ニッケル、銅、およびリチウムを含む電極材料を得る粉砕選別工程、
硫酸および過酸化水素を含む処理液に前記電極材料を浸漬して浸出液を得る浸出工程、
前記浸出液に硫化水素化合物を加えて撹拌した後、固液分離を行い、コバルトおよびニッケルを含む溶出液と、硫化銅を含む残渣とを得る銅分離工程、
前記溶出液にアルカリ金属水酸化物を加えてpH調整をした後、硫化水素化合物を加えて撹拌、固液分離を行い、硫化コバルトおよび硫化ニッケルを含む沈殿物と、リチウムを含む残液とを得るコバルト・ニッケル分離工程、
を備えることを特徴とするコバルトおよびニッケルの分離方法。
A method for separating cobalt and nickel, which separates cobalt and nickel from lithium-ion secondary batteries.
A crushing and sorting step of crushing and classifying the lithium ion secondary battery to obtain an electrode material containing at least cobalt, nickel, copper, and lithium.
A leaching step of immersing the electrode material in a treatment liquid containing sulfuric acid and hydrogen peroxide to obtain a leaching liquid.
A copper separation step of adding a hydrogen sulfide compound to the leachate, stirring the mixture, and then performing solid-liquid separation to obtain an eluate containing cobalt and nickel and a residue containing copper sulfide.
After adjusting the pH by adding an alkali metal hydroxide to the eluent, a hydrogen sulfide compound is added and stirred to perform solid-liquid separation, and a precipitate containing cobalt sulfide and nickel sulfide and a residual liquid containing lithium are separated. Obtaining cobalt / nickel separation process,
A method for separating cobalt and nickel, which comprises.
前記コバルト・ニッケル分離工程で分離した前記沈殿物に硫酸を含む再溶解液を加えて攪拌した後、固液分離を行い、コバルトおよびニッケルを含むコバルト・ニッケル溶液を得る再溶解工程と、
前記コバルト・ニッケル溶液に抽出剤溶液を添加して、コバルト抽出液と、ニッケル抽出液とを得る溶媒抽出工程を備えることを特徴とする請求項1に記載のコバルトおよびニッケルの分離方法。
A redissolution step containing sulfuric acid is added to the precipitate separated in the cobalt-nickel separation step, and the mixture is stirred and then solid-liquid separated to obtain a cobalt-nickel solution containing cobalt and nickel.
The method for separating cobalt and nickel according to claim 1, further comprising a solvent extraction step of adding an extractant solution to the cobalt-nickel solution to obtain a cobalt extract and a nickel extract.
前記再溶解工程では、前記沈殿物の前記再溶解液に対する浸漬時間が1時間以上であることを特徴とする請求項2に記載のコバルトおよびニッケルの分離方法。 The method for separating cobalt and nickel according to claim 2, wherein in the redissolving step, the immersion time of the precipitate in the redissolving solution is 1 hour or more. 前記浸出工程では、前記処理液の液温が60℃以上、硫酸濃度が2mol/L以上であることを特徴とする請求項1から3のいずれか一項に記載のコバルトおよびニッケルの分離方法。 The method for separating cobalt and nickel according to any one of claims 1 to 3, wherein in the leaching step, the liquid temperature of the treatment liquid is 60 ° C. or higher and the sulfuric acid concentration is 2 mol / L or higher. 前記銅分離工程では、
前記硫化水素化合物の添加開始から終了に至るまでの間の前記浸出液のpHを1.0以下に維持し、
酸化・還元電位(vs Ag/AgCl)が0mV以下になるまで、前記硫化水素化合物として硫化水素ナトリウム水溶液を加えることを特徴とする請求項1から4のいずれか一項に記載のコバルトおよびニッケルの分離方法。
In the copper separation step,
The pH of the leachate was maintained at 1.0 or less from the start to the end of the addition of the hydrogen sulfide compound.
The cobalt and nickel according to any one of claims 1 to 4, wherein an aqueous solution of sodium hydrogen sulfide is added as the hydrogen sulfide compound until the oxidation / reduction potential (vs Ag / AgCl) becomes 0 mV or less. Separation method.
前記コバルト・ニッケル分離工程では、
前記硫化水素化合物として硫化水素ナトリウム水溶液を用い、
前記硫化水素化合物の添加開始から終了に至るまでの間の前記溶出液のpHを2.0~5.0の範囲内に維持し、
酸化・還元電位(vs Ag/AgCl)が-400mV以下になるまで、前記溶出液に前記硫化水素化合物を加えることを特徴とする請求項1から5のいずれか一項に記載のコバルトおよびニッケルの分離方法。
In the cobalt / nickel separation step,
An aqueous solution of sodium hydrogen sulfide was used as the hydrogen sulfide compound.
The pH of the eluate was maintained in the range of 2.0 to 5.0 during the period from the start to the end of the addition of the hydrogen sulfide compound.
The cobalt and nickel according to any one of claims 1 to 5, wherein the hydrogen sulfide compound is added to the eluent until the oxidation / reduction potential (vs Ag / AgCl) becomes −400 mV or less. Separation method.
前記硫化水素化合物の添加開始から終了に至るまでの間の前記溶出液のpHを2.0~3.5の範囲内に維持することを特徴とする請求項6に記載のコバルトおよびニッケルの分離方法。 The separation of cobalt and nickel according to claim 6, wherein the pH of the eluate is maintained in the range of 2.0 to 3.5 from the start to the end of the addition of the hydrogen sulfide compound. Method. 前記コバルト・ニッケル分離工程におけるpH調整では、前記溶出液のpHを3.0~4.0の範囲内に調整することを特徴とする請求項1から7のいずれか一項に記載のコバルトおよびニッケルの分離方法。 The cobalt and the cobalt according to any one of claims 1 to 7, wherein in the pH adjustment in the cobalt-nickel separation step, the pH of the eluate is adjusted in the range of 3.0 to 4.0. Nickel separation method. 前記再溶解工程では、硫酸及び過酸化水素水を含む前記再溶解液で前記沈殿物を溶解させるか、または硫酸を含む前記再溶解液に前記沈殿物を加えた後、エアバブリングを行うことによって溶解させることを特徴とする請求項2または3に記載のコバルトおよびニッケルの分離方法。 In the re-dissolution step, the precipitate is dissolved in the re-dissolution solution containing sulfuric acid and hydrogen peroxide solution, or the precipitate is added to the re-dissolution solution containing sulfuric acid, and then air bubbling is performed. The method for separating cobalt and nickel according to claim 2 or 3, which comprises dissolving. 前記再溶解工程では、前記再溶解液の液温が60℃以上、硫酸濃度が0.5mol/L以上であることを特徴とする請求項2、3および9のいずれか一項に記載のコバルトおよびニッケルの分離方法。 The cobalt according to any one of claims 2, 3 and 9, wherein in the redissolving step, the liquid temperature of the redissolving solution is 60 ° C. or higher and the sulfuric acid concentration is 0.5 mol / L or higher. And how to separate nickel. 前記粉砕選別工程の前工程として、前記リチウムイオン二次電池を加熱して熱処理を行う熱処理工程を備えることを特徴とする請求項1から10のいずれか一項に記載のコバルトおよびニッケルの分離方法。 The method for separating cobalt and nickel according to any one of claims 1 to 10, further comprising a heat treatment step of heating the lithium ion secondary battery to perform a heat treatment as a pre-step of the crushing and sorting step. ..
JP2021138132A 2020-09-03 2021-08-26 Cobalt and nickel separation method Active JP7121885B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/JP2021/031833 WO2022050248A1 (en) 2020-09-03 2021-08-31 Method for separating cobalt and nickel
CN202180053662.3A CN116096929A (en) 2020-09-03 2021-08-31 Cobalt and nickel separation method
US18/023,050 US20230313337A1 (en) 2020-09-03 2021-08-31 Method for separating cobalt and nickel
AU2021337975A AU2021337975A1 (en) 2020-09-03 2021-08-31 Method for separating cobalt and nickel
KR1020237006098A KR20230061356A (en) 2020-09-03 2021-08-31 Separation of cobalt and nickel
EP21864306.2A EP4209606A1 (en) 2020-09-03 2021-08-31 Method for separating cobalt and nickel
TW110132412A TW202221145A (en) 2020-09-03 2021-09-01 Method for separating cobalt and nickel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020148388 2020-09-03
JP2020148388 2020-09-03

Publications (2)

Publication Number Publication Date
JP2022042982A true JP2022042982A (en) 2022-03-15
JP7121885B2 JP7121885B2 (en) 2022-08-19

Family

ID=80641574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021138132A Active JP7121885B2 (en) 2020-09-03 2021-08-26 Cobalt and nickel separation method

Country Status (1)

Country Link
JP (1) JP7121885B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117504426A (en) * 2024-01-04 2024-02-06 新乡华锐锂电新能源股份有限公司 Electrolyte filtering device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011074406A (en) * 2009-09-29 2011-04-14 Jx Nippon Mining & Metals Corp Method for recovering valuables from noble metal-containing metal sulfide
JP2015183292A (en) * 2014-03-26 2015-10-22 三菱マテリアル株式会社 Recovery method of cobalt and nickel
JP2016186118A (en) * 2015-03-27 2016-10-27 Jx金属株式会社 Recovery method of metals from recycled raw material of lithium-ion battery
JP2017036489A (en) * 2015-08-13 2017-02-16 Jx金属株式会社 Method for processing lithium ion battery
JP2017036490A (en) * 2015-08-13 2017-02-16 Jx金属株式会社 Method for processing lithium ion battery
JP2019077912A (en) * 2017-10-23 2019-05-23 住友金属鉱山株式会社 Separation method for copper, nickel and cobalt
JP2019081915A (en) * 2017-10-27 2019-05-30 住友金属鉱山株式会社 Method of separating copper from nickel and cobalt
JP2019108586A (en) * 2017-12-18 2019-07-04 住友金属鉱山株式会社 Method for separating copper, nickel and cobalt
JP2020522622A (en) * 2017-06-08 2020-07-30 アーバン マイニング プロプライエタリー リミテッド A process for recovering cobalt, lithium, and other metals from used lithium-based batteries and other feeds

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011074406A (en) * 2009-09-29 2011-04-14 Jx Nippon Mining & Metals Corp Method for recovering valuables from noble metal-containing metal sulfide
JP2015183292A (en) * 2014-03-26 2015-10-22 三菱マテリアル株式会社 Recovery method of cobalt and nickel
JP2016186118A (en) * 2015-03-27 2016-10-27 Jx金属株式会社 Recovery method of metals from recycled raw material of lithium-ion battery
JP2017036489A (en) * 2015-08-13 2017-02-16 Jx金属株式会社 Method for processing lithium ion battery
JP2017036490A (en) * 2015-08-13 2017-02-16 Jx金属株式会社 Method for processing lithium ion battery
JP2020522622A (en) * 2017-06-08 2020-07-30 アーバン マイニング プロプライエタリー リミテッド A process for recovering cobalt, lithium, and other metals from used lithium-based batteries and other feeds
JP2019077912A (en) * 2017-10-23 2019-05-23 住友金属鉱山株式会社 Separation method for copper, nickel and cobalt
JP2019081915A (en) * 2017-10-27 2019-05-30 住友金属鉱山株式会社 Method of separating copper from nickel and cobalt
JP2019108586A (en) * 2017-12-18 2019-07-04 住友金属鉱山株式会社 Method for separating copper, nickel and cobalt

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117504426A (en) * 2024-01-04 2024-02-06 新乡华锐锂电新能源股份有限公司 Electrolyte filtering device

Also Published As

Publication number Publication date
JP7121885B2 (en) 2022-08-19

Similar Documents

Publication Publication Date Title
WO2022050248A1 (en) Method for separating cobalt and nickel
Mishra et al. A review on recycling of lithium-ion batteries to recover critical metals
US20210079495A1 (en) Process for the recovery of cobalt, lithium, and other metals from spent lithium-based batteries and other feeds
AU2020257554B2 (en) Process for the preparation of precursor compounds for lithium battery cathodes
JP7040196B2 (en) How to separate cobalt and aluminum
WO2018227237A1 (en) Method for the production of cobalt and associated oxides from various feed materials
KR20220049041A (en) Manganese recovery method and recovery equipment from waste batteries
KR20220053009A (en) Manganese recovery method and recovery equipment from waste batteries
CN113957264A (en) Method for preparing nickel sulfate from low grade nickel matte
KR102324910B1 (en) Manufacturing method of precursor raw material from disposed cathode material of lithium secondary battery
JP7052635B2 (en) Separation method of copper, nickel and cobalt
JP7121885B2 (en) Cobalt and nickel separation method
JP7341830B2 (en) Manganese leaching method and metal recovery method from lithium ion secondary batteries
JP7487850B2 (en) Method for separating cobalt and nickel
JP2023150686A (en) Method for leaching electrode material, separation method for cobalt and nickel
JP2023150694A (en) Separation method for cobalt and nickel
JP2023150668A (en) Method for leaching electrode material, separation method for cobalt and nickel
JP7107473B1 (en) Method and equipment for recovering manganese from waste dry batteries
WO2022185974A1 (en) Method and facility for recovering manganese from waste dry battery
JP7423104B1 (en) Method for recovering metals from lithium ion batteries
WO2023191030A1 (en) Electrode material leaching method and method for separating cobalt and nickel
JP2023150907A (en) Leaching method, separation method for cobalt and nickel
WO2024068615A1 (en) Process for recycling aluminum hydroxide from a black mass
TW202411165A (en) Oxidative and reductive leaching methods
CN115537551A (en) Method for preferentially extracting lithium and manganese from waste lithium battery positive electrode material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220420

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220704

R150 Certificate of patent or registration of utility model

Ref document number: 7121885

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150