JP2022042732A - Concave resin fine particle production method - Google Patents

Concave resin fine particle production method Download PDF

Info

Publication number
JP2022042732A
JP2022042732A JP2020148293A JP2020148293A JP2022042732A JP 2022042732 A JP2022042732 A JP 2022042732A JP 2020148293 A JP2020148293 A JP 2020148293A JP 2020148293 A JP2020148293 A JP 2020148293A JP 2022042732 A JP2022042732 A JP 2022042732A
Authority
JP
Japan
Prior art keywords
resin fine
fine particles
water
group
polymerizable monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020148293A
Other languages
Japanese (ja)
Other versions
JP7518369B2 (en
Inventor
宏樹 石倉
Hiroki Ishikura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Kasei Co Ltd
Original Assignee
Fujikura Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Kasei Co Ltd filed Critical Fujikura Kasei Co Ltd
Priority to JP2020148293A priority Critical patent/JP7518369B2/en
Priority claimed from JP2020148293A external-priority patent/JP7518369B2/en
Publication of JP2022042732A publication Critical patent/JP2022042732A/en
Application granted granted Critical
Publication of JP7518369B2 publication Critical patent/JP7518369B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Polymerisation Methods In General (AREA)

Abstract

To provide a concave resin fine particle production method.SOLUTION: There is provided a concave resin fine particle production method for obtaining concave resin fine particles using a surface active agent represented by at least formula (1) as a dispersion agent and a water-soluble initiator, in polymerization of resin fine particles of dispersing a polymerizable monomer having a polymerizable unsaturated hydrocarbon group into a dispersion medium mainly containing water, suspending the monomer, and polymerizing the monomer, in which a used amount of the water-soluble initiator is less than 3.0 pts.mass with respect to 100 pts.mass of a used amount of the polymerizable monomer. Formula (1): T1O-(RO)n(EO)m-T2.SELECTED DRAWING: None

Description

本発明は、凹形状樹脂微粒子の製造方法に関する。 The present invention relates to a method for producing concave resin fine particles.

異形粒子はその独特の形状から光拡散性に優れ、光拡散シートや導光板等への応用が期待されている(特許文献1)。異形粒子としては様々な形状の粒子が知られているが、例えば、凹凸を有する粒子はその形状から高い吸水量、吸油量を有し、化粧品等に用いられるのに好適とされる(特許文献2、特許文献3)。 The irregularly shaped particles have excellent light diffusivity due to their unique shape, and are expected to be applied to light diffusing sheets, light guide plates, and the like (Patent Document 1). Particles having various shapes are known as irregularly shaped particles. For example, particles having irregularities have high water absorption and oil absorption due to their shapes, and are suitable for use in cosmetics and the like (Patent Documents). 2. Patent Document 3).

特許第3827617号公報Japanese Patent No. 3287617 特許第3229011号公報Japanese Patent No. 3229011 特許第3574673号公報Japanese Patent No. 3574673

異形粒子は特異的な形状から、一般的な真球状の粒子に比べ機能面で優れることも多いが、その製造過程で多量の不純物を含むことが多く、その場合、重合により粒子を得た後、不純物を除去する工程を必要とする。特許文献1~3の異形微粒子の製造方法についても、製造過程で重合反応に関与しない疎水性物質を多量に添加する必要があり、それら疎水性物質を除去するためには製造工程が煩雑となる。またそれら疎水性物質を除去する工程を設けないと、粒子に残存した疎水性物質が不純物となり、不具合の原因となり得る。 Due to its unique shape, irregularly shaped particles are often superior to general spherical particles in terms of function, but they often contain a large amount of impurities during the manufacturing process. In that case, after the particles are obtained by polymerization. , Requires a step of removing impurities. Also in the methods for producing deformed fine particles of Patent Documents 1 to 3, it is necessary to add a large amount of hydrophobic substances that are not involved in the polymerization reaction in the production process, and the production process becomes complicated in order to remove these hydrophobic substances. .. Further, if the step of removing these hydrophobic substances is not provided, the hydrophobic substances remaining in the particles become impurities, which may cause a defect.

本発明者は、簡素な方法で異形粒子を得るべく検討を重ねたところ、特定の構造を有する界面活性剤と水溶性開始剤を樹脂微粒子の重合に用いることで、重合に関与しない疎水性物質、例えばn-ヘキサン、n-ヘプタン、流動パラフィンといった液状飽和炭化水素やシリコーンオイル等を添加することなく凹形状の樹脂微粒子を得られることを見出した。 The present inventor has repeatedly studied to obtain deformed particles by a simple method, and found that a hydrophobic substance that does not participate in the polymerization by using a surfactant having a specific structure and a water-soluble initiator for the polymerization of the resin fine particles. It has been found that concave resin fine particles can be obtained without adding liquid saturated hydrocarbons such as n-hexane, n-heptane, and liquid paraffin, and silicone oil.

本発明は、簡素な方法で凹形状樹脂微粒子の製造方法を提供することを目的とする。 An object of the present invention is to provide a method for producing concave resin fine particles by a simple method.

[1] 重合性不飽和炭化水素基を有する重合性単量体を、水を主体とした分散媒に分散させ、懸濁化し、重合させる樹脂微粒子の重合において、少なくとも式(1)で表される界面活性剤を分散剤として用い、かつ、水溶性開始剤を用いることで、凹形状樹脂微粒子を得る、凹形状樹脂微粒子の製造方法であって、
前記水溶性開始剤の使用量が、前記重合性単量体の使用量の100質量部に対して、3.0質量部未満であることを特徴とする、凹形状樹脂微粒子の製造方法。
O-(RO)(EO)-T ・・・(1)
式(1)中、Tは水素原子、炭素数1~18のアルキル基又は炭素数2~18のアルケニル基であり、Tは水素原子、スルホン酸基、スルホン酸塩基、カルボン酸基、カルボン酸塩基、リン酸基、リン酸塩基、アミノ基又はアンモニウム基であり、ROは炭素数3~18のオキシアルキレン基であり、nは1~50の整数であり、EOはオキシエチレン基であり、mは0~200の整数である。
[2] 前記水溶性開始剤が無機過酸化物である、[1]に記載の凹形状樹脂微粒子の製造方法。
[3] 前記無機過酸化物が、ペルオキソ二硫酸カリウム、ペルオキソ二硫酸アンモニウム、ペルオキソ二硫酸ナトリウム及び過酸化水素からなる群から選択される少なくとも1種である、[2]に記載の凹形状樹脂微粒子の製造方法。
[4] 前記式(1)において前記Tが炭素数1~18のアルケニル基である、[1]~[3]のいずれかに記載の凹形状樹脂微粒子の製造方法。
[5] 前記凹形状樹脂微粒子の平均粒子径が0.5~500μmである、[1]~[4]のいずれかに記載の凹形状樹脂微粒子の製造方法。
[6] 前記重合性単量体と前記界面活性剤とを分散させた第1分散液に、前記水溶性開始剤を含む水溶液を添加し、連続相を前記重合性単量体とし、かつ、分散相を水とした第2分散液を調製する、[1]~[5]のいずれかに記載の凹形状樹脂微粒子の製造方法。
[7] 前記第2分散液と、第2の界面活性剤を含む水溶液とを混合し、連続相を水とし、かつ、分散相を前記重合性単量体とした第3分散液を得る、[6]に記載の凹形状樹脂微粒子の製造方法。
[1] In the polymerization of resin fine particles in which a polymerizable monomer having a polymerizable unsaturated hydrocarbon group is dispersed, suspended and polymerized in a dispersion medium mainly composed of water, it is represented by at least the formula (1). A method for producing concave resin fine particles, which obtains concave resin fine particles by using a surfactant as a dispersant and a water-soluble initiator.
A method for producing concave resin fine particles, wherein the amount of the water-soluble initiator used is less than 3.0 parts by mass with respect to 100 parts by mass of the amount of the polymerizable monomer used.
T 1 O- (RO) n (EO) m -T 2 ... (1)
In formula (1), T 1 is a hydrogen atom, an alkyl group having 1 to 18 carbon atoms or an alkenyl group having 2 to 18 carbon atoms, and T 2 is a hydrogen atom, a sulfonic acid group, a sulfonic acid base, a carboxylic acid group, and the like. It is a carboxylic acid base, a phosphate group, a phosphate base, an amino group or an ammonium group, RO is an oxyalkylene group having 3 to 18 carbon atoms, n is an integer of 1 to 50, and EO is an oxyethylene group. Yes, m is an integer from 0 to 200.
[2] The method for producing concave resin fine particles according to [1], wherein the water-soluble initiator is an inorganic peroxide.
[3] The concave resin fine particles according to [2], wherein the inorganic peroxide is at least one selected from the group consisting of potassium peroxodisulfate, ammonium peroxodisulfate, sodium peroxodisulfate and hydrogen peroxide. Manufacturing method.
[4] The method for producing concave resin fine particles according to any one of [1] to [3], wherein T 1 is an alkenyl group having 1 to 18 carbon atoms in the formula (1).
[5] The method for producing concave resin fine particles according to any one of [1] to [4], wherein the concave resin fine particles have an average particle diameter of 0.5 to 500 μm.
[6] An aqueous solution containing the water-soluble initiator is added to the first dispersion liquid in which the polymerizable monomer and the surfactant are dispersed, and the continuous phase is made into the polymerizable monomer. The method for producing concave resin fine particles according to any one of [1] to [5], wherein a second dispersion liquid using the dispersed phase as water is prepared.
[7] The second dispersion liquid and the aqueous solution containing the second surfactant are mixed to obtain a third dispersion liquid in which the continuous phase is water and the dispersed phase is the polymerizable monomer. The method for producing concave resin fine particles according to [6].

本発明によれば、凹形状樹脂微粒子の簡素な製造方法を提供できる。 According to the present invention, it is possible to provide a simple method for producing concave resin fine particles.

本発明実施形態に係る凹形状樹脂微粒子の製造方法の工程1を模式的に説明するための図である。It is a figure for schematically explaining the process 1 of the manufacturing method of the concave resin fine particle which concerns on embodiment of this invention. 本発明実施形態に係る凹形状樹脂微粒子の製造方法の工程1を模式的に説明するための図である。It is a figure for schematically explaining the process 1 of the manufacturing method of the concave resin fine particle which concerns on embodiment of this invention. 本発明実施形態に係る凹形状樹脂微粒子の製造方法の工程1を模式的に説明するための図である。It is a figure for schematically explaining the process 1 of the manufacturing method of the concave resin fine particle which concerns on embodiment of this invention. 本発明実施形態に係る凹形状樹脂微粒子の製造方法の工程2を模式的に説明するための図である。It is a figure for schematically explaining the process 2 of the manufacturing method of the concave resin fine particle which concerns on embodiment of this invention. 本発明実施形態に係る凹形状樹脂微粒子の製造方法の工程2を模式的に説明するための図である。It is a figure for schematically explaining the process 2 of the manufacturing method of the concave resin fine particle which concerns on embodiment of this invention. 本発明実施形態に係る凹形状樹脂微粒子の製造方法の工程3を模式的に説明するための図である。It is a figure for schematically explaining the process 3 of the manufacturing method of the concave resin fine particle which concerns on embodiment of this invention. 実施例1の凹形状樹脂微粒子の走査型電子顕微鏡写真である。It is a scanning electron micrograph of the concave resin fine particles of Example 1. FIG. 実施例4の凹形状樹脂微粒子の走査型電子顕微鏡写真である。It is a scanning electron micrograph of the concave resin fine particles of Example 4. FIG. 実施例5の凹形状樹脂微粒子の走査型電子顕微鏡写真である。It is a scanning electron micrograph of the concave resin fine particles of Example 5. FIG. 比較例1の樹脂微粒子の走査型電子顕微鏡写真である。It is a scanning electron micrograph of the resin fine particles of Comparative Example 1. 比較例2の樹脂微粒子の走査型電子顕微鏡写真である。It is a scanning electron micrograph of the resin fine particles of Comparative Example 2.

以下では、本発明を実施するための形態を説明するが、本発明は後述する実施形態に限定されるものではなく、本発明の要旨を変更しない限り、種々の変形が可能である。
本発明において、「~」を用いて表される数値範囲には「~」の両側の数値を含む。
本発明において、「(メタ)アクリル」は「アクリル」及び「メタクリル」の総称である。同様に、「(メタ)アクリル基」は「アクリル基」及び「メタクリル基」の総称であり、「(メタ)アクリル酸」はアクリル酸及びメタクリル酸の総称であり、「(メタ)アクリレート」はアクリレート及びメタクリレートの総称である。
本発明において、「重合開始剤」を「開始剤」と記載することがある。
Hereinafter, embodiments for carrying out the present invention will be described, but the present invention is not limited to the embodiments described later, and various modifications are possible as long as the gist of the present invention is not changed.
In the present invention, the numerical range represented by using "-" includes the numerical values on both sides of "-".
In the present invention, "(meth) acrylic" is a general term for "acrylic" and "methacrylic". Similarly, "(meth) acrylic group" is a general term for "acrylic group" and "methacrylic acid group", "(meth) acrylic acid" is a general term for acrylic acid and methacrylic acid, and "(meth) acrylate" is a general term. It is a general term for acrylate and methacrylate.
In the present invention, the "polymerization initiator" may be referred to as "initiator".

[凹形状樹脂微粒子の製造方法]
本発明の一実施形態に係る凹形状樹脂微粒子の製造方法は、重合性不飽和炭化水素基を有する重合性単量体を、水を主体とした分散媒に分散させ、懸濁化し、重合させる樹脂微粒子の重合において、少なくとも式(1)で表される界面活性剤を分散剤として用い、かつ、水溶性開始剤を用いることで、凹形状樹脂微粒子を得る。
O-(RO)(EO)-T ・・・(1)
式(1)中:
は、水素原子、炭素数1~18のアルキル基又は炭素数2~18のアルケニル基である。
は、水素原子、スルホン酸基、スルホン酸塩基、カルボン酸基、カルボン酸塩基、リン酸基、リン酸塩基、アミノ基又はアンモニウム基である。
ROは炭素数3~18のオキシアルキレン基である。
EOはオキシエチレン基である。
mは0~200の整数である。
nは1~50の整数である。
[Manufacturing method of concave resin fine particles]
In the method for producing concave resin fine particles according to an embodiment of the present invention, a polymerizable monomer having a polymerizable unsaturated hydrocarbon group is dispersed in a dispersion medium mainly composed of water, suspended and polymerized. In the polymerization of the resin fine particles, at least the surfactant represented by the formula (1) is used as the dispersant, and the water-soluble initiator is used to obtain concave resin fine particles.
T 1 O- (RO) n (EO) m -T 2 ... (1)
In equation (1):
T 1 is a hydrogen atom, an alkyl group having 1 to 18 carbon atoms or an alkenyl group having 2 to 18 carbon atoms.
T 2 is a hydrogen atom, a sulfonic acid group, a sulfonic acid base, a carboxylic acid group, a carboxylic acid base, a phosphoric acid group, a phosphoric acid base, an amino group or an ammonium group.
RO is an oxyalkylene group having 3 to 18 carbon atoms.
EO is an oxyethylene group.
m is an integer from 0 to 200.
n is an integer from 1 to 50.

本実施形態に係る凹形状樹脂微粒子の製造方法によれば、粒子表面が平滑であり、粒子の一部が開口して粒子内部に中空構造を有する凹形状を有する樹脂微粒子が得られる。
なお、本実施形態において、「凹形状樹脂微粒子」とは、粒子の一部が開口して粒子内部に中空構造を有する凹形状を有する樹脂微粒子を含むと定義される。
According to the method for producing concave resin fine particles according to the present embodiment, resin fine particles having a concave shape with a smooth surface and a hollow structure inside the particles can be obtained by opening a part of the particles.
In the present embodiment, the "concave resin fine particles" are defined to include resin fine particles having a concave shape in which a part of the particles is opened and the inside of the particles has a hollow structure.

「水を主体とした分散媒」とは、本発明の目的及び効果を阻害しない範囲においては、特に限定されないが、分散媒中の水は、通常、50質量%以上であり、70質量%以上が好ましく、90質量%以上がより好ましい。 The "water-based dispersion medium" is not particularly limited as long as it does not impair the object and effect of the present invention, but the water in the dispersion medium is usually 50% by mass or more, and 70% by mass or more. Is preferable, and 90% by mass or more is more preferable.

以下に、本実施形態に係る凹形状樹脂微粒子の製造方法に用いる構成成分と、製造方法と、得られる凹形状樹脂微粒子について、詳細に説明する。 Hereinafter, the constituent components used in the method for producing the concave resin fine particles according to the present embodiment, the production method, and the obtained concave resin fine particles will be described in detail.

[構成成分]
〈界面活性剤A〉
O-(RO)(EO)-T ・・・(1)
式(1)中:
は、水素原子、炭素数1~18のアルキル基又は炭素数2~18のアルケニル基である。
は、水素原子、スルホン酸基、スルホン酸塩基、カルボン酸基、カルボン酸塩基、リン酸基、リン酸塩基、アミノ基又はアンモニウム基である。
ROは、炭素数3~18のオキシアルキレン基である。
EOは、オキシエチレン基である。
mは、0~200の整数である。
nは、1~50の整数である。
[Structural component]
<Surfactant A>
T 1 O- (RO) n (EO) m -T 2 ... (1)
In equation (1):
T 1 is a hydrogen atom, an alkyl group having 1 to 18 carbon atoms or an alkenyl group having 2 to 18 carbon atoms.
T 2 is a hydrogen atom, a sulfonic acid group, a sulfonic acid base, a carboxylic acid group, a carboxylic acid base, a phosphoric acid group, a phosphoric acid base, an amino group or an ammonium group.
RO is an oxyalkylene group having 3 to 18 carbon atoms.
EO is an oxyethylene group.
m is an integer from 0 to 200.
n is an integer from 1 to 50.

式(1)で表される界面活性剤Aは、市販品のアニオン界面活性剤としては、例えば、アクアロンKHシリーズ及びハイテノーXJ-630S(いずれも第一工業製薬社製)、並びにラムテルPD-104及びラムテルPD-105(いずれも花王社製)が挙げられる。
また、市販品のノニオン界面活性剤としては、例えば、ノイゲンXLシリーズ(第一工業製薬社製)、ラムテルPD-420、ラムテルPD-430、ラムテルPD-450、エマルゲンLSシリーズ、エマルゲンMSシリーズ及びエマルゲンPPシリーズ(いずれも花王社製)、並びにファインサーフNDBシリーズ、IDEPシリーズ、ワンダーサーフNDRシリーズ、IDシリーズ及びSシリーズ(いずれも青木油脂工業社製)が挙げられる。
The surfactant A represented by the formula (1) is a commercially available anionic surfactant, for example, Aqualon KH series, Hitenor XJ-630S (both manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.), and Ramtel PD-104. And Ramtel PD-105 (both manufactured by Kao Corporation).
Examples of commercially available nonionic surfactants include Neugen XL series (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.), Ramtel PD-420, Ramtel PD-430, Ramtel PD-450, Emargen LS series, Emargen MS series and Emargen. Examples include the PP series (all manufactured by Kao Corporation), and the Fine Surf NDB series, IDEP series, Wondersurf NDR series, ID series and S series (all manufactured by Aoki Oil & Fat Industry Co., Ltd.).

本実施形態における界面活性剤の使用量は、特に限定されないが、後述する重合性単量体100質量部に対して、0.05~5.0質量部が好ましい。
界面活性剤Aの使用量が上記範囲内であると、安定的に凹形状樹脂微粒子が得られやすい。
また、界面活性剤Aの使用量が上記範囲内であると、凹形状樹脂微粒子の中空構造が完全なものとなりやすく、粒子を構成する樹脂の特性を損ないにくい。
また、得られる凹形状樹脂微粒子中に界面活性剤が残存した場合に、ブリードを抑制できるという点で、Tは、炭素数2~18のアルケニル基が好ましい。
The amount of the surfactant used in the present embodiment is not particularly limited, but is preferably 0.05 to 5.0 parts by mass with respect to 100 parts by mass of the polymerizable monomer described later.
When the amount of the surfactant A used is within the above range, it is easy to stably obtain concave resin fine particles.
Further, when the amount of the surfactant A used is within the above range, the hollow structure of the concave resin fine particles tends to be perfect, and the characteristics of the resin constituting the particles are not easily impaired.
Further, T 1 is preferably an alkenyl group having 2 to 18 carbon atoms in that bleeding can be suppressed when the surfactant remains in the obtained concave resin fine particles.

なお、本明細書において、界面活性剤Aを「式(1)で表される界面活性剤(第1の界面活性剤)」という場合もあり、「第2の界面活性剤」という場合もある。
界面活性剤Aを「第1の界面活性剤」、「第2の界面活性剤」と示すことがあるのは、以下に詳述する製造工程において、複数回界面活性剤Aを別途用いて樹脂微粒子を調製する場合があるためである。
すなわち、樹脂微粒子の調製において、例えば、2回の工程に分けて、界面活性剤Aを添加する際に、2回の工程で界面活性剤Aを区別して示す場合に、理解を容易にするために、「第1の界面活性剤」、「第2の界面活性剤」と称するときがある。
なお、「第2の界面活性剤」としては、本発明の効果を阻害しない範囲で、上述の界面活性剤Aとは異なる界面活性剤を用いてもよい。
なお、「第2の界面活性剤」に代えて、本発明の効果を阻害しない範囲で、後述する「任意の分散剤」を用いてもよい。
「第2の界面活性剤」及び「任意の分散剤」は、任意の1種類を単独で用いてもよく、任意の2種類以上を組み合わせて用いてもよい。
なお、樹脂微粒子の調製において、例えば、2回の工程に分けて、界面活性剤Aを添加する際にも、界面活性剤Aの使用量の合計は、後述する重合性単量体A100質量部に対して、0.05~5.0質量部であることが好ましい。
In the present specification, the surfactant A may be referred to as a "surfactant represented by the formula (1) (first surfactant)" or a "second surfactant". ..
Surfactant A may be referred to as "first surfactant" or "second surfactant" because the resin is separately used multiple times in the manufacturing process described in detail below. This is because fine particles may be prepared.
That is, in order to facilitate understanding in the preparation of the resin fine particles, for example, when the surfactant A is added in two steps and the surfactant A is distinguished in the two steps. In addition, it may be referred to as a "first surfactant" or a "second surfactant".
As the "second surfactant", a surfactant different from the above-mentioned surfactant A may be used as long as the effect of the present invention is not impaired.
In addition, instead of the "second surfactant", an "arbitrary dispersant" described later may be used as long as the effect of the present invention is not impaired.
As the "second surfactant" and "arbitrary dispersant", any one type may be used alone, or any two or more types may be used in combination.
In the preparation of the resin fine particles, for example, even when the surfactant A is added in two steps, the total amount of the surfactant A used is 100 parts by mass of the polymerizable monomer A described later. On the other hand, it is preferably 0.05 to 5.0 parts by mass.

〈重合性単量体〉
重合性単量体は、重合性不飽和炭化水素基を有する重合性単量体であり、例えば、(メタ)アクリル単量体及び芳香族ビニルモノマーが挙げられる。
なお、本明細書において、「重合性不飽和炭化水素基を有する重合性単量体」を、単に「重合性単量体」と呼ぶ場合がある。
<Polymerizable monomer>
The polymerizable monomer is a polymerizable monomer having a polymerizable unsaturated hydrocarbon group, and examples thereof include a (meth) acrylic monomer and an aromatic vinyl monomer.
In the present specification, the "polymerizable monomer having a polymerizable unsaturated hydrocarbon group" may be simply referred to as a "polymerizable monomer".

(メタ)アクリル単量体は、例えば、単官能(メタ)アクリレート及び二官能以上の重合性官能基を有する多官能(メタ)アクリレートが挙げられる。 Examples of the (meth) acrylic monomer include monofunctional (meth) acrylates and polyfunctional (meth) acrylates having bifunctional or higher polymerizable functional groups.

前記単官能(メタ)アクリレートとしては、具体的には、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸へプチル、(メタ)アクリル酸オクチル等の(メタ)アクリル酸アルキルエステル;(メタ)アクリル酸2-メトキシエチル、(メタ)アクリル酸2-エトキシエチル、(メタ)アクリル酸2-(n-プロポキシ)エチル、(メタ)アクリル酸2-(n-ブトキシ)エチル、(メタ)アクリル酸3-メトキシプロピル、(メタ)アクリル酸3-エトキシプロピル、(メタ)アクリル酸2-(n-プロポキシ)プロピル、(メタ)アクリル酸2-(n-ブトキシ)プロピル等の(メタ)アクリル酸アルコキシアルキルエステル;(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸イソボルニル等の脂環構造を有する(メタ)アクリル酸エステルなどが挙げられる。これらは、1種単独で用いてもよく、2種以上を併用してもよい。 Specific examples of the monofunctional (meth) acrylate include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, and pentyl (meth) acrylate. (Meta) Acrylic Acid Alkyl Esters such as (Meta) Acrylic Acid Hexil, (Meta) Acrylic Acid Heptyl, (Meta) Acrylic Acid Octyl; (Meta) Acrylic Acid 2-methoxyethyl, (Meta) Acrylic Acid 2-ethoxyethyl , (Meta) 2- (n-propoxy) ethyl acrylate, (meth) acrylate 2- (n-butoxy) ethyl, (meth) acrylate 3-methoxypropyl, (meth) acrylate 3-ethoxypropyl, ( (Meta) Acrylic Acid alkoxyalkyl esters such as 2- (n-propoxy) propyl (meth) acrylate, 2- (n-butoxy) propyl (meth) acrylate; cyclohexyl (meth) acrylate, di (meth) acrylate. Examples thereof include (meth) acrylic acid esters having an alicyclic structure such as cyclopentanyl and isobornyl (meth) acrylic acid. These may be used alone or in combination of two or more.

前記多官能(メタ)アクリレートとしては、エチレンオキシド(EO)が1~9の(ポリ)エチレングリコールジ(メタ)アクリレート、炭素数4~9のアルキレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレートなどの(メタ)アクリル基を少なくとも2つ以上有する(メタ)アクリル酸エステルなどが挙げられる。これらは、1種単独で用いてもよく、2種以上を併用してもよい。 Examples of the polyfunctional (meth) acrylate include (poly) ethylene glycol di (meth) acrylate having 1 to 9 ethylene oxide (EO), alkylene glycol di (meth) acrylate having 4 to 9 carbon atoms, and trimethylolpropane tri (meth). ) Examples thereof include (meth) acrylic acid esters having at least two (meth) acrylic groups such as acrylate. These may be used alone or in combination of two or more.

前記芳香族ビニルモノマーとしては、例えば、スチレン系モノマー、ジビニルベンゼンが挙げられ、スチレン系モノマーが好ましい。
前記スチレン系モノマーとしては、例えば、スチレン、α-メチルスチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、o-クロロスチレン、m-クロロスチレン、p-クロロスチレンなどが挙げられる。これらは、1種単独で用いてもよく、2種以上を併用してもよい。
Examples of the aromatic vinyl monomer include styrene-based monomers and divinylbenzene, and styrene-based monomers are preferable.
Examples of the styrene-based monomer include styrene, α-methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, o-chlorostyrene, m-chlorostyrene, p-chlorostyrene and the like. These may be used alone or in combination of two or more.

本実施形態に係る重合性単量体においては、上記(メタ)アクリル単量体において、上記単官能(メタ)アクリレートと、上記多官能(メタ)アクリレートと、を組み合わせて用いてもよく、(メタ)アクリル単量体と、芳香族ビニルモノマーと、を組み合わせて用いてもよい。
本実施形態に係る中空樹脂微粒子を製造する際の重合性単量体における、上記単官能(メタ)アクリレート、上記多官能(メタ)アクリレート及び芳香族ビニルモノマーの比率は特に限定されないが、例えば、単官能(メタ)アクリレートが20~95質量部であってもよく、多官能(メタ)アクリレートが1~30質量部であってもよく、芳香族ビニルモノマーが10~50質量部であってもよい。
他のモノマーとしては、本発明の効果を阻害せずに、アクリルモノマーと共重合可能であれば特に制限されないが、例えば、酢酸ビニル、プロピオン酸ビニル、塩化ビニル、アクリロニトリルなどを用いてよい。
また、必要に応じて連鎖移動剤等の添加剤を用いてもよい。
In the polymerizable monomer according to the present embodiment, the monofunctional (meth) acrylate and the polyfunctional (meth) acrylate may be used in combination in the (meth) acrylic monomer (meth). Meta) Acrylic monomer and aromatic vinyl monomer may be used in combination.
The ratio of the monofunctional (meth) acrylate, the polyfunctional (meth) acrylate and the aromatic vinyl monomer in the polymerizable monomer for producing the hollow resin fine particles according to the present embodiment is not particularly limited, but for example. The monofunctional (meth) acrylate may be 20 to 95 parts by mass, the polyfunctional (meth) acrylate may be 1 to 30 parts by mass, or the aromatic vinyl monomer may be 10 to 50 parts by mass. good.
The other monomer is not particularly limited as long as it can be copolymerized with the acrylic monomer without impairing the effect of the present invention, and for example, vinyl acetate, vinyl propionate, vinyl chloride, acrylonitrile and the like may be used.
Further, an additive such as a chain transfer agent may be used if necessary.

〈油溶性開始剤〉
油溶性開始剤は、例えば、過酸化ベンゾイル及び過酸化ラウロイル等の過酸化物系開始剤、並びに2,2’-アゾビス(2-メチルブチロニトリル)及び2,2’-アゾビス(イソブチロニトリル)等の油溶性アゾ系開始剤である。
<Oil-soluble initiator>
Oil-soluble initiators include, for example, peroxide-based initiators such as benzoyl peroxide and lauroyl peroxide, and 2,2'-azobis (2-methylbutyronitrile) and 2,2'-azobis (isobutyro). It is an oil-soluble azo-based initiator such as nitrile).

前記油溶性開始剤の使用量は、前記重合性単量体100質量部に対して、0.05~3.0質量部が好ましく、0.1~2.0質量部がより好ましく、0.2~1.5質量部がさらに好ましい。
前記油溶性開始剤の使用量が0.05質量部以上であれば、前記重合性単量体の未反応のモノマーの割合をより減らすことができる。
一方、前記油溶性開始剤の使用量が3.0質量部以下であれば、前記油溶性開始剤が分解した分解物が不純物として残ることをより抑制できる。
The amount of the oil-soluble initiator used is preferably 0.05 to 3.0 parts by mass, more preferably 0.1 to 2.0 parts by mass, and 0. 2 to 1.5 parts by mass is more preferable.
When the amount of the oil-soluble initiator used is 0.05 parts by mass or more, the proportion of the unreacted monomer of the polymerizable monomer can be further reduced.
On the other hand, when the amount of the oil-soluble initiator used is 3.0 parts by mass or less, it is possible to further suppress the decomposition product of the oil-soluble initiator from remaining as an impurity.

〈水溶性開始剤〉
水溶性開始剤は、例えば、ペルオキソ二硫酸カリウム(過硫酸カリウム)、ペルオキソ二硫酸アンモニウム、ペルオキソ二硫酸ナトリウム及び過酸化水素水等の無機過酸化物である。
前記水溶性開始剤は、1種単独で用いてもよく、2種以上を併用してもよい。
前記水溶性開始剤としては、ペルオキソ二硫酸カリウム(過硫酸カリウム)、ペルオキソ二硫酸アンモニウム、ペルオキソ二硫酸ナトリウム及び過酸化水素水からなる群から選択されス少なくとも1種が好ましく、ペルオキソ二硫酸カリウムがより好ましい。
<Water-soluble initiator>
The water-soluble initiator is, for example, an inorganic peroxide such as potassium peroxodisulfate (potassium persulfate), ammonium peroxodisulfate, sodium peroxodisulfate, and hydrogen peroxide solution.
The water-soluble initiator may be used alone or in combination of two or more.
As the water-soluble initiator, at least one selected from the group consisting of potassium peroxodisulfate (potassium persulfate), ammonium peroxodisulfate, sodium peroxodisulfate and hydrogen peroxide solution is preferable, and potassium peroxodisulfate is more preferable. preferable.

前記水溶性開始剤の使用量は、前記重合性単量体100質量部に対して、0.05~3.0質量部が好ましく、0.1~2.0質量部がより好ましく、0.2~1.0質量部がさらに好ましい。
前記水溶性開始剤の使用量が、前記重合性単量体100質量部に対して、0.05質量部以上であれば、凹形状の粒子を得ることができる。
一方、前記水溶性開始剤の使用量が、前記重合性単量体の100質量部に対して、3.0質量部以下であれば、粒子の形状を維持することができる。
The amount of the water-soluble initiator used is preferably 0.05 to 3.0 parts by mass, more preferably 0.1 to 2.0 parts by mass, and 0. 2 to 1.0 parts by mass is more preferable.
When the amount of the water-soluble initiator used is 0.05 parts by mass or more with respect to 100 parts by mass of the polymerizable monomer, concave particles can be obtained.
On the other hand, if the amount of the water-soluble initiator used is 3.0 parts by mass or less with respect to 100 parts by mass of the polymerizable monomer, the shape of the particles can be maintained.

〈任意の界面活性剤〉
本発明の効果を阻害しない範囲で、界面活性剤A以外の界面活性剤として、以下に示す任意の界面活性剤(界面活性剤Aとは異なる界面活性剤)を用いてもよい。
換言すれば、本発明の効果を阻害しない範囲で、上記界面活性剤Aに加えて、適宜界面活性剤を加えてもよい。
<Any surfactant>
As a surfactant other than the surfactant A, any of the following surfactants (surfactant different from the surfactant A) may be used as long as the effect of the present invention is not impaired.
In other words, a surfactant may be added as appropriate in addition to the surfactant A as long as the effect of the present invention is not impaired.

前記任意の界面活性剤としては、例えば、アニオン界面活性剤又はカチオン界面活性剤が挙げられる。 Examples of the optional surfactant include anionic surfactants and cationic surfactants.

アニオン界面活性剤としては、具体的には、オレイン酸ナトリウム、ステアリン酸ナトリウム等の高級脂肪酸塩類;ドデシルベンゼンスルホン酸ナトリウム、ドデシルジフェニルエーテルスルホン酸ジナトリウム等のアルキル(もしくはアリール)スルホン酸塩類;ラウリル硫酸ナトリウム、オレイル硫酸ナトリウム等のアルキル(もしくはアルケニル)硫酸エステル類;ポリオキシエチレンラウリルエーテル硫酸ナトリウム、ポリオキシエチレンオレイルエーテル硫酸アンモニウム、ポリオキシエチレンスチレン化フェニルエーテル硫酸アンモニウム等のポリオキシエチレンアルキル(もしくはアルケニル)エーテル硫酸塩類;ポリオキシエチレンノニルフェニルエーテル硫酸ナトリウム等のポリオキシエチレンアルキルアリールエーテル硫酸エステル塩類;モノオクチルスルホコハク酸ナトリウム、ジ-2-エチルへキシルスルホコハク酸ナトリウム、ジオクチルスルホコハク酸ナトリウム、ポリオキシエチレンラウリルスルホコハク酸ナトリウム等のアルキルスルホコハク酸エステル塩、又はこれらの誘導体類などが挙げられる。これらアニオン界面活性剤は、1種単独で用いてもよく、2種以上を併用してもよい。 Specific examples of the anionic surfactant include higher fatty acid salts such as sodium oleate and sodium stearate; alkyl (or aryl) sulfonates such as sodium dodecylbenzenesulfonate and disodium dodecyldiphenyl ether sulfonate; lauryl sulfate. Alkyl (or alkenyl) sulfate esters such as sodium and sodium oleyl sulfate; polyoxyethylene alkyl (or alkenyl) ethers such as sodium polyoxyethylene lauryl ether sulfate, polyoxyethylene oleyl ether ammonium sulfate, and polyoxyethylene styrene phenyl ether ammonium sulfate. Sulfates; Polyoxyethylene alkylaryl ether sulfate esters such as polyoxyethylene nonylphenyl ether sodium sulfate; sodium monooctyl sulfosuccinate, sodium di-2-ethylhexyl sulfosuccinate, sodium dioctyl sulfosuccinate, polyoxyethylene lauryl sulfosuccinate Examples thereof include alkyl sulfosuccinate salts such as sodium acid and derivatives thereof. These anionic surfactants may be used alone or in combination of two or more.

カチオン界面活性剤としては、具体的には、ドデシルベンジルメチルアンモニウムクロライド等のアルキルベンジルメチルアンモニウム塩;ドデシルトリメチルアンモニウムクロライド、ステアリルトリメチルアンモニウムクロライド、セチルトリメチルアンモニウムクロライド等のアルキルトリメチルアンモニウム塩;ジデシルジメチルアンモニウムクロライド、ジステアリルジメチルンモニウムクロライド等のジアルキルジメチルアンモニウム塩;ドデシルベンジルジメチルアンモニウムクロライト等のアルキルベンジルジメチルアンモニウム塩;などの四級アンモニウム塩が挙げられる。これらカチオン界面活性剤は、1種単独で用いてもよく、2種以上を併用してもよい。 Specific examples of the cationic surfactant include alkylbenzylmethylammonium salts such as dodecylbenzylmethylammonium chloride; alkyltrimethylammonium salts such as dodecyltrimethylammonium chloride, stearyltrimethylammonium chloride, and cetyltrimethylammonium chloride; and didecyldimethylammonium. Examples thereof include quaternary ammonium salts such as dialkyldimethylammonium salts such as chloride and distealyldimethylmmonium chloride; alkylbenzyldimethylammonium salts such as dodecylbenzyldimethylammonium chloride; and the like. These cationic surfactants may be used alone or in combination of two or more.

前記任意の界面活性剤を使用する場合、その使用量は、重合性単量体100質量部に対して、0.05~5.0質量部が好ましく、0.05~3.0質量部がより好ましく、0.05~1.5質量部がさらに好ましい。
前記任意の分散剤の使用量が上記範囲内であると、安定的に凹形状の粒子を得ることができ、且つ、残存する不純物の量を少なくすることができる。
When the above-mentioned arbitrary surfactant is used, the amount used is preferably 0.05 to 5.0 parts by mass, preferably 0.05 to 3.0 parts by mass with respect to 100 parts by mass of the polymerizable monomer. More preferably, 0.05 to 1.5 parts by mass is further preferable.
When the amount of the arbitrary dispersant used is within the above range, concave particles can be stably obtained, and the amount of residual impurities can be reduced.

〈任意の分散剤〉
重合の安定性を向上させるため、本発明の効果を阻害しない範囲で、任意の分散剤を用いてもよい。任意の分散剤としては、例えば以下のものが挙げられる。
有機系分散剤としては、ポリビニルアルコール、セルロース、ポリビニルピロリドン等が挙げられる。
無機系分散剤としては、第三リン酸カルシウム、炭酸カルシウム等が挙げられる。
これらの分散剤は、1種単独で用いてもよく、2種以上を併用してもよい。
<Any dispersant>
In order to improve the stability of the polymerization, any dispersant may be used as long as the effect of the present invention is not impaired. Optional dispersants include, for example:
Examples of the organic dispersant include polyvinyl alcohol, cellulose, polyvinylpyrrolidone and the like.
Examples of the inorganic dispersant include tricalcium phosphate, calcium carbonate and the like.
These dispersants may be used alone or in combination of two or more.

前記任意の分散剤を使用する場合、その使用量は、重合性単量体100質量部に対して、0.05~5.0質量部が好ましく、0.05~3.0質量部がより好ましく、0.05~1.5質量部がさらに好ましい。
前記任意の分散剤の使用量が上記範囲内であると、重合時の安定性を維持しつつ、残存する不純物の量を少なくすることができる。
When the above-mentioned arbitrary dispersant is used, the amount used is preferably 0.05 to 5.0 parts by mass, more preferably 0.05 to 3.0 parts by mass with respect to 100 parts by mass of the polymerizable monomer. It is preferable, and more preferably 0.05 to 1.5 parts by mass.
When the amount of the arbitrary dispersant used is within the above range, the amount of residual impurities can be reduced while maintaining stability during polymerization.

〈分散媒〉
分散媒はイオン交換水等の公知の水を単独で用いてもよく、適宜、アルコール等の水と混和する公知の溶媒を併用してもよい。
なお、本実施形態における「水を主体とした分散媒」とは、本発明の目的及び効果を阻害しない範囲においては、水とアルコール等の水と混和する公知の溶媒を併用してよく、特に限定されないが、分散媒中の水が50%以上であってよく、70%以上であってよく、90%以上であってもよく、分散媒が水のみであってもよい。
なお、界面活性剤と同様に、本明細書において、分散媒、溶媒として用いる水を「第1の水」、「第2の水」と呼ぶことがある。
例えば、2回の工程に分けて、水を添加する際に、2回の工程で水を区別して示す場合に、理解を容易にするために、「第1の水」、「第2の水」のように呼ぶことがある。
<Dispersion medium>
As the dispersion medium, known water such as ion-exchanged water may be used alone, or a known solvent miscible with water such as alcohol may be used in combination as appropriate.
The "water-based dispersion medium" in the present embodiment may be used in combination with a known solvent that mixes water with water such as alcohol, as long as the object and effect of the present invention are not impaired. Although not limited, the water content in the dispersion medium may be 50% or more, 70% or more, 90% or more, and the dispersion medium may be only water.
As with the surfactant, in the present specification, water used as a dispersion medium and a solvent may be referred to as "first water" and "second water".
For example, when water is added in two steps, when water is distinguished in the two steps, "first water" and "second water" are used for easy understanding. It may be called like this.

〈凹形状樹脂微粒子の製造方法〉
本実施形態に係る懸濁重合方法の模式図、概略図を図1A~図1Fに示す。
詳細な工程は、以下の通りである。
<Manufacturing method of concave resin fine particles>
Schematic and schematic views of the suspension polymerization method according to this embodiment are shown in FIGS. 1A to 1F.
The detailed process is as follows.

(工程1)
油溶性開始剤を重合性単量体4と式(1)で表される界面活性剤A(第1の界面活性剤)の混合液(油溶性開始剤-重合性単量体4-界面活性剤A混合液、第1A混合液、第1分散液)1を調製し、油溶性開始剤-重合性単量体4-界面活性剤A混合液1をホモミキサー等の撹拌機100を用いて撹拌する(図1A)。
撹拌された油溶性開始剤-重合性単量体4-界面活性剤A混合液1中に、水溶性開始剤を溶解した水(第2A混合液)2を添加し、分散させて、連続相を重合性単量体4、分散相を水6とした分散液(W/O型(Water in Oil型)の分散液、第2分散液)11を調製する(図1B、図1C)。
前記水溶性開始剤の使用量は、重合性単量体4の使用量の100質量部に対して、通常、3.0質量部未満であり、0.01~2.0質量部が好ましく、0.01~1.0質量部がより好ましい。
すなわち、油溶性開始剤-重合性単量体-界面活性剤A混合液1中に第2A混合液2が分散した分散液11を得る。
(Step 1)
The oil-soluble initiator is a mixture of the polymerizable monomer 4 and the surfactant A (first surfactant) represented by the formula (1) (oil-soluble initiator-polymerizable monomer 4-surfactant). Agent A mixed solution, 1st A mixed solution, 1st dispersion solution) 1 is prepared, and the oil-soluble initiator-polymerizable monomer 4-surfactant A mixed solution 1 is mixed with a stirrer 100 such as a homomixer. Stir (FIG. 1A).
Water (2nd A mixed solution) in which the water-soluble initiator was dissolved was added to the stirred oil-soluble initiator-polymerizable monomer 4-surfactant A mixed solution 1 and dispersed to obtain a continuous phase. 11 is prepared as a dispersion liquid (W / O type (Water in Oil type) dispersion liquid, second dispersion liquid) 11 in which the polymerizable monomer 4 and the dispersed phase are water 6 (FIGS. 1B and 1C).
The amount of the water-soluble initiator used is usually less than 3.0 parts by mass, preferably 0.01 to 2.0 parts by mass, based on 100 parts by mass of the amount of the polymerizable monomer 4 used. 0.01 to 1.0 parts by mass is more preferable.
That is, a dispersion liquid 11 in which the second A mixed liquid 2 is dispersed in the oil-soluble initiator-polymerizable monomer-surfactant A mixed liquid 1 is obtained.

(工程2)
工程1の後、式(1)で表される界面活性剤A(第2の界面活性剤)を混合した水(界面活性剤A-水混合液、第3A混合液)3を、撹拌機100で撹拌中の分散液11に加えることにより、連続相が水6、分散相が重合性単量体4となるよう相転換(分散相転換)をした懸濁液(W/O/W型(Water in Oil in Water型)の懸濁液、第3分散液)12を製造する(図1D、図1E)。
(Step 2)
After the step 1, water (surfactant A-water mixed solution, third A mixed solution) 3 mixed with the surfactant A (second surfactant) represented by the formula (1) is mixed with the stirrer 100. A suspension (W / O / W type (W / O / W type)) that has undergone phase conversion (dispersion phase conversion) so that the continuous phase becomes water 6 and the dispersed phase becomes a polymerizable monomer 4 by adding to the dispersion liquid 11 being stirred. A suspension of Water in Oil in Water type), a third dispersion liquid) 12 is produced (FIGS. 1D and 1E).

すなわち、連続相が水6となり、分散相が重合性単量体4となるように調製された(水6に重合性単量体4が分散した)懸濁液12を得る。
換言すれば、本実施形態においては、前記懸濁液を準備する際に、(工程1)として、界面活性剤A(第1の界面活性剤)と重合性単量体4と前記油溶性開始剤とを含む第1A混合液1と、水及び前記水溶性開始剤を含む第2A混合液2と、を準備し、第1A混合液1に第2A混合液2を加え、(工程2)として、さらに界面活性剤A(第2の界面活性剤)を含む第3A混合液3を第1A混合液1と第2A混合液2とにより形成された分散液11に添加することにより懸濁液12を調製できる。
That is, a suspension 12 prepared so that the continuous phase becomes water 6 and the dispersed phase becomes the polymerizable monomer 4 (the polymerizable monomer 4 is dispersed in water 6) is obtained.
In other words, in the present embodiment, when the suspension is prepared, as (step 1), the surfactant A (first surfactant), the polymerizable monomer 4, and the oil-soluble initiation. A first A mixed solution 1 containing an agent and a second A mixed solution 2 containing water and the water-soluble initiator were prepared, and the second A mixed solution 2 was added to the first A mixed solution 1 as (Step 2). Further, the suspension 12 is added by adding the third A mixed solution 3 containing the surfactant A (second surfactant) to the dispersion liquid 11 formed by the first A mixed solution 1 and the second A mixed solution 2. Can be prepared.

(工程3)
さらに、(工程2)の後、懸濁液12を懸濁重合することによって、粒子表面が平滑であり、粒子の一部が開口して粒子内部に中空構造を有し、凹形状を有する樹脂微粒子15を製造できる(図1F)。
なお、懸濁重合を行う際には、図1に示すように、重合する懸濁液12の濃度調整のために、懸濁液12に水6を加えてもよい。
(Step 3)
Further, after (step 2), by suspend-polymerizing the suspension 12, the surface of the particles is smooth, a part of the particles is opened, the inside of the particles has a hollow structure, and the resin has a concave shape. Fine particles 15 can be produced (FIG. 1F).
When carrying out suspension polymerization, as shown in FIG. 1, water 6 may be added to the suspension 12 in order to adjust the concentration of the suspension 12 to be polymerized.

(凹形状になる原理の推測)
第2分散液11(W/O型の分散液)の水相に水溶性開始剤を含むことで、懸濁液12(W/O/W型の懸濁液)の懸濁重合時、油相中の重合性単量体4液滴内部で乳化重合も同時に進行する。そのため、本来、球状を維持しつつ重合性単量体4液滴が懸濁重合し、球状樹脂微粒子になるところ、重合性単量体4液滴内部で起こる乳化重合により、重合性単量体4液滴の内側より重合性単量体4が消費されることで、球状を維持し得る樹脂成分が不足し、重合中の重合性単量体4液滴が球状を維持できず、凹形状の粒子が得られると推測する。よって、添加する水溶性開始剤の量が少ないと、重合性単量体4液滴内側の重合性単量体4消費量が少ないため、球状に近い形を維持できる。一方、添加する水溶性開始剤の量が多いと、重合性単量体4液滴内部の重合性単量体4消費量が多く、粒子の形状を維持できず、破れた膜のような形状となる。
(Guessing the principle of concave shape)
By including a water-soluble initiator in the aqueous phase of the second dispersion liquid 11 (W / O type dispersion liquid), oil is present during suspension polymerization of suspension 12 (W / O / W type suspension). Emulsification polymerization also proceeds at the same time inside 4 droplets of the polymerizable monomer in the phase. Therefore, originally, 4 droplets of the polymerizable monomer are suspended-polymerized while maintaining the spherical shape to become spherical resin fine particles, and the polymerizable monomer is formed by the emulsifying polymerization occurring inside the 4 droplets of the polymerizable monomer. Since the polymerizable monomer 4 is consumed from the inside of the four droplets, the resin component capable of maintaining the spherical shape is insufficient, and the polymerizable monomer 4 droplets being polymerized cannot maintain the spherical shape and have a concave shape. I presume that the particles of Therefore, when the amount of the water-soluble initiator added is small, the consumption of the polymerizable monomer 4 inside the four droplets of the polymerizable monomer 4 is small, so that the shape close to a spherical shape can be maintained. On the other hand, when the amount of the water-soluble initiator added is large, the consumption of the polymerizable monomer 4 inside the four droplets of the polymerizable monomer is large, the shape of the particles cannot be maintained, and the shape is like a torn film. It becomes.

[凹形状樹脂微粒子]
本実施形態に係る製造方法によって得られる凹形状樹脂微粒子は、粒子表面が平滑であり、粒子の一部が開口して粒子内部に中空構造を有する凹形状を有する微粒子である。
なお、後述する実施例でも示すが、凹形状を有する本実施形態に係る凹形状樹脂微粒子は、例えば、真球上樹脂微粒子に比べ光拡散性に優れており、光拡散シートや導光板等への応用が期待できる。また、真球状粒子に比べ吸油性にも優れるため、化粧品等への応用も期待できる。
[Concave resin fine particles]
The concave resin fine particles obtained by the production method according to the present embodiment are fine particles having a smooth surface, a part of the particles is open, and a hollow structure is provided inside the particles.
As shown in Examples described later, the concave resin fine particles according to the present embodiment having a concave shape are superior in light diffusivity to, for example, spherical resin fine particles, and can be applied to a light diffusing sheet, a light guide plate, or the like. Can be expected to be applied. In addition, since it is superior in oil absorption to spherical particles, it can be expected to be applied to cosmetics and the like.

〈平均粒子径〉
本実施形態に係る凹形状樹脂微粒子の平均粒子径は、特に限定されないが、0.5~500μmが好ましく、0.5~100μmがより好ましく、1~50μmがさらに好ましい。
本実施形態に係る凹形状樹脂微粒子の平均粒子径がこの範囲内であると、安定的に樹脂微粒子を重合することができる。
本実施形態に係る凹形状樹脂微粒子の平均粒子径は、レーザ回折式粒度分布測定装置(島津製作所社製)によって測定される50%体積平均粒子径である。
<Average particle size>
The average particle size of the concave resin fine particles according to the present embodiment is not particularly limited, but is preferably 0.5 to 500 μm, more preferably 0.5 to 100 μm, still more preferably 1 to 50 μm.
When the average particle size of the concave resin fine particles according to the present embodiment is within this range, the resin fine particles can be stably polymerized.
The average particle size of the concave resin fine particles according to the present embodiment is a 50% volume average particle size measured by a laser diffraction type particle size distribution measuring device (manufactured by Shimadzu Corporation).

〈光拡散性〉
本実施形態に係る凹形状樹脂微粒子の光拡散性は、凹形状樹脂微粒子と同等の屈折率を有する樹脂に凹形状樹脂微粒子を分散せしめた試験片を作成し、得られた試験片の全光線透過率とヘーズ値とをヘーズメーター(村上色彩技術研究所製)にて測定し、以下の基準に従って評価する。
(A評価)全光線透過率が80%以下かつヘーズ値が30%以上である。
(B評価)全光線透過率またはヘーズ値が前記範囲外である(「全光線透過率80%以下かつヘーズ値が30%以上」でない)。
なお、A評価を光拡散性試験の結果が良好であるといい、B評価を光拡散性試験の結果が良好でないという場合がある。
<Light diffusivity>
For the light diffusivity of the concave resin fine particles according to the present embodiment, a test piece in which the concave resin fine particles are dispersed in a resin having a refractive index equivalent to that of the concave resin fine particles is prepared, and the total light rays of the obtained test piece are obtained. The transmittance and haze value are measured with a haze meter (manufactured by Murakami Color Technology Research Institute) and evaluated according to the following criteria.
(Evaluation A) The total light transmittance is 80% or less and the haze value is 30% or more.
(Evaluation B) The total light transmittance or the haze value is out of the above range (the total light transmittance is not 80% or less and the haze value is not 30% or more).
In some cases, the A evaluation is said to have a good result of the light diffusivity test, and the B evaluation is said to be a poor result of the light diffusivity test.

〈吸油量〉
本実施形態に係る凹形状樹脂微粒子の吸油量は、JIS K 5101-13-1:2004に準拠して測定される、精製あまに油の吸油量である。
本実施形態に係る凹形状樹脂微粒子の吸油量は、特に限定されないが、60g/100gが好ましい。吸油量が60g/100g以上であると、本実施形態に係る凹形状樹脂微粒子を、例えば、化粧品等に配合した場合、肌へのすべり性を維持しつつ、密着性を向上させる効果が期待できる。
<Amount of oil absorption>
The oil absorption amount of the concave resin fine particles according to the present embodiment is the oil absorption amount of refined flaxseed oil measured in accordance with JIS K 5101-13-1: 2004.
The oil absorption amount of the concave resin fine particles according to the present embodiment is not particularly limited, but is preferably 60 g / 100 g. When the oil absorption amount is 60 g / 100 g or more, when the concave resin fine particles according to the present embodiment are blended into, for example, cosmetics, the effect of improving the adhesion while maintaining the slipperiness on the skin can be expected. ..

本実施形態に係る凹形状樹脂微粒子は、凹形状を有し、粒子内部に空間を有する凹形状樹脂微粒子である。
本実施形態に係る凹形状樹脂微粒子は、一般的な球状粒子(例えば、内部に空間や中空構造を持たずに密に形成された粒子)と比較して、例えば、光拡散性に優れる。また表、面積が大きく、吸油量が高い。
The concave resin fine particles according to the present embodiment are concave resin fine particles having a concave shape and a space inside the particles.
The concave resin fine particles according to the present embodiment are, for example, excellent in light diffusivity as compared with general spherical particles (for example, particles densely formed without having a space or a hollow structure inside). In addition, the table has a large area and a high oil absorption.

〈用途〉
本実施形態に係る製造方法により得られた凹形状樹脂微粒子の用途は特に限定されないが、例えば、光反射材や液晶バックライト用光拡散板などの光拡散材、化粧品等へ用いることができる。
<Use>
The use of the concave resin fine particles obtained by the production method according to the present embodiment is not particularly limited, and can be used, for example, as a light diffusing material such as a light reflecting material or a light diffusing plate for a liquid crystal backlight, cosmetics, and the like.

〈作用効果〉
本実施形態に係る凹形状樹脂微粒子の製造方法によって得られた凹形状樹脂微粒子は、例えば、液晶バックライト用光拡散板などの光拡散材として用いた場合、優れた光拡散効果を示す。
また、化粧品に配合した場合、肌へのすべり性を維持しつつ、密着性を向上させる効果が期待できる。
<Action effect>
The concave resin fine particles obtained by the method for producing concave resin fine particles according to the present embodiment show an excellent light diffusion effect when used as a light diffusing material such as a light diffusing plate for a liquid crystal backlight.
In addition, when blended in cosmetics, it can be expected to have the effect of improving adhesion while maintaining slipperiness on the skin.

以下、実施例によって本発明をより具体的に説明するが、本発明はこれらに限定されない。
実施例及び比較例で製造した粒子について以下に示す。
Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited thereto.
The particles produced in Examples and Comparative Examples are shown below.

[実施例1]
〈状樹脂微粒子の調製〉
以下に示す手順にて、表1に示す組成にて、実施例1に係る樹脂微粒子を調製した。
重合性単量体(メタクリル酸メチル、富士フイルム和光純薬社製97質量部及び二官能(メタ)アクリレート(エチレングリコールジメタクリレート(EGDMA)、東京化成工業社製)3質量部)に、前記重合性単量体の100質量部に対して、界面活性剤(ノイゲンXL-400D、第一工業製薬社製)を0.2質量部となるように、かつ、油溶性開始剤(アゾビスイソブチロニトリル(AIBN)、富士フイルム和光純薬社製)を1.0質量部となるように、添加し、混合液(第1A混合液)を調製した。
調製した第1A混合液をホモミキサーに入れて、撹拌した。
次に、前記重合性単量体の100質量部に対して0.5質量部となる水溶性開始剤(ペルオキソ二硫酸カリウム、富士フイルム和光純薬社製)と、前記重合性単量体の100質量部に対して10質量部となる水(脱イオン蒸留水、富士フイルム和光純薬社製)との混合液(第2A混合液)を調製した。
次に、第1A混合液を撹拌しながら、調製した第2A混合液を添加した。これにより、連続相を前記重合性単量体、分散相を水とする分散液11(W/O型(Water in Oil型)の分散液)を得た。
次に、前記重合性単量体の100質量部に対して150質量部となる水(脱イオン蒸留水、富士フイルム和光純薬社製)と、前記重合性単量体の100質量部に対して1.0質量部となる界面活性剤(ノイゲンXL-400D、第一工業製薬社製)との混合液(第3A混合液)を調製した。
次に、分散液11を撹拌しながら、調製した第3A混合液を添加した。これにより、連続が水、分散相が前記重合性単量体となるように相転換をした懸濁液12(W/O/W型(Water in Oil in Water型)の懸濁液)を得た。
次に、得られた懸濁液12を、撹拌機、コンデンサ、温度計及び窒素同入管を付した4口フラスコに投入し、窒素封入下で75℃まで昇温し、75℃で4時間反応させた。
その後、得られた懸濁液をろ過し、前記重合性単量体の100質量部に対して250質量部となる水道水で洗浄後、60℃で12時間乾燥して樹脂微粒子15を得た。
[Example 1]
<Preparation of resin fine particles>
According to the procedure shown below, the resin fine particles according to Example 1 were prepared with the compositions shown in Table 1.
Polymerization on a polymerizable monomer (methyl methacrylate, 97 parts by mass manufactured by Wako Pure Chemical Industries, Ltd. and 3 parts by mass of bifunctional (meth) acrylate (ethylene glycol dimethacrylate (EGDMA), manufactured by Tokyo Kasei Kogyo Co., Ltd.)). 0.2 parts by mass of a surfactant (Neugen XL-400D, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) with respect to 100 parts by mass of the sex monomer, and an oil-soluble initiator (azobisisobuty). Lonitrile (AIBN), manufactured by Wako Pure Chemical Industries, Ltd.) was added in an amount of 1.0 part by mass to prepare a mixed solution (1st A mixed solution).
The prepared 1A mixture was put into a homomixer and stirred.
Next, a water-soluble initiator (potassium peroxodisulfate, manufactured by Wako Pure Chemical Industries, Ltd.), which is 0.5 parts by mass with respect to 100 parts by mass of the polymerizable monomer, and the polymerizable monomer. A mixed solution (second A mixed solution) with water (deionized distilled water, manufactured by Wako Pure Chemical Industries, Ltd.) having 10 parts by mass with respect to 100 parts by mass was prepared.
Next, the prepared second A mixture was added while stirring the first A mixture. As a result, a dispersion liquid 11 (W / O type (Water in Oil type) dispersion liquid) in which the continuous phase was the polymerizable monomer and the dispersed phase was water was obtained.
Next, with respect to 100 parts by mass of water (deionized distilled water, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), which is 150 parts by mass with respect to 100 parts by mass of the polymerizable monomer, and 100 parts by mass of the polymerizable monomer. A mixed solution (3A mixed solution) with a surfactant (Neugen XL-400D, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) having a mass of 1.0 part by mass was prepared.
Next, the prepared third A mixed solution was added while stirring the dispersion liquid 11. As a result, a suspension 12 (W / O / W type (Water in Oil in Water type) suspension) obtained by phase conversion so that the continuous phase becomes water and the dispersed phase becomes the polymerizable monomer is obtained. rice field.
Next, the obtained suspension 12 was put into a four-necked flask equipped with a stirrer, a condenser, a thermometer and a nitrogen inlet tube, heated to 75 ° C. under nitrogen filling, and reacted at 75 ° C. for 4 hours. I let you.
Then, the obtained suspension was filtered, washed with tap water having 250 parts by mass with respect to 100 parts by mass of the polymerizable monomer, and dried at 60 ° C. for 12 hours to obtain resin fine particles 15. ..

〈粒子形状〉
製造した樹脂微粒子を回収し、走査型電子顕微鏡(日本電子社製)による粒子表面と粒子形状の観察を行った。
その結果、粒子表面が平滑であり、粒子の一部が開口して粒子の内部に空間を有する凹形状を有する凹形状樹脂微粒子が観察された。
表1に下記基準で評価した粒子形状の評価結果を記載する。
A…凹形状
B…一部凹形状
C…凹形状(一部破れ)
D…破れ
E…真球状
また、図2に透過型電子顕微鏡写真を示す。
<Particle shape>
The produced resin fine particles were collected, and the particle surface and particle shape were observed with a scanning electron microscope (manufactured by JEOL Ltd.).
As a result, concave resin fine particles having a concave shape in which the surface of the particles was smooth and a part of the particles opened and had a space inside the particles were observed.
Table 1 shows the evaluation results of the particle shape evaluated according to the following criteria.
A ... concave shape B ... partially concave shape C ... concave shape (partially torn)
D ... Torn E ... Spherical. FIG. 2 shows a transmission electron micrograph.

〈平均粒子径〉
レーザ回折式粒子径分布測定装置(島津製作所社製)を用いて、得られた樹脂微粒子の平均粒子径の測定を行ったところ、平均粒子径は10μmであった。
表1に平均粒子径の測定結果を示す。
<Average particle size>
When the average particle size of the obtained resin fine particles was measured using a laser diffraction type particle size distribution measuring device (manufactured by Shimadzu Corporation), the average particle size was 10 μm.
Table 1 shows the measurement results of the average particle size.

〈光拡散性〉
得られた中空樹脂微粒子2.0gとポリメタクリル酸メチル樹脂の40質量%トルエン溶液45gをガラス瓶に投入し、振とう機で30分間混合することで、樹脂トルエン溶液-中空樹脂微粒子分散体を得た。前記分散体を厚さ1mmのガラス板にギャップ150μmのアプリケーターで塗工し、100℃で10分間乾燥し、試験片を得た。得られた試験片の全光線透過率とヘーズ値とをヘーズメーター(村上色彩技術研究所製)にて測定し、光拡散性を評価した。表1において、光拡散性試験の結果が良好であった場合を「A」と示し、光拡散性試験の結果が良好でなかった場合を「B」と示した。
光拡散性試験の結果が良好(A評価)とは、試験結果が全光線透過率80%以下かつヘーズ値が30%以上の場合であり、光拡散性の結果が良好でない(B評価)とは、試験結果が前記範囲外の場合(「全光線透過率80%以下かつヘーズ値が30%以上」を満たさない場合)と定義した。
得られた試験片の全光線透過率は72.3%、ヘーズ値は40.2%であり、樹脂微粒子の光拡散性評価はAであった。表1に光拡散性評価結果を示す。
以下の実施例および比較例においても、同様に評価した。
<Light diffusivity>
2.0 g of the obtained hollow resin fine particles and 45 g of a 40 mass% toluene solution of polymethyl methacrylate resin were put into a glass bottle and mixed with a shaker for 30 minutes to obtain a resin toluene solution-hollow resin fine particle dispersion. rice field. The dispersion was applied to a glass plate having a thickness of 1 mm with an applicator having a gap of 150 μm, and dried at 100 ° C. for 10 minutes to obtain a test piece. The total light transmittance and the haze value of the obtained test piece were measured with a haze meter (manufactured by Murakami Color Technology Research Institute) to evaluate the light diffusivity. In Table 1, the case where the result of the light diffusivity test was good was shown as "A", and the case where the result of the light diffusivity test was not good was shown as "B".
The result of the light diffusivity test is good (evaluation A) when the test result is that the total light transmittance is 80% or less and the haze value is 30% or more, and the result of light diffusivity is not good (evaluation B). Was defined as the case where the test result was out of the above range (when the total light transmittance was 80% or less and the haze value was 30% or more).
The total light transmittance of the obtained test piece was 72.3%, the haze value was 40.2%, and the light diffusivity evaluation of the resin fine particles was A. Table 1 shows the light diffusivity evaluation results.
The following examples and comparative examples were also evaluated in the same manner.

〈吸油量〉
JIS K 5101-13-1:2004に準拠して、得られた樹脂微粒子の精製あまに油の吸油量の測定を行ったところ、吸油量は89g/100gであった。
表1に吸油量の測定結果を示す。
<Amount of oil absorption>
When the oil absorption amount of the refined flax of the obtained resin fine particles was measured according to JIS K 5101-13-1: 2004, the oil absorption amount was 89 g / 100 g.
Table 1 shows the measurement results of the oil absorption amount.

[実施例2]
〈樹脂微粒子の調製〉
重合性単量体として、メタクリル酸メチル(富士フイルム和光純薬社製)の90質量部及び二官能(メタ)アクリレート(エチレングリコールジメタクリレート(EGDMA)、東京化成工業社製)の10質量部を用いた点を除いて、実施例1と同様にして、樹脂微粒子を調製した。
[Example 2]
<Preparation of resin fine particles>
As the polymerizable monomer, 90 parts by mass of methyl methacrylate (manufactured by Wako Pure Chemical Industries, Ltd.) and 10 parts by mass of bifunctional (meth) acrylate (ethylene glycol dimethacrylate (EGDMA), manufactured by Tokyo Chemical Industry Co., Ltd.). Resin fine particles were prepared in the same manner as in Example 1 except for the points used.

〈粒子形状〉
実施例1と同様に、製造した樹脂微粒子を回収し、走査型電子顕微鏡による粒子表面と粒子形状の観察を行った。
その結果、粒子表面が平滑であり、粒子の一部が開口して粒子の内部に空間を有する凹形状を有する凹形状樹脂微粒子が観察された(評価:A)。
表1に粒子形状の評価結果を示す。
<Particle shape>
In the same manner as in Example 1, the produced resin fine particles were recovered, and the particle surface and particle shape were observed with a scanning electron microscope.
As a result, concave resin fine particles having a smooth surface and a concave shape in which a part of the particles opened and had a space inside the particles were observed (evaluation: A).
Table 1 shows the evaluation results of the particle shape.

〈平均粒子径〉
実施例1と同様に、得られた樹脂微粒子の平均粒子径の測定を行ったところ、平均粒子径は10μmであった。
表1に平均粒子径の測定結果を示す。
<Average particle size>
When the average particle size of the obtained resin fine particles was measured in the same manner as in Example 1, the average particle size was 10 μm.
Table 1 shows the measurement results of the average particle size.

〈光拡散性〉
実施例1と同様に、試験片を作成し、ヘーズメーターにて得られた試験片の光拡散性を評価したところ、全光線透過率は71.8%、ヘーズ値は43.2%であり、樹脂微粒子の光拡散性評価はAであった。表1に光拡散性評価結果を示す。
<Light diffusivity>
As in Example 1, a test piece was prepared and the light diffusivity of the test piece obtained by the haze meter was evaluated. As a result, the total light transmittance was 71.8% and the haze value was 43.2%. The light diffusivity evaluation of the resin fine particles was A. Table 1 shows the light diffusivity evaluation results.

〈吸油量〉
実施例1と同様に、得られた樹脂微粒子の精製あまに油の吸油量の測定を行ったところ、吸油量は92g/100gであった。
表1に吸油量の測定結果を示す。
<Amount of oil absorption>
When the oil absorption amount of the refined flax of the obtained resin fine particles was measured in the same manner as in Example 1, the oil absorption amount was 92 g / 100 g.
Table 1 shows the measurement results of the oil absorption amount.

[実施例3]
〈樹脂微粒子の調製〉
重合性単量体として、メタクリル酸メチル(富士フイルム和光純薬社製)の60質量部、スチレン(スチレンモノマー、デンカ社製)の30質量部及び二官能(メタ)アクリレート(エチレングリコールジメタクリレート(EGDMA)、東京化成工業社製)の10質量部を用いた点を除いて、実施例1と同様にして、樹脂微粒子を調製した。
[Example 3]
<Preparation of resin fine particles>
As polymerizable monomers, 60 parts by mass of methyl methacrylate (manufactured by Fujifilm Wako Junyaku Co., Ltd.), 30 parts by mass of styrene (styrene monomer, manufactured by Denka Co., Ltd.) and bifunctional (meth) acrylate (ethylene glycol dimethacrylate). Resin fine particles were prepared in the same manner as in Example 1 except that 10 parts by mass of EGDMA) and Tokyo Kasei Kogyo Co., Ltd. were used.

〈粒子形状〉
実施例1と同様に、製造した樹脂微粒子を回収し、走査型電子顕微鏡による粒子表面と粒子形状の観察を行った。
その結果、粒子表面が平滑であり、粒子の一部が開口して粒子の内部に空間を有する凹形状を有する凹形状樹脂微粒子が観察された(評価:A)。
表1に粒子形状の評価結果を示す。
<Particle shape>
In the same manner as in Example 1, the produced resin fine particles were recovered, and the particle surface and particle shape were observed with a scanning electron microscope.
As a result, concave resin fine particles having a smooth surface and a concave shape in which a part of the particles opened and had a space inside the particles were observed (evaluation: A).
Table 1 shows the evaluation results of the particle shape.

〈平均粒子径〉
実施例1と同様に、得られた樹脂微粒子の平均粒子径の測定を行ったところ、平均粒子径は10μmであった。
表1に平均粒子径の測定結果を示す。
<Average particle size>
When the average particle size of the obtained resin fine particles was measured in the same manner as in Example 1, the average particle size was 10 μm.
Table 1 shows the measurement results of the average particle size.

〈光拡散性〉
実施例1と同様に、試験片を作成し、ヘーズメーターにて得られた試験片の光拡散性を評価したところ、全光線透過率は74.2%、ヘーズ値は38.5%であり、樹脂微粒子の光拡散性評価はAであった。表1に光拡散性評価結果を示す。
<Light diffusivity>
As in Example 1, a test piece was prepared and the light diffusivity of the test piece obtained by the haze meter was evaluated. As a result, the total light transmittance was 74.2% and the haze value was 38.5%. The light diffusivity evaluation of the resin fine particles was A. Table 1 shows the light diffusivity evaluation results.

〈吸油量〉
実施例1と同様に、得られた樹脂微粒子の精製あまに油の吸油量の測定を行ったところ、吸油量は84g/100gであった。
表1に吸油量の測定結果を示す。
<Amount of oil absorption>
When the oil absorption amount of the refined flax of the obtained resin fine particles was measured in the same manner as in Example 1, the oil absorption amount was 84 g / 100 g.
Table 1 shows the measurement results of the oil absorption amount.

[実施例4]
水溶性開始剤(ペルオキソ二硫酸カリウム)を、重合性単量体の100質量部に対して0.01質量部用いた点を除いて、実施例2と同様にして、樹脂微粒子を調製した。
[Example 4]
Resin fine particles were prepared in the same manner as in Example 2 except that 0.01 part by mass of a water-soluble initiator (potassium peroxodisulfate) was used with respect to 100 parts by mass of the polymerizable monomer.

〈粒子形状〉
実施例1と同様に、製造した樹脂微粒子を回収し、走査型電子顕微鏡による粒子表面と粒子形状の観察を行った。
その結果、粒子表面が平滑であり、粒子の一部が開口して粒子の内部に空間を有する一部凹形状を有する凹形状樹脂微粒子が観察された(評価:B)。
表1に粒子形状の評価結果を示す。
また、図3に透過型電子顕微鏡写真を示す。
<Particle shape>
In the same manner as in Example 1, the produced resin fine particles were recovered, and the particle surface and particle shape were observed with a scanning electron microscope.
As a result, concave resin fine particles having a smooth surface and a partially concave shape in which a part of the particles opened and had a space inside the particles were observed (evaluation: B).
Table 1 shows the evaluation results of the particle shape.
Further, FIG. 3 shows a transmission electron micrograph.

〈平均粒子径〉
実施例1と同様に、得られた樹脂微粒子の平均粒子径の測定を行ったところ、平均粒子径は10μmであった。
表1に平均粒子径の測定結果を示す。
<Average particle size>
When the average particle size of the obtained resin fine particles was measured in the same manner as in Example 1, the average particle size was 10 μm.
Table 1 shows the measurement results of the average particle size.

〈光拡散性〉
実施例1と同様に、試験片を作成し、ヘーズメーターにて得られた試験片の光拡散性を評価したところ、全光線透過率は79.2%、ヘーズ値は31.8%であり、樹脂微粒子の光拡散性評価はAであった。表1に光拡散性評価結果を示す。
<Light diffusivity>
As in Example 1, a test piece was prepared and the light diffusivity of the test piece obtained by the haze meter was evaluated. As a result, the total light transmittance was 79.2% and the haze value was 31.8%. The light diffusivity evaluation of the resin fine particles was A. Table 1 shows the light diffusivity evaluation results.

〈吸油量〉
実施例1と同様に、得られた樹脂微粒子の精製あまに油の吸油量の測定を行ったところ、吸油量は62g/100gであった。
表1に吸油量の測定結果を示す。
<Amount of oil absorption>
When the oil absorption amount of the refined flax of the obtained resin fine particles was measured in the same manner as in Example 1, the oil absorption amount was 62 g / 100 g.
Table 1 shows the measurement results of the oil absorption amount.

[実施例5]
水溶性開始剤(ペルオキソ二硫酸カリウム)を、重合性単量体の100質量部に対して2.5質量部用いた点を除いて、実施例2と同様にして、樹脂微粒子を調製した。
[Example 5]
Resin fine particles were prepared in the same manner as in Example 2 except that 2.5 parts by mass of a water-soluble initiator (potassium peroxodisulfate) was used with respect to 100 parts by mass of the polymerizable monomer.

〈粒子形状〉
実施例1と同様に、製造した樹脂微粒子を回収し、走査型電子顕微鏡による粒子表面と粒子形状の観察を行った。
その結果、粒子表面が平滑であり、粒子の一部が開口して粒子の内部に空間を有する凹形状(一部破れ)を有する凹形状樹脂微粒子が観察された(評価:C)。
表1に粒子形状の評価結果を示す。
また、図4に透過型電子顕微鏡写真を示す。
<Particle shape>
In the same manner as in Example 1, the produced resin fine particles were recovered, and the particle surface and particle shape were observed with a scanning electron microscope.
As a result, concave resin fine particles having a smooth surface and a concave shape (partially torn) in which a part of the particles opened and had a space inside the particles were observed (evaluation: C).
Table 1 shows the evaluation results of the particle shape.
Further, FIG. 4 shows a transmission electron micrograph.

〈平均粒子径〉
実施例1と同様に、得られた樹脂微粒子の平均粒子径の測定を行ったところ、平均粒子径は10μmであった。
表1に平均粒子径の測定結果を示す。
<Average particle size>
When the average particle size of the obtained resin fine particles was measured in the same manner as in Example 1, the average particle size was 10 μm.
Table 1 shows the measurement results of the average particle size.

〈光拡散性〉
実施例1と同様に、試験片を作成し、ヘーズメーターにて得られた試験片の光拡散性を評価したところ、全光線透過率は73.4%、ヘーズ値は39.1%であり、樹脂微粒子の光拡散性評価はAであった。表1に光拡散性評価結果を示す。
<Light diffusivity>
As in Example 1, a test piece was prepared and the light diffusivity of the test piece obtained by the haze meter was evaluated. As a result, the total light transmittance was 73.4% and the haze value was 39.1%. The light diffusivity evaluation of the resin fine particles was A. Table 1 shows the light diffusivity evaluation results.

〈吸油量〉
実施例1と同様に、得られた樹脂微粒子の精製あまに油の吸油量の測定を行ったところ、吸油量は90g/100gであった。
表1に吸油量の測定結果を示す。
<Amount of oil absorption>
When the oil absorption amount of the refined flax of the obtained resin fine particles was measured in the same manner as in Example 1, the oil absorption amount was 90 g / 100 g.
Table 1 shows the measurement results of the oil absorption amount.

[比較例1]
水溶性開始剤(ペルオキソ二硫酸カリウム)を、重合性単量体の100質量部に対して3.0質量部用いた点を除いて、実施例2と同様にして、樹脂微粒子を調製した。
[Comparative Example 1]
Resin fine particles were prepared in the same manner as in Example 2 except that 3.0 parts by mass of a water-soluble initiator (potassium peroxodisulfate) was used with respect to 100 parts by mass of the polymerizable monomer.

〈粒子形状〉
実施例1と同様に、製造した樹脂微粒子を回収し、走査型電子顕微鏡による粒子表面と粒子形状の観察を行った。
その結果、破れた樹脂微粒子が観察された(評価:D)。
表1に粒子形状の評価結果を示す。
また、図5に透過型電子顕微鏡写真を示す。
<Particle shape>
In the same manner as in Example 1, the produced resin fine particles were recovered, and the particle surface and particle shape were observed with a scanning electron microscope.
As a result, torn resin fine particles were observed (evaluation: D).
Table 1 shows the evaluation results of the particle shape.
Further, FIG. 5 shows a transmission electron micrograph.

〈平均粒子径〉
実施例1と同様に、得られた樹脂微粒子の平均粒子径の測定を行ったところ、平均粒子径は10μmであった。
表1に平均粒子径の測定結果を示す。
<Average particle size>
When the average particle size of the obtained resin fine particles was measured in the same manner as in Example 1, the average particle size was 10 μm.
Table 1 shows the measurement results of the average particle size.

〈光拡散性、吸油量〉
光拡散性及び吸油量の測定は行わなかった。
<Light diffusivity, oil absorption>
No measurements of light diffusivity and oil absorption were performed.

[比較例2]
界面活性剤をノイゲンXL-400D(第一工業製薬社製、式(1)で表される化合物に該当)から、アデカリアソープSR-10(アデカ社製、エーテルサルフェート型アンモニウム塩、式(1)で表される化合物に非該当)に変更した点を除いて、実施例2と同様にして、樹脂微粒子を調製した。
[Comparative Example 2]
Surfactants from Neugen XL-400D (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd., corresponding to the compound represented by the formula (1)) to Adecaria Soap SR-10 (manufactured by Adeka Corporation, ether sulfate type ammonium salt, formula (1). ) Was changed to (not applicable to the compound represented by)), and resin fine particles were prepared in the same manner as in Example 2.

〈粒子形状〉
実施例1と同様に、製造した樹脂微粒子を回収し、走査型電子顕微鏡による粒子表面と粒子形状の観察を行った。
その結果、真球状の樹脂微粒子が観察された(評価:E)。
表1に粒子形状の評価結果を示す。
また、図6に透過型電子顕微鏡写真を示す。
<Particle shape>
In the same manner as in Example 1, the produced resin fine particles were recovered, and the particle surface and particle shape were observed with a scanning electron microscope.
As a result, spherical resin fine particles were observed (evaluation: E).
Table 1 shows the evaluation results of the particle shape.
Further, FIG. 6 shows a transmission electron micrograph.

〈平均粒子径〉
実施例1と同様に、得られた樹脂微粒子の平均粒子径の測定を行ったところ、平均粒子径は10μmであった。
表1に平均粒子径の測定結果を示す。
<Average particle size>
When the average particle size of the obtained resin fine particles was measured in the same manner as in Example 1, the average particle size was 10 μm.
Table 1 shows the measurement results of the average particle size.

〈光拡散性〉
実施例1と同様に、試験片を作成し、ヘーズメーターにて得られた試験片の光拡散性を評価したところ、全光線透過率は91.1%、ヘーズ値は6.9%であり、樹脂微粒子の光拡散性評価はBであった。表1に光拡散性評価結果を示す。
<Light diffusivity>
As in Example 1, a test piece was prepared and the light diffusivity of the test piece obtained by the haze meter was evaluated. As a result, the total light transmittance was 91.1% and the haze value was 6.9%. The light diffusivity evaluation of the resin fine particles was B. Table 1 shows the light diffusivity evaluation results.

〈吸油量〉
実施例1と同様に、得られた樹脂微粒子の精製あまに油の吸油量の測定を行ったところ、吸油量は55g/100gであった。
表1に吸油量の測定結果を示す。
<Amount of oil absorption>
When the oil absorption amount of the refined flax of the obtained resin fine particles was measured in the same manner as in Example 1, the oil absorption amount was 55 g / 100 g.
Table 1 shows the measurement results of the oil absorption amount.

Figure 2022042732000001
Figure 2022042732000001

表1中の略号は下記化合物又は下記商品名を表す。
MMA:メタクリル酸メチル
EGDMA:エチレングリコールジメタクリレート
AIBN:アゾビスイソブチロニトリル
XL-400D:ノイゲンXL-400D(第一工業製薬社製)
SR-10:アデカリアソープSR-10(アデカ社製)
表1中で、各成分の使用量は質量部で表す。また、各成分における空欄の部分は、その成分を使用していないことを意味する。
The abbreviations in Table 1 represent the following compounds or the following trade names.
MMA: Methyl methacrylate EGDMA: Ethylene glycol dimethacrylate AIBN: Azobisisobutyronitrile XL-400D: Neugen XL-400D (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.)
SR-10: Adecaria Soap SR-10 (manufactured by ADEKA)
In Table 1, the amount of each component used is represented by parts by mass. In addition, the blank part in each component means that the component is not used.

表1に示すように、実施例1~5に係る製造方法により得られた樹脂微粒子は、凹形状樹脂微粒子であった。
これに対して、式(1)で表される界面活性剤の使用量が重合性単量体の100質量部に対して3.0質量部であった比較例1では、樹脂微粒子が破れてしまい、凹形状樹脂微粒子は製造できなかった。
また、式(1)で表される界面活性剤を使用しなかった比較例2に係る製造方法により得られた樹脂微粒子は、真球状樹脂微粒子であり、凹形状樹脂微粒子は製造できなかった。
As shown in Table 1, the resin fine particles obtained by the production methods according to Examples 1 to 5 were concave resin fine particles.
On the other hand, in Comparative Example 1 in which the amount of the surfactant represented by the formula (1) used was 3.0 parts by mass with respect to 100 parts by mass of the polymerizable monomer, the resin fine particles were broken. Therefore, the concave resin fine particles could not be produced.
Further, the resin fine particles obtained by the production method according to Comparative Example 2 in which the surfactant represented by the formula (1) was not used were spherical resin fine particles, and concave resin fine particles could not be produced.

実施例1~5の凹形状樹脂微粒子は、比較例2の真球状樹脂微粒子と比較して、平均粒子径は同じであるが、光拡散性に優れた。これらの結果から、本発明の製造方法で製造した凹形状樹脂微粒子は光拡散材等への応用が期待できる。また吸油量も真球上樹脂微粒子と比較して、高い値を得られることから、化粧品等への応用も期待できる。 The concave resin fine particles of Examples 1 to 5 had the same average particle diameter as those of the spherical resin fine particles of Comparative Example 2, but were excellent in light diffusivity. From these results, the concave resin fine particles produced by the production method of the present invention can be expected to be applied to a light diffusing material or the like. In addition, since the amount of oil absorbed can be higher than that of the resin fine particles on a true sphere, it can be expected to be applied to cosmetics and the like.

以上、本発明の実施形態を説明したが、実施形態における各構成及びそれらの組合せなどは一例であり、本発明の要旨から逸脱しない範囲内で、構成の付加、省略、置換及びその他の変形が可能である。また、本発明は実施形態によって限定されない。 Although the embodiments of the present invention have been described above, the configurations and combinations thereof in the embodiments are examples, and additions, omissions, substitutions, and other modifications of the configurations may be made without departing from the gist of the present invention. It is possible. Further, the present invention is not limited to the embodiments.

本発明の凹形状樹脂微粒子の製造方法は簡素な製造工程で、粒子径が同じ真球状樹脂微粒子に比べて、光拡散性に優れ、また吸油量が大きな凹形状樹脂微粒子を製造できる。
本発明の凹形状樹脂微粒子の製造方法によって得られる凹形状樹脂微粒子は、例えば、
光反射材や液晶バックライト用光拡散板などの光拡散材、化粧品等への応用が期待できる。
The method for producing concave resin fine particles of the present invention is a simple production process, and can produce concave resin fine particles having excellent light diffusivity and a large oil absorption as compared with spherical resin fine particles having the same particle diameter.
The concave resin fine particles obtained by the method for producing concave resin fine particles of the present invention are, for example,
It can be expected to be applied to light diffusing materials such as light reflecting materials and light diffusing plates for liquid crystal backlights, cosmetics, and the like.

1…油溶性開始剤-重合性単量体-界面活性剤A混合液(第1A混合液、第1分散液)
2…水溶性開始剤を溶解した水(第2A混合液)
3…界面活性剤A-水混合液(第3A混合液)
4…重合性単量体
6…水
11…W/O型(Water in Oil型)の分散液(水溶性開始剤を含む)(第2分散液)
12…W/O/W型(Water in Oil in Water型)の懸濁液(水溶性開始剤を含む)(第3分散液)
15…凹形状樹脂微粒子(凹形状を有する樹脂微粒子)
100…撹拌機
1 ... Oil-soluble initiator-polymerizable monomer-surfactant A mixed solution (1st A mixed solution, 1st dispersion solution)
2 ... Water in which a water-soluble initiator is dissolved (second A mixture)
3 ... Surfactant A-water mixture (third A mixture)
4 ... Polymerizable monomer 6 ... Water 11 ... W / O type (Water in Oil type) dispersion (including a water-soluble initiator) (second dispersion)
12 ... W / O / W type (Water in Oil in Water type) suspension (including water-soluble initiator) (third dispersion)
15 ... Concave resin fine particles (resin fine particles having a concave shape)
100 ... Stirrer

Claims (7)

重合性不飽和炭化水素基を有する重合性単量体を、水を主体とした分散媒に分散させ、懸濁化し、重合させる樹脂微粒子の重合において、少なくとも式(1)で表される界面活性剤を分散剤として用い、かつ、水溶性開始剤を用いることで、凹形状樹脂微粒子を得る、凹形状樹脂微粒子の製造方法であって、
前記水溶性開始剤の使用量が、前記重合性単量体の使用量の100質量部に対して、3.0質量部未満であることを特徴とする、凹形状樹脂微粒子の製造方法。
O-(RO)(EO)-T ・・・(1)
式(1)中、Tは水素原子、炭素数1~18のアルキル基又は炭素数2~18のアルケニル基であり、Tは水素原子、スルホン酸基、スルホン酸塩基、カルボン酸基、カルボン酸塩基、リン酸基、リン酸塩基、アミノ基又はアンモニウム基であり、ROは炭素数3~18のオキシアルキレン基であり、nは1~50の整数であり、EOはオキシエチレン基であり、mは0~200の整数である。
In the polymerization of resin fine particles in which a polymerizable monomer having a polymerizable unsaturated hydrocarbon group is dispersed, suspended and polymerized in a dispersion medium mainly composed of water, at least the surface activity represented by the formula (1) is represented. A method for producing concave resin fine particles, which obtains concave resin fine particles by using an agent as a dispersant and using a water-soluble initiator.
A method for producing concave resin fine particles, wherein the amount of the water-soluble initiator used is less than 3.0 parts by mass with respect to 100 parts by mass of the amount of the polymerizable monomer used.
T 1 O- (RO) n (EO) m -T 2 ... (1)
In formula (1), T 1 is a hydrogen atom, an alkyl group having 1 to 18 carbon atoms or an alkenyl group having 2 to 18 carbon atoms, and T 2 is a hydrogen atom, a sulfonic acid group, a sulfonic acid base, a carboxylic acid group, and the like. It is a carboxylic acid base, a phosphate group, a phosphate base, an amino group or an ammonium group, RO is an oxyalkylene group having 3 to 18 carbon atoms, n is an integer of 1 to 50, and EO is an oxyethylene group. Yes, m is an integer from 0 to 200.
前記水溶性開始剤が無機過酸化物である、請求項1に記載の凹形状樹脂微粒子の製造方法。 The method for producing concave resin fine particles according to claim 1, wherein the water-soluble initiator is an inorganic peroxide. 前記無機過酸化物が、ペルオキソ二硫酸カリウム、ペルオキソ二硫酸アンモニウム、ペルオキソ二硫酸ナトリウム及び過酸化水素からなる群から選択される少なくとも1種である、請求項2に記載の凹形状樹脂微粒子の製造方法。 The method for producing concave resin fine particles according to claim 2, wherein the inorganic peroxide is at least one selected from the group consisting of potassium peroxodisulfate, ammonium peroxodisulfate, sodium peroxodisulfate and hydrogen peroxide. .. 前記式(1)において前記Tが炭素数1~18のアルケニル基である、請求項1~3のいずれか1項に記載の凹形状樹脂微粒子の製造方法。 The method for producing concave resin fine particles according to any one of claims 1 to 3, wherein T 1 is an alkenyl group having 1 to 18 carbon atoms in the formula (1). 前記凹形状樹脂微粒子の平均粒子径が0.5~500μmである、請求項1~4のいずれか1項に記載の凹形状樹脂微粒子の製造方法。 The method for producing concave resin fine particles according to any one of claims 1 to 4, wherein the concave resin fine particles have an average particle diameter of 0.5 to 500 μm. 前記重合性単量体と前記界面活性剤とを分散させた第1分散液に、前記水溶性開始剤を含む水溶液を添加し、連続相を前記重合性単量体とし、かつ、分散相を水とした第2分散液を調製する、請求項1~5のいずれか1項に記載の凹形状樹脂微粒子の製造方法。 An aqueous solution containing the water-soluble initiator is added to the first dispersion liquid in which the polymerizable monomer and the surfactant are dispersed to make the continuous phase the polymerizable monomer and the dispersed phase. The method for producing concave resin fine particles according to any one of claims 1 to 5, wherein a second dispersion liquid made of water is prepared. 前記第2分散液と、第2の界面活性剤を含む水溶液とを混合し、連続相を水とし、かつ、分散相を前記重合性単量体とした第3分散液を得る、請求項6に記載の凹形状樹脂微粒子の製造方法。 6. A third dispersion liquid is obtained by mixing the second dispersion liquid and an aqueous solution containing a second surfactant to obtain a third dispersion liquid in which the continuous phase is water and the dispersed phase is the polymerizable monomer. The method for producing concave resin fine particles according to.
JP2020148293A 2020-09-03 Method for producing concave-shaped resin particles Active JP7518369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020148293A JP7518369B2 (en) 2020-09-03 Method for producing concave-shaped resin particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020148293A JP7518369B2 (en) 2020-09-03 Method for producing concave-shaped resin particles

Publications (2)

Publication Number Publication Date
JP2022042732A true JP2022042732A (en) 2022-03-15
JP7518369B2 JP7518369B2 (en) 2024-07-18

Family

ID=

Similar Documents

Publication Publication Date Title
US9890223B2 (en) Resin particles and process for producing same, antiglare film, light-diffusing resin composition, and external preparation
JP2017119843A (en) Hollow polymer particle, manufacturing method of polymer particle dispersion and manufacturing method of hollow polymer particle
JP5492613B2 (en) Optical sheet
JP2013203986A (en) Method for producing resin particle and product of the same
JP7121275B2 (en) Method for producing hollow resin microparticles
JP5500981B2 (en) Resin particles for light diffusion film, method for producing the same, and light diffusion film
KR100960621B1 (en) Process for Preparing Monodisperse Polymer Particles
JP5281938B2 (en) Method for producing monodisperse polymer particles
JP5592735B2 (en) Method for producing hydrophilic polymer particles and hydrophilic polymer particles
JP6087189B2 (en) Porous resin particles, method for producing the same, and use thereof
JPWO2013002386A1 (en) Oval shaped resin particles, production method thereof, and use thereof
JP7518369B2 (en) Method for producing concave-shaped resin particles
JP2022042732A (en) Concave resin fine particle production method
JP2004043557A (en) Resin particle and its production method
JP5308779B2 (en) Polymer particle aggregate, method for producing the same, light diffusing agent, and light diffusing resin composition
US8785577B2 (en) Acrylic fine particles and diffusing film including the same
JP2006316239A (en) Polymer fine particle, polymer fine particle dispersion and method for producing the same
JP5626716B2 (en) Method for producing porous hollow polymer particles and porous hollow polymer particles
JP2012193244A (en) Resin particle for light diffusing agent, method for production thereof, and light diffusing film including the resin particle
TWI504617B (en) Resin particles and method for making resin particles, anti-glare film, and optical dispersion resin composition and external agent
JP5666487B2 (en) Oval shaped resin particles, production method thereof, and use thereof
JP6924020B2 (en) Bowl-shaped hollow polymer particles and their manufacturing method
JP2023181691A (en) Resin particle
JP5433536B2 (en) Method for producing polymer particles
JP5281781B2 (en) Monodispersed polymer particles, method for producing the same, light diffusible molded article, and light diffusible coating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231219

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20240216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240402

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240604