JP2022041766A - Voltage amplifier circuit - Google Patents

Voltage amplifier circuit Download PDF

Info

Publication number
JP2022041766A
JP2022041766A JP2020147175A JP2020147175A JP2022041766A JP 2022041766 A JP2022041766 A JP 2022041766A JP 2020147175 A JP2020147175 A JP 2020147175A JP 2020147175 A JP2020147175 A JP 2020147175A JP 2022041766 A JP2022041766 A JP 2022041766A
Authority
JP
Japan
Prior art keywords
circuit
pseudo
resistance
terminal
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020147175A
Other languages
Japanese (ja)
Inventor
恭英 高▲瀬▼
Takahide Takase
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2020147175A priority Critical patent/JP2022041766A/en
Publication of JP2022041766A publication Critical patent/JP2022041766A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a voltage amplifier circuit that does not saturate an output voltage by a DC offset voltage without increasing the circuit area.SOLUTION: A voltage amplifier circuit 1A includes an arithmetic amplifier circuit 2, a feedback capacitance 3, an input capacitance 4, a first pseudo-resistance circuit 5, an integrator circuit 7A, a control circuit 10, and an adder circuit 11. The arithmetic amplifier circuit 2 includes an inverting input terminal 2a, a non-inverting input terminal 2b, and an output terminal 2c. The feedback capacitance 3 and the first pseudo-resistance circuit 5 are connected between the inverting input terminal 2a and the output terminal 2c, and the input capacitance 4 is connected to the inverting input terminal 2a. The integrator circuit 7A includes a second pseudo-resistance circuit 6 and outputs a signal in which a signal band of an output voltage appearing in the output terminal 2c of the arithmetic amplifier circuit 2 or a frequency component higher than the signal band is attenuated. The control circuit 10 compensates for each voltage dependence of the first and second pseudo-resistance circuits 5 and 6. The adder circuit 11 adds the output of the integrator circuit 7A to the potential of the non-inverting input terminal 2b.SELECTED DRAWING: Figure 1

Description

本発明は、反転入力端子、非反転入力端子および出力端子を備える演算増幅回路を用いて構成される電圧増幅回路に関するものである。 The present invention relates to a voltage amplifier circuit configured by using an arithmetic amplifier circuit including an inverting input terminal, a non-inverting input terminal and an output terminal.

従来、この種の電圧増幅回路としては、例えば、特許文献1に開示された電荷検出回路に用いられているものがある。電荷検出回路は、同文献の図3に示されるように、疑似抵抗回路と、第3の演算増幅器と、コンデンサとを備えて構成される。この電荷検出回路は、電荷出力センサからの検出信号が第3の演算増幅器の反転入力端子に入力されることで、その出力端子に電圧増幅した検出信号を出力する。この際、疑似抵抗回路は、第3の演算増幅器の反転入力端子と出力端子との間に接続された第1の電界効果トランジスタのゲート電圧を制御して、そのドレイン・ソース間に擬似的に高抵抗を生成する。ゲート電圧は、第3の演算増幅器の出力端子電圧が考慮されて、疑似抵抗回路内の歪補償バイアス源によって生成される。このゲート電圧により、第1の電界効果トランジスタへの印加電圧変化による疑似抵抗値の非線形性が改善される。 Conventionally, as a voltage amplification circuit of this kind, for example, there is one used in the charge detection circuit disclosed in Patent Document 1. As shown in FIG. 3 of the same document, the charge detection circuit includes a pseudo-resistance circuit, a third operational amplifier, and a capacitor. This charge detection circuit outputs a voltage-amplified detection signal to the output terminal when the detection signal from the charge output sensor is input to the inverting input terminal of the third operational amplifier. At this time, the pseudo-resistance circuit controls the gate voltage of the first field-effect transistor connected between the inverting input terminal and the output terminal of the third operational amplifier, and pseudo-differences between the drain and source thereof. Produces high resistance. The gate voltage is generated by the strain compensation bias source in the pseudoresistor circuit, taking into account the output terminal voltage of the third operational amplifier. This gate voltage improves the non-linearity of the pseudo-resistance value due to the change in the voltage applied to the first field effect transistor.

また、従来、非特許文献1に開示された電圧増幅回路もある。この電圧増幅回路は、DCサーボ回路を構成し、演算増幅回路の出力端子に現れる出力電圧のうち、信号帯域よりも低い周波数成分を積分回路中のローパスフィルタによって取り出し、積分して演算増幅回路のいずれかの入力端子に負帰還することで、演算増幅回路のオフセットと低周波雑音とを低減する。 Further, there is also a voltage amplification circuit conventionally disclosed in Non-Patent Document 1. This voltage amplifier circuit constitutes a DC servo circuit, and among the output voltage appearing in the output terminal of the arithmetic amplifier circuit, the frequency component lower than the signal band is taken out by the low-pass filter in the integration circuit, integrated and integrated into the arithmetic amplifier circuit. By negatively feeding back to one of the input terminals, the offset of the arithmetic amplifier circuit and the low frequency noise are reduced.

国際公開第2015/178271号International Publication No. 2015/178271

ELECTRONICS LETTERS 20th November 2014 Vol. 50 No. 24 pp. 1808-1809ELECTRONICS LETTERS 20th November 2014 Vol. 50 No. 24 pp. 1808-1809

しかしながら、上記従来の特許文献1に開示された電圧増幅回路を構成する第3の演算増幅器では、その入力端子に生じる直流オフセット電圧が、第3の演算増幅器を含む増幅回路全体の直流での利得によって増幅され、その出力端子に現れる出力電圧を飽和させてしまう問題があった。 However, in the third operational amplifier constituting the voltage amplification circuit disclosed in the conventional patent document 1, the DC offset voltage generated at the input terminal is the gain of the entire amplifier circuit including the third operational amplifier in DC. There was a problem that the output voltage that was amplified by the output terminal and appeared at the output terminal was saturated.

また、上記従来の特許文献2に開示された電圧増幅回路では、DCサーボループにおけるローパスフィルタが出力電圧のうちの信号帯域の成分を遮断しなければならない。したがって、信号周波数が直流に近い場合には、積分回路中でローパスフィルタを構成する抵抗として、特許文献1に開示された疑似抵抗回路が生成する疑似抵抗と同レベルの高抵抗が必要とされる。このため、上記従来の特許文献2に開示された電圧増幅回路では、回路基板においてその高抵抗を形成しようとすると、回路面積が大きくなってしまう問題があった。 Further, in the voltage amplifier circuit disclosed in the above-mentioned conventional patent document 2, the low-pass filter in the DC servo loop must cut off the component of the signal band in the output voltage. Therefore, when the signal frequency is close to direct current, a high resistance of the same level as the pseudo resistance generated by the pseudo resistance circuit disclosed in Patent Document 1 is required as the resistance constituting the low-pass filter in the integrating circuit. .. Therefore, in the voltage amplifier circuit disclosed in the above-mentioned conventional patent document 2, there is a problem that the circuit area becomes large when trying to form the high resistance in the circuit board.

本発明はこのような課題を解決するためになされたもので、
反転入力端子、非反転入力端子および出力端子を備える演算増幅回路と、
一方の端子が演算増幅回路の反転入力端子に接続され、他方の端子が演算増幅回路の出力端子に接続された帰還容量と、
一方の端子が演算増幅回路の反転入力端子に接続され、他方の端子が信号入力端子に接続された入力容量と、
一方の端子が演算増幅回路の反転入力端子に接続され、他方の端子が演算増幅回路の出力端子に接続された第1疑似抵抗回路と、
第2疑似抵抗回路を備えて構成され、演算増幅回路の出力端子に現れる出力電圧のうちの信号帯域または信号帯域より高い周波数成分を減衰させた信号を出力する積分回路と、
第1疑似抵抗回路および第2疑似抵抗回路によって生成される各疑似抵抗の印加電圧変化による疑似抵抗値変動を抑制して、第1疑似抵抗回路および第2疑似抵抗回路の各電圧依存性を補償する1つの制御回路と、
積分回路の出力を演算増幅回路の反転入力端子または非反転入力端子の電位に加算する加算回路と
を備え、電圧増幅回路を構成した。
The present invention has been made to solve such a problem.
An arithmetic amplifier circuit having an inverting input terminal, a non-inverting input terminal, and an output terminal,
The feedback capacitance, one terminal connected to the inverting input terminal of the math amplifier circuit and the other terminal connected to the output terminal of the math amplifier circuit,
The input capacitance in which one terminal is connected to the inverting input terminal of the arithmetic amplifier circuit and the other terminal is connected to the signal input terminal,
A first pseudo-resistor circuit in which one terminal is connected to the inverting input terminal of the math amplifier circuit and the other terminal is connected to the output terminal of the math amplifier circuit.
An integrator circuit that is configured with a second pseudo-resistance circuit and outputs a signal in which a frequency component higher than the signal band or signal band of the output voltage appearing at the output terminal of the arithmetic amplifier circuit is attenuated, and
Suppresses the fluctuation of the pseudo-resistance value due to the change in the applied voltage of each pseudo-resistance generated by the first pseudo-resistance circuit and the second pseudo-resistance circuit, and compensates for the voltage dependence of the first pseudo-resistance circuit and the second pseudo-resistance circuit. One control circuit to do
A voltage amplification circuit is configured by including an adder circuit that adds the output of the integrator circuit to the potential of the inverting input terminal or the non-inverting input terminal of the arithmetic amplifier circuit.

本構成によれば、演算増幅回路の入力端子に現れる直流オフセット電圧は、その出力端子に現れる出力電圧の信号帯域およびそれより高い周波数成分が積分回路によって積分されて、出力端子に現れる出力電圧の信号帯域より低い周波数成分が取り出され、その積分回路の出力が、演算増幅回路の反転入力端子または非反転入力端子の電位に加算回路によって加算されて負帰還されることで、低減される。このため、演算増幅回路の入力端子に現れる直流オフセット電圧によって、出力端子に現れる出力電圧を飽和させてしまう問題は解消される。 According to this configuration, the DC offset voltage appearing at the input terminal of the arithmetic amplifier circuit is the output voltage appearing at the output terminal when the signal band of the output voltage appearing at the output terminal and the higher frequency components are integrated by the integrating circuit. A frequency component lower than the signal band is extracted, and the output of the integrating circuit is reduced by being added to the potential of the inverting input terminal or the non-inverting input terminal of the arithmetic amplifier circuit by the adder circuit and fed back negatively. Therefore, the problem that the output voltage appearing in the output terminal is saturated by the DC offset voltage appearing in the input terminal of the arithmetic amplifier circuit is solved.

この際、積分回路中のローパスフィルタに用いられる抵抗には、第2疑似抵抗回路によって生成される高抵抗の疑似抵抗が用いられるため、大きな回路面積を使って高抵抗の抵抗を形成することなく、出力端子に現れる出力電圧のうちの信号帯域より低い周波数成分を積分回路において効果的に取り出すことができる。 At this time, since the high resistance pseudo resistance generated by the second pseudo resistance circuit is used as the resistance used for the low-pass filter in the integrator circuit, the high resistance resistance is not formed by using a large circuit area. , The frequency component lower than the signal band of the output voltage appearing at the output terminal can be effectively extracted in the integrating circuit.

また、第1疑似抵抗回路の他端と、第2疑似抵抗回路の一端とは相互に接続されるため、同電位になる。また、第1疑似抵抗回路の一端が接続される演算増幅回路の反転入力端子と、第2疑似抵抗回路の他端が積分回路を介して接続される演算増幅回路の非反転入力端子とは、演算増幅回路の反転入力端子および非反転入力端子間のイマジナリーショートによって同電位となる。また、第2疑似抵抗回路の他端と演算増幅回路の非反転入力端子との間には積分回路が存在するが、この積分回路によって、出力電圧のうちの信号帯域より低い周波数成分が演算増幅回路の非反転入力端子に負帰還される電圧は、負帰還ループにおけるループゲインによってごく小さな値に低減される。したがって、第2疑似抵抗回路の他端と演算増幅回路の非反転入力端子との間における電圧降下はごく僅かなため、第2疑似抵抗回路の他端と演算増幅回路の非反転入力端子とはほぼ同電位と考えられる。この結果、第1疑似抵抗回路の端子間電圧と、第2疑似抵抗回路の端子間電圧とは略等しく、第1疑似抵抗回路および第2疑似抵抗回路によって略同じ値の疑似抵抗が生成されるものと、考えることができる。 Further, since the other end of the first pseudo-resistance circuit and one end of the second pseudo-resistance circuit are connected to each other, they have the same potential. Further, the inverting input terminal of the math amplifier circuit to which one end of the first pseudo-resistance circuit is connected and the non-inverting input terminal of the math amplifier circuit to which the other end of the second pseudo-resistance circuit is connected via the integrator circuit are The same potential is obtained by an imaginary short between the inverting input terminal and the non-inverting input terminal of the math amplifier circuit. Further, an integrator circuit exists between the other end of the second pseudo-resistance circuit and the non-inverting input terminal of the arithmetic amplifier circuit, and the frequency component lower than the signal band of the output voltage is arithmetically amplified by this integrator circuit. The voltage that is negatively fed back to the non-inverting input terminal of the circuit is reduced to a very small value by the loop gain in the negative feedback loop. Therefore, since the voltage drop between the other end of the second pseudo-resistance circuit and the non-inverting input terminal of the arithmetic amplifier circuit is very small, what is the other end of the second pseudo-resistance circuit and the non-inverting input terminal of the arithmetic amplifier circuit? It is considered that the potential is almost the same. As a result, the voltage between the terminals of the first pseudo-resistance circuit and the voltage between the terminals of the second pseudo-resistance circuit are substantially equal to each other, and the first pseudo-resistance circuit and the second pseudo-resistance circuit generate pseudo-resistances having substantially the same value. You can think of it as something.

よって、第1疑似抵抗回路および第2疑似抵抗回路によって生成される各疑似抵抗の印加電圧変化による変動は、1つの制御回路の制御によって抑制して、第1疑似抵抗回路および第2疑似抵抗回路の各電圧依存性を補償することができる。このため、第1疑似抵抗回路および第2疑似抵抗回路のそれぞれに別個に制御回路を設ける必要がないので、回路面積を大きくすることなく、直流オフセット電圧によって出力電圧を飽和させることのない電圧増幅回路を構成することができる。 Therefore, the fluctuation due to the applied voltage change of each pseudo-resistance generated by the first pseudo-resistance circuit and the second pseudo-resistance circuit is suppressed by the control of one control circuit, and the first pseudo-resistance circuit and the second pseudo-resistance circuit are suppressed. Each voltage dependence of can be compensated. Therefore, since it is not necessary to separately provide a control circuit for each of the first pseudo-resistance circuit and the second pseudo-resistance circuit, voltage amplification without increasing the circuit area and without saturating the output voltage by the DC offset voltage. The circuit can be configured.

本発明によれば、回路面積を大きくすることなく、直流オフセット電圧によって出力電圧を飽和させることのない電圧増幅回路を提供することが出来る。 According to the present invention, it is possible to provide a voltage amplifier circuit that does not saturate the output voltage by the DC offset voltage without increasing the circuit area.

本発明の第1の実施形態による電圧増幅回路の概略構成を示す回路図である。It is a circuit diagram which shows the schematic structure of the voltage amplifier circuit by 1st Embodiment of this invention. 本発明の第2の実施形態による電圧増幅回路の概略構成を示す回路図である。It is a circuit diagram which shows the schematic structure of the voltage amplifier circuit by 2nd Embodiment of this invention. 本発明の第3の実施形態による電圧増幅回路の概略構成を示す回路図である。It is a circuit diagram which shows the schematic structure of the voltage amplifier circuit by the 3rd Embodiment of this invention.

次に、本発明の電圧増幅回路を実施するための形態について、説明する。 Next, a mode for carrying out the voltage amplifier circuit of the present invention will be described.

図1は、本発明の第1の実施形態による電圧増幅回路1Aの概略構成を示す回路図である。 FIG. 1 is a circuit diagram showing a schematic configuration of a voltage amplifier circuit 1A according to the first embodiment of the present invention.

電圧増幅回路1Aは、演算増幅回路2、帰還容量3、入力容量4、第1疑似抵抗回路5、第2疑似抵抗回路6を備えて構成される積分回路7A、制御回路10および加算回路11を備えて構成される。 The voltage amplifier circuit 1A includes an amplifier circuit 7A, a control circuit 10 and an adder circuit 11 including an arithmetic amplifier circuit 2, a feedback capacitance 3, an input capacitance 4, a first pseudo-resistance circuit 5, and a second pseudo-resistance circuit 6. Be prepared for it.

演算増幅回路2は、反転入力端子2a、非反転入力端子2bおよび出力端子2cを備える。帰還容量3は、一方の端子が演算増幅回路2の反転入力端子2aに接続され、他方の端子が演算増幅回路2の出力端子2cに接続されている。出力端子2cは、電圧増幅回路1Aの信号出力端子Voutに接続されている。入力容量4は、一方の端子が演算増幅回路2の反転入力端子2aに接続され、他方の端子が信号入力端子Vinに接続されている。第1疑似抵抗回路5は、一方の端子5aが演算増幅回路2の反転入力端子2aに接続され、他方の端子5bが演算増幅回路2の出力端子2cに接続されている。 The arithmetic amplifier circuit 2 includes an inverting input terminal 2a, a non-inverting input terminal 2b, and an output terminal 2c. In the feedback capacitance 3, one terminal is connected to the inverting input terminal 2a of the math amplifier circuit 2, and the other terminal is connected to the output terminal 2c of the math amplifier circuit 2. The output terminal 2c is connected to the signal output terminal Vout of the voltage amplification circuit 1A. In the input capacitance 4, one terminal is connected to the inverting input terminal 2a of the arithmetic amplifier circuit 2, and the other terminal is connected to the signal input terminal Vin. In the first pseudo-resistance circuit 5, one terminal 5a is connected to the inverting input terminal 2a of the arithmetic amplifier circuit 2, and the other terminal 5b is connected to the output terminal 2c of the arithmetic amplification circuit 2.

積分回路7Aは、第2疑似抵抗回路6とコンデンサ8から構成されるローパスフィルタと、演算増幅回路9とから構成される。演算増幅回路9は、反転入力端子9a、非反転入力端子9bおよび出力端子9cを備える。第2疑似抵抗回路6は、一方の端子6aが演算増幅回路2の出力端子2cに接続され、他方の端子6bが演算増幅回路9の反転入力端子9aに接続されている。コンデンサ8は、一方の端子が演算増幅回路9の反転入力端子9aに接続され、他方の端子6bが演算増幅回路9の出力端子9cに接続されている。演算増幅回路9の非反転入力端子9bは基準電位に接続されている。積分回路7Aは、演算増幅回路2の出力端子2cに現れる出力電圧のうちの信号帯域または信号帯域より高い周波数成分を減衰させた信号を出力する。つまり、積分回路7Aは、演算増幅回路2の出力端子2cに現れる出力電圧のうちの信号帯域より低い周波数成分を出力する。 The integrator circuit 7A is composed of a low-pass filter composed of a second pseudo-resistance circuit 6 and a capacitor 8, and an arithmetic amplifier circuit 9. The arithmetic amplifier circuit 9 includes an inverting input terminal 9a, a non-inverting input terminal 9b, and an output terminal 9c. In the second pseudo-resistance circuit 6, one terminal 6a is connected to the output terminal 2c of the arithmetic amplifier circuit 2, and the other terminal 6b is connected to the inverting input terminal 9a of the arithmetic amplifier circuit 9. One terminal of the capacitor 8 is connected to the inverting input terminal 9a of the math amplifier circuit 9, and the other terminal 6b is connected to the output terminal 9c of the math amplifier circuit 9. The non-inverting input terminal 9b of the math amplifier circuit 9 is connected to a reference potential. The integrator circuit 7A outputs a signal in which a frequency component higher than the signal band or the signal band of the output voltage appearing in the output terminal 2c of the arithmetic amplifier circuit 2 is attenuated. That is, the integrating circuit 7A outputs a frequency component lower than the signal band of the output voltage appearing in the output terminal 2c of the arithmetic amplifier circuit 2.

制御回路10は、1つ設けられ、第1疑似抵抗回路5および第2疑似抵抗回路6によって生成される各疑似抵抗の端子間への印加電圧変化による疑似抵抗値変動を抑制して、第1疑似抵抗回路5および第2疑似抵抗回路6の各電圧依存性を補償する。加算回路11は、積分回路7Aの出力を演算増幅回路2の反転入力端子2aまたは非反転入力端子2bの電位に加算する。本実施形態では、加算回路11は、演算増幅回路9の出力端子9cと演算増幅回路2の非反転入力端子2bとを接続する配線および演算増幅回路2の非反転入力端子2bによって構成され、積分回路7Aの出力を演算増幅回路2の非反転入力端子2bの電位に加算する。 One control circuit 10 is provided, and the pseudo-resistance value fluctuation due to the change in the applied voltage between the terminals of each pseudo-resistance generated by the first pseudo-resistance circuit 5 and the second pseudo-resistance circuit 6 is suppressed, and the first control circuit 10 is provided. The voltage dependence of the pseudo-resistance circuit 5 and the second pseudo-resistance circuit 6 is compensated. The adder circuit 11 adds the output of the integrator circuit 7A to the potential of the inverting input terminal 2a or the non-inverting input terminal 2b of the arithmetic amplifier circuit 2. In the present embodiment, the adder circuit 11 is composed of a wiring connecting the output terminal 9c of the math amplifier circuit 9 and the non-inverting input terminal 2b of the math amplifier circuit 2 and the non-inverting input terminal 2b of the math amplifier circuit 2 for integration. The output of the circuit 7A is added to the potential of the non-inverting input terminal 2b of the arithmetic amplifier circuit 2.

第1疑似抵抗回路5および第2疑似抵抗回路6は、本実施形態では、電界効果トランジスタにおけるドレイン・ソース間の抵抗成分を疑似抵抗とし、特許文献1に開示された電圧増幅回路におけるものと同様な構成をしている。すなわち、第1疑似抵抗回路5および第2疑似抵抗回路6は、それぞれ、図示しない第1の電界効果トランジスタおよび第2の電界効果トランジスタを備えて構成される。第1の電界効果トランジスタおよび第2の電界効果トランジスタは、典型的には、同じ型のMOSFETである。第1の電界効果トランジスタおよび第2の電界効果トランジスタは、それぞれ、弱反転領域で動作させることによって高抵抗の擬似抵抗素子として機能する。第1疑似抵抗回路5を構成する第1の電界効果トランジスタのドレイン端子Dは、第1疑似抵抗回路5の他方の端子5bに接続され、ソース端子Sは、第1疑似抵抗回路5の一方の端子5aに接続される。また、ゲート端子Gは、制御回路10に接続される。また、第2疑似抵抗回路6を構成する第2の電界効果トランジスタのドレイン端子Dは、第2疑似抵抗回路6の他方の端子6bに接続され、ソース端子Sは、第2疑似抵抗回路6の一方の端子6aに接続される。また、ゲート端子Gは、制御回路10に接続される。 In the present embodiment, the first pseudo-resistance circuit 5 and the second pseudo-resistance circuit 6 have a resistance component between the drain and the source of the field-effect transistor as a pseudo-resistance, and are the same as those in the voltage amplifier circuit disclosed in Patent Document 1. It has a good structure. That is, the first pseudo-resistance circuit 5 and the second pseudo-resistance circuit 6 are configured to include a first field-effect transistor and a second field-effect transistor (not shown, respectively). The first field effect transistor and the second field effect transistor are typically MOSFETs of the same type. The first field-effect transistor and the second field-effect transistor each function as a high-resistance pseudo-resistance element by operating in a weak inversion region. The drain terminal D of the first field effect transistor constituting the first pseudo-resistance circuit 5 is connected to the other terminal 5b of the first pseudo-resistance circuit 5, and the source terminal S is one of the first pseudo-resistance circuits 5. It is connected to the terminal 5a. Further, the gate terminal G is connected to the control circuit 10. Further, the drain terminal D of the second field effect transistor constituting the second pseudo resistance circuit 6 is connected to the other terminal 6b of the second pseudo resistance circuit 6, and the source terminal S is the second pseudo resistance circuit 6. It is connected to one of the terminals 6a. Further, the gate terminal G is connected to the control circuit 10.

制御回路10は、一方の端子10aが第1疑似抵抗回路5の一方の端子5aに、他方の端子10bが第1疑似抵抗回路5の他方の端子5bに接続され、特許文献1に開示された電圧増幅回路における歪補償バイアス源と同様な動作をする。すなわち、制御回路10は、第1の電界効果トランジスタの特性を基に、一方の端子10aと他方の端子10bの各電圧から第1の電界効果トランジスタおよび第2の電界効果トランジスタの各ゲート電圧を生成し、第1の電界効果トランジスタおよび第2の電界効果トランジスタに印加することで、第1の電界効果トランジスタおよび第2の電界効果トランジスタの各擬似抵抗値を所定値に安定的に維持させる。 In the control circuit 10, one terminal 10a is connected to one terminal 5a of the first pseudo-resistance circuit 5, and the other terminal 10b is connected to the other terminal 5b of the first pseudo-resistance circuit 5, and is disclosed in Patent Document 1. It operates in the same way as a distortion compensation bias source in a voltage amplification circuit. That is, the control circuit 10 sets each gate voltage of the first field effect transistor and the second field effect transistor from the respective voltages of one terminal 10a and the other terminal 10b based on the characteristics of the first field effect transistor. By generating and applying it to the first field-effect transistor and the second field-effect transistor, the pseudo-resistance values of the first field-effect transistor and the second field-effect transistor are stably maintained at predetermined values.

第1疑似抵抗回路5および第2疑似抵抗回路6は、それらを構成する第1の電界効果トランジスタおよび第2の電界効果トランジスタに印加するゲート電圧が制御回路10によって制御されることで、ドレイン・ソース間に形成されるチャネルの抵抗値、つまり、疑似抵抗値が制御される。制御回路10によって第1の電界効果トランジスタおよび第2の電界効果トランジスタに印加するゲート電圧が低く設定されると、それぞれのゲート電極下のチャネル領域の反転状態がより深い弱反転状態となって、それぞれのドレイン・ソース間に疑似抵抗として現れるチャネル抵抗成分は高抵抗となる。このチャネル抵抗成分は、第1の電界効果トランジスタおよび第2の電界効果トランジスタの各ゲート電圧に応じて変化するため、第1の電界効果トランジスタのドレイン・ソース間に印加される電圧変化に応じて、制御回路10によって第1の電界効果トランジスタおよび第2の電界効果トランジスタの各ゲート電圧を制御することで、一定に保つことが可能となる。 The first pseudo-resistance circuit 5 and the second pseudo-resistance circuit 6 are drained by controlling the gate voltage applied to the first field-effect transistor and the second field-effect transistor constituting them by the control circuit 10. The resistance value of the channel formed between the sources, that is, the pseudo resistance value is controlled. When the gate voltage applied to the first field effect transistor and the second field effect transistor is set low by the control circuit 10, the inversion state of the channel region under each gate electrode becomes a deeper weak inversion state. The channel resistance component that appears as a pseudo-resistance between each drain source becomes a high resistance. Since this channel resistance component changes according to each gate voltage of the first field effect transistor and the second field effect transistor, it changes according to the voltage change applied between the drain and the source of the first field effect transistor. By controlling each gate voltage of the first field effect transistor and the second field effect transistor by the control circuit 10, it is possible to keep the gate voltage constant.

このような本実施形態による電圧増幅回路1Aによれば、演算増幅回路2の反転入力端子2aおよび非反転入力端子2bに現れる直流オフセット電圧は、その出力端子2cに現れる出力電圧の信号帯域より低い周波数成分が積分回路7Aによって取り出され、その積分回路7Aの出力が、演算増幅回路2の反転入力端子2aまたは非反転入力端子2bの電位に加算回路11によって加算されて負帰還されることで、低減される。このため、演算増幅回路2の反転入力端子2aおよび非反転入力端子2bに現れる直流オフセット電圧によって、出力端子2cに現れる出力電圧を飽和させてしまう従来の問題は解消される。 According to the voltage amplification circuit 1A according to the present embodiment, the DC offset voltage appearing in the inverting input terminal 2a and the non-inverting input terminal 2b of the arithmetic amplification circuit 2 is lower than the signal band of the output voltage appearing in the output terminal 2c. The frequency component is taken out by the amplifier circuit 7A, and the output of the amplifier circuit 7A is added to the potential of the inverting input terminal 2a or the non-inverting input terminal 2b of the arithmetic amplifier circuit 2 by the adder circuit 11 and negatively fed back. It will be reduced. Therefore, the conventional problem that the output voltage appearing in the output terminal 2c is saturated by the DC offset voltage appearing in the inverting input terminal 2a and the non-inverting input terminal 2b of the arithmetic amplifier circuit 2 is solved.

この際、演算増幅回路2の反転入力端子2aおよび出力端子2c間に並列に第1疑似抵抗回路5が接続されるため、信号入力端子Vinに接続される入力容量4に入力される信号周波数が低い場合にも、第1疑似抵抗回路5によって生成される高抵抗の疑似抵抗と帰還容量3とによって演算増幅回路2のカットオフ周波数を下げることができるので、低周波数の入力信号を電圧増幅することができる。また、積分回路7A中のローパスフィルタに用いられる抵抗には、第2疑似抵抗回路6によって生成される高抵抗の疑似抵抗が用いられるため、大きな回路面積を使って高抵抗の抵抗を形成することなく、出力端子2cに現れる出力電圧のうちの信号帯域より低い周波数成分を積分回路7Aにおいて効果的に取り出すことができる。 At this time, since the first pseudo-resistance circuit 5 is connected in parallel between the inverting input terminal 2a and the output terminal 2c of the arithmetic amplifier circuit 2, the signal frequency input to the input capacitance 4 connected to the signal input terminal Vin is set. Even when it is low, the cutoff frequency of the arithmetic amplifier circuit 2 can be lowered by the high resistance pseudo-resistance generated by the first pseudo-resistance circuit 5 and the feedback capacitance 3, so that the low-frequency input signal is voltage-amplified. be able to. Further, since the high resistance pseudo resistance generated by the second pseudo resistance circuit 6 is used as the resistance used for the low-pass filter in the integrator circuit 7A, a high resistance resistance is formed by using a large circuit area. Instead, the frequency component lower than the signal band of the output voltage appearing in the output terminal 2c can be effectively taken out in the integrating circuit 7A.

また、第1疑似抵抗回路5の他方の端子5bと、第2疑似抵抗回路6の一方の端子6aとは相互に接続されるため、同電位になる。また、第1疑似抵抗回路5の一方の端子5aが接続される演算増幅回路2の反転入力端子2aと、第2疑似抵抗回路6の他方の端子6bが積分回路7Aを介して接続される演算増幅回路2の非反転入力端子2bとは、演算増幅回路2の反転入力端子2aおよび非反転入力端子2b間のイマジナリーショートによって同電位となる。また、第2疑似抵抗回路6の他方の端子6bと演算増幅回路2の非反転入力端子2bとの間には積分回路7Aが存在するが、この積分回路7Aによって、出力電圧のうちの信号帯域より低い周波数成分が演算増幅回路2の非反転入力端子2bに負帰還される電圧は、負帰還ループにおけるループゲインによってごく小さな値に低減される。したがって、第2疑似抵抗回路6の他方の端子6bと演算増幅回路2の非反転入力端子2bとの間における電圧降下はごく僅かなため、第2疑似抵抗回路6の他方の端子6bと演算増幅回路2の非反転入力端子2bとはほぼ同電位と考えられる。この結果、第1疑似抵抗回路5の端子間電圧Vaと、第2疑似抵抗回路6の端子間電圧Vbとは略等しく、第1疑似抵抗回路5および第2疑似抵抗回路6によって略同じ値の疑似抵抗が生成されるものと、考えることができる。 Further, since the other terminal 5b of the first pseudo-resistance circuit 5 and the one terminal 6a of the second pseudo-resistance circuit 6 are connected to each other, they have the same potential. Further, an operation in which the inverting input terminal 2a of the arithmetic amplifier circuit 2 to which one terminal 5a of the first pseudo-resistance circuit 5 is connected and the other terminal 6b of the second pseudo-resistance circuit 6 are connected via the integration circuit 7A. The non-inverting input terminal 2b of the amplifier circuit 2 has the same potential due to an imaginary short circuit between the inverting input terminal 2a and the non-inverting input terminal 2b of the amplifier circuit 2. Further, an integrated circuit 7A exists between the other terminal 6b of the second pseudo-resistance circuit 6 and the non-inverting input terminal 2b of the arithmetic amplifier circuit 2. However, the signal band of the output voltage is provided by the integrated circuit 7A. The voltage at which the lower frequency component is negatively fed back to the non-inverting input terminal 2b of the arithmetic amplifier circuit 2 is reduced to a very small value by the loop gain in the negative feedback loop. Therefore, since the voltage drop between the other terminal 6b of the second pseudo-resistance circuit 6 and the non-inverting input terminal 2b of the arithmetic amplification circuit 2 is very small, the other terminal 6b of the second pseudo-resistance circuit 6 and the arithmetic amplification are amplified. It is considered that the potential is substantially the same as that of the non-inverting input terminal 2b of the circuit 2. As a result, the voltage between the terminals of the first pseudo-resistance circuit 5 Va and the voltage Vb between the terminals of the second pseudo-resistance circuit 6 are substantially equal to each other, and the values are substantially the same depending on the first pseudo-resistance circuit 5 and the second pseudo-resistance circuit 6. It can be considered that a pseudo resistance is generated.

よって、第1疑似抵抗回路5および第2疑似抵抗回路6によって生成される各疑似抵抗の端子間への印加電圧変化による疑似抵抗値変動は、1つの制御回路10の制御によって抑制して、第1疑似抵抗回路5および第2疑似抵抗回路6の各電圧依存性を補償することができる。このため、第1疑似抵抗回路5および第2疑似抵抗回路6のそれぞれに別個に制御回路10を設ける必要がないので、回路面積を大きくすることなく、直流オフセット電圧によって出力電圧を飽和させることのない電圧増幅回路1Aを構成することができる。 Therefore, the fluctuation of the pseudo-resistance value due to the change in the applied voltage between the terminals of the pseudo-resistance generated by the first pseudo-resistance circuit 5 and the second pseudo-resistance circuit 6 is suppressed by the control of one control circuit 10, and the second pseudo-resistance circuit 10 is controlled. It is possible to compensate for each voltage dependence of the 1 pseudo-resistance circuit 5 and the 2nd pseudo-resistance circuit 6. Therefore, since it is not necessary to separately provide the control circuit 10 for each of the first pseudo-resistance circuit 5 and the second pseudo-resistance circuit 6, the output voltage can be saturated by the DC offset voltage without increasing the circuit area. No voltage amplification circuit 1A can be configured.

次に、本発明の第2の実施形態による電圧増幅回路について説明する。 Next, the voltage amplifier circuit according to the second embodiment of the present invention will be described.

図2は、本発明の第2の実施形態による電圧増幅回路1Bの概略構成を示す回路図である。なお、図2において図1と同一または相当する部分には同一符号を付してその説明は省略する。 FIG. 2 is a circuit diagram showing a schematic configuration of a voltage amplifier circuit 1B according to a second embodiment of the present invention. In FIG. 2, the same or corresponding parts as those in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted.

第2の実施形態による電圧増幅回路1Bは、積分回路7Bの構成が第1の実施形態による電圧増幅回路1Aの積分回路7Aの構成と異なる。また、DCサーボループによる負帰還が、第1の実施形態による電圧増幅回路1Aでは、演算増幅回路2の出力を演算増幅回路9で反転して、加算回路11によって演算増幅回路2の非反転入力端子2bに帰還させることで行われたが、第2の実施形態による電圧増幅回路1Bでは、演算増幅回路2の出力を演算増幅回路9で反転せずに、加算回路11によって演算増幅回路2の反転入力端子2aに帰還させることで行われる。第2の実施形態による電圧増幅回路1Bは、これら以外の構成は、第1の実施形態による電圧増幅回路1Aと同様である。 In the voltage amplification circuit 1B according to the second embodiment, the configuration of the integrator circuit 7B is different from the configuration of the integrator circuit 7A of the voltage amplification circuit 1A according to the first embodiment. Further, in the voltage amplification circuit 1A according to the first embodiment, the negative feedback by the DC servo loop is inverted by the arithmetic amplifier circuit 9 in the output of the arithmetic amplification circuit 2, and the non-inverting input of the arithmetic amplification circuit 2 by the addition circuit 11. This was done by feeding back to the terminal 2b, but in the voltage amplifier circuit 1B according to the second embodiment, the output of the math amplifier circuit 2 is not inverted by the math amplifier circuit 9, but the math amplifier circuit 2 is connected by the adder circuit 11. This is done by feeding back to the inverting input terminal 2a. The voltage amplification circuit 1B according to the second embodiment has the same configuration as the voltage amplification circuit 1A according to the first embodiment except for these.

積分回路7Bは、第2疑似抵抗回路6によって生成される疑似抵抗を抵抗分とする一次CRフィルタ12を、演算増幅回路2の出力端子2cとの間に備える。一次CRフィルタ12は、第2疑似抵抗回路6とコンデンサ13とから構成される。一次CRフィルタ12の出力は、演算増幅回路9の非反転入力端子9bに与えられる。演算増幅回路9の出力端子9cと反転入力端子9aとの間にはコンデンサ14が接続され、演算増幅回路9の反転入力端子9aと基準電位との間には抵抗15が接続されている。また、演算増幅回路9の出力端子9cに出力される電圧は直列接続された抵抗16,17で分圧されて、演算増幅回路2の反転入力端子2aに与えられる。 The integrator circuit 7B is provided with a primary CR filter 12 having a pseudo-resistance generated by the second pseudo-resistance circuit 6 as a resistance component between the output terminal 2c of the arithmetic amplifier circuit 2 and the output terminal 2c of the arithmetic amplifier circuit 2. The primary CR filter 12 is composed of a second pseudo-resistance circuit 6 and a capacitor 13. The output of the primary CR filter 12 is given to the non-inverting input terminal 9b of the arithmetic amplifier circuit 9. A capacitor 14 is connected between the output terminal 9c of the math amplifier circuit 9 and the inverting input terminal 9a, and a resistor 15 is connected between the inverting input terminal 9a of the math amplifier circuit 9 and the reference potential. Further, the voltage output to the output terminal 9c of the math amplifier circuit 9 is divided by the resistors 16 and 17 connected in series and given to the inverting input terminal 2a of the math amplifier circuit 2.

このような第2の実施形態による電圧増幅回路1Bにおいても、演算増幅回路2の反転入力端子2aおよび非反転入力端子2bに現れる直流オフセット電圧は、その出力端子2cに現れる出力電圧の信号帯域より低い周波数成分が積分回路7Bによって取り出され、その積分回路7Bの出力が、演算増幅回路2の反転入力端子2aの電位に加算回路11によって加算されて負帰還されることで、低減される。このため、演算増幅回路2の反転入力端子2aおよび非反転入力端子2bに現れる直流オフセット電圧によって、出力端子2cに現れる出力電圧を飽和させてしまう従来の問題は解消される。 Even in the voltage amplification circuit 1B according to the second embodiment, the DC offset voltage appearing in the inverting input terminal 2a and the non-inverting input terminal 2b of the arithmetic amplification circuit 2 is from the signal band of the output voltage appearing in the output terminal 2c. The low frequency component is taken out by the amplifier circuit 7B, and the output of the amplifier circuit 7B is reduced by being added to the potential of the inverting input terminal 2a of the amplifier circuit 2 by the amplifier circuit 11 and negatively fed back. Therefore, the conventional problem that the output voltage appearing in the output terminal 2c is saturated by the DC offset voltage appearing in the inverting input terminal 2a and the non-inverting input terminal 2b of the arithmetic amplifier circuit 2 is solved.

また、積分回路7B中でローパスフィルタとして用いられる一次CRフィルタ12の抵抗には、第2疑似抵抗回路6によって生成される高抵抗の疑似抵抗が用いられるため、大きな回路面積を使って高抵抗の抵抗を形成することなく、出力端子2cに現れる出力電圧のうちの信号帯域より低い周波数成分を積分回路7Bにおいて効果的に取り出すことができる。 Further, since the high resistance pseudo-resistance generated by the second pseudo-resistance circuit 6 is used for the resistance of the primary CR filter 12 used as the low-pass filter in the integrator circuit 7B, a large circuit area is used to obtain high resistance. The frequency component lower than the signal band of the output voltage appearing in the output terminal 2c can be effectively taken out in the integrating circuit 7B without forming a resistor.

また、第1疑似抵抗回路5および第2疑似抵抗回路6によって生成される各疑似抵抗の端子間への印加電圧変化による疑似抵抗値変動は、1つの制御回路10の制御によって抑制して、第1疑似抵抗回路5および第2疑似抵抗回路6の各電圧依存性を補償することができる。このため、第1疑似抵抗回路5および第2疑似抵抗回路6のそれぞれに別個に制御回路10を設ける必要がないので、回路面積を大きくすることなく、直流オフセット電圧によって出力電圧を飽和させることのない電圧増幅回路1Bを構成することができる。 Further, the fluctuation of the pseudo-resistance value due to the change in the applied voltage between the terminals of the pseudo-resistance generated by the first pseudo-resistance circuit 5 and the second pseudo-resistance circuit 6 is suppressed by the control of one control circuit 10, and the first pseudo-resistance circuit 10 is controlled. It is possible to compensate for each voltage dependence of the 1 pseudo-resistance circuit 5 and the 2nd pseudo-resistance circuit 6. Therefore, since it is not necessary to separately provide the control circuit 10 for each of the first pseudo-resistance circuit 5 and the second pseudo-resistance circuit 6, the output voltage can be saturated by the DC offset voltage without increasing the circuit area. No voltage amplification circuit 1B can be configured.

さらに、第2の実施形態による電圧増幅回路1Bよれば、演算増幅回路2の出力端子2cに現れる出力電圧のうちの交流成分は、高抵抗の抵抗分を持つ一次CRフィルタ12によって減衰させられる。このため、積分回路7Bに入力される交流信号成分の振幅が小さくなるので、積分回路7Bの構成を簡素にして回路面積を小さくすることができ、さらに、消費電力を低減することができる。 Further, according to the voltage amplification circuit 1B according to the second embodiment, the AC component of the output voltage appearing in the output terminal 2c of the arithmetic amplification circuit 2 is attenuated by the primary CR filter 12 having a resistance component of high resistance. Therefore, since the amplitude of the AC signal component input to the integrating circuit 7B becomes small, the configuration of the integrating circuit 7B can be simplified, the circuit area can be reduced, and the power consumption can be reduced.

次に、本発明の第3の実施形態による電圧増幅回路について説明する。 Next, the voltage amplifier circuit according to the third embodiment of the present invention will be described.

図3は、本発明の第3の実施形態による電圧増幅回路1Cの概略構成を示す回路図である。なお、図3において図1と同一または相当する部分には同一符号を付してその説明は省略する。 FIG. 3 is a circuit diagram showing a schematic configuration of a voltage amplifier circuit 1C according to a third embodiment of the present invention. In FIG. 3, the same or corresponding parts as those in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted.

第3の実施形態による電圧増幅回路1Cは、入力容量4に代えて圧電素子18が演算増幅回路2の反転入力端子2aに接続されている点が、第1の実施形態による電圧増幅回路1Aと異なる。その他の構成は第1の実施形態による電圧増幅回路1Aと同様である。 In the voltage amplification circuit 1C according to the third embodiment, the point that the piezoelectric element 18 is connected to the inverting input terminal 2a of the arithmetic amplification circuit 2 instead of the input capacitance 4 is the same as the voltage amplification circuit 1A according to the first embodiment. different. Other configurations are the same as those of the voltage amplifier circuit 1A according to the first embodiment.

第3の実施形態による電圧増幅回路1Cでは、入力容量4が圧電素子18の有する容量によって構成される。このような第3の実施形態による電圧増幅回路1Cによっても、第1の実施形態による電圧増幅回路1Aと同様な作用効果が奏される。 In the voltage amplifier circuit 1C according to the third embodiment, the input capacitance 4 is configured by the capacitance of the piezoelectric element 18. The voltage amplifier circuit 1C according to the third embodiment also has the same effect as the voltage amplifier circuit 1A according to the first embodiment.

さらに、第3の実施形態による電圧増幅回路1Cによれば、圧電素子18によって検出される電荷検出信号が、圧電素子18の有する容量を入力容量として演算増幅回路2によって電圧増幅される。したがって、電圧増幅回路1Cが電荷検出回路を同時に構成するため、少ない回路素子で電荷検出回路を実現することが可能になる。また、入力容量に絶縁抵抗の低い圧電素子18を用いた場合には、演算増幅回路2の信号増幅率は、第1疑似抵抗回路5が生成する高抵抗と圧電素子18の絶縁抵抗の低い抵抗分とによって大きな値となる。したがって、直流オフセット電圧がこの大きな増幅率で増幅されて演算増幅回路2の出力端子2cに現れることとなるが、その直流オフセット電圧がDCサーボループにおける積分回路7Aで取り出されて、演算増幅回路2の非反転入力端子2bに負帰還されることで、直流オフセット電圧の出力への影響は低減される。このため、入力容量に絶縁抵抗の低い圧電素子18を用いても、演算増幅回路2の出力端子2cに現れる出力電圧が飽和することなく、信号増幅を行うことが可能となる。 Further, according to the voltage amplification circuit 1C according to the third embodiment, the charge detection signal detected by the piezoelectric element 18 is voltage-amplified by the arithmetic amplification circuit 2 with the capacitance of the piezoelectric element 18 as the input capacitance. Therefore, since the voltage amplifier circuit 1C simultaneously configures the charge detection circuit, it is possible to realize the charge detection circuit with a small number of circuit elements. Further, when the piezoelectric element 18 having a low insulating resistance is used for the input capacitance, the signal amplification factor of the arithmetic amplifier circuit 2 is the high resistance generated by the first pseudo-resistance circuit 5 and the low resistance of the insulating resistance of the piezoelectric element 18. It becomes a large value depending on the minute. Therefore, the DC offset voltage is amplified by this large amplification factor and appears at the output terminal 2c of the arithmetic amplifier circuit 2. However, the DC offset voltage is taken out by the integrating circuit 7A in the DC servo loop, and the operational amplifier circuit 2 By negatively feeding back to the non-inverting input terminal 2b of, the influence of the DC offset voltage on the output is reduced. Therefore, even if the piezoelectric element 18 having a low insulation resistance is used for the input capacitance, the signal can be amplified without the output voltage appearing in the output terminal 2c of the arithmetic amplifier circuit 2 being saturated.

1A,1B,1C…電圧増幅回路
2,9…演算増幅回路
2a,9a…反転入力端子
2b,9b…非反転入力端子
3c,9c…出力端子
3…コンデンサ(帰還容量)
4…コンデンサ(入力容量)
5…第1疑似抵抗回路
6…第2疑似抵抗回路
7A,7B…積分回路
8,13,14…コンデンサ
10…制御回路
11…加算回路
12…一次CRフィルタ
15,16,17…抵抗
18…圧電素子
1A, 1B, 1C ... Voltage amplifier circuit 2, 9 ... Arithmetic amplifier circuit 2a, 9a ... Inverted input terminal 2b, 9b ... Non-inverting input terminal 3c, 9c ... Output terminal 3 ... Capacitor (feedback capacity)
4 ... Capacitor (input capacity)
5 ... 1st pseudo-resistance circuit 6 ... 2nd pseudo-resistance circuit 7A, 7B ... Integrator circuit 8, 13, 14 ... Capacitor 10 ... Control circuit 11 ... Addition circuit 12 ... Primary CR filter 15, 16, 17 ... Resistance 18 ... Piezoelectric element

Claims (4)

反転入力端子、非反転入力端子および出力端子を備える演算増幅回路と、
一方の端子が前記演算増幅回路の反転入力端子に接続され、他方の端子が前記演算増幅回路の出力端子に接続された帰還容量と、
一方の端子が前記演算増幅回路の反転入力端子に接続され、他方の端子が信号入力端子に接続された入力容量と、
一方の端子が前記演算増幅回路の反転入力端子に接続され、他方の端子が前記演算増幅回路の出力端子に接続された第1疑似抵抗回路と、
第2疑似抵抗回路を備えて構成され、前記演算増幅回路の出力端子に現れる出力電圧のうちの信号帯域または信号帯域より高い周波数成分を減衰させた信号を出力する積分回路と、
前記第1疑似抵抗回路および前記第2疑似抵抗回路によって生成される各疑似抵抗の印加電圧変化による疑似抵抗値変動を抑制して、前記第1疑似抵抗回路および前記第2疑似抵抗回路の各電圧依存性を補償する1つの制御回路と、
前記積分回路の出力を前記演算増幅回路の反転入力端子または非反転入力端子の電位に加算する加算回路と
を備える電圧増幅回路。
An arithmetic amplifier circuit having an inverting input terminal, a non-inverting input terminal, and an output terminal,
The feedback capacitance in which one terminal is connected to the inverting input terminal of the arithmetic amplifier circuit and the other terminal is connected to the output terminal of the arithmetic amplifier circuit.
The input capacitance in which one terminal is connected to the inverting input terminal of the arithmetic amplifier circuit and the other terminal is connected to the signal input terminal,
A first pseudo-resistance circuit in which one terminal is connected to the inverting input terminal of the math amplifier circuit and the other terminal is connected to the output terminal of the math amplifier circuit.
An integrator circuit that is configured to include a second pseudo-resistance circuit and outputs a signal in which a frequency component higher than the signal band or the signal band of the output voltage appearing at the output terminal of the arithmetic amplifier circuit is attenuated, and an integrated circuit.
The voltage of each of the first pseudo-resistance circuit and the second pseudo-resistance circuit is suppressed by suppressing the fluctuation of the pseudo-resistance value due to the change in the applied voltage of each pseudo-resistance generated by the first pseudo-resistance circuit and the second pseudo-resistance circuit. One control circuit that compensates for the dependency,
A voltage amplification circuit including an adder circuit that adds the output of the integrator circuit to the potential of the inverting input terminal or the non-inverting input terminal of the arithmetic amplifier circuit.
前記第1疑似抵抗回路および前記第2疑似抵抗回路は、電界効果トランジスタにおけるドレイン・ソース端子間の抵抗成分を疑似抵抗とすることを特徴とする請求項1に記載の電圧増幅回路。 The voltage amplification circuit according to claim 1, wherein the first pseudo-resistance circuit and the second pseudo-resistance circuit have a resistance component between a drain / source terminal in a field-effect transistor as a pseudo-resistance. 前記積分回路は、前記第2疑似抵抗回路によって生成される疑似抵抗を抵抗分とするCRフィルタを前記演算増幅回路の出力端子との間に備えることを特徴とする請求項1または請求項2に記載の電圧増幅回路。 The first or second aspect of the integrated circuit is characterized in that a CR filter having a pseudo-resistance generated by the second pseudo-resistance circuit as a resistance component is provided between the integrated circuit and the output terminal of the arithmetic amplifier circuit. The voltage amplification circuit described. 前記入力容量は圧電素子の有する容量によって構成されることを特徴とする請求項1から請求項3のいずれか1項に記載の電圧増幅回路。 The voltage amplification circuit according to any one of claims 1 to 3, wherein the input capacitance is composed of the capacitance of the piezoelectric element.
JP2020147175A 2020-09-01 2020-09-01 Voltage amplifier circuit Pending JP2022041766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020147175A JP2022041766A (en) 2020-09-01 2020-09-01 Voltage amplifier circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020147175A JP2022041766A (en) 2020-09-01 2020-09-01 Voltage amplifier circuit

Publications (1)

Publication Number Publication Date
JP2022041766A true JP2022041766A (en) 2022-03-11

Family

ID=80499960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020147175A Pending JP2022041766A (en) 2020-09-01 2020-09-01 Voltage amplifier circuit

Country Status (1)

Country Link
JP (1) JP2022041766A (en)

Similar Documents

Publication Publication Date Title
TWI521323B (en) Voltage regulator
KR102150503B1 (en) Fully differential signal system including common mode feedback circuit
KR102528632B1 (en) Voltage regulator
JP2007174029A (en) Gain variable circuit and automatic gain control amplifier using the same
US8618882B2 (en) Variable gain amplifier
US8624671B2 (en) Audio amplifying circuit with improved noise performance
US8854135B2 (en) Operational amplifier with elimination of offset voltage
JP2006319388A (en) Automatic gain control circuit and sine wave oscillation circuit employing the same
US6304067B1 (en) Adding a laplace transform zero to a linear integrated circuit for frequency stability
JPH0213854B2 (en)
JP2022041766A (en) Voltage amplifier circuit
US9401679B1 (en) Apparatus and method for improving power supply rejection ratio
WO2020250349A1 (en) Constant voltage circuit and electronic device
RU2531871C1 (en) Quartz oscillator
US7633343B2 (en) Fully differential amplifier
JP4180411B2 (en) Transconductance amplifier
RU2293433C1 (en) Differential amplifier with increased weakening of input cophased signal
JP2016181884A (en) Electronic circuit
GB2158315A (en) Enchanced transconductance amplifier
JP2019118060A (en) Operational amplifier
US11689166B2 (en) Circuitry for reducing distortion over a wide frequency range
EP2849337B1 (en) Electric amplifier circuit for amplifying an output signal of a microphone
JP2011254338A (en) Semiconductor device
RU2261526C2 (en) Method for regulating voltage across drain-source electrodes of output-stage transistors in broadband power amplifier and output stage implementing it
WO2022071000A1 (en) Differential amplifier circuit

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20221101

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240301