JP2022041249A - Thermoelectric element and thermoelectric device - Google Patents

Thermoelectric element and thermoelectric device Download PDF

Info

Publication number
JP2022041249A
JP2022041249A JP2020146338A JP2020146338A JP2022041249A JP 2022041249 A JP2022041249 A JP 2022041249A JP 2020146338 A JP2020146338 A JP 2020146338A JP 2020146338 A JP2020146338 A JP 2020146338A JP 2022041249 A JP2022041249 A JP 2022041249A
Authority
JP
Japan
Prior art keywords
thermoelectric
thermoelectric element
current
magnetic field
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020146338A
Other languages
Japanese (ja)
Inventor
知 中▲辻▼
Satoru Nakatsuji
明人 酒井
Akito Sakai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Original Assignee
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC filed Critical University of Tokyo NUC
Priority to JP2020146338A priority Critical patent/JP2022041249A/en
Priority to PCT/JP2021/031369 priority patent/WO2022045249A1/en
Publication of JP2022041249A publication Critical patent/JP2022041249A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N15/00Thermoelectric devices without a junction of dissimilar materials; Thermomagnetic devices, e.g. using the Nernst-Ettingshausen effect
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N15/00Thermoelectric devices without a junction of dissimilar materials; Thermomagnetic devices, e.g. using the Nernst-Ettingshausen effect
    • H10N15/20Thermomagnetic devices using thermal change of the magnetic permeability, e.g. working above and below the Curie point
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N59/00Integrated devices, or assemblies of multiple devices, comprising at least one galvanomagnetic or Hall-effect element covered by groups H10N50/00 - H10N52/00

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

To provide a thermoelectric element and a thermoelectric device which utilize the Ettingshausen effect and have high energy efficiency.SOLUTION: A thermoelectric element 104 comprises a metalloid or a semiconductor having a bandgap of less than or equal to 0.5 eV. In the thermoelectric element, when a current I flows in one direction and a magnetic field H is applied in a direction orthogonal to the current I, temperature gradient (Tc→Th) is generated in a direction orthogonal to both the current I and the magnetic field H. A thermoelectric device includes a plurality of thermoelectric elements 104 each having a shape extending in one direction, the plurality of thermoelectric elements 104 being disposed on a substrate 102 so that the longitudinal directions of the plurality of thermoelectric elements are parallel to each other.SELECTED DRAWING: Figure 4B

Description

本発明は、熱電素子、及び熱電素子を備えた熱電装置に関する。 The present invention relates to a thermoelectric element and a thermoelectric device including the thermoelectric element.

ヒートポンプは、低温から高温へ熱を輸送するデバイスである。ヒートポンプは、これまで熱媒体を用いたものが支配的であり、気化熱及び凝縮熱による熱のやり取りと熱輸送を行う。近年、オゾン層を破壊しない代替フロンが熱媒体として用いられてきた。しかしながら、代替フロンはCOに比べてはるかに温室効果が高いため、2016年に制定されたキガリ改正(Kigali Amendment)により、代替フロンの使用量の大幅な削減が求められている。したがって、現行の代替フロンを熱媒体とした機構に代わる新たな仕組みのヒートポンプの開発が急務である。 A heat pump is a device that transports heat from low temperature to high temperature. Until now, heat pumps that use a heat medium have been predominant, and exchange heat and transfer heat by heat of vaporization and heat of condensation. In recent years, CFC substitutes that do not destroy the ozone layer have been used as heat media. However, since CFC substitutes have a much higher greenhouse effect than CO 2 , the Kigali Amendment enacted in 2016 requires a significant reduction in the amount of CFC substitutes used. Therefore, there is an urgent need to develop a heat pump with a new mechanism that replaces the current mechanism that uses CFC substitutes as a heat medium.

ヒートポンプに熱電効果を用いる研究が1950年代から続けられている。例えば、非特許文献1では、熱電効果として、ゼーベック効果(Seebeck effect)の逆過程であるペルチェ効果(Peltier effect)を用いた冷却装置が提案されている。また、別の熱電効果として、ネルンスト効果(Nernst effect)の逆過程であるエッティングスハウゼン効果(Ettingshausen Effect)を用いた冷却装置も提案されている(例えば、非特許文献2及び非特許文献3参照)。 Research on the use of the thermoelectric effect in heat pumps has been ongoing since the 1950s. For example, Non-Patent Document 1 proposes a cooling device using the Peltier effect, which is the reverse process of the Seebeck effect, as the thermoelectric effect. Further, as another thermoelectric effect, a cooling device using the Ettingshausen Effect, which is the reverse process of the Nernst effect, has also been proposed (see, for example, Non-Patent Document 2 and Non-Patent Document 3). ).

T. Metzger, R.P. Huebener,“Modelling and cooling behaviour of Peltier cascades,” Cryogenics, Volume 39, 1999, Pages 235-239.T. Metzger, R.P. Huebener, “Modeling and cooling behavior of Peltier cascades,” Cryogenics, Volume 39, 1999, Pages 235-239. B. J. O'Brien and C. S. Wallace, “Ettingshausen Effect and Thermomagnetic Cooling,” Journal of Applied Physics 29, 1958, Pages 1010-1012.B. J. O'Brien and C. S. Wallace, “Ettingshausen Effect and Thermomagnetic Cooling,” Journal of Applied Physics 29, 1958, Pages 1010-1012. R. T. Delves. “The prospects for Ettingshausen and Peltier cooling at low temperatures,” British Journal of Applied Physics, Volume 13, 1962, Pages 440-445.R. T. Delves. “The prospects for Ettingshausen and Peltier cooling at low temperatures,” British Journal of Applied Physics, Volume 13, 1962, Pages 440-445.

しかしながら、熱電効果を用いたヒートポンプは、ほとんど実用化に至っていない。特に、ペルチェ効果では、熱の輸送方向と電流が同じ方向であるため、p型半導体とn型半導体とを交互に設けた立体的で複雑な構造(図3参照)となり、多数のPN接合を必要とする。これにより、ペルチェ効果を用いた現状の冷却装置は、エネルギー効率指標である成績係数(Coefficient Of Performance:COP)が0.5程度の低い値となっている。 However, heat pumps using the thermoelectric effect have hardly been put into practical use. In particular, in the Pelche effect, since the heat transport direction and the current are in the same direction, a three-dimensional and complicated structure in which p-type semiconductors and n-type semiconductors are alternately provided (see FIG. 3) is formed, and a large number of PN junctions are formed. I need. As a result, the current cooling device using the Perche effect has a low coefficient of performance (COP) of about 0.5, which is an energy efficiency index.

本発明は、上記課題に鑑みてなされたものであり、エッティングスハウゼン効果を用いたエネルギー効率の良い熱電素子及び熱電装置を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide an energy-efficient thermoelectric element and a thermoelectric device using the Ettingshausen effect.

本発明の一実施形態に係る熱電素子は、半金属又はバンドギャップが0.5eV以下の半導体からなり、一方向に電流を流し、電流と直交する方向に磁場を印加すると、電流と磁場の双方に直交する方向に温度勾配が生じる。 The thermoelectric element according to the embodiment of the present invention is made of a semi-metal or a semiconductor having a band gap of 0.5 eV or less, and when a current is passed in one direction and a magnetic field is applied in a direction orthogonal to the current, both the current and the magnetic field are applied. A temperature gradient is generated in the direction orthogonal to.

本発明の一実施形態に係る熱電装置は、各々が一方向に延在した形状をなす複数の熱電素子を備える。複数の熱電素子は、それぞれの長手方向が平行になるように配置され、半金属又はバンドギャップが0.5eV以下の半導体からなり、それぞれの長手方向に沿った電流を流し、電流と直交する方向に磁場を印加すると、電流と磁場の双方に直交する方向に温度勾配が生じる。 The thermoelectric device according to the embodiment of the present invention includes a plurality of thermoelectric elements each having a shape extending in one direction. The plurality of thermoelectric elements are arranged so that their longitudinal directions are parallel to each other, and are made of a semi-metal or a semiconductor having a band gap of 0.5 eV or less. When a magnetic field is applied to, a temperature gradient is generated in the direction orthogonal to both the current and the magnetic field.

本発明によれば、半金属又はバンドギャップが0.5eV以下の半導体からなる熱電素子がエッティングスハウゼン効果を示すことにより、エネルギー効率を向上させることが可能となる。 According to the present invention, a thermoelectric element made of a semimetal or a semiconductor having a bandgap of 0.5 eV or less exhibits an Ettingshausen effect, so that energy efficiency can be improved.

ネルンスト効果を説明するための模式図である。It is a schematic diagram for demonstrating the Nernst effect. ゼーベック効果を説明するための模式図である。It is a schematic diagram for demonstrating the Zeebeck effect. ペルチェ効果を用いた従来のヒートポンプの概略構成を示す断面図である。It is sectional drawing which shows the schematic structure of the conventional heat pump using the Pelche effect. 第1実施形態に係る熱電装置の斜視図である。It is a perspective view of the thermoelectric device which concerns on 1st Embodiment. 図4Aに示す熱電装置を構成する複数の熱電素子の配列を示す斜視図である。It is a perspective view which shows the arrangement of the plurality of thermoelectric elements constituting the thermoelectric device shown in FIG. 4A. 図4Aに示す熱電装置を構成する複数の熱電素子の配列を示す平面図である。It is a top view which shows the arrangement of the plurality of thermoelectric elements constituting the thermoelectric device shown in FIG. 4A. CdAsからなる熱電素子を備える第1実施形態に係る熱電装置について、温度差ごとに吸熱量の電流依存性を表すグラフである。6 is a graph showing the current dependence of the amount of heat absorbed for each temperature difference in the thermoelectric device according to the first embodiment including the thermoelectric element composed of Cd 3 As 2 . CdAsからなる熱電素子を備える第1実施形態に係る熱電装置について、温度差ごとにCOPの電流依存性を表すグラフである。6 is a graph showing the current dependence of COP for each temperature difference in the thermoelectric device according to the first embodiment including the thermoelectric element composed of Cd 3 As 2 . 第2実施形態に係る熱電装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the thermoelectric device which concerns on 2nd Embodiment. 第2実施形態の変形例に係る熱電装置について、各熱電素子と永久磁石の配置を説明する模式図である。It is a schematic diagram explaining the arrangement of each thermoelectric element and a permanent magnet about the thermoelectric device which concerns on the modification of 2nd Embodiment. 第3実施形態に係る熱電装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the thermoelectric device which concerns on 3rd Embodiment. 第3実施形態の変形例に係る熱電素子の形状を示す模式図である。It is a schematic diagram which shows the shape of the thermoelectric element which concerns on the modification of 3rd Embodiment. 図10に示す熱電素子について、(放熱面の幅)/(冷却面の幅)と最大温度差との関係を表すグラフである。6 is a graph showing the relationship between (width of heat dissipation surface) / (width of cooling surface) and maximum temperature difference for the thermoelectric element shown in FIG. 10. 従来のペルチェ素子と、各実施形態(新技術)に係る各熱電素子について、無次元性能指数とカルノー効率との関係を表すグラフである。It is a graph showing the relationship between the dimensionless figure of merit and the Carnot efficiency for each conventional Pelche element and each thermoelectric element according to each embodiment (new technology).

以下、添付の図面を参照して、本発明の例示の実施形態について説明する。
図面において、同一又は同様の構成要素には同一の参照符号を付している。図面は模式的なものであり、平面寸法と厚みとの関係、及び各部材の厚みの比率は現実のものとは異なる。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
Hereinafter, exemplary embodiments of the present invention will be described with reference to the accompanying drawings.
In the drawings, the same or similar components are designated by the same reference numerals. The drawings are schematic, and the relationship between the plane dimensions and the thickness and the ratio of the thickness of each member are different from the actual ones. In addition, it goes without saying that parts having different dimensional relationships and ratios are included between the drawings.

まず、図1及び図2を参照して、ネルンスト効果及びゼーベック効果についてそれぞれ説明する。 First, the Nernst effect and the Seebeck effect will be described with reference to FIGS. 1 and 2, respectively.

ネルンスト効果とは、熱電素子に熱流が流れると、熱流及び熱電素子の磁化の双方に垂直な方向に起電力が生じる現象である。例えば、図1に示すように、直方体状の熱電素子(奥行l、幅w、厚みt)において厚み方向に熱流(∝温度差ΔT)が流れると、熱電素子の幅方向における磁化Mによりキャリアの移動方向が曲げられ、磁化Mと熱流の双方に垂直な方向に起電力Vが生じる。熱電素子のネルンスト係数をSとすると、起電力VはSΔT(l/t)である。このように、ネルンスト効果により発生する起電力Vは、熱電素子の形状因子l/tに比例する。 The Nernst effect is a phenomenon in which when a heat flow flows through a thermoelectric element, an electromotive force is generated in a direction perpendicular to both the heat flow and the magnetization of the thermoelectric element. For example, as shown in FIG. 1, when a heat flow (∝ temperature difference ΔT) flows in the thickness direction in a rectangular thermoelectric element (depth l, width w, thickness t), the carrier is subjected to magnetization M in the width direction of the thermoelectric element. The direction of movement is bent, and an electromotive force V is generated in a direction perpendicular to both the magnetization M and the heat flow. Assuming that the Nernst coefficient of the thermoelectric element is SN , the electromotive force V is SN ΔT (l / t). As described above, the electromotive force V generated by the Nernst effect is proportional to the shape factor l / t of the thermoelectric element.

一方、ゼーベック効果とは、熱電素子に熱流が流れると、キャリアが熱流に沿って移動し、熱流方向に起電力が生じる現象である。例えば、図2に示すように、直方体状の熱電素子(奥行l、幅w、厚みt)において厚み方向に熱流(∝温度差ΔT)が流れると、熱流に平行に起電力Vが生じる。熱電素子のゼーベック係数をSとすると、起電力VはSΔTである。 On the other hand, the Zeebeck effect is a phenomenon in which when a heat flow flows through a thermoelectric element, carriers move along the heat flow and an electromotive force is generated in the heat flow direction. For example, as shown in FIG. 2, when a heat flow (∝ temperature difference ΔT) flows in the thickness direction in a rectangular parallelepiped thermoelectric element (depth l, width w, thickness t), an electromotive force V is generated in parallel with the heat flow. Assuming that the Seebeck coefficient of the thermoelectric element is S, the electromotive force V is SΔT.

次に、ゼーベック効果の逆過程であるペルチェ効果を用いた従来のヒートポンプ(以下、ペルチェ冷却装置と呼ぶ。)の機構について説明する。 Next, the mechanism of a conventional heat pump (hereinafter referred to as a Pelche cooling device) using the Pelche effect, which is the reverse process of the Zeebeck effect, will be described.

図3に、従来のペルチェ冷却装置1の概略構成を示す。ペルチェ冷却装置1は、2枚の絶縁性基板3a及び3bの間に、棒状のp型半導体5pとn型半導体5nとが交互に連結され、隣接するp型半導体5pとn型半導体5nとは金属電極7で接合されている。図3に示すように直流電圧Vをかけると、n型半導体5nでは-z方向、p型半導体5pでは+z方向に電流Iが流れ、+z方向に熱が移動し、基板3a側の電極において吸熱、基板3b側の電極において放熱が起こる。このようにして、吸熱側(cold)から放熱側(hot)へ熱が輸送される。 FIG. 3 shows a schematic configuration of the conventional Pelche cooling device 1. In the Pelche cooling device 1, rod-shaped p-type semiconductors 5p and n-type semiconductors 5n are alternately connected between two insulating substrates 3a and 3b, and the adjacent p-type semiconductors 5p and n-type semiconductors 5n are It is joined by a metal electrode 7. As shown in FIG. 3, when a DC voltage V is applied, a current I flows in the −z direction in the n-type semiconductor 5n and in the + z direction in the p-type semiconductor 5p, heat moves in the + z direction, and heat is absorbed by the electrode on the substrate 3a side. , Dissipation occurs at the electrode on the substrate 3b side. In this way, heat is transported from the endothermic side (cold) to the heat dissipation side (hot).

放熱側温度をT、吸熱側温度をTとし、一対の隣接するp型及びn型半導体(以下、ペルチェ素子と呼ぶ。)の抵抗をR、熱コンダクタンスをK、ゼーベック係数をSとすると、ペルチェ素子の高温側の放熱量Q及び低温側の吸熱量Qは、それぞれ、式(1)及び式(2)のように表される。

Figure 2022041249000002
Let Th be the heat dissipation side temperature, T c be the endothermic side temperature, R be the resistance of a pair of adjacent p-type and n-type semiconductors (hereinafter referred to as Pelche elements), K be the thermal conductance, and S be the Zeebeck coefficient. The heat dissipation amount Q h on the high temperature side and the endothermic amount Q c on the low temperature side of the Pelche element are expressed as equations (1) and (2), respectively.
Figure 2022041249000002

式(1)及び式(2)の右辺第1項、第2項、及び第3項は、それぞれ、ペルチェ効果、ジュール熱、及び熱伝導(高温からの熱流入)を表している。 The first, second, and third terms on the right-hand side of equations (1) and (2) represent the Perche effect, Joule heat, and heat conduction (heat inflow from high temperature), respectively.

ペルチェ素子を構成するp型及びn型半導体の各々のx方向における幅をw、y方向における奥行をl、z方向における厚み(高さ)をtとし、ペルチェ素子の電気抵抗率をρ、熱伝導度をκとすると、ペルチェ素子の抵抗R及び熱コンダクタンスKは、式(3)のように表される。

Figure 2022041249000003
The width in the x direction of each of the p-type and n-type semiconductors constituting the Pelche element is w, the depth in the y direction is l, the thickness (height) in the z direction is t, the electrical resistivity of the Pelche element is ρ, and the heat. Assuming that the conductivity is κ, the resistivity R and the thermal conductance K of the Pelche element are expressed by the equation (3).
Figure 2022041249000003

例えば、各ペルチェ素子がBiTeからなるものとし、1つあたり1mm×1mm×1mmのサイズのペルチェ素子120組(すなわち、120組のp型及びn型半導体)から構成される40mm×40mm×4mmのサイズのモジュールを用意する。各ペルチェ素子の電気抵抗率ρを約10μΩcm、熱伝導度κを約2W/Km、ゼーベック係数Sを約200μV/Kとすると、モジュール全体での抵抗Rtot、熱コンダクタンスΚtot、及びゼーベック係数Stotは、それぞれ、約3Ω、約0.5W/K、約0.05V/Kとなる。 For example, it is assumed that each Pelche element is composed of Bi 2 Te 3 , and 40 mm × 40 mm each is composed of 120 sets of Pelche elements (that is, 120 sets of p-type and n-type semiconductors) having a size of 1 mm × 1 mm × 1 mm. Prepare a module with a size of × 4 mm. Assuming that the electrical resistivity ρ of each Pelche element is about 103 μΩcm, the thermal conductivity κ is about 2 W / Km, and the Seebeck coefficient S is about 200 μV / K, the resistance R tot , thermal conductance Κ tot , and Seebeck of the entire module The coefficients Shot are about , about 0.5W / K, and about 0.05V / K, respectively.

モジュール全体での全吸熱量をQc_totと表記する。モジュールに1Aの電流Iを流し、生じた温度差ΔT(=T-T)を2℃とすると、全吸熱量Qc_totのうち、式(2)の第1項(ペルチェ効果)は約14W、第2項(ジュール熱)は約1.5W、第3項(熱伝導)は約1Wとなる。 The total amount of heat absorbed by the entire module is expressed as Q c_tot . Assuming that a current I of 1 A is passed through the module and the generated temperature difference ΔT (= Th −T c ) is 2 ° C., the first term (Perche effect) of the equation (2) is about in the total heat absorption Q c_tot . 14W, the second term (Joule heat) is about 1.5W, and the third term (heat conduction) is about 1W.

上述のペルチェ素子からなるモジュール全体のCOPの最大値であるCOPmaxは、式(4)に示すように約4となる。

Figure 2022041249000004
The COP max , which is the maximum value of the COP of the entire module composed of the above-mentioned Pelche element, is about 4 as shown in the equation (4).
Figure 2022041249000004

このように、ペルチェ冷却装置1は多数のPN接合を設ける必要があるため、COPが低く、素子性能の低下を招いていることがわかる。また、電流I又は温度差ΔT(=T-T)が大きくなると、COPが大きく減少することがわかる。なお、上述のように、現状のペルチェ冷却装置は、COPが0.5程度である。 As described above, it can be seen that the Pelche cooling device 1 needs to be provided with a large number of PN junctions, so that the COP is low and the element performance is deteriorated. Further, it can be seen that as the current I or the temperature difference ΔT (= Th h −T c ) increases, the COP decreases significantly. As described above, the current Pelche cooling device has a COP of about 0.5.

次に、図4A~図12を参照して、ネルンスト効果の逆過程であるエッティングスハウゼン効果を用いた本発明の第1、第2及び第3実施形態を説明する。 Next, with reference to FIGS. 4A to 12, the first, second and third embodiments of the present invention using the Ettingshausen effect, which is the reverse process of the Nernst effect, will be described.

<第1実施形態>
まず、図4A~図6を参照して、本発明の第1実施形態を説明する。図4A~図4Cに、第1実施形態に係る熱電装置100の概略構成を示す。
<First Embodiment>
First, the first embodiment of the present invention will be described with reference to FIGS. 4A to 6. 4A to 4C show a schematic configuration of the thermoelectric device 100 according to the first embodiment.

熱電装置100は、エッティングスハウゼン効果を用いたヒートポンプであり、一方向(y方向)に延在した直方体状の熱電素子104を複数備える。図4A~図4Cに示すように、複数の熱電素子104は、基板102上に、それぞれの長手方向(y方向)が平行になるように、長手方向と垂直な方向(x方向)に並列に配置されている。 The thermoelectric device 100 is a heat pump using the Ettingshausen effect, and includes a plurality of rectangular parallelepiped thermoelectric elements 104 extending in one direction (y direction). As shown in FIGS. 4A to 4C, the plurality of thermoelectric elements 104 are arranged in parallel on the substrate 102 in a direction perpendicular to the longitudinal direction (x direction) so that their respective longitudinal directions (y direction) are parallel. Have been placed.

図4Cに示すように、着目する熱電素子104の+y側は、+x側に隣接する熱電素子104の-y側と銅配線106によって接続され、当該着目する熱電素子104の-y側は、-x側に隣接する熱電素子104の+y側と銅配線106によって接続される。このように、複数の熱電素子104は、同じ向き(例えば+y方向)に電流Iが流れるように、電気的に直列に接続されている。 As shown in FIG. 4C, the + y side of the thermoelectric element 104 of interest is connected to the −y side of the thermoelectric element 104 adjacent to the + x side by a copper wiring 106, and the −y side of the thermoelectric element 104 of interest is −. It is connected to the + y side of the thermoelectric element 104 adjacent to the x side by the copper wiring 106. In this way, the plurality of thermoelectric elements 104 are electrically connected in series so that the current I flows in the same direction (for example, the + y direction).

熱電素子104は、半金属又はバンドギャップが0.5eV以下の半導体からなり、使用温度において、従来のペルチェ素子よりも、移動度(電気抵抗率ρに反比例する。)が高く熱伝導度κが小さい材料からなる。ギャップレスの半金属としては、ディラック半金属(Dirac semimetal)であるCdAsの他、AgSe、AgTeなどが挙げられる。半導体材料としては、InSb、Bi0.5Sb1.5Te、AgCuSe、単体のTe、AgSiSe、又はAgSnSeなどが挙げられる。 The thermoelectric element 104 is made of a semimetal or a semiconductor having a band gap of 0.5 eV or less, and has higher mobility (inversely proportional to the electrical resistivity ρ) and higher thermal conductivity κ than the conventional Pelche element at the operating temperature. It consists of a small material. Examples of the gapless semimetal include Cd 3 As 2 which is a Dirac semimetal, Ag 2 Se, and Ag 2 Te. Examples of the semiconductor material include InSb, Bi 0.5 Sb 1.5 Te 3 , AgCuSe, simple substance Te, Ag 8 SiSe 6 , or Ag 8 SnSe 6 .

その他、本願発明者らが異常ネルンスト効果を観測した、MnSn系、フルホイスラー系CoMnGa、及びFeGa系の熱電材料についても、エッティングスハウゼン効果を用いたヒートポンプの材料候補として期待することができる。 In addition, the Mn 3 Sn-based, Full-Whisler-based Co 2 Mn Ga, and Fe 3 Ga-based thermoelectric materials in which the inventors of the present application have observed the anomalous Nernst effect are also expected as material candidates for heat pumps using the Ettingshausen effect. can do.

MnSn系の熱電材料の異常ネルンスト効果については、日本国特許第6611167号及び以下の論文に開示されている。
Muhammad Ikhlas, Takahiro Tomita, Takashi Koretsune, Michi-To Suzuki, Daisuke Nishio-Hamane, Ryotaro Arita, Yoshichika Otani and Satoru Nakatsuji, “Large anomalous Nernst effect at room temperature in a chiral antiferromagnet.” Nature Physics volume 13, pages 1085-1090 (2017).
フルホイスラー系CoMnGa、FeGa系熱電材料の異常ネルンスト効果については、それぞれ、国際公開第2019/009308号、PCT/JP2020/018010に開示されている。
The anomalous Nernst effect of Mn 3 Sn thermoelectric materials is disclosed in Japanese Patent No. 6611167 and the following papers.
Muhammad Ikhlas, Takahiro Tomita, Takashi Koretsune, Michi-To Suzuki, Daisuke Nishio-Hamane, Ryotaro Arita, Yoshichika Otani and Satoru Nakatsuji, “Large anomalous Nernst effect at room temperature in a chiral antiferromagnet.” Nature Physics volume 13, pages 1085- 1090 (2017).
The anomalous Nernst effects of full-Whisler-based Co 2 Mn Ga and Fe 3 Ga-based thermoelectric materials are disclosed in International Publication No. 2019/009308 and PCT / JP2020 / 018010, respectively.

図4Aに示すように、複数の熱電素子104の放熱側には、アルミニウム、鉄、又は銅などの高い熱伝導性を有する金属材料からなる放熱板110(ヒートシンク)が設けられており、複数の熱電素子104からの熱を放出する。図4Aでは、放熱板110の一部のみを示しているが、実際の放熱板110は、複数の熱電素子104全体を覆うように設けられている。放熱板110の放熱効率を向上させるため、表面積が広くなるような形状が採用されており、例えば、図4Aのような複数の突起部を有する構造の他、蛇腹状の構造のものがある。 As shown in FIG. 4A, a plurality of heat sinks 110 (heat sinks) made of a metal material having high thermal conductivity such as aluminum, iron, or copper are provided on the heat radiation side of the plurality of thermoelectric elements 104. Dissipate heat from the thermoelectric element 104. Although only a part of the heat sink 110 is shown in FIG. 4A, the actual heat sink 110 is provided so as to cover the entire plurality of thermoelectric elements 104. In order to improve the heat dissipation efficiency of the heat radiating plate 110, a shape having a large surface area is adopted. For example, in addition to the structure having a plurality of protrusions as shown in FIG. 4A, there is a bellows-shaped structure.

複数の熱電素子104に、例えば、それぞれの長手方向に沿った+y方向に電流Iを流し、電流Iと直交する+x方向に磁場Hを印加すると、各熱電素子104は+x方向に磁化され、電流Iと磁場Hの双方に直交するz方向に温度勾配が生じ、吸熱側(cold)から放熱側(hot)へ(+z方向へ)熱が輸送される。 When a current I is passed through the plurality of thermoelectric elements 104 in the + y direction along their respective longitudinal directions and a magnetic field H is applied in the + x direction orthogonal to the current I, each thermoelectric element 104 is magnetized in the + x direction and the current is applied. A temperature gradient is generated in the z direction orthogonal to both I and the magnetic field H, and heat is transported from the heat absorbing side (cold) to the heat dissipation side (hot) (in the + z direction).

各熱電素子104は、図4Bに示すように、x方向における幅がw、y方向における長さがl、z方向における厚みがtであるものとする。各熱電素子104の放熱側温度をT、吸熱側温度をTとし、抵抗をR、熱コンダクタンスをK、ネルンスト係数をSとすると、各熱電素子104の放熱量Q及び吸熱量Qは、それぞれ、式(5)及び式(6)のように表される。

Figure 2022041249000005
As shown in FIG. 4B, each thermoelectric element 104 has a width of w in the x direction, a length of l in the y direction, and a thickness of t in the z direction. Assuming that the heat dissipation side temperature of each thermoelectric element 104 is Th , the heat absorption side temperature is T c , the resistance is R, the thermal conductance is K, and the Nernst coefficient is SN , the heat dissipation amount Q h and the heat absorption amount Q of each thermoelectric element 104. c is expressed as the formula (5) and the formula (6), respectively.
Figure 2022041249000005

式(5)及び式(6)の右辺第1項、第2項、及び第3項は、それぞれ、エッティングスハウゼン効果、ジュール熱、及び熱伝導(高温からの熱流入)を表している。エッティングスハウゼン効果を表す第1項は、各熱電素子104の形状因子l/tに比例している。 The first, second, and third terms on the right side of equations (5) and (6) represent the Ettingshausen effect, Joule heat, and heat conduction (heat inflow from high temperature), respectively. The first term representing the Ettingshausen effect is proportional to the shape factor l / t of each thermoelectric element 104.

各熱電素子104の抵抗R及び熱コンダクタンスKは、式(7)のように表される。

Figure 2022041249000006
The resistance R and the thermal conductance K of each thermoelectric element 104 are expressed by the equation (7).
Figure 2022041249000006

図4Cに示すように、サイズが50mm×50mmの基板102の40mm×40mmの領域に、厚さt=0.5mm、幅w=0.5mm、長さl=40mmの複数の熱電素子104を平行に並べた試料を用意する。ここでは、複数の熱電素子104の長さlの合計が0.8mとなるように、20個の熱電素子104が配置されるものとする。 As shown in FIG. 4C, a plurality of thermoelectric elements 104 having a thickness of t = 0.5 mm, a width of w = 0.5 mm, and a length of l = 40 mm are placed in a 40 mm × 40 mm region of a substrate 102 having a size of 50 mm × 50 mm. Prepare samples arranged in parallel. Here, it is assumed that 20 thermoelectric elements 104 are arranged so that the total length l of the plurality of thermoelectric elements 104 is 0.8 m.

試料全体での全吸熱量をQc_totと表記する。各熱電素子104の電気抵抗率ρを100μΩcm、熱伝導度κを15W/Km、ネルンスト係数Sを200μV/Kとする。試料に0.5Tの磁場Hを印加し、1Aの電流Iを流したときに生じた温度差ΔT(=T-T)を2℃とすると、全吸熱量Qc_totのうち、式(6)の第1項(エッティングスハウゼン効果)は約96W、第2項(ジュール熱)は約1.5W、第3項(熱伝導)は約24Wとなる。試料全体の抵抗をRtotと表記すると、試料全体のCOPは、式(8)に示すように約15という大きな値をとる。

Figure 2022041249000007
The total amount of heat absorbed by the entire sample is expressed as Q c_tot . The electrical resistivity ρ of each thermoelectric element 104 is 100 μΩcm, the thermal conductivity κ is 15 W / Km, and the Nernst coefficient SN is 200 μV / K. Assuming that the temperature difference ΔT (= Th −T c ) generated when a magnetic field H of 0.5 T is applied to the sample and a current I of 1 A is passed is 2 ° C. The first term (Ettingshausen effect) of 6) is about 96 W, the second term (Joule heat) is about 1.5 W, and the third term (heat conduction) is about 24 W. When the resistance of the entire sample is expressed as R tot , the COP of the entire sample takes a large value of about 15 as shown in the equation (8).
Figure 2022041249000007

図5に、各熱電素子104がCdAsからなる上述のサイズの試料(図4C)に0.5Tの磁場を印加したときの吸熱量Qの電流依存性を温度差ΔTごとに示す。図5に示すように、同じ電流Iに対し、温度差ΔTが小さいほど吸熱量Qが大きくなる一方で、温度差ΔTが大きいほど吸熱量Qが小さくなり、低温から高温への熱輸送が困難になることがわかる。また、同じ温度差ΔTでも電流Iが10Aときに吸熱量Qが最大値をとることがわかる。この試料では最大で約70℃の温度差をつけられる。 FIG . 5 shows the current dependence of the heat absorption amount Qc when a magnetic field of 0.5 T is applied to a sample of the above size (FIG. 4C) in which each thermoelectric element 104 is made of Cd 3 As 2 for each temperature difference ΔT. .. As shown in FIG. 5, for the same current I, the smaller the temperature difference ΔT, the larger the heat absorption amount Q c , while the larger the temperature difference ΔT, the smaller the heat absorption amount Q c , and heat transport from low temperature to high temperature. Turns out to be difficult. Further, it can be seen that even with the same temperature difference ΔT, the heat absorption amount Q c takes the maximum value when the current I is 10 A. This sample can have a maximum temperature difference of about 70 ° C.

この試料について、図6に、COPの電流依存性を温度差ΔTごとに示す。図6に示すように、温度差ΔTが小さいほどCOPが高くなり、ΔT=1Kでは、COPが30を超えることがわかる。 For this sample, FIG. 6 shows the current dependence of COP for each temperature difference ΔT. As shown in FIG. 6, it can be seen that the smaller the temperature difference ΔT, the higher the COP, and when ΔT = 1K, the COP exceeds 30.

以上のように、エッティングスハウゼン効果を用いた熱電装置100によると、熱電素子104の形状因子l/tによって熱電装置100の冷却性能をコントロールすることができる。これにより、従来のペルチェ素子では実現できなかった高変換効率を実現することが可能となる。 As described above, according to the thermoelectric device 100 using the Ettingshausen effect, the cooling performance of the thermoelectric device 100 can be controlled by the shape factor l / t of the thermoelectric element 104. This makes it possible to realize high conversion efficiency that could not be realized by the conventional Pelche element.

<第2実施形態>
次に、図7及び図8を参照して、本発明の第2実施形態を説明する。
<Second Embodiment>
Next, a second embodiment of the present invention will be described with reference to FIGS. 7 and 8.

第1実施形態では、それぞれの長手方向が平行になるように配置された複数の熱電素子104は、同じ向きの電流Iが流れるように電気的に直列に接続されていたが、隣接する熱電素子に互いに逆向きの電流が流れるような回路構成を採用してもよい。 In the first embodiment, the plurality of thermoelectric elements 104 arranged so that their longitudinal directions are parallel to each other are electrically connected in series so that a current I in the same direction flows, but they are adjacent thermoelectric elements. A circuit configuration may be adopted in which currents flowing in opposite directions to each other flow.

図7に、第2実施形態に係る熱電装置200Aの概略構成を示す。熱電装置200Aは、図7に示すように、直方体状で同一サイズの複数の第1熱電素子204aと複数の第2熱電素子204bとを備え、それぞれの長手方向(y方向)が平行になるように、第1熱電素子204aと第2熱電素子204bが交互に配置されている。第1熱電素子204a及び第2熱電素子204bは、第1実施形態に係る熱電素子104と同じ材料からなる。 FIG. 7 shows a schematic configuration of the thermoelectric device 200A according to the second embodiment. As shown in FIG. 7, the thermoelectric device 200A includes a plurality of first thermoelectric elements 204a and a plurality of second thermoelectric elements 204b having a rectangular shape and the same size, and the respective longitudinal directions (y directions) are parallel to each other. The first thermoelectric element 204a and the second thermoelectric element 204b are alternately arranged. The first thermoelectric element 204a and the second thermoelectric element 204b are made of the same material as the thermoelectric element 104 according to the first embodiment.

なお、図7には示していないが、熱電装置200Aも、第1実施形態に係る熱電装置100(図4A)と同様に、複数の第1熱電素子204aと複数の第2熱電素子204bの吸熱側(cold)に基板を備え、放熱側(hot)に放熱板を備えている。後述の熱電装置200B(図8)についても同様である。 Although not shown in FIG. 7, the thermoelectric device 200A also absorbs heat from the plurality of first thermoelectric elements 204a and the plurality of second thermoelectric elements 204b, similarly to the thermoelectric device 100 (FIG. 4A) according to the first embodiment. A substrate is provided on the cold side, and a heat sink is provided on the heat dissipation side (hot). The same applies to the thermoelectric device 200B (FIG. 8) described later.

図7に示すように、着目する第1熱電素子204aの+y側は、+x側に隣接する第2熱電素子204bの+y側と銅配線206によって接続され、当該着目する第1熱電素子204aの-y側は、-x側に隣接する第2熱電素子204bの-y側と銅配線206によって接続される。このように、複数の熱電素子は、+y側同士の接続、-y側同士の接続が交互に繰り返される構造により、隣接する熱電素子に互いに逆向きに電流Iが流れるように、電気的に直列に接続されている。図7では、第1熱電素子204aに+y方向の電流Iが流れ、第2熱電素子204bに-y方向の電流Iが流れる例が示されている。 As shown in FIG. 7, the + y side of the first thermoelectric element 204a of interest is connected to the + y side of the second thermoelectric element 204b adjacent to the + x side by a copper wiring 206, and-of the first thermoelectric element 204a of interest. The y side is connected to the −y side of the second thermoelectric element 204b adjacent to the −x side by the copper wiring 206. In this way, the plurality of thermoelectric elements are electrically connected in series so that the currents I flow in opposite directions to the adjacent thermoelectric elements due to the structure in which the + y side is connected to each other and the −y side is connected to each other alternately. It is connected to the. FIG. 7 shows an example in which a current I in the + y direction flows through the first thermoelectric element 204a and a current I in the −y direction flows through the second thermoelectric element 204b.

第1熱電素子204aと第2熱電素子204bには互いに逆向きに電流Iが流れるため、エッティングスハウゼン効果によって同一方向(+z方向又は-z方向)に温度勾配を生じさせるためには、これらの熱電素子に互いに逆向きの磁場を印加する必要がある。例えば、図7に示すように、吸熱側(cold)から放熱側(hot)への方向が+z方向であるとすると、第1熱電素子204aに対して永久磁石により+x方向の磁場H1を印加し、第2熱電素子204bに対して永久磁石により-x方向の磁場H2を印加することで、第1熱電素子204aを+x方向に磁化させ、第2熱電素子204bを-x方向に磁化させる。すなわち、隣接する熱電素子に対して互いに逆向きの交替磁場が印加される。 Since the current I flows in the opposite directions to the first thermoelectric element 204a and the second thermoelectric element 204b, in order to generate a temperature gradient in the same direction (+ z direction or −z direction) due to the Ettingshausen effect, these It is necessary to apply magnetic currents in opposite directions to the thermoelectric element. For example, as shown in FIG. 7, assuming that the direction from the heat absorbing side (cold) to the heat radiating side (hot) is the + z direction, a magnetic field H1 in the + x direction is applied to the first thermoelectric element 204a by a permanent magnet. By applying a magnetic field H2 in the −x direction to the second thermoelectric element 204b with a permanent magnet, the first thermoelectric element 204a is magnetized in the + x direction and the second thermoelectric element 204b is magnetized in the −x direction. That is, alternating magnetic fields in opposite directions are applied to adjacent thermoelectric elements.

このように、熱電装置200Aを構成する複数の第1熱電素子204aと複数の第2熱電素子204bは同一面内にあるため、同一面内で交替磁場H1及びH2を印加する必要がある。しかしながら、同一面内で隣接する熱電素子に逆向きの交替磁場を印加するのは、構造上容易ではない。そこで、第1熱電素子と第2熱電素子が別々の面内に配置されるようにすれば、同一面内で同一方向の磁場を印加することができる。 As described above, since the plurality of first thermoelectric elements 204a and the plurality of second thermoelectric elements 204b constituting the thermoelectric device 200A are in the same plane, it is necessary to apply the alternating magnetic fields H1 and H2 in the same plane. However, it is structurally not easy to apply an alternating magnetic field in the opposite direction to adjacent thermoelectric elements in the same plane. Therefore, if the first thermoelectric element and the second thermoelectric element are arranged in separate planes, a magnetic field in the same direction can be applied in the same plane.

具体的には、図8に示す熱電装置200Bのように、直方体状で同一サイズの複数の第1熱電素子224aと複数の第2熱電素子224bとを設け、複数の第1熱電素子224aを、+z方向の奇数段(1段目、3段目、…)及び+x方向の奇数列(1列目、3列目、…)に配置し、複数の第2熱電素子224bを、+z方向の偶数段(2段目、4段目、…)及び+x方向の偶数列(2列目、4列目、…)に配置すればよい。すなわち、第1熱電素子224aと第2熱電素子224bは、長手方向(y方向)に垂直な第1方向(z方向)における位置が互いに異なり、且つ長手方向及び第1方向の双方に垂直な第2方向(x方向)における位置も互いに異なるように配置されている。なお、第1熱電素子224a及び第2熱電素子224bも、第1実施形態に係る熱電素子104と同じ材料からなる。 Specifically, as in the thermoelectric device 200B shown in FIG. 8, a plurality of first thermoelectric elements 224a and a plurality of second thermoelectric elements 224b having a rectangular shape and the same size are provided, and the plurality of first thermoelectric elements 224a are provided. Arranged in odd-numbered stages in the + z direction (1st stage, 3rd stage, ...) and odd-numbered rows in the + x direction (1st row, 3rd row, ...), and a plurality of second thermoelectric elements 224b are even numbers in the + z direction. It may be arranged in the columns (second column, fourth column, ...) And even columns in the + x direction (second column, fourth column, ...). That is, the first thermoelectric element 224a and the second thermoelectric element 224b have different positions in the first direction (z direction) perpendicular to the longitudinal direction (y direction), and are perpendicular to both the longitudinal direction and the first direction. The positions in the two directions (x direction) are also arranged so as to be different from each other. The first thermoelectric element 224a and the second thermoelectric element 224b are also made of the same material as the thermoelectric element 104 according to the first embodiment.

第1熱電素子224a及び第2熱電素子224bには、長手方向に沿って互いに逆向きの電流が流れる。例えば、第1熱電素子224aには、電流Iが+y方向に流れ、第2熱電素子224bには、電流Iがーy方向に流れる。 Currents flowing in opposite directions along the longitudinal direction flow through the first thermoelectric element 224a and the second thermoelectric element 224b. For example, the current I flows in the + y direction in the first thermoelectric element 224a, and the current I flows in the −y direction in the second thermoelectric element 224b.

エッティングスハウゼン効果によって同一方向(+z方向又は-z方向)に温度勾配を生じさせるためには、第1熱電素子224aと第2熱電素子224bに互いに逆向きの磁場を印加する必要がある。例えば、図8に示すように、x方向において隣接する2つの第1熱電素子224aの間に、磁化が+x方向の永久磁石226を配置し、x方向において隣接する2つの第2熱電素子224bの間に、磁化が-x方向の永久磁石226を配置すればよい。永久磁石226をこのように配置することで、交替磁場が印加されることとなる。これにより、第1熱電素子224aは+x方向に磁化され、第2熱電素子224bは-x方向に磁化される。 In order to generate a temperature gradient in the same direction (+ z direction or −z direction) by the Ettingshausen effect, it is necessary to apply magnetic fields in opposite directions to the first thermoelectric element 224a and the second thermoelectric element 224b. For example, as shown in FIG. 8, a permanent magnet 226 having a magnetization of + x direction is arranged between two first thermoelectric elements 224a adjacent to each other in the x direction, and two second thermoelectric elements 224b adjacent to each other in the x direction. A permanent magnet 226 whose magnetization is in the −x direction may be placed between them. By arranging the permanent magnets 226 in this way, an alternating magnetic field is applied. As a result, the first thermoelectric element 224a is magnetized in the + x direction, and the second thermoelectric element 224b is magnetized in the −x direction.

なお、各永久磁石226は、第1熱電素子224a及び第2熱電素子224bよりも保磁力が大きな材料からなる。また、温度勾配が生じる方向(z方向)における熱伝導度を均質にするため、各永久磁石226は、第1熱電素子224a及び第2熱電素子224bと同じ熱伝導度の材料であることが好ましい。 Each permanent magnet 226 is made of a material having a larger coercive force than the first thermoelectric element 224a and the second thermoelectric element 224b. Further, in order to make the thermal conductivity in the direction in which the temperature gradient occurs (z direction) uniform, it is preferable that each permanent magnet 226 is made of a material having the same thermal conductivity as the first thermoelectric element 224a and the second thermoelectric element 224b. ..

以上のように、同一面内で磁場の方向を揃えるように永久磁石226を配置することにより、同一面内での磁化が安定化する。 As described above, by arranging the permanent magnets 226 so that the directions of the magnetic fields are aligned in the same plane, the magnetization in the same plane is stabilized.

<第3実施形態>
次に、図9~図11を参照して、本発明の第3実施形態を説明する。
<Third Embodiment>
Next, a third embodiment of the present invention will be described with reference to FIGS. 9 to 11.

非特許文献1には、ペルチェ素子からなる板状のブロックを温度勾配が生じる方向に重ね、放熱側のブロックが吸熱側のブロックよりも幅が広い階段状に構成することで、冷却性能が増強されることが開示されている。しかしながら、上述のように、ペルチェ効果では、多数のPN接合によるロスが極めて高いことから、素子性能の低下を招いている。よって、非特許文献1のように、複数のブロックを多重連結すると、PN接合によるロスが一層大きくなってしまうという問題がある。 In Non-Patent Document 1, the cooling performance is enhanced by stacking plate-shaped blocks made of Pelche elements in the direction in which the temperature gradient is generated and forming the blocks on the heat dissipation side in a stepped shape wider than the blocks on the endothermic side. It is disclosed that it will be done. However, as described above, in the Pelche effect, the loss due to a large number of PN junctions is extremely high, which causes a decrease in device performance. Therefore, as in Non-Patent Document 1, when a plurality of blocks are multiple-connected, there is a problem that the loss due to the PN junction becomes larger.

一方、エッティングスハウゼン効果では、PN接合を必要としないため、板状の熱電素子を上述のように重ねても、素子性能が十分に発揮可能であると考えられる。そこで、第3実施形態では、エッティングスハウゼン効果を示す複数の熱電素子を重ねた構造及びそれに等価な構造について説明する。 On the other hand, since the Ettingshausen effect does not require a PN junction, it is considered that the element performance can be sufficiently exhibited even if plate-shaped thermoelectric elements are stacked as described above. Therefore, in the third embodiment, a structure in which a plurality of thermoelectric elements exhibiting the Ettingshausen effect are stacked and a structure equivalent thereto will be described.

第3実施形態に係る熱電装置300Aは、図9に示すように、温度勾配が生じる方向(x方向)に重ねられた複数の板状の熱電素子310_1、310_2、…、310_N(Nは2以上の整数)を備えており、これらの熱電素子は、いずれも第1実施形態に係る熱電素子104と同じ材料からなる。なお、熱電装置300Aを構成する熱電素子の数は特に限定されない。 As shown in FIG. 9, the thermoelectric device 300A according to the third embodiment has a plurality of plate-shaped thermoelectric elements 310_1, 310_2, ..., 310_N (N is 2 or more) stacked in a direction (x direction) in which a temperature gradient is generated. The thermoelectric element is made of the same material as the thermoelectric element 104 according to the first embodiment. The number of thermoelectric elements constituting the thermoelectric device 300A is not particularly limited.

複数の熱電素子310_1、310_2、…、310_Nは、いずれも、温度勾配が生じる方向(x方向)における厚みΔxと、電流Iが流れる方向(z方向;長手方向)における長さlが等しいが、磁場Hが印加される方向(y方向)における幅が互いに異なっている。具体的には、放熱側(hot)の熱電素子は吸熱側(cold)の熱電素子よりも幅が広く、x-y平面における断面は、左右対称な階段形状をなしている。 The plurality of thermoelectric elements 310_1, 310_2, ..., 310_N all have the same thickness Δx in the direction in which the temperature gradient occurs (x direction) and the length l in the direction in which the current I flows (z direction; longitudinal direction). The widths in the direction (y direction) in which the magnetic field H is applied are different from each other. Specifically, the thermoelectric element on the heat dissipation side (hot) is wider than the thermoelectric element on the endothermic side (cold), and the cross section in the xy plane has a symmetrical staircase shape.

熱電装置300Aを構成する各熱電素子に、それぞれの長手方向に沿った+z方向に電流Iを流し、電流Iと直交する+y方向に磁場Hを印加すると、各熱電素子は+y方向に磁化され、電流Iと磁場Hの双方に直交するx方向に温度勾配が生じ、吸熱側(cold)から放熱側(hot)へ(+x方向へ)熱が輸送される。 When a current I is passed in the + z direction along the longitudinal direction of each thermoelectric element constituting the thermoelectric device 300A and a magnetic field H is applied in the + y direction orthogonal to the current I, each thermoelectric element is magnetized in the + y direction. A temperature gradient is generated in the x direction orthogonal to both the current I and the magnetic field H, and heat is transported from the heat absorbing side (cold) to the heat dissipation side (hot) (in the + x direction).

m番目の熱電素子310_m(m=1、2、…、N)の吸熱側の位置xは(m-1)Δxである。この位置xにある熱電素子のy方向における幅をy(x)とする。各熱電素子の電気抵抗率、熱伝導度、及びネルンスト係数を、それぞれ、ρ、κ、及びSとすると、m番目の熱電素子310_mの吸熱量Q (x)及び放熱量Q (x+Δx)は、それぞれ、式(9)及び式(10)のように表される。

Figure 2022041249000008
The endothermic side position x of the m-th thermoelectric element 310_m (m = 1, 2, ..., N) is (m-1) Δx. Let y (x) be the width of the thermoelectric element at this position x in the y direction. Assuming that the electrical resistivity, thermal conductivity, and Nernst coefficient of each thermoelectric element are ρ, κ, and SN , respectively, the heat absorption amount Q cm (x) and the heat dissipation amount Q h m of the mth thermoelectric element 310_m . (X + Δx) is expressed as Eq. (9) and Eq. (10), respectively.
Figure 2022041249000008

式(9)及び式(10)において、iは電流密度であり、i=I/y(x)Δxと定義される。T(x)、T(x+Δx)は、それぞれ、m番目の熱電素子310_mの吸熱側(x)での温度、放熱側(x+Δx)での温度である。t(x)は、m番目の熱電素子310_mにおける温度勾配を表しており、式(11)のように定義される。

Figure 2022041249000009
In equations (9) and (10), i is the current density and is defined as i = I / y (x) Δx. T m (x) and T m (x + Δx) are the temperature on the endothermic side (x) and the temperature on the heat dissipation side (x + Δx) of the m-th thermoelectric element 310_m, respectively. t m (x) represents the temperature gradient in the m-th thermoelectric element 310_m, and is defined as in the equation (11).
Figure 2022041249000009

厚みΔxの小さな多数の熱電素子を重ねた構造は、図10に示すように、1つの熱電素子300Bが、吸熱側(cold)から放熱側(hot)に向けて、磁場Hが印加される方向における幅が広くなる構造と等価である。 As shown in FIG. 10, in the structure in which a large number of thermoelectric elements having a small thickness Δx are stacked, the direction in which the magnetic field H is applied from the endothermic side (cold) to the heat dissipation side (hot) of one thermoelectric element 300B. It is equivalent to the structure that widens the width in.

非特許文献2には、エッティングスハウゼン効果を示す熱電素子について、最大温度差をもたらす最適な形状が、吸熱側(cold)から放熱側(hot)に向けて幅が指数関数的に増加する形状であることが示されている。よって、熱電素子300Bをそのような形状にすればよいと考えられる。なお、熱電素子300Bも、第1実施形態に係る熱電素子104と同じ材料からなる。 In Non-Patent Document 2, for a thermoelectric element exhibiting the Ettingshausen effect, the optimum shape that brings about the maximum temperature difference is a shape in which the width increases exponentially from the endothermic side (cold) to the heat dissipation side (hot). It is shown to be. Therefore, it is considered that the thermoelectric element 300B may have such a shape. The thermoelectric element 300B is also made of the same material as the thermoelectric element 104 according to the first embodiment.

ここで、熱電素子300Bの厚みをX、x=0での冷却面320における幅をy、x=Xでの放熱面330における幅をyとする(y<y)。最適な形状の熱電素子300Bを得るためには、温度勾配が生じる方向における位置xでの熱電素子300Bの幅y(x)を式(12)のように定義すればよい。

Figure 2022041249000010
Here, the thickness of the thermoelectric element 300B is X, the width of the cooling surface 320 at x = 0 is y c , and the width of the heat dissipation surface 330 at x = X is y h (y c <y h ). In order to obtain the thermoelectric element 300B having the optimum shape, the width y (x) of the thermoelectric element 300B at the position x in the direction in which the temperature gradient is generated may be defined as in the equation (12).
Figure 2022041249000010

図11に、熱電素子300Bのy/yの値を変化させたときに得られる最大温度差ΔTmaxを示す。ここで、熱電素子300Bのネルンスト係数Sを200μV/K、電気抵抗率ρを100μΩcm、熱伝導度κを15W/Kmとし、放熱側温度Tを300Kに固定した。図11に示すように、y/yが大きくなるにつれて最大温度差ΔTmaxが大きくなることがわかる。このように、同じ性能の材料に対し、吸熱側から放熱側に向けて幅y(x)が式(12)のように指数関数的に増加する形状を採用することで、より大きな温度差を実現することができる。 FIG. 11 shows the maximum temperature difference ΔT max obtained when the value of y h / y c of the thermoelectric element 300B is changed. Here, the Nernst coefficient SN of the thermoelectric element 300B was 200 μV / K, the electrical resistivity ρ was 100 μΩcm, the thermal conductivity κ was 15 W / Km, and the heat dissipation side temperature Th was fixed at 300 K. As shown in FIG. 11, it can be seen that the maximum temperature difference ΔT max increases as y h / y c increases. In this way, by adopting a shape in which the width y (x) increases exponentially from the endothermic side to the heat dissipation side as in equation (12) for materials with the same performance, a larger temperature difference can be obtained. It can be realized.

以上のように、第1~第3実施形態に係る各熱電素子は、ペルチェ素子よりも素子構造が単純で、形状に自由度がある。特に、図10に示すような形状を採用することで、一層冷却性能を向上させることができる。 As described above, each thermoelectric element according to the first to third embodiments has a simpler element structure than the Pelche element and has a degree of freedom in shape. In particular, by adopting the shape as shown in FIG. 10, the cooling performance can be further improved.

次に、無次元性能指数(dimensionless figure of merit)とカルノー効率との関係について説明する。従来のペルチェ素子(図3)の無次元性能指数をZT(=ST/ρκ)、第1~第3実施形態に示した各熱電素子(新技術)の無次元性能指数をZT(=S T/ρκ)とし、図12に、無次元性能指数ZT及びZTとカルノー効率との関係を示す。図12より、ZTに対するカルノー効率の上昇率は、ZTに対する上昇率よりも大きいことがわかる。具体的には、従来のペルチェ素子はZT=∞で最高性能を示し、各実施形態に係る熱電素子はZT=1で最高性能を示す。ここで、ZT=1でのカルノー効率は、高温が800K、低温が300Kのときに定まる値である。 Next, the relationship between the dimensionless figure of merit and Carnot efficiency will be described. The dimensionless figure of merit of the conventional Pelche element (FIG. 3) is ZT (= S 2 T / ρκ ), and the dimensionless figure of merit of each thermoelectric element (new technology) shown in the first to third embodiments is ZNT. (= S N 2 T / ρκ), and FIG. 12 shows the relationship between the dimensionless figure of merit ZT and ZNT and the Carnot efficiency. From FIG. 12, it can be seen that the rate of increase in Carnot efficiency with respect to ZNT is greater than the rate of increase with respect to ZT. Specifically, the conventional Pelche element shows the highest performance at ZT = ∞, and the thermoelectric element according to each embodiment shows the highest performance at ZNT = 1. Here, the Carnot efficiency at ZNT = 1 is a value determined when the high temperature is 800 K and the low temperature is 300 K.

このように、第1~第3実施形態に係るエッティングスハウゼン効果を示す各熱電素子は、ペルチェ素子よりもカルノー効率が格段に良い。 As described above, each thermoelectric element exhibiting the Ettingshausen effect according to the first to third embodiments has much better Carnot efficiency than the Pelche element.

100、200A、200B、300A 熱電装置
102 基板
104、300B 熱電素子
106、206 銅配線
110 放熱板
204a、224a 第1熱電素子
204b、224b 第2熱電素子
226 永久磁石
320 冷却面
330 放熱面
100, 200A, 200B, 300A Thermoelectric device 102 Board 104, 300B Thermoelectric element 106, 206 Copper wiring 110 Heat dissipation plate 204a, 224a First thermoelectric element 204b, 224b Second thermoelectric element 226 Permanent magnet 320 Cooling surface 330 Heat dissipation surface

Claims (10)

半金属又はバンドギャップが0.5eV以下の半導体からなり、
一方向に電流を流し、前記電流と直交する方向に磁場を印加すると、前記電流と前記磁場の双方に直交する方向に温度勾配が生じる、熱電素子。
It consists of a metalloid or a semiconductor with a bandgap of 0.5 eV or less.
A thermoelectric element in which when a current is passed in one direction and a magnetic field is applied in a direction orthogonal to the current, a temperature gradient is generated in a direction orthogonal to both the current and the magnetic field.
前記一方向に延在した形状をなす、請求項1に記載の熱電素子。 The thermoelectric element according to claim 1, which has a shape extending in one direction. 前記熱電素子は、吸熱側から放熱側に向けて、前記磁場が印加される方向における幅が広くなる形状である、請求項1又は2に記載の熱電素子。 The thermoelectric element according to claim 1 or 2, wherein the thermoelectric element has a shape in which the width increases in the direction in which the magnetic field is applied from the endothermic side to the heat dissipation side. 前記磁場が印加される方向における幅は、前記温度勾配が生じる方向に対して指数関数的に変化する、請求項3に記載の熱電素子。 The thermoelectric element according to claim 3, wherein the width in the direction in which the magnetic field is applied changes exponentially with respect to the direction in which the temperature gradient is generated. 前記半金属又は前記半導体は、CdAs、AgSe、AgTe、InSb、Bi0.5Sb1.5Te、AgCuSe、Te、AgSiSe、又はAgSnSeである、請求項1~4の何れか1項に記載の熱電素子。 The metalloid or semiconductor is Cd 3 As 2 , Ag 2 Se, Ag 2 Te, InSb, Bi 0.5 Sb 1.5 Te 3 , AgCuSe, Te, Ag 8 SiSe 6 , or Ag 8 SnSe 6 . , The thermoelectric element according to any one of claims 1 to 4. 各々が一方向に延在した形状をなす複数の熱電素子を備える熱電装置であって、
前記複数の熱電素子は、
それぞれの長手方向が平行になるように配置され、
請求項1~5の何れか1項に記載の熱電素子と同一の材料からなり、
前記それぞれの長手方向に沿った電流を流し、前記電流と直交する方向に磁場を印加すると、前記電流と前記磁場の双方に直交する方向に温度勾配が生じる、熱電装置。
A thermoelectric device including a plurality of thermoelectric elements, each of which has a shape extending in one direction.
The plurality of thermoelectric elements are
Arranged so that their longitudinal directions are parallel,
It is made of the same material as the thermoelectric element according to any one of claims 1 to 5.
A thermoelectric device in which when a current is passed along each of the longitudinal directions and a magnetic field is applied in a direction orthogonal to the current, a temperature gradient is generated in a direction orthogonal to both the current and the magnetic field.
前記複数の熱電素子は、同じ向きに前記電流が流れるように電気的に直列に接続され、前記電流と直交する同一の方向に前記磁場が印加される、請求項6に記載の熱電装置。 The thermoelectric device according to claim 6, wherein the plurality of thermoelectric elements are electrically connected in series so that the current flows in the same direction, and the magnetic field is applied in the same direction orthogonal to the current. 前記複数の熱電素子は、隣接する熱電素子に対して互いに逆向きの前記電流が流れるように電気的に直列に接続され、
前記隣接する熱電素子に対し、前記電流と直交する互いに逆向きの交替磁場が印加される、請求項6に記載の熱電装置。
The plurality of thermoelectric elements are electrically connected in series so that the currents flowing in opposite directions to the adjacent thermoelectric elements flow.
The thermoelectric device according to claim 6, wherein an alternating magnetic field orthogonal to the current is applied to the adjacent thermoelectric elements.
前記複数の熱電素子は、第1熱電素子及び第2熱電素子を含み、
前記第1熱電素子及び前記第2熱電素子は、
前記長手方向に垂直な第1方向における位置が互いに異なり、且つ前記長手方向及び前記第1方向の双方に垂直な第2方向における位置が互いに異なるように配置されており、
前記第1熱電素子と前記第2熱電素子に対して、前記長手方向に沿って互いに逆向きの前記電流を流し、且つ、前記第1方向に沿って互いに逆向きの交替磁場を印加すると、前記第1熱電素子と前記第2熱電素子の各々に、前記第2方向に沿った温度勾配が生じる、請求項6に記載の熱電装置。
The plurality of thermoelectric elements include a first thermoelectric element and a second thermoelectric element.
The first thermoelectric element and the second thermoelectric element are
The positions in the first direction perpendicular to the longitudinal direction are different from each other, and the positions in the second direction perpendicular to both the longitudinal direction and the first direction are different from each other.
When the currents in opposite directions are passed along the longitudinal direction to the first thermoelectric element and the second thermoelectric element, and alternating magnetic fields in opposite directions are applied along the first direction. The thermoelectric device according to claim 6, wherein a temperature gradient is generated in each of the first thermoelectric element and the second thermoelectric element along the second direction.
前記複数の熱電素子は、板状をなし、前記温度勾配が生じる方向に重ねられており、
放熱側の熱電素子は吸熱側の熱電素子よりも、前記磁場が印加される方向における幅が広い、請求項6に記載の熱電装置。


The plurality of thermoelectric elements have a plate shape and are stacked in the direction in which the temperature gradient is generated.
The thermoelectric device according to claim 6, wherein the thermoelectric element on the heat dissipation side has a wider width in the direction in which the magnetic field is applied than the thermoelectric element on the endothermic side.


JP2020146338A 2020-08-31 2020-08-31 Thermoelectric element and thermoelectric device Pending JP2022041249A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020146338A JP2022041249A (en) 2020-08-31 2020-08-31 Thermoelectric element and thermoelectric device
PCT/JP2021/031369 WO2022045249A1 (en) 2020-08-31 2021-08-26 Thermoelectric element and thermoelectric device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020146338A JP2022041249A (en) 2020-08-31 2020-08-31 Thermoelectric element and thermoelectric device

Publications (1)

Publication Number Publication Date
JP2022041249A true JP2022041249A (en) 2022-03-11

Family

ID=80353406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020146338A Pending JP2022041249A (en) 2020-08-31 2020-08-31 Thermoelectric element and thermoelectric device

Country Status (2)

Country Link
JP (1) JP2022041249A (en)
WO (1) WO2022045249A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63257282A (en) * 1987-04-14 1988-10-25 Komatsu Ltd Electronic cooler
JPS63315924A (en) * 1987-06-18 1988-12-23 Komatsu Ltd Infrared detector
JP6611167B2 (en) * 2015-10-23 2019-11-27 国立大学法人 東京大学 Thermoelectric conversion device and thermoelectric conversion element

Also Published As

Publication number Publication date
WO2022045249A1 (en) 2022-03-03

Similar Documents

Publication Publication Date Title
Venkatasubramanian et al. Thin-film thermoelectric devices with high room-temperature figures of merit
Vashaee et al. Improved thermoelectric power factor in metal-based superlattices
US10573574B2 (en) Devices for cooling and power
Watling et al. A study of the impact of dislocations on the thermoelectric properties of quantum wells in the Si/SiGe materials system
JP7252692B2 (en) Thermoelectric devices, methods for cooling devices, and methods for generating electrical energy
US20090139244A1 (en) Devices for cooling and power
Pan et al. Ultrahigh transverse thermoelectric power factor in flexible Weyl semimetal WTe2
Abdel-Motaleb et al. Thermoelectric devices: principles and future trends
JP5775163B2 (en) Thermoelectric conversion element and thermoelectric conversion module using the same
Delves The prospects for Ettingshausen and Peltier cooling at low temperatures
WO2022045249A1 (en) Thermoelectric element and thermoelectric device
WO1994028364A1 (en) A peltier device
Terasaki Layered cobalt oxides: correlated electrons for thermoelectrics
Li et al. Spin Seebeck effect driven by thermal flux in two-dimensional ferromagnets
Harman et al. High electrical power density from PbTe-based quantum-dot superlattice unicouple thermoelectric devices
Müller Thermoelectrics in an array of molecular junctions
EP3590139B1 (en) Thermoelectric device
WO2018131532A1 (en) Thermoelectric conversion element and method for manufacturing same
Heremans et al. BiSb and spin-related thermoelectric phenomena
US20210273150A1 (en) Thermoelectric device utilizing non-zero berry curvature
Goldsmid Bismuth--The Thermoelectric Material of the Future?
Liu et al. The Interplay of Magnetism and Thermoelectricity: A Review
US20060016248A1 (en) Thermoelectric Circuits Utilizing Series Isothermal Heterojunctions
Dresselhaus et al. Prospects for high thermoelectric figures of merit in 2D systems
Bian et al. Cooling enhancement using inhomogeneous thermoelectric materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230830