JP2022040969A - Heat exchanger and air conditioner using that heat exchanger - Google Patents

Heat exchanger and air conditioner using that heat exchanger Download PDF

Info

Publication number
JP2022040969A
JP2022040969A JP2020145949A JP2020145949A JP2022040969A JP 2022040969 A JP2022040969 A JP 2022040969A JP 2020145949 A JP2020145949 A JP 2020145949A JP 2020145949 A JP2020145949 A JP 2020145949A JP 2022040969 A JP2022040969 A JP 2022040969A
Authority
JP
Japan
Prior art keywords
heat transfer
transfer tube
fin
heat
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020145949A
Other languages
Japanese (ja)
Inventor
鉉永 金
Genei Kin
岳 ▲高▼原
Takeshi Takahara
健太郎 今川
Kentaro Imagawa
葉 阿形
Yo Agata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Priority to JP2020145949A priority Critical patent/JP2022040969A/en
Priority to KR1020210067398A priority patent/KR20220029337A/en
Priority to US17/405,425 priority patent/US11988462B2/en
Priority to PCT/KR2021/010953 priority patent/WO2022045667A1/en
Publication of JP2022040969A publication Critical patent/JP2022040969A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0067Indoor units, e.g. fan coil units characterised by heat exchangers by the shape of the heat exchangers or of parts thereof, e.g. of their fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus
    • F28F17/005Means for draining condensates from heat exchangers, e.g. from evaporators

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

To provide a heat exchanger in which a heat transfer tube in a flat shape passes through a plurality of fins, where the heat exchanger secures a drainage performance of condensed water retained on a surface of the heat transfer tube while improving a heat transfer rate, and further suppresses increase in ventilation resistance.SOLUTION: A heat exchanger 100 comprises a heat transfer tube 1 in a flat shape and a plurality of fins 2 provided to the heat transfer tube 1, where a refrigerant flowing inside the heat transfer tube 1 exchanges heat with air flowing between the plurality of fins 2. Each fin 2 comprises: a heat transfer expansion surface 21 comprising a peak portion 21x and a valley portion 21y provided along an air flow direction; and a drain structure 22 provided to overlap the heat transfer expansion surface 21.SELECTED DRAWING: Figure 3

Description

本発明は、熱交換器及びこの熱交換器を用いた空気調和機に関するものである。 The present invention relates to a heat exchanger and an air conditioner using this heat exchanger.

近年、空気調和機の省冷媒化を図るべく、熱交換器の伝熱管の細径化が進んでおり、その一環として、特許文献1に示すように、多数の穴が形成された扁平な管部材である所謂扁平多穴管が伝熱管として用いられている。 In recent years, in order to reduce the refrigerant of air conditioners, the diameter of heat transfer tubes of heat exchangers has been reduced, and as a part of this, as shown in Patent Document 1, a flat tube having a large number of holes is formed. A so-called flat multi-hole tube, which is a member, is used as a heat transfer tube.

ところで、暖房運転時に室外機の熱交換器が蒸発器として働く場合、この熱交換器の伝熱面で凝縮水が発生し、その凝縮水が伝熱管の上に溜まる。このため、伝熱管として上述した扁平管を使用する場合、円管の伝熱管を使用する場合に比べ、伝熱管の表面(特に上面)に水が溜まり易く排水性が悪くなり、その結果、通風抵抗の増大や着霜などを引き起こし、室外機の性能低下を招来する。 By the way, when the heat exchanger of the outdoor unit works as an evaporator during the heating operation, condensed water is generated on the heat transfer surface of this heat exchanger, and the condensed water collects on the heat transfer tube. Therefore, when the above-mentioned flat tube is used as the heat transfer tube, water tends to collect on the surface (particularly the upper surface) of the heat transfer tube and the drainage property deteriorates as a result, as a result, as compared with the case where the heat transfer tube of the circular tube is used. It causes an increase in resistance and frost formation, and causes a decrease in the performance of the outdoor unit.

このため、フィンの形状としては凝縮水が溜まりやすい形状を採用することはできず、例えばルーバーやスリットなどの切断面を持つフィン形状は、伝熱促進効果が期待されるものの、その切断面に凝縮水が溜まりやすいので採用し難い。このように、フィン形状の工夫により伝熱促進効果の向上を図ろうとすれども、凝縮水の排水性の観点からはフィン形状に制約が生じる。 For this reason, it is not possible to adopt a shape in which condensed water easily collects as the shape of the fin. For example, a fin shape having a cut surface such as a louver or a slit is expected to have a heat transfer promoting effect, but the cut surface has a cut surface. It is difficult to use because condensed water tends to collect. As described above, although the effect of promoting heat transfer is to be improved by devising the fin shape, the fin shape is restricted from the viewpoint of drainage of condensed water.

このようなフィン形状の制約の中で、切断面を設けることなく、伝熱促進効果が期待される形状として、空気の流れ方向に沿って山部及び谷部を設けたものを挙げることができる。このような構成であれば、フィンに沿って流れる空気の速度が山部及び谷部で向上して熱伝達率が向上するとともに、伝熱面積が向上するので、伝熱量を増大させることができ、しかも切断面を設けたものに比べて凝縮水の排水性が良い。 Within such restrictions on the fin shape, a shape in which a mountain portion and a valley portion are provided along the air flow direction can be mentioned as a shape expected to have a heat transfer promoting effect without providing a cut surface. .. With such a configuration, the speed of the air flowing along the fins is improved in the peaks and valleys, the heat transfer coefficient is improved, and the heat transfer area is improved, so that the amount of heat transfer can be increased. Moreover, the drainage property of condensed water is better than that provided with a cut surface.

ところが、このように山部及び谷部を設けたフィンは、平らなフィンに比べて、空気の流路が狭く長くなるので、通風抵抗が増大する。空気の流れる向きの変化が大きい場合は、熱伝達率の向上は大きいが、通風抵抗の増大も大きい。このため、空気の流れる向きが大きく変化してしまう場合には、むしろ室外機の性能低下を招来する恐れがある。 However, the fins provided with the peaks and valleys in this way have a narrower and longer air flow path than the flat fins, so that the ventilation resistance increases. When the change in the direction of air flow is large, the heat transfer coefficient is greatly improved, but the ventilation resistance is also greatly increased. Therefore, if the direction of air flow changes significantly, the performance of the outdoor unit may be deteriorated.

特開2013-245884号公報Japanese Unexamined Patent Publication No. 2013-245884

そこで、本発明は、上述した問題を一挙に解決するべくなされたものであり、扁平状をなす伝熱管が複数枚のフィンを貫通する熱交換器において、熱伝達率の向上を図りつつも、伝熱管の表面に溜まる凝縮水の排水性を担保し、しかも通風抵抗の増大を抑えることを主たる課題とするものである。 Therefore, the present invention has been made to solve the above-mentioned problems at once, and in a heat exchanger in which a flat heat transfer tube penetrates a plurality of fins, the heat transfer coefficient is improved while improving the heat transfer coefficient. The main issue is to ensure the drainage of condensed water accumulated on the surface of the heat transfer tube and to suppress the increase in ventilation resistance.

すなわち本発明に係る熱交換器は、扁平状をなす伝熱管と、前記伝熱管に設けられた複数枚のフィンとを備え、前記伝熱管の内部を流れる冷媒と、前記複数枚のフィンの間を流れる空気との間で熱交換するように構成された熱交換器において、前記フィンが、空気の流れ方向に沿って設けられた山部及び谷部を有する伝熱拡大面と、前記伝熱拡大面に重なり合うように設けられた排水構造とを備えていることを特徴とするものである。 That is, the heat exchanger according to the present invention includes a flat heat transfer tube and a plurality of fins provided in the heat transfer tube, and is between the refrigerant flowing inside the heat transfer tube and the plurality of fins. In a heat exchanger configured to exchange heat with the flowing air, the fins have a heat transfer expanding surface having peaks and valleys provided along the direction of the air flow, and the heat transfer. It is characterized by having a drainage structure provided so as to overlap the enlarged surface.

このような構成であれば、山部及び谷部を有する伝熱拡大面を有するので、熱伝達率の向上を図るとともに、伝熱拡大面に重なり合うように排水構造を設けてあるので、伝熱管の表面に溜まる凝縮水の排水性をも向上させることができる。しかも、空気の速度の大きい伝熱拡大面に排水構造を重ね合わせることで、空気の流れを大きく乱すことができるため、単に山部及び谷部を設けた場合に比べて、通風抵抗の増大を抑えながら熱伝達率を大幅に向上させることができる。なお、空気の流れる向きの変化の大きさと熱伝達率の向上と通風抵抗の増大との関係を示す具体的なデータについては、後述する。 With such a configuration, since it has a heat transfer expansion surface having peaks and valleys, the heat transfer coefficient is improved and a drainage structure is provided so as to overlap the heat transfer expansion surface, so that the heat transfer tube is provided. It is also possible to improve the drainage property of the condensed water that collects on the surface of the. Moreover, by superimposing the drainage structure on the heat transfer expansion surface where the air velocity is high, the air flow can be greatly disturbed, so that the ventilation resistance is increased compared to the case where the peaks and valleys are simply provided. The heat transfer coefficient can be significantly improved while suppressing the heat transfer coefficient. Specific data showing the relationship between the magnitude of the change in the direction of air flow, the improvement of the heat transfer coefficient, and the increase in ventilation resistance will be described later.

前記排水構造が、前記伝熱拡大面に設けられた凹凸状のものであることが好ましい。
このような構成であれば、伝熱管の表面に溜まる凝縮水を凹凸に沿って流すことができ、排水性を十分に発揮させることができる。
It is preferable that the drainage structure has an uneven shape provided on the heat transfer expansion surface.
With such a configuration, the condensed water accumulated on the surface of the heat transfer tube can flow along the unevenness, and the drainage property can be sufficiently exhibited.

前記排水構造のより具体的な実施態様としては、前記伝熱拡大面に設けられたディンプル又はビードを挙げることができる。 As a more specific embodiment of the drainage structure, dimples or beads provided on the heat transfer expansion surface can be mentioned.

複数の前記伝熱管が、扁平な面が上下を向くように上下多段に配置されており、前記フィンが、上下方向に延びるととともに前記複数の伝熱管が貫通する長尺状をなすものであり、前記フィンの一方の長辺部には、前記複数の伝熱管に対応した箇所に切り欠きが形成されており、前記フィンの他方の長辺部は、上端部から下端部に亘って直線状に延びており、前記排水構造が、前記伝熱管の表面に生じた水滴を前記他方の長辺部に向かって排水するように構成されていることが好ましい。
このような構成であれば、排水構造により排水された水滴は、フィンの直線状に延びる長辺部を伝って流れ落ち、逆に切り欠きには溜まりにくくなるので、凝縮水の排水性をより向上させることができる。
The plurality of heat transfer tubes are arranged in multiple stages up and down so that the flat surface faces up and down, and the fins extend in the up and down direction and form a long shape through which the plurality of heat transfer tubes penetrate. A notch is formed in one long side portion of the fin at a portion corresponding to the plurality of heat transfer tubes, and the other long side portion of the fin is linear from the upper end portion to the lower end portion. It is preferable that the drainage structure is configured to drain water droplets generated on the surface of the heat transfer tube toward the other long side portion.
With such a configuration, the water droplets drained by the drainage structure flow down along the long side extending linearly of the fins, and conversely, it is difficult for them to collect in the notch, so that the drainage property of the condensed water is further improved. Can be made to.

ところで、山部及び谷部を有する伝熱拡大面と排水構造とを重ね合わせると、この重なり合う箇所の材料が、山部では伸ばされて薄くなり谷部では集中して厚くなるため、山部や谷部でフィンが割れたり破損したりしやすくなる。
そこで、フィンの加工性に鑑みれば、前記排水構造の前記山部に重なり合う箇所の高さが前記谷部に重なり合う箇所の高さよりも低いことが好ましい。
このような構成であれば、排水構造の山部に重なり合う箇所における加工時の材料の伸びを緩和するとともに、排水構造の谷部に重なり合う箇所における材料の集中を緩和することができ、割れや破損を防ぐことができる。
By the way, when the heat transfer expansion surface having the mountain part and the valley part and the drainage structure are overlapped, the material of the overlapping part is stretched and thinned in the mountain part and concentrated and thickened in the valley part. Fins are more likely to crack or break in the valleys.
Therefore, in view of the workability of the fins, it is preferable that the height of the portion of the drainage structure overlapping the mountain portion is lower than the height of the portion overlapping the valley portion.
With such a configuration, it is possible to alleviate the elongation of the material during processing at the part overlapping the mountain part of the drainage structure, and also to alleviate the concentration of the material at the part overlapping the valley part of the drainage structure, resulting in cracking or breakage. Can be prevented.

前記フィンが、前記山部及び前記谷部が交互に繰り返し形成されたコルゲートフィンであり、コルゲート角度が5°以上24°以下であることが好ましい。
これならば、通風抵抗の増大を抑えることができ、排水性の向上と熱交換器性能の向上とを両立させることができる。なお、具体的なデータについては、後述する。
The fin is a corrugated fin in which the peaks and valleys are alternately and repeatedly formed, and the corrugated angle is preferably 5 ° or more and 24 ° or less.
If this is the case, it is possible to suppress an increase in ventilation resistance, and it is possible to achieve both improvement in drainage property and improvement in heat exchanger performance. The specific data will be described later.

ところで、背景技術で述べた特許文献1に示す熱交換器は、扁平管の表面に溜まった水の排水性を向上させるべく、多段に設けられた伝熱管が貫通するフィンに凝縮水を伝わせて排水するように構成されている。 By the way, in the heat exchanger shown in Patent Document 1 described in the background art, condensed water is transmitted to fins through which heat transfer tubes provided in multiple stages penetrate in order to improve the drainage property of water accumulated on the surface of the flat tube. It is configured to drain water.

しかしながら、このように凝縮水をフィンに伝わせようとしても、多段に配列された伝熱管が2列以上ある場合、凝縮水が隣の伝熱管に移動して排水されずに滞留し続けることがあり、実際には排水性を十分に向上させることができない。 However, even if the condensed water is transmitted to the fins in this way, if there are two or more rows of heat transfer tubes arranged in multiple stages, the condensed water may move to the adjacent heat transfer tube and continue to stay without being drained. In reality, the drainage property cannot be sufficiently improved.

そこで、本発明は、上述した問題を一挙に解決すべくなされたものであり、扁平状をなす伝熱管を2列以上配列した熱交換器において、伝熱管の表面に溜まる凝縮水の排水性を従来よりも向上させることを主たる課題とするものである。 Therefore, the present invention has been made to solve the above-mentioned problems at once, and in a heat exchanger in which two or more rows of flat heat transfer tubes are arranged, the drainage property of condensed water accumulated on the surface of the heat transfer tubes is improved. The main issue is to improve it more than before.

すなわち本発明に係る熱交換器は、多段に設けられた扁平状をなす複数本の第1の伝熱管が第1のフィンを貫通してなる第1熱交換部と、多段に設けられた扁平状をなす複数本の第2の伝熱管が第2のフィンを貫通してなる第2熱交換部とを備え、前記第1熱交換部及び前記第2熱交換部が、前記各伝熱管の幅方向に隣り合って配置されている熱交換器において、互いに隣り合う前記第1の伝熱管と前記第2の伝熱管との間隔が、前記第1の伝熱管又は前記第2の伝熱管の幅寸法の40%よりも大きく、前記第1のフィンから前記第2の伝熱管までの間隔が、前記第2のフィンの幅寸法の20%よりも大きいことを特徴とするものである。 That is, the heat exchanger according to the present invention has a first heat exchange portion in which a plurality of flat first heat transfer tubes provided in multiple stages penetrate the first fin, and a flat plate provided in multiple stages. A plurality of second heat transfer tubes having a shape are provided with a second heat exchange section formed by penetrating the second fin, and the first heat exchange section and the second heat exchange section form each of the heat transfer tubes. In the heat exchangers arranged adjacent to each other in the width direction, the distance between the first heat transfer tube and the second heat transfer tube adjacent to each other is the distance between the first heat transfer tube or the second heat transfer tube. It is characterized in that it is larger than 40% of the width dimension, and the distance from the first fin to the second heat transfer tube is larger than 20% of the width dimension of the second fin.

このように構成された熱交換器であれば、第1の伝熱管と第2の伝熱管との間隔や、第1のフィンと第2の伝熱管との間隔が広いので、その隙間を伝って凝縮水を流し落とすことができ、従来よりも排水性を向上させることができる。なお、具体的なデータについては、後述する。 With a heat exchanger configured in this way, the distance between the first heat transfer tube and the second heat transfer tube and the distance between the first fin and the second heat transfer tube are wide, so the heat exchanger can travel through the gap. Condensed water can be drained off, and drainage can be improved more than before. The specific data will be described later.

第1の伝熱管と第2の伝熱管との間隔を十分に広げるための実施態様としては、前記第1の伝熱管が、前記第1のフィンの幅方向中心部よりも幅方向一方側に配置されており、前記第2の伝熱管が、前記第2のフィンの幅方向中心部よりも幅方向他方側に配置されており、前記第1のフィンの幅方向他方側及び前記第2のフィンの幅方向一方側が、前記第1の伝熱管及び前記第2の伝熱管の間に介在する態様を挙げることができる。 As an embodiment for sufficiently widening the distance between the first heat transfer tube and the second heat transfer tube, the first heat transfer tube is located on one side in the width direction from the center of the first fin in the width direction. The second heat transfer tube is arranged on the other side in the width direction from the center portion in the width direction of the second fin, and the other side in the width direction of the first fin and the second one. An embodiment in which one side of the fin in the width direction is interposed between the first heat transfer tube and the second heat transfer tube can be mentioned.

より具体的な構成としては、前記第1のフィンが、幅方向一方側に前記第1の伝熱管を差し込むための切り欠きが形成されており、幅方向他方側は長手方向に亘って連続して設けられたものであり、前記第2のフィンが、幅方向一方側は長手方向に亘って連続して設けられており、幅方向他方側に前記第2の伝熱管を差し込むための切り欠きが形成されたものであることが好ましい。
このような構成であれば、第1のフィン及び第2のフィンにおいて、長手方向に亘って連続して設けられている部分を伝わせて凝縮水を流し落とすことができる。
As a more specific configuration, the first fin has a notch formed on one side in the width direction for inserting the first heat transfer tube, and the other side in the width direction is continuous over the longitudinal direction. The second fin is provided continuously over the longitudinal direction on one side in the width direction, and a notch for inserting the second heat transfer tube on the other side in the width direction. Is preferably formed.
With such a configuration, the condensed water can be drained off through the portions of the first fin and the second fin that are continuously provided in the longitudinal direction.

第1の伝熱管と第2の伝熱管との間隔を十分に広げるための別に実施態様しては、前記第1の伝熱管の幅方向両端部が、前記第1のフィンの幅方向両端部よりも内側に位置し、前記第2の伝熱管の幅方向両端部が、前記第2のフィンの幅方向両端部よりも内側に位置する態様を挙げることができる。 In another embodiment for sufficiently widening the distance between the first heat transfer tube and the second heat transfer tube, the widthwise both ends of the first heat transfer tube are the widthwise both ends of the first fin. It can be mentioned that both ends in the width direction of the second heat transfer tube are located inside the second heat transfer tube and are located inside the both ends in the width direction of the second fin.

さらに、別の態様としては、前記第1の伝熱管及び前記第2の伝熱管が、前記幅方向と直交する長手方向に沿って千鳥状に配置されていても良い。 Further, as another aspect, the first heat transfer tube and the second heat transfer tube may be arranged in a staggered manner along the longitudinal direction orthogonal to the width direction.

熱交換効率の向上を図るためには、前記第1のフィン又は前記第2のフィンに対して、前記第1の伝熱管又は前記第2の伝熱管が複数列設けられていることが好ましい。 In order to improve the heat exchange efficiency, it is preferable that the first fin or the second fin is provided with a plurality of rows of the first heat transfer tube or the second heat transfer tube.

上述したとおり、背景技術で述べた特許文献1に示す熱交換器は、扁平管の表面に溜まった水の排水性を向上させるべく、多段に設けられた伝熱管が貫通するフィンに凝縮水を伝わせて排水するように構成されている。 As described above, in the heat exchanger shown in Patent Document 1 described in the background art, condensed water is applied to the fins through which the heat transfer tubes provided in multiple stages penetrate in order to improve the drainage property of the water accumulated on the surface of the flat tube. It is configured to be transmitted and drained.

しかしながら、このように凝縮水をフィンに伝わせようとしたとしても、複数枚のフィンのピッチ(以下、フィンピッチともいう)が小過ぎると、互いに隣り合うフィンの間に凝縮水のブリッジが形成されやすくなり、十分な排水性を得ることができない。かといって、フィンピッチが大き過ぎると、熱交換効率を担保することができない。また、伝熱管の幅寸法に関しても、大き過ぎると、その分、伝熱管上に滞留する凝縮水量が多くなり、十分な排水性を得ることができないし、小さ過ぎると、熱交換効率を担保することができない。 However, even if the condensed water is transmitted to the fins in this way, if the pitch of the plurality of fins (hereinafter, also referred to as fin pitch) is too small, a bridge of condensed water is formed between the fins adjacent to each other. It becomes easy to be drained, and sufficient drainage cannot be obtained. However, if the fin pitch is too large, the heat exchange efficiency cannot be guaranteed. Further, regarding the width dimension of the heat transfer tube, if it is too large, the amount of condensed water that stays on the heat transfer tube increases, and sufficient drainage cannot be obtained. If it is too small, the heat exchange efficiency is guaranteed. Can't.

そこで、本発明は、上述した問題を一挙に解決すべくなされたものであり、扁平状をなす伝熱管が複数枚のフィンを貫通する熱交換器において、熱交換効率を担保しつつ、伝熱管の表面に溜まる凝縮水の排水性を従来よりも向上させることを主たる課題とするものである。 Therefore, the present invention has been made to solve the above-mentioned problems at once, and in a heat exchanger in which a flat heat transfer tube penetrates a plurality of fins, the heat transfer tube is ensured while ensuring heat exchange efficiency. The main task is to improve the drainage property of the condensed water that collects on the surface of the water pipe.

すなわち本発明に係る熱交換器は、扁平状をなす伝熱管が所定のフィンピッチで並び設けられた複数枚のフィンを貫通してなる熱交換器において、前記伝熱管の幅寸法が、前記フィンピッチの4倍以上7倍以下であることを特徴とするものである。 That is, the heat exchanger according to the present invention is a heat exchanger in which flat heat transfer tubes are arranged side by side at a predetermined fin pitch and penetrate a plurality of fins, and the width dimension of the heat transfer tubes is the fins. It is characterized in that it is 4 times or more and 7 times or less the pitch.

このように構成された熱交換器であれば、伝熱管の幅寸法をフィンピッチの4倍以上7倍以下にしているので、熱交換効率(フィン効率)を担保しつつ、排水性の悪化を抑えて従来よりも排水性の向上を図れる。なお、具体的なデータについては、後述する。 With the heat exchanger configured in this way, the width dimension of the heat transfer tube is 4 times or more and 7 times or less of the fin pitch, so that the heat exchange efficiency (fin efficiency) is ensured and the drainage property deteriorates. It can be suppressed and drainage can be improved more than before. The specific data will be described later.

より具体的な実施態様としては、前記伝熱管の少なくとも一部の幅寸法が、10mm以下である態様を挙げることができる。 As a more specific embodiment, an embodiment in which the width dimension of at least a part of the heat transfer tube is 10 mm or less can be mentioned.

また、本発明に係る空気調和機は、上述した熱交換器を具備することを特徴とするものであり、かかる空気調和機によっても、上述した作用効果を発揮させることができる。 Further, the air conditioner according to the present invention is characterized by including the above-mentioned heat exchanger, and the above-mentioned effects can be exhibited by such an air conditioner.

このように構成した本発明によれば、扁平状をなす伝熱管が複数枚のフィンを貫通する熱交換器において、熱伝達率の向上を図りつつも、伝熱管の表面に溜まる凝縮水の排水性を担保し、しかも通風抵抗の増大を抑えることができる。 According to the present invention configured in this way, in a heat exchanger in which a flat heat transfer tube penetrates a plurality of fins, while improving the heat transfer coefficient, drainage of condensed water accumulated on the surface of the heat transfer tube is performed. It is possible to guarantee the property and suppress the increase in ventilation resistance.

第1実施形態における熱交換器の全体構成を示す模式図。The schematic diagram which shows the whole structure of the heat exchanger in 1st Embodiment. 同実施形態における排水構造の構成を示す模式図。The schematic diagram which shows the structure of the drainage structure in the same embodiment. 同実施形態におけるフィンのコルゲート角度を示す模式図。The schematic diagram which shows the corrugated angle of the fin in the same embodiment. 同実施形態における排水構造による効果を示すグラフ。The graph which shows the effect by the drainage structure in the same embodiment. 別の実施形態における排水構造の構成を示す模式図。The schematic diagram which shows the structure of the drainage structure in another embodiment. 別の実施形態における排水構造の構成を示す模式図。The schematic diagram which shows the structure of the drainage structure in another embodiment. 別の実施形態における山部及び谷部の構成を示す模式図。The schematic diagram which shows the structure of the mountain part and the valley part in another embodiment. 山部及び谷部の加工箇所の割れを示す写真。A photograph showing cracks in the processed parts of the mountains and valleys. 別の実施形態における排水構造の構成を示す模式図。The schematic diagram which shows the structure of the drainage structure in another embodiment. 別の実施形態における排水構造の効果を示す写真。A photograph showing the effect of the drainage structure in another embodiment. 伝熱管の組み立て性に鑑みて中間的に検討したフィンの構成を示す模式図。The schematic diagram which shows the structure of the fin which examined in the middle in consideration of the assembling property of a heat transfer tube. 別の実施形態におけるフィンの構成を示す模式図。The schematic diagram which shows the structure of the fin in another embodiment. 同実施形態における伝熱管とフィンとの配置を示す模式図。The schematic diagram which shows the arrangement of a heat transfer tube and a fin in the same embodiment. 伝熱管間隔/伝熱管幅と滞留水量との相関関係を示すグラフ。The graph which shows the correlation between the heat transfer tube interval / heat transfer tube width, and the amount of stagnant water. 切り欠きが形成されたフィンの模式図。Schematic diagram of fins with notches formed. その他の実施形態における伝熱管とフィンとの配置を示す模式図。The schematic diagram which shows the arrangement of a heat transfer tube and a fin in another embodiment. その他の実施形態における伝熱管とフィンとの配置を示す模式図。The schematic diagram which shows the arrangement of a heat transfer tube and a fin in another embodiment. その他の実施形態における伝熱管とフィンとの配置を示す模式図。The schematic diagram which shows the arrangement of a heat transfer tube and a fin in another embodiment. その他の実施形態における伝熱管とフィンとの配置を示す模式図。The schematic diagram which shows the arrangement of a heat transfer tube and a fin in another embodiment. その他の実施形態における伝熱管とフィンとの配置を示す模式図。The schematic diagram which shows the arrangement of a heat transfer tube and a fin in another embodiment. 同実施形態におけるフィンピッチと凝縮水量との相関関係を示す模式図。The schematic diagram which shows the correlation between the fin pitch and the amount of condensed water in the same embodiment. 同実施形態における伝熱管幅と凝縮水量との相関関係を示す模式図。The schematic diagram which shows the correlation between the width of a heat transfer tube and the amount of condensed water in the same embodiment. 同実施形態における伝熱管幅及びフィンピッチの比率と排水性との相関関係を示すグラフ。The graph which shows the correlation between the ratio of a heat transfer tube width and fin pitch in the same embodiment, and drainage property. その他の実施形態における伝熱管の構成を示す模式図。The schematic diagram which shows the structure of the heat transfer tube in another embodiment. その他の実施形態における伝熱管及びフィンの構成を示す模式図。The schematic diagram which shows the structure of the heat transfer tube and fin in another embodiment. その他の実施形態における伝熱管及びフィンの構成を示す模式図。The schematic diagram which shows the structure of the heat transfer tube and fin in another embodiment.

<第1実施形態>
以下、本発明に係る熱交換器の第1実施形態について図面を参照して説明する。
<First Embodiment>
Hereinafter, the first embodiment of the heat exchanger according to the present invention will be described with reference to the drawings.

本実施形態に係る熱交換器100は、圧縮機、室外熱交換器、絞り機構、及び室内熱交換器が接続された冷媒回路を備える空気調和機において、前記室外熱交換器又は前記室内熱交換器の少なくとも一方に用いられるものである。 The heat exchanger 100 according to the present embodiment is an air exchanger including a compressor, an outdoor heat exchanger, a throttle mechanism, and a refrigerant circuit to which an indoor heat exchanger is connected, and is the outdoor heat exchanger or the indoor heat exchange. It is used for at least one of the vessels.

具体的にこの熱交換器100は、図1に示すように、所謂フィンアンドチューブ熱交換器であり、内部を冷媒が流れる複数本の伝熱管1と、これらの伝熱管1に設けられた複数枚のフィン2とを備えたものである。 Specifically, as shown in FIG. 1, the heat exchanger 100 is a so-called fin-and-tube heat exchanger, in which a plurality of heat transfer tubes 1 in which a refrigerant flows inside and a plurality of heat transfer tubes 1 provided in these heat transfer tubes 1 are provided. It is provided with a number of fins 2.

伝熱管1は、扁平状をなし、冷媒が流れる複数の内部流路を有するものであり、多穴扁平管と称される。本実施形態の伝熱管1は、扁平な面が上下を向くように、すなわち扁平な面が水平になるように配置されており、その内部を冷媒が水平方向に沿って流れるように設けられている。 The heat transfer tube 1 has a flat shape and has a plurality of internal flow paths through which the refrigerant flows, and is referred to as a multi-hole flat tube. The heat transfer tube 1 of the present embodiment is arranged so that the flat surface faces up and down, that is, the flat surface is horizontal, and the heat transfer tube 1 is provided so that the refrigerant flows along the horizontal direction inside the heat transfer tube 1. There is.

かかる伝熱管1は、上下多段に例えば等間隔で互いに平行に配列されており、この実施形態では、複数の第1の伝熱管1Aからなる列と、これらの第1の伝熱管1Aと幅方向に隣り合う複数の第2の伝熱管1Bからなる列とが設けられている。より具体的に説明すると、互いに隣り合う第1の伝熱管1A及び第2の伝熱管1Bは、ここでは互いが同じ高さになるように配置されている。なお、伝熱管1は、2列に限らず、3列以上設けられていても良いし、1列であっても良い。 Such heat transfer tubes 1 are arranged in multiple stages above and below in parallel with each other, for example, at equal intervals. In this embodiment, a row consisting of a plurality of first heat transfer tubes 1A and these first heat transfer tubes 1A in the width direction are provided. A row of a plurality of second heat transfer tubes 1B adjacent to each other is provided. More specifically, the first heat transfer tube 1A and the second heat transfer tube 1B adjacent to each other are arranged so as to be at the same height here. The heat transfer tubes 1 are not limited to two rows, but may be provided in three or more rows, or may be in one row.

フィン2は、上下方向に沿って延びる長尺状をなすものであり、多段に設けられた複数の伝熱管1が貫通している。かかるフィン2は、伝熱管1の延在方向に沿って所定のフィンピッチで配列されており、ここでは等間隔に配列されている。これにより、フィン2の間をフィン2の幅方向に沿って流れる空気と伝熱管1の内部流路を流れる冷媒との間で熱交換が行われる。 The fin 2 has a long shape extending in the vertical direction, and is penetrated by a plurality of heat transfer tubes 1 provided in multiple stages. The fins 2 are arranged at a predetermined fin pitch along the extending direction of the heat transfer tube 1, and are arranged at equal intervals here. As a result, heat exchange is performed between the air flowing along the width direction of the fins 2 and the refrigerant flowing in the internal flow path of the heat transfer tube 1.

このように伝熱管1の延在方向に沿って配列された複数枚のフィン2は、伝熱管1の列数と同様、例えば2列以上設けられており、ここでは第1の伝熱管1Aが貫通する複数枚の第1のフィン2Aからなる列と、第2の伝熱管1Bが貫通する複数枚の第2のフィン2Bからなる列とが設けられている。なお、フィン2は、2列に限らず、3列以上設けられていても良いし、1列であっても良い。 Similar to the number of rows of the heat transfer tube 1, the plurality of fins 2 arranged along the extending direction of the heat transfer tube 1 are provided with, for example, two or more rows, and here, the first heat transfer tube 1A is provided. A row consisting of a plurality of first fins 2A penetrating and a row consisting of a plurality of second fins 2B penetrating the second heat transfer tube 1B are provided. The fins 2 are not limited to two rows, but may be provided in three or more rows, or may be provided in one row.

上述した構成により、本実施形態の熱交換器Xは、多段に設けられた複数本の第1の伝熱管1Aが複数枚の第1のフィン2Aを貫通してなる第1熱交換部Aと、多段に設けられた複数本の第2の伝熱管1Bが複数枚の第2のフィン2Bを貫通してなる第2熱交換部Bとを備えており、これらの第1熱交換部A及び第2熱交換部Bは、伝熱管1A、1Bの幅方向に隣り合って配置されている。 According to the above-described configuration, the heat exchanger X of the present embodiment has the first heat exchange section A in which a plurality of first heat transfer tubes 1A provided in multiple stages penetrate the plurality of first fins 2A. , A plurality of second heat transfer tubes 1B provided in multiple stages are provided with a second heat exchange section B formed by penetrating a plurality of second fins 2B, and these first heat exchange sections A and The second heat exchange section B is arranged adjacent to each other in the width direction of the heat transfer tubes 1A and 1B.

なお、ここでは第1の伝熱管1A及び第2の伝熱管1Bは互いに同じ寸法のものであり、以下ではこれらを区別しない場合、これらの伝熱管1A、1Bを伝熱管1と称する。また、第1のフィン2A及び第2のフィン2Bは互いに同じ寸法のものであり、以下ではこれらを区別しない場合、これらのフィン2A、2Bをフィン2と称する。 Here, the first heat transfer tube 1A and the second heat transfer tube 1B have the same dimensions, and when they are not distinguished below, these heat transfer tubes 1A and 1B are referred to as heat transfer tubes 1. Further, the first fin 2A and the second fin 2B have the same dimensions, and when they are not distinguished below, these fins 2A and 2B are referred to as fins 2.

然して、本実施形態のフィン2は、図2に示すように、空気の流れ方向に沿って、言い換えればフィン2の幅方向に沿って設けられた山部21x及び谷部21yを有する伝熱拡大面21と、この伝熱拡大面21に重なり合うように設けられた排水構造22とを備えている。 Therefore, as shown in FIG. 2, the fin 2 of the present embodiment has a heat transfer expansion having a mountain portion 21x and a valley portion 21y provided along the air flow direction, in other words, along the width direction of the fin 2. A surface 21 and a drainage structure 22 provided so as to overlap the heat transfer expansion surface 21 are provided.

まず、伝熱拡大面21について説明する。
伝熱拡大面21は、平板状のフィン2を加工することにより形成されて、そのフィン2の伝熱面積を拡大するものである。
First, the heat transfer expansion surface 21 will be described.
The heat transfer expansion surface 21 is formed by processing a flat plate-shaped fin 2, and expands the heat transfer area of the fin 2.

この伝熱拡大面21は、平板状のフィン2を山折りにしてなる山部21xと、そのフィン2を谷折りにしてなる谷部21yとを有するものであり、これらの山部21x及び谷部21yは、フィン2の長手方向(上下方向)に沿って延びる折り目部として形成されている。 The heat transfer expansion surface 21 has a mountain portion 21x formed by folding a flat plate-shaped fin 2 into a mountain portion and a valley portion 21y formed by folding the fin 2 into a valley portion, and these peak portions 21x and valleys. The portion 21y is formed as a crease portion extending along the longitudinal direction (vertical direction) of the fin 2.

より具体的に説明すると、図3に示すように、本実施形態のフィン2はコルゲート加工されたコルゲートフィンである。ここでは、コルゲート加工時にフィン2を折り曲げる角度であるコルゲート角度を5度以上24度以下としてあり、このコルゲート角度からなる山部21x及び谷部21yがフィン2の幅方向に交互に繰り返し形成されている。 More specifically, as shown in FIG. 3, the fin 2 of the present embodiment is a corrugated fin. Here, the corrugated angle, which is the angle at which the fin 2 is bent during corrugated processing, is set to 5 degrees or more and 24 degrees or less, and the mountain portion 21x and the valley portion 21y having this corrugated angle are alternately and repeatedly formed in the width direction of the fin 2. There is.

次に、排水構造22について説明する。
排水構造22は、暖房運転時に室外機の熱交換器100が凝縮器として働く場合に発生する凝縮水を伝熱管1の表面やフィン2の表面から排水するためのものであり、特に伝熱管1の扁平面への凝縮水の滞留を防ぐものである。
Next, the drainage structure 22 will be described.
The drainage structure 22 is for draining the condensed water generated when the heat exchanger 100 of the outdoor unit acts as a condenser during the heating operation from the surface of the heat transfer tube 1 and the surface of the fin 2, and particularly the heat transfer tube 1. It prevents the condensed water from staying on the flat surface.

具体的にこの排水構造22は、フィン2の表面を山部21x側から谷部21y側に向かって凹ませてなる凹部や、フィンの表面を谷部21y側から山部21x側に向かって膨出させてなる凸部などである。ここでの排水構造22は、図2に示すように、フィンの幅方向に細長く形成したビード状或いはリブ状の凸条22であり、その表面は谷部21y側から山部21x側に向かって膨出した曲面である。 Specifically, in this drainage structure 22, the surface of the fin 2 is recessed from the mountain portion 21x side toward the valley portion 21y side, and the surface of the fin is expanded from the valley portion 21y side toward the mountain portion 21x side. It is a convex part that is made to come out. As shown in FIG. 2, the drainage structure 22 here is a bead-shaped or rib-shaped ridge 22 formed elongated in the width direction of the fin, and its surface is from the valley portion 21y side to the mountain portion 21x side. It is a bulging curved surface.

そして、この排水構造22は、上述した伝熱拡大面21に重なり合うように設けられている。より具体的に説明すると、この排水構造22は、上述した山部21x又は谷部21yとして形成されている折り目部の少なくとも1つに重なり合っており、ここでは互いに隣り合う複数の山部21x及び谷部21yに跨って設けられている。 The drainage structure 22 is provided so as to overlap the heat transfer expansion surface 21 described above. More specifically, the drainage structure 22 overlaps at least one of the creases formed as the mountain portion 21x or the valley portion 21y described above, and here, a plurality of mountain portions 21x and valleys adjacent to each other. It is provided so as to straddle the portion 21y.

本実施形態では、複数の伝熱管1が、上述したように扁平な面が上下を向くように上下多段に配置されており、フィン2が、上下方向に延びて複数の伝熱管1が貫通する長尺状をなすものである。そして、図2に示すように、フィン2の一方の長辺部2pには、複数の伝熱管1に対応した箇所に切り欠き2zが形成されており、この切り欠き2zを介してフィン2に伝熱管1を嵌め込めるようにしてある。これに対して、フィン2の他方の長辺部2qは、切り欠きが設けられておらず、上端部から下端部に亘って直線状に延びている。 In the present embodiment, the plurality of heat transfer tubes 1 are arranged in multiple stages up and down so that the flat surface faces up and down as described above, and the fins 2 extend in the up and down direction to penetrate the plurality of heat transfer tubes 1. It has a long shape. Then, as shown in FIG. 2, a notch 2z is formed in a portion corresponding to a plurality of heat transfer tubes 1 on one long side portion 2p of the fin 2, and the fin 2 is formed through the notch 2z. The heat transfer tube 1 can be fitted. On the other hand, the other long side portion 2q of the fin 2 is not provided with a notch and extends linearly from the upper end portion to the lower end portion.

かかる構成において、本実施形態の排水構造22は、熱交換器100が凝縮器として働く場合に発生する凝縮水をフィン2の他方の長辺部2qに向かって排水するように設けられている。 In such a configuration, the drainage structure 22 of the present embodiment is provided so as to drain the condensed water generated when the heat exchanger 100 acts as a condenser toward the other long side portion 2q of the fin 2.

より具体的には、図2に示すように、排水構造22たる細長状の凸条22は、フィンの一方の長辺部2p側に位置する一端部22aが、フィン2の他方の長辺部2q側に位置する他端部22bよりも高い位置に設けられており、一端部22aから他端部22bに向かって下がるように傾斜している。これにより、凝縮水は、この凸条22を伝ってフィン2の他方の長辺部2qに向かって流れ落ちていき、その長辺部2qを伝って下方に落ちていく。 More specifically, as shown in FIG. 2, in the elongated ridge 22 which is a drainage structure 22, one end portion 22a located on one long side portion 2p side of the fin has an end portion 22a which is located on the other long side portion of the fin 2. It is provided at a position higher than the other end 22b located on the 2q side, and is inclined so as to descend from one end 22a toward the other end 22b. As a result, the condensed water flows down along the ridge 22 toward the other long side portion 2q of the fin 2, and then falls down along the long side portion 2q.

本実施形態のフィン2は、排水構造として上述した凸条22を複数有している。具体的には、上下多段に設けられている複数の伝熱管1の間それぞれに少なくとも1つの凸条22を設けてある。 The fin 2 of the present embodiment has a plurality of the above-mentioned ridges 22 as a drainage structure. Specifically, at least one ridge 22 is provided between each of the plurality of heat transfer tubes 1 provided in multiple stages above and below.

続いて、上述した構成による作用効果を実験したデータを図4のグラフに示す。
このグラフは、フィン2のコルゲート角度を横軸にとり、通風抵抗の上昇率に対する熱伝達率の向上率の比(以下、熱交換器性能指標という)を縦軸にとったものである。なお、この縦軸は、それぞれのコルゲート角度においてフィン2に上述した凸条22を設けない場合の熱交換器性能指標を100%としている。
Subsequently, the graph of FIG. 4 shows the data obtained by experimenting with the action and effect of the above-mentioned configuration.
In this graph, the corrugated angle of the fin 2 is taken on the horizontal axis, and the ratio of the improvement rate of the heat transfer coefficient to the increase rate of the ventilation resistance (hereinafter referred to as a heat exchanger performance index) is taken on the vertical axis. In addition, this vertical axis sets 100% as the heat exchanger performance index when the above-mentioned ridge 22 is not provided on the fin 2 at each corrugated angle.

ここで、コルゲート加工をしていない平板状のフィンに上述した排水構造を設けた場合、この排水構造による熱伝達率の向上率よりも通風抵抗の上昇率が大きくなる。これにより、排水性は向上するものの熱交換器の性能は低下する。この証左が、図4のグラフにおけるコルゲート角度が0度の場合であり、熱交換器性能指標が100%を下回っていることがみて取れる。 Here, when the above-mentioned drainage structure is provided on the flat plate-shaped fins that have not been corrugated, the rate of increase in ventilation resistance is larger than the rate of improvement in the heat transfer coefficient due to this drainage structure. As a result, the drainage property is improved, but the performance of the heat exchanger is deteriorated. This proof is the case where the corrugated angle in the graph of FIG. 4 is 0 degrees, and it can be seen that the heat exchanger performance index is less than 100%.

これに対して、図4のグラフの曲線で示されるように、フィン2に排水構造22を設けつつ、5度以上24度以下のコルゲート角度をつけることにより、熱交換器性能指標が100%を上回り、排水性の向上と熱交換器性能の向上とを両立できていることが分かる。 On the other hand, as shown by the curve in the graph of FIG. 4, the heat exchanger performance index becomes 100% by providing the drainage structure 22 in the fin 2 and setting a corrugated angle of 5 degrees or more and 24 degrees or less. It can be seen that the improvement in drainage performance and the improvement in heat exchanger performance are achieved at the same time.

このことをより詳細に説明すると、コルゲート加工による空気の流れ方向が変化する領域に、すなわちコルゲート加工により山部21x及び谷部21yが形成されている領域に排水構造22を重ね合わせると、その空気の流れ方向(コルゲート角度)に応じて熱伝達率の向上率と通風抵抗の向上率とが変わる。 To explain this in more detail, when the drainage structure 22 is superposed on the region where the air flow direction changes due to the corrugated processing, that is, the region where the mountain portion 21x and the valley portion 21y are formed by the corrugated processing, the air thereof. The improvement rate of the heat transfer coefficient and the improvement rate of the ventilation resistance change according to the flow direction (corrugated angle) of.

そして、上述したようにコルゲート角度を5度以上24度以下にすることで、通風抵抗の上昇よりも熱伝達率の向上率が上回り、100%を上回る熱交換器性能指標を得ることができる。 Then, by setting the corrugated angle to 5 degrees or more and 24 degrees or less as described above, the improvement rate of the heat transfer coefficient exceeds the increase of the ventilation resistance, and the heat exchanger performance index exceeding 100% can be obtained.

このように構成された熱交換器100によれば、フィン2が山部21x及び谷部21yを有する伝熱拡大面21を有するので、熱伝達率の向上を図ることができ、そのうえ、伝熱拡大面21に重なり合うように排水構造22を設けてあるので、伝熱管1の表面に溜まる凝縮水の排水性をも向上させることができる。しかも、コルゲート角度を5°以上24°以下にしてあるので、空気の流れを大きく乱すことができるため、単に山部21x及び谷部21yを設けた場合に比べて、通風抵抗の増大を抑制しつつ熱伝達率を向上させることができ、結果として排水性の向上と熱交換器性能の向上とを両立させることができる。 According to the heat exchanger 100 configured as described above, since the fin 2 has the heat transfer expanding surface 21 having the peak portion 21x and the valley portion 21y, the heat transfer coefficient can be improved, and the heat transfer rate can be improved. Since the drainage structure 22 is provided so as to overlap the enlarged surface 21, the drainage property of the condensed water collected on the surface of the heat transfer tube 1 can be improved. Moreover, since the corrugated angle is set to 5 ° or more and 24 ° or less, the air flow can be greatly disturbed, so that the increase in ventilation resistance is suppressed as compared with the case where the mountain portion 21x and the valley portion 21y are simply provided. At the same time, the heat transfer coefficient can be improved, and as a result, both the improvement of drainage property and the improvement of heat exchanger performance can be achieved at the same time.

また、フィン2の一方の長辺部2pには切り欠き2zが設けられており、他方の長辺部2qは直線状に延びる構成において、排水構造たる凸条22が、伝熱管1の表面に生じた水滴を他方の長辺部2qに向かって排水するように構成されているので、水滴はこの長辺部2qを伝って下方に流れ落ちていき、逆に一方の長辺部2pの切り欠きに2zは溜まりにくくなるので、凝縮水の排水性をより向上させることができる。 Further, one long side portion 2p of the fin 2 is provided with a notch 2z, and the other long side portion 2q is configured to extend linearly. Since the generated water droplets are configured to be drained toward the other long side portion 2q, the water droplets flow down along the long side portion 2q, and conversely, the notch of one long side portion 2p. Since 2z is less likely to accumulate, the drainage property of condensed water can be further improved.

<第1実施形態の変形例>
なお、本発明は、前記第1実施形態に限られるものではない。
<Modified example of the first embodiment>
The present invention is not limited to the first embodiment.

例えば、前記第1実施形態では、上下方向に隣り合う伝熱管1の間に1つの排水構造22を設けていたが、図5に示すように、これらの伝熱管1の間に複数の排水構造22を設けても良い。なお、この例では前記第1実施形態と同様に、フィン2の一方の長辺部2pから他方の長辺部2qに向かって斜め下に向かう複数の凸条22が排水構造として形成されており、これらの凸条22としては、互いに長さが異なるものや、膨出する向きが互いに反対向きのものが含まれている。 For example, in the first embodiment, one drainage structure 22 is provided between heat transfer tubes 1 adjacent to each other in the vertical direction, but as shown in FIG. 5, a plurality of drainage structures are provided between these heat transfer tubes 1. 22 may be provided. In this example, as in the first embodiment, a plurality of ridges 22 extending diagonally downward from one long side portion 2p of the fin 2 toward the other long side portion 2q are formed as a drainage structure. The ridges 22 include those having different lengths from each other and those having bulging directions opposite to each other.

また、排水構造22は、前記実施形態ではビード状又はリブ状の凸条であったが、図6に示すように、例えばディンプル加工により形成された凹部や凸部であっても良い。なお、この例では、排水構造22たる凹部や凸部を半球状としているが、例えば柱状や円錐状であっても良い。 Further, the drainage structure 22 is a bead-shaped or rib-shaped convex strip in the above embodiment, but as shown in FIG. 6, it may be a concave portion or a convex portion formed by, for example, dimple processing. In this example, the concave and convex portions of the drainage structure 22 are hemispherical, but may be columnar or conical, for example.

さらに、前記実施形態では、山部21x及び谷部21yをコルゲート加工により形成した場合について説明したが、図7に示すように、例えば絞り加工により山部21x及び谷部21yを形成しても良い。すなわち、山部21xは、空気の流れ方向においてフィン2の表面が盛り上がる部分であれば良いし、谷部21yは、空気の流れ方向においてフィン2の表面が沈み込む部分であれば良く、これらの具体的な形状は適宜変更して構わない。 Further, in the above embodiment, the case where the mountain portion 21x and the valley portion 21y are formed by corrugated processing has been described, but as shown in FIG. 7, for example, the mountain portion 21x and the valley portion 21y may be formed by drawing processing. .. That is, the mountain portion 21x may be a portion where the surface of the fin 2 rises in the air flow direction, and the valley portion 21y may be a portion where the surface of the fin 2 sinks in the air flow direction. The specific shape may be changed as appropriate.

ところで、山部21x及び谷部21yを有する伝熱拡大面21と排水構造22とを重ね合わせると、この重なり合う箇所の材料が、山部21xでは薄くなり谷部21yでは集中するため、山部21xや谷部21yでフィン2が割れたり破損したりしやすくなる(図8参照)。
そこで、フィン2の加工性に鑑みれば、図9に示すように、排水構造22の山部21xに重なり合う箇所の高さを谷部21yに重なり合う箇所の高さより低くしても良い。なお、ここでいう「高さ」は、フィン2表面において排水構造22が設けられていない箇所から排水構造22の表面までの距離である。
より具体的に説明すると、同図9に示すように、排水構造22のうち、山部21xに重なり合う箇所の高さをHt、谷部21yに重なり合う箇所の高さをHb、山部21x及び谷部21yの間の中央部の高さをHmとすると、Hb>Hm>Htを満たすようにしてある。
このような構成であれば、排水構造22の山部21xに重なり合う箇所における加工時の材料の伸びを緩和することができ、排水構造22の谷部21yに重なり合う箇所における材料の集中を緩和するとともに、割れや破損を防ぐことができる(図10参照)。
By the way, when the heat transfer expansion surface 21 having the mountain portion 21x and the valley portion 21y and the drainage structure 22 are overlapped with each other, the material of the overlapping portion becomes thin in the mountain portion 21x and concentrates in the valley portion 21y, so that the mountain portion 21x The fin 2 is liable to crack or break at the valley portion 21y (see FIG. 8).
Therefore, in view of the workability of the fin 2, as shown in FIG. 9, the height of the portion of the drainage structure 22 overlapping the mountain portion 21x may be lower than the height of the portion overlapping the valley portion 21y. The "height" here is the distance from the surface of the fin 2 where the drainage structure 22 is not provided to the surface of the drainage structure 22.
More specifically, as shown in FIG. 9, in the drainage structure 22, the height of the portion overlapping the mountain portion 21x is Ht, the height of the portion overlapping the valley portion 21y is Hb, the mountain portion 21x and the valley. Assuming that the height of the central portion between the portions 21y is Hm, Hb>Hm> Ht is satisfied.
With such a configuration, it is possible to alleviate the elongation of the material during processing at the portion overlapping the mountain portion 21x of the drainage structure 22, and alleviate the concentration of the material at the portion overlapping the valley portion 21y of the drainage structure 22. , Can prevent cracking and breakage (see FIG. 10).

ここで、フィン2と、このフィン2の切り欠き2zに挿入された伝熱管1との間の熱交換効率の向上を図るべく、フィン2の構成として、図11に示すように、切り欠き2zの内周縁をフィンの配列方向に折り曲げてなる接触面23を有する構成を中間的に考えた。
このような構成であれば、接触面23と伝熱管1の外周面との接触面積を広くすることができるので、熱交換効率の向上を図れる。
Here, in order to improve the heat exchange efficiency between the fin 2 and the heat transfer tube 1 inserted into the notch 2z of the fin 2, the fin 2 is configured as a notch 2z as shown in FIG. An intermediate configuration was considered having a contact surface 23 formed by bending the inner peripheral edge of the above in the arrangement direction of the fins.
With such a configuration, the contact area between the contact surface 23 and the outer peripheral surface of the heat transfer tube 1 can be widened, so that the heat exchange efficiency can be improved.

ところが、山部21x及び谷部21yを有するフィン2に上述した接触面23を設けると、切り欠き2zに伝熱管1を挿入する際、接触面23の奥側(伝熱管1の挿入方向奥側)端部に応力が集中して、その箇所でフィン2が折れる恐れがある。 However, if the above-mentioned contact surface 23 is provided on the fin 2 having the peak portion 21x and the valley portion 21y, when the heat transfer tube 1 is inserted into the notch 2z, the back side of the contact surface 23 (the back side in the insertion direction of the heat transfer tube 1). ) Stress is concentrated on the end, and the fin 2 may break at that point.

そこで、ここでのフィン2は、図12に示すように、接触面23の奥側端部に応力を分散させる応力分散部24を有している。具体的にこの応力分散部24は、切り欠き2zに重なり合う山部21xや谷部21yのうちの最も奥側端部に位置する山部21x又は谷部21yを高さ方向に切り欠いて形成したものである。
このような構成によれば、切り欠き2zに伝熱管1を挿入する際に奥側端部に加わる応力を応力分散部24によって分散することができ、この箇所におけるフィン2の折れを防止することができる。
Therefore, as shown in FIG. 12, the fin 2 here has a stress dispersion portion 24 that disperses stress at the inner end portion of the contact surface 23. Specifically, the stress dispersion portion 24 is formed by cutting out the mountain portion 21x or the valley portion 21y located at the innermost end of the mountain portion 21x and the valley portion 21y overlapping the notch 2z in the height direction. It is a thing.
According to such a configuration, the stress applied to the inner end portion when the heat transfer tube 1 is inserted into the notch 2z can be dispersed by the stress dispersion portion 24, and the fin 2 can be prevented from breaking at this portion. Can be done.

また、図11に示す中間的な構成においては、切り欠き2zに伝熱管1を挿入する際、フィン2が折れる方向に働くモーメントが大きくなり、フィン2が折れる恐れがある。
そこで、図12に示すように、山部21xにおける接触面23の折り曲げ方向(ここではフィン2の配列方向)の寸法Lxを、谷部21yにおける接触面23の折り曲げ方向(ここではフィン2の配列方向)の寸法Lyよりも小さくしてある。
このような構成であれば、モーメントが最も大きくなる山部21xの折り曲げ方向の寸法Lxを小さくしているので、フィン2の折れを防止することができる。
Further, in the intermediate configuration shown in FIG. 11, when the heat transfer tube 1 is inserted into the notch 2z, the moment acting in the direction in which the fin 2 breaks becomes large, and the fin 2 may break.
Therefore, as shown in FIG. 12, the dimension Lx of the contact surface 23 in the mountain portion 21x in the bending direction (here, the arrangement direction of the fins 2) is set to the bending direction of the contact surface 23 in the valley portion 21y (here, the arrangement of the fins 2). It is smaller than the dimension Ly in the direction).
With such a configuration, since the dimension Lx in the bending direction of the mountain portion 21x where the moment is the largest is reduced, it is possible to prevent the fin 2 from bending.

<第2実施形態>
次に、本発明に係る熱交換器の第2実施形態について図面を参照して説明する。なお、以下の説明において参照する図13~図20では、説明の便宜上、フィンの伝熱拡大面や排水構造の記載を省略してある。
<Second Embodiment>
Next, a second embodiment of the heat exchanger according to the present invention will be described with reference to the drawings. In FIGS. 13 to 20 referred to in the following description, the description of the heat transfer expansion surface and the drainage structure of the fins is omitted for convenience of explanation.

本実施形態では、互いに隣り合う伝熱管1の間隔や、フィン2と伝熱管1との間隔に特徴があるので、この点について詳述する。 In the present embodiment, the distance between the heat transfer tubes 1 adjacent to each other and the distance between the fins 2 and the heat transfer tube 1 are characteristic, and this point will be described in detail.

すなわち、本実施形態では、図13に示すように、互いに隣り合う第1の伝熱管1Aと第2の伝熱管1Bとの間隔(以下、伝熱管間隔D1という)を、第1の伝熱管1A又は第2の伝熱管1Bの幅寸法(以下、伝熱管幅Wという)の40%よりも大きくしてある。
なお、ここでの伝熱管間隔D1は、第1の伝熱管1Aの幅方向端部のうちの第2の伝熱管1B側の幅方向端部aと、第2の伝熱管1Bの幅方向端部のうちの第1の伝熱管1A側の幅方向端部bとの離間距離である。
また、ここでの伝熱管幅Wは、伝熱管1A、1Bの幅方向両端部の離間距離である。
That is, in the present embodiment, as shown in FIG. 13, the distance between the first heat transfer tube 1A and the second heat transfer tube 1B adjacent to each other (hereinafter referred to as the heat transfer tube interval D1) is set to the first heat transfer tube 1A. Alternatively, it is made larger than 40% of the width dimension of the second heat transfer tube 1B (hereinafter referred to as the heat transfer tube width W).
The heat transfer tube spacing D1 here is the width direction end a of the second heat transfer tube 1B side of the width direction ends of the first heat transfer tube 1A and the width direction end of the second heat transfer tube 1B. It is a separation distance from the widthwise end portion b on the first heat transfer tube 1A side of the portions.
Further, the heat transfer tube width W here is a separation distance between both ends of the heat transfer tubes 1A and 1B in the width direction.

ここで、図14に示すグラフは、仮に第1の伝熱管1Aと第2の伝熱管1Bとの間に隙間がなかった場合、すなわち伝熱管間隔D1=0の場合における伝熱管1の表面の滞留水量を100%したときの伝熱管間隔D1/伝熱管幅Wと滞留水量との相関関係を示すものである。 Here, the graph shown in FIG. 14 shows the surface of the heat transfer tube 1 when there is no gap between the first heat transfer tube 1A and the second heat transfer tube 1B, that is, when the heat transfer tube spacing D1 = 0. It shows the correlation between the heat transfer tube interval D1 / heat transfer tube width W and the stagnant water amount when the stagnant water amount is 100%.

この相関関係から分かるように、本実施形態の熱交換器Xによれば、上述したように、伝熱管間隔D1/伝熱管幅W>0.4であるので、滞留水量は、第1の伝熱管1Aと第2の伝熱管1Bとの間に隙間がなかった場合の80%を下回り、ほぼ最大の高い排水性が得られていることが見て取れる。 As can be seen from this correlation, according to the heat exchanger X of the present embodiment, as described above, the heat transfer tube interval D1 / heat transfer tube width W> 0.4, so that the amount of retained water is the first transfer. It is less than 80% when there is no gap between the heat pipe 1A and the second heat transfer tube 1B, and it can be seen that almost the maximum high drainage property is obtained.

また、本実施形態では、第1のフィン2Aから第2の伝熱管1Bまでの間隔(以下、フィン伝熱管間隔D2という)を、第2のフィン2Bの幅寸法(以下、第2フィン幅L2という)の20%よりも大きくなるようにしてあり、より好ましくは30%よりも大きくすることが望まれる。
なお、ここでのフィン伝熱管間隔D2は、第1のフィン2Aにおける第2の伝熱管1B側の長辺部Lから、第2の伝熱管1Bの幅方向端部のうち第1の伝熱管1A側の幅方向端部bまでの幅方向に沿った距離である。
Further, in the present embodiment, the distance from the first fin 2A to the second heat transfer tube 1B (hereinafter referred to as fin heat transfer tube distance D2) is set to the width dimension of the second fin 2B (hereinafter referred to as the second fin width L2). It is intended to be larger than 20%, more preferably larger than 30%.
The fin heat transfer tube spacing D2 here is from the long side portion L on the second heat transfer tube 1B side of the first fin 2A to the first heat transfer tube among the widthwise end portions of the second heat transfer tube 1B. It is a distance along the width direction to the end portion b in the width direction on the 1A side.

ここで、例えば図15に示すように、組立性の向上を図り、第1のフィン2Aや第2のフィン2Bの長辺部Lに切り欠きXを設けた場合、この切り欠きXにより長辺部Lが不連続となり、その切り欠きXの部分が排水の妨げとなる。これにより、伝熱管間隔D1を大きく確保したとしても、高い排水性を得ることができない場合がある。 Here, for example, as shown in FIG. 15, when a notch X is provided in the long side portion L of the first fin 2A and the second fin 2B in order to improve the assembling property, the long side is provided by the notch X. The portion L becomes discontinuous, and the portion of the notch X hinders drainage. As a result, even if the heat transfer tube spacing D1 is largely secured, high drainage may not be obtained.

これに対して、本実施形態では、上述したように伝熱管間隔D1/伝熱管幅W>0.4とした上で、フィン伝熱間隔D2を第2フィン幅L2の20%よりも大きく、より好ましくは30%よりも大きくしてあるので、排水経路上の導水可能な領域を十分に確保することができる。 On the other hand, in the present embodiment, the heat transfer interval D1 / heat transfer tube width W> 0.4 is set as described above, and the fin heat transfer interval D2 is larger than 20% of the second fin width L2. More preferably, it is made larger than 30%, so that a sufficient area for water transfer on the drainage route can be secured.

<第2実施形態の変形例>
なお、本発明は、前記第2実施形態に限られるものではない。
<Modified example of the second embodiment>
The present invention is not limited to the second embodiment.

例えば、第1のフィン2Aや第2のフィン2Bとしては、図16(b)に示すように構成されたものであっても良い。
すなわち、第1のフィン2Aは、幅方向一方側に第1の伝熱管1Aを差し込むための切り欠きXが形成されており、幅方向他方側は長手方向(上下方向)に亘って連続して設けられたものであり、
また、第2のフィン2Bが、幅方向一方側は長手方向(上下方向)に亘って連続して設けられており、幅方向他方側に第2の伝熱管1Bを差し込むための切り欠きXが形成されたものである。
For example, the first fin 2A and the second fin 2B may be configured as shown in FIG. 16B.
That is, the first fin 2A has a notch X formed on one side in the width direction for inserting the first heat transfer tube 1A, and the other side in the width direction is continuous in the longitudinal direction (vertical direction). It is provided and
Further, the second fin 2B is continuously provided on one side in the width direction over the longitudinal direction (vertical direction), and a notch X for inserting the second heat transfer tube 1B is provided on the other side in the width direction. It was formed.

より具体的に説明すると、第1のフィン2Aは、一方の長辺部には長手方向に沿って間欠的に切り欠きXが形成されており、他方の長辺部は上端部から下端部に亘って直線状に延在している。
また、第2のフィン2Bは、一方の長辺部は上端部から下端部に亘って直線状に延在しており、他方の長辺部には長手方向に沿って間欠的に切り欠きXが形成されている。
More specifically, in the first fin 2A, a notch X is formed intermittently along the longitudinal direction on one long side portion, and the other long side portion is formed from the upper end portion to the lower end portion. It extends linearly over.
Further, in the second fin 2B, one long side portion extends linearly from the upper end portion to the lower end portion, and the other long side portion is intermittently cut out along the longitudinal direction X. Is formed.

上述した構成において、同図16(b)に示すように、第1の伝熱管1Aが、第1のフィン2Aの幅方向中心部よりも幅方向一方側に配置されるとともに、第2の伝熱管1Bが、第2のフィン2Bの幅方向中心部よりも幅方向他方側に配置されていても良い。
そして、第1のフィン2Aの幅方向他方側及び第2のフィン2Bの幅方向一方側が、第1の伝熱管1A及び第2の伝熱管1Bの間に介在するように配置されていても良い。
言い換えれば、第1のフィン2Aの切り欠きXと、第2のフィン2Bの切り欠きXとが、互いに反対方向を向くように形成されており、第1のフィン2Aにおいて上端部から下端部まで直線状に延びる長辺部と、第2のフィン2Bにおいて上端部から下端部まで直線状に延びる長辺部とが隣接して設けられていても良い。
このような構成であれば、図16(a)に示す構成に比べて、伝熱管間隔D1を大きくすることができ、第1の伝熱管1A及び第2の伝熱管1Bの間に凝縮水を伝わせることができる。ただし、本発明の熱交換器100としては、図16(a)に示す構成のものであっても良い。
In the above-described configuration, as shown in FIG. 16B, the first heat transfer tube 1A is arranged on one side in the width direction from the center in the width direction of the first fin 2A, and the second heat transfer tube 1A is arranged. The heat pipe 1B may be arranged on the other side in the width direction from the center portion in the width direction of the second fin 2B.
Then, the other side in the width direction of the first fin 2A and the other side in the width direction of the second fin 2B may be arranged so as to be interposed between the first heat transfer tube 1A and the second heat transfer tube 1B. ..
In other words, the notch X of the first fin 2A and the notch X of the second fin 2B are formed so as to face opposite to each other, and the first fin 2A is formed from the upper end to the lower end. A long side portion extending linearly and a long side portion extending linearly from the upper end portion to the lower end portion of the second fin 2B may be provided adjacent to each other.
With such a configuration, the heat transfer tube interval D1 can be made larger than the configuration shown in FIG. 16A, and condensed water is placed between the first heat transfer tube 1A and the second heat transfer tube 1B. I can tell you. However, the heat exchanger 100 of the present invention may have the configuration shown in FIG. 16A.

また、第1のフィン2Aに対する第1の伝熱管1Aの配置や、第2のフィン2Bに対する第2の伝熱管1Bの配置は、図17(b)に示すように、第1の伝熱管1Aの幅方向両端部それぞれが、第1のフィン2Aの幅方向両端部よりも内側に位置し、第2の伝熱管1Bの幅方向両端部それぞれが、第2のフィン2Bの幅方向両端部よりも内側に位置するようにしても良い。
このような構成であれば、図17(a)に示す構成に比べて、伝熱管間隔D1を大きくすることができ、第1の伝熱管1A及び第2の伝熱管1Bの間に凝縮水を伝わせることができる。ただし、本発明の熱交換器100としては、図17(a)に示す構成のものであっても良い。
Further, as shown in FIG. 17B, the arrangement of the first heat transfer tube 1A with respect to the first fin 2A and the arrangement of the second heat transfer tube 1B with respect to the second fin 2B are the first heat transfer tube 1A. The widthwise ends of the second heat transfer tube 1B are located inside the widthwise ends of the first fin 2A, and the widthwise ends of the second heat transfer tube 1B are located inside the widthwise ends of the second fin 2B. May be located inside.
With such a configuration, the heat transfer tube spacing D1 can be made larger than that shown in FIG. 17A, and condensed water is placed between the first heat transfer tube 1A and the second heat transfer tube 1B. I can tell you. However, the heat exchanger 100 of the present invention may have the configuration shown in FIG. 17 (a).

互いに隣り合う第1の伝熱管1A及び第2の伝熱管1Bは、前記実施形態では互いに同じ高さになるように配置されていたが、高さはずれていても良く、例えば図18(b)に示すように、幅方向と直交する長手方向に沿って千鳥状に配置されていても良い。
この場合においても、伝熱管間隔D1は、第1の伝熱管1Aの幅方向端部のうちの第2の伝熱管1B側の幅方向端部と、第2の伝熱管1Bの幅方向端部のうちの第1の伝熱管1A側の幅方向端部との離間距離とすることができる。
このような構成であれば、図18(a)に示す構成に比べて、伝熱管間隔D1を大きくすることができ、第1の伝熱管1A及び第2の伝熱管1Bの間に凝縮水を伝わせることができる。ただし、本発明の熱交換器100としては、図18(a)に示す構成のものであっても良い。
The first heat transfer tubes 1A and the second heat transfer tubes 1B that are adjacent to each other are arranged so as to have the same height as each other in the above embodiment, but the heights may be different from each other, for example, FIG. 18 (b). As shown in, it may be arranged in a staggered manner along the longitudinal direction orthogonal to the width direction.
Also in this case, the heat transfer tube spacing D1 is the width direction end portion of the first heat transfer tube 1A on the second heat transfer tube 1B side and the width direction end portion of the second heat transfer tube 1B. It can be the distance from the widthwise end of the first heat transfer tube 1A side.
With such a configuration, the heat transfer tube interval D1 can be made larger than the configuration shown in FIG. 18A, and condensed water is placed between the first heat transfer tube 1A and the second heat transfer tube 1B. I can tell you. However, the heat exchanger 100 of the present invention may have the configuration shown in FIG. 18A.

前記実施形態においては、第1のフィン2A及び第2のフィン2Bに対して、それぞれ多段に配列された第1の伝熱管1Aや多段に配列された第2の伝熱管1Bが1列設けられていたが、第1のフィン2A及び/又は第2のフィン2Bに対して、それぞれ第1の伝熱管1Aや第2の伝熱管1Bが複数列設けられていても良い。すなわち、1列のフィン2A(2B)に対して2列の伝熱管1A、1Bが設けられていても良い。 In the above embodiment, the first fin 2A and the second fin 2B are provided with one row of the first heat transfer tubes 1A arranged in multiple stages and the second heat transfer tubes 1B arranged in multiple stages, respectively. However, a plurality of rows of the first heat transfer tube 1A and the second heat transfer tube 1B may be provided for the first fin 2A and / or the second fin 2B, respectively. That is, two rows of heat transfer tubes 1A and 1B may be provided for one row of fins 2A (2B).

第1の伝熱管1A及び第2の伝熱管1Bは、図19(a)に示すように、互いに異なる幅寸法(W1及びW2)のものであっても良い。
また、第1のフィン2A及び第2のフィン2Bは、図19(b)に示すように、互いに異なる幅寸法(L1及びL2)のものであっても良い。
さらに、図19(c)に示すように、凝縮水の滞留が多い部分の伝熱管間隔D1を、凝縮水の滞留が少ない部分の伝熱管間隔よりも広くしても良い。
As shown in FIG. 19A, the first heat transfer tube 1A and the second heat transfer tube 1B may have different width dimensions (W1 and W2).
Further, the first fin 2A and the second fin 2B may have different width dimensions (L1 and L2) from each other as shown in FIG. 19B.
Further, as shown in FIG. 19 (c), the heat transfer tube spacing D1 in the portion where the condensed water stays much may be wider than the heat transfer tube spacing in the portion where the condensed water stays less.

ところで、第1のフィン2Aや第2のフィン2Bの長辺部Lに切り欠きXを設けると排水性の低下を招来することは、図15の説明で述べた通りである。
そこで、図20(a)に示すように、第1のフィン2Aの長辺部Lに切り欠きXを設けるとともに、この切り欠きXに隣り合う第2のフィン2Bの長辺部L’を切り欠きXに沿った形状にしても良い。
また、図20(b)に示すように、第1のフィン2Aの長辺部Lに切り欠きXを設けるとともに、この切り欠きXに隣り合う第2のフィン2Bの長辺部L’を切り欠きXに重なり合うように配置しても良い。
これらの構成により、切り欠きXにより生じる不連続箇所に排水経路を拡大させることができ、排水性の向上を図れる。
By the way, as described in the explanation of FIG. 15, if the notch X is provided in the long side portion L of the first fin 2A and the second fin 2B, the drainage property is deteriorated.
Therefore, as shown in FIG. 20A, a notch X is provided in the long side portion L of the first fin 2A, and the long side portion L'of the second fin 2B adjacent to the notch X is cut. The shape may be along the notch X.
Further, as shown in FIG. 20B, a notch X is provided in the long side portion L of the first fin 2A, and the long side portion L'of the second fin 2B adjacent to the notch X is cut. It may be arranged so as to overlap the notch X.
With these configurations, the drainage route can be expanded to the discontinuous portion caused by the notch X, and the drainage property can be improved.

<第3実施形態>
次に、本発明に係る熱交換器の第3実施形態について図面を参照して説明する。なお、以下の説明において参照する図21~図26では、説明の便宜上、フィンの伝熱拡大面や排水構造の記載を省略してある。
<Third Embodiment>
Next, a third embodiment of the heat exchanger according to the present invention will be described with reference to the drawings. In FIGS. 21 to 26 referred to in the following description, the description of the heat transfer expansion surface and the drainage structure of the fins is omitted for convenience of explanation.

本実施形態では、伝熱管の幅寸法とフィンピッチとの関係に特徴があるので、この点について詳述する。 In this embodiment, the relationship between the width dimension of the heat transfer tube and the fin pitch is characteristic, and this point will be described in detail.

まず、本実施形態のフィン2は、伝熱管1の延在方向に沿って所定のフィンピッチで配列されており、ここでは等間隔に配列されている。 First, the fins 2 of the present embodiment are arranged at a predetermined fin pitch along the extending direction of the heat transfer tube 1, and are arranged at equal intervals here.

このように扁平状の伝熱管1が複数枚のフィン2を貫通する構成において、図21に示すように、複数枚のフィン2のフィンピッチPが小過ぎると、互いに隣り合うフィン2の間に凝縮水のブリッジが形成されやすくなり、十分な排水性を得ることができない。かといって、フィンピッチPが大き過ぎると、熱交換効率を担保することができない。
なお、ここでのフィンピッチPは、伝熱管1の延伸方向において互いに隣り合うフィン2の同延伸方向に沿った離間距離である。
In the configuration in which the flat heat transfer tube 1 penetrates the plurality of fins 2 in this way, as shown in FIG. 21, if the fin pitch P of the plurality of fins 2 is too small, the fins 2 adjacent to each other are between the fins 2. Bridges of condensed water are likely to be formed, and sufficient drainage cannot be obtained. However, if the fin pitch P is too large, the heat exchange efficiency cannot be guaranteed.
The fin pitch P here is a separation distance along the same stretching direction of the fins 2 adjacent to each other in the stretching direction of the heat transfer tube 1.

また、図22に示すように、伝熱管1の幅寸法W(以下、伝熱管幅Wともいう)に関しても、大き過ぎると、その分、伝熱管1上に滞留する凝縮水量が多くなり、十分な排水性を得ることができないし、小さ過ぎると、熱交換効率を担保することができない。
なお、ここでの伝熱管幅Wは、伝熱管1の幅方向一端部から幅方向他端部までの離間距離である。
Further, as shown in FIG. 22, if the width dimension W of the heat transfer tube 1 (hereinafter, also referred to as the heat transfer tube width W) is too large, the amount of condensed water staying on the heat transfer tube 1 increases by that amount, which is sufficient. It is not possible to obtain a good drainage property, and if it is too small, the heat exchange efficiency cannot be guaranteed.
The heat transfer tube width W here is a separation distance from one end in the width direction to the other end in the width direction of the heat transfer tube 1.

そこで、伝熱管幅WはフィンピッチPの4倍以上、且つ、7倍以下とすることが好ましい。 Therefore, it is preferable that the heat transfer tube width W is 4 times or more and 7 times or less the fin pitch P.

より具体的に説明すると、本実施形態の伝熱管幅Wは、少なくとも一部が10mm以下であり、ここでは長手方向の全長に亘って10mm以下としてある。 More specifically, the heat transfer tube width W of the present embodiment is at least a part of 10 mm or less, and here, the total length in the longitudinal direction is 10 mm or less.

ここで、図23に示すグラフは、伝熱管幅W/フィンピッチPと排水性との相関関係を示すものである。図23に示す通り、伝熱管幅W/フィンピッチP<4.0としても排水性の向上は期待できないため、伝熱管幅W/フィンピッチP=4.0とした場合における伝熱管1の表面の排水性を100%としてある。 Here, the graph shown in FIG. 23 shows the correlation between the heat transfer tube width W / fin pitch P and the drainage property. As shown in FIG. 23, even if the heat transfer tube width W / fin pitch P <4.0 is not expected to improve the drainage property, the surface of the heat transfer tube 1 when the heat transfer tube width W / fin pitch P = 4.0 is set. The drainage property of is 100%.

この相関関係から分かるように、本実施形態の熱交換器100によれば、上述したように、伝熱管幅W/フィンピッチP≧4倍であるので、熱交換効率を担保することができ、しかも伝熱管幅W/フィンピッチP≦7倍であるので、排水性の悪化を10%程度に抑えることができる。 As can be seen from this correlation, according to the heat exchanger 100 of the present embodiment, as described above, since the heat transfer tube width W / fin pitch P ≧ 4 times, the heat exchange efficiency can be ensured. Moreover, since the heat transfer tube width W / fin pitch P ≦ 7 times, the deterioration of drainage can be suppressed to about 10%.

なお、本発明は、前記第3実施形態に限られるものではない。 The present invention is not limited to the third embodiment.

例えば、前記実施形態では、1列のフィン2に対して1列の伝熱管1が設けられていたが、図24に示すように、1列のフィン2に対して幅方向に沿って並び設けられた2列以上の伝熱管1が隙間を介して設けられていても良い。なお、図24では、幅方向に沿って並び設けられた一対の伝熱管1が、互いに同じ幅寸法Wのものであるが、これらは互いに異なる幅寸法のものであっても良い。
このような構成であれば、2列以上の伝熱管1を設けるので、これらの伝熱管幅Wを足し合わせた幅寸法の伝熱管を1列設けた場合とほぼ同等の熱交換効率を担保しつつ、各列の伝熱管幅Wを短くすることができるので、伝熱管1上に溜まる幅凝縮水量を減らすことができる。
For example, in the above embodiment, one row of heat transfer tubes 1 is provided for one row of fins 2, but as shown in FIG. 24, one row of fins 2 is provided side by side along the width direction. Two or more rows of heat transfer tubes 1 may be provided through the gap. In FIG. 24, the pair of heat transfer tubes 1 arranged side by side in the width direction have the same width dimension W, but they may have different width dimensions.
With such a configuration, since two or more rows of heat transfer tubes 1 are provided, heat exchange efficiency almost equal to that when one row of heat transfer tubes having a width dimension obtained by adding the widths of these heat transfer tubes W is provided is ensured. At the same time, since the heat transfer tube width W in each row can be shortened, the amount of width condensed water accumulated on the heat transfer tube 1 can be reduced.

また、熱交換器100としては、図25に示すように、伝熱管幅W/フィンピッチPが、伝熱管1の段によって異なるように構成されていても良い。
このように、フィンピッチPの大きさに合わせて伝熱管幅Wを変えことにより、排水性の均等化を図れる。
Further, as shown in FIG. 25, the heat exchanger 100 may be configured such that the heat transfer tube width W / fin pitch P differs depending on the stage of the heat transfer tube 1.
In this way, by changing the heat transfer tube width W according to the size of the fin pitch P, the drainage property can be equalized.

さらに、図26に示すように、凝縮水の滞留が多い部分の伝熱管間幅W1を、凝縮水の滞留が少ない部分の伝熱管幅W2よりも広くしても良い。 Further, as shown in FIG. 26, the width W1 between the heat transfer tubes in the portion where the condensed water stays much may be wider than the heat transfer tube width W2 in the portion where the condensed water stays less.

その他、本発明は前記各実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形が可能であるのは言うまでもない。 In addition, the present invention is not limited to each of the above-described embodiments, and it goes without saying that various modifications can be made without departing from the spirit of the present invention.

100・・・熱交換器
1 ・・・伝熱管
2 ・・・フィン
21 ・・・伝熱拡大面
21x・・・山部
21y・・・谷部
22 ・・・排水構造
2z ・・・切り欠き
100 ・ ・ ・ Heat exchanger 1 ・ ・ ・ Heat transfer tube 2 ・ ・ ・ Fin 21 ・ ・ ・ Heat transfer expansion surface 21x ・ ・ ・ Mountain part 21y ・ ・ ・ Tani part 22 ・ ・ ・ Drainage structure 2z ・ ・ ・ Notch

Claims (15)

扁平状をなす伝熱管と、前記伝熱管に設けられた複数枚のフィンとを備え、前記伝熱管の内部を流れる冷媒と、前記複数枚のフィンの間を流れる空気との間で熱交換するように構成された熱交換器において、
前記フィンが、
空気の流れ方向に沿って設けられた山部及び谷部を有する伝熱拡大面と、
前記伝熱拡大面に重なり合うように設けられた排水構造とを備えていることを特徴とする熱交換器。
A flat heat transfer tube and a plurality of fins provided in the heat transfer tube are provided, and heat is exchanged between the refrigerant flowing inside the heat transfer tube and the air flowing between the plurality of fins. In a heat exchanger configured as
The fins
A heat transfer expansion surface having peaks and valleys provided along the direction of air flow,
A heat exchanger characterized by having a drainage structure provided so as to overlap the heat transfer expansion surface.
前記排水構造が、前記伝熱拡大面に設けられた凹凸状のものである、請求項1記載の熱交換器。 The heat exchanger according to claim 1, wherein the drainage structure has an uneven shape provided on the heat transfer expansion surface. 前記排水構造が、前記伝熱拡大面に設けられたディンプル又はビードである、請求項2記載の熱交換器。 The heat exchanger according to claim 2, wherein the drainage structure is a dimple or a bead provided on the heat transfer expansion surface. 複数の前記伝熱管が、扁平な面が上下を向くように上下多段に配置されており、
前記フィンが、上下方向に延びるとともに前記複数の伝熱管が貫通する長尺状をなすものであり、
前記フィンの一方の長辺部には、前記複数の伝熱管に対応した箇所に切り欠きが形成されており、
前記フィンの他方の長辺部は、上端部から下端部に亘って直線状に延びており、
前記排水構造が、前記伝熱管の表面に生じた水滴を前記他方の長辺部に向かって排水するように構成されている、請求項1乃至3のうち何れか一項に記載の熱交換器。
A plurality of the heat transfer tubes are arranged in multiple stages up and down so that the flat surface faces up and down.
The fins extend in the vertical direction and form a long shape through which the plurality of heat transfer tubes penetrate.
A notch is formed on one long side of the fin at a position corresponding to the plurality of heat transfer tubes.
The other long side of the fin extends linearly from the upper end to the lower end.
The heat exchanger according to any one of claims 1 to 3, wherein the drainage structure is configured to drain water droplets generated on the surface of the heat transfer tube toward the other long side portion. ..
前記排水構造の前記山部に重なり合う箇所の高さが前記谷部に重なり合う箇所の高さよりも低い、請求項1乃至4のうち何れか一項に記載の熱交換器。 The heat exchanger according to any one of claims 1 to 4, wherein the height of the portion of the drainage structure overlapping the mountain portion is lower than the height of the portion overlapping the valley portion. 前記フィンが、前記山部及び前記谷部が交互に繰り返し形成されたコルゲートフィンであり、コルゲート角度が5°以上24°以下である、請求項1乃至5のうち何れか一項に記載の熱交換器。 The heat according to any one of claims 1 to 5, wherein the fin is a corrugated fin in which the peaks and valleys are alternately and repeatedly formed, and the corrugated angle is 5 ° or more and 24 ° or less. Exchanger. 多段に設けられた扁平状をなす複数本の第1の前記伝熱管が第1の前記フィンを貫通してなる第1熱交換部と、多段に設けられた扁平状をなす複数本の第2の前記伝熱管が第2の前記フィンを貫通してなる第2熱交換部とを備え、前記第1熱交換部及び前記第2熱交換部が、前記各伝熱管の幅方向に隣り合って配置されている熱交換器において、
互いに隣り合う前記第1の伝熱管と前記第2の伝熱管との間隔が、前記第1の伝熱管又は前記第2の伝熱管の幅寸法の40%よりも大きく、
前記第1のフィンから前記第2の伝熱管までの間隔が、前記第2のフィンの幅寸法の20%よりも大きいことを特徴とする、請求項1乃至6のうち何れか一項に記載の熱交換器。
A first heat exchange section in which a plurality of flat first heat transfer tubes provided in multiple stages penetrate the first fin, and a plurality of flat second heat transfer portions provided in multiple stages. The heat transfer tube is provided with a second heat exchange section formed by penetrating the second fin, and the first heat exchange section and the second heat exchange section are adjacent to each other in the width direction of each heat transfer tube. In the heat exchanger that is located
The distance between the first heat transfer tube and the second heat transfer tube adjacent to each other is larger than 40% of the width dimension of the first heat transfer tube or the second heat transfer tube.
The invention according to any one of claims 1 to 6, wherein the distance from the first fin to the second heat transfer tube is larger than 20% of the width dimension of the second fin. Heat exchanger.
前記第1の伝熱管が、前記第1のフィンの幅方向中心部よりも幅方向一方側に配置されており、
前記第2の伝熱管が、前記第2のフィンの幅方向中心部よりも幅方向他方側に配置されており、
前記第1のフィンの幅方向他方側及び前記第2のフィンの幅方向一方側が、前記第1の伝熱管及び前記第2の伝熱管の間に介在する、請求項7記載の熱交換器。
The first heat transfer tube is arranged on one side in the width direction with respect to the center portion in the width direction of the first fin.
The second heat transfer tube is arranged on the other side in the width direction from the center in the width direction of the second fin.
The heat exchanger according to claim 7, wherein the other side in the width direction of the first fin and one side in the width direction of the second fin are interposed between the first heat transfer tube and the second heat transfer tube.
前記第1のフィンが、幅方向一方側に前記第1の伝熱管を差し込むための切り欠きが形成されており、幅方向他方側は長手方向に亘って連続して設けられたものであり、
前記第2のフィンが、幅方向一方側は長手方向に亘って連続して設けられており、幅方向他方側に前記第2の伝熱管を差し込むための切り欠きが形成されたものである、請求項8記載の熱交換器。
The first fin has a notch formed on one side in the width direction for inserting the first heat transfer tube, and the other side in the width direction is continuously provided over the longitudinal direction.
The second fin is continuously provided on one side in the width direction over the longitudinal direction, and a notch for inserting the second heat transfer tube is formed on the other side in the width direction. The heat exchanger according to claim 8.
前記第1の伝熱管の幅方向両端部が、前記第1のフィンの幅方向両端部よりも内側に位置し、
前記第2の伝熱管の幅方向両端部が、前記第2のフィンの幅方向両端部よりも内側に位置する、請求項7乃至9のうち何れか一項に記載の熱交換器。
The widthwise ends of the first heat transfer tube are located inside the widthwise ends of the first fin.
The heat exchanger according to any one of claims 7 to 9, wherein both ends in the width direction of the second heat transfer tube are located inside the both ends in the width direction of the second fin.
前記第1の伝熱管及び前記第2の伝熱管が、前記幅方向と直交する長手方向に沿って千鳥状に配置されている、請求項7乃至9のうち何れか一項に記載の熱交換器。 The heat exchange according to any one of claims 7 to 9, wherein the first heat transfer tube and the second heat transfer tube are arranged in a staggered manner along a longitudinal direction orthogonal to the width direction. vessel. 前記第1のフィン又は前記第2のフィンに対して、前記第1の伝熱管又は前記第2の伝熱管が複数列設けられている、請求項7乃至11のうち何れか一項に記載の熱交換器。 The invention according to any one of claims 7 to 11, wherein a plurality of rows of the first heat transfer tube or the second heat transfer tube are provided for the first fin or the second fin. Heat exchanger. 扁平状をなす前記伝熱管が所定のフィンピッチで並び設けられた複数枚の前記フィンを貫通してなる熱交換器において、
前記伝熱管の幅寸法が、前記フィンピッチの4倍以上7倍以下である、請求項1乃至12のうち何れか一項に記載の熱交換器。
In a heat exchanger in which the flat heat transfer tubes are arranged side by side at a predetermined fin pitch and penetrate through a plurality of the fins.
The heat exchanger according to any one of claims 1 to 12, wherein the width dimension of the heat transfer tube is 4 times or more and 7 times or less the fin pitch.
前記伝熱管の少なくとも一部の幅寸法が、10mm以下である、請求項13記載の熱交換器。 13. The heat exchanger according to claim 13, wherein at least a part of the heat transfer tube has a width dimension of 10 mm or less. 請求項1乃至14のうち何れか一項に記載の熱交換器を具備する空気調和機。


An air conditioner comprising the heat exchanger according to any one of claims 1 to 14.


JP2020145949A 2020-08-31 2020-08-31 Heat exchanger and air conditioner using that heat exchanger Pending JP2022040969A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020145949A JP2022040969A (en) 2020-08-31 2020-08-31 Heat exchanger and air conditioner using that heat exchanger
KR1020210067398A KR20220029337A (en) 2020-08-31 2021-05-26 Heat exchanger and air conditioner including the same
US17/405,425 US11988462B2 (en) 2020-08-31 2021-08-18 Heat exchanger and air conditioner using the heat exchanger
PCT/KR2021/010953 WO2022045667A1 (en) 2020-08-31 2021-08-18 Heat exchanger and air conditioner using the heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020145949A JP2022040969A (en) 2020-08-31 2020-08-31 Heat exchanger and air conditioner using that heat exchanger

Publications (1)

Publication Number Publication Date
JP2022040969A true JP2022040969A (en) 2022-03-11

Family

ID=80499794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020145949A Pending JP2022040969A (en) 2020-08-31 2020-08-31 Heat exchanger and air conditioner using that heat exchanger

Country Status (2)

Country Link
JP (1) JP2022040969A (en)
KR (1) KR20220029337A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024084832A1 (en) * 2022-10-21 2024-04-25 パナソニックIpマネジメント株式会社 Flat pipe heat exchanger

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024177325A1 (en) * 2023-02-21 2024-08-29 삼성전자 주식회사 Air conditioner employing heat exchanger

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013245884A (en) 2012-05-28 2013-12-09 Panasonic Corp Fin tube heat exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024084832A1 (en) * 2022-10-21 2024-04-25 パナソニックIpマネジメント株式会社 Flat pipe heat exchanger

Also Published As

Publication number Publication date
KR20220029337A (en) 2022-03-08

Similar Documents

Publication Publication Date Title
JP5320846B2 (en) Heat exchanger
US11988462B2 (en) Heat exchanger and air conditioner using the heat exchanger
US20100089557A1 (en) Finned tube heat exchanger
JP5678392B2 (en) Corrugated fin heat exchanger drainage structure
JP4989979B2 (en) Heat exchanger
EP3018439A1 (en) Fin tube heat exchanger
JP2010019534A (en) Heat exchanger
JP3110196U (en) Thin tube heat exchanger
JP2007183088A (en) Heat exchanger
JP2022040969A (en) Heat exchanger and air conditioner using that heat exchanger
JP2013245884A (en) Fin tube heat exchanger
JP4671404B2 (en) Finned tube heat exchanger
JPS616588A (en) Finned tube type heat exchanger
JPH07109353B2 (en) Heat exchanger with fins
JP2014089018A (en) Fin tube heat exchanger and refrigeration cycle device including the same
JP6021081B2 (en) Finned tube heat exchanger and refrigeration cycle apparatus including the same
JP3358355B2 (en) Cross fin heat exchanger
KR20000034784A (en) Heat exchanger for air conditioners
JP2010014329A (en) Heat exchanger
JP6379352B2 (en) Finned tube heat exchanger
JP4004335B2 (en) Heat exchanger
JP2021165623A (en) Heat exchanger and air conditioner using heat exchanger
JPH1123179A (en) Heat exchanger with fin
JPH0886581A (en) Cross-fin tube type heat exchanger
WO2022219719A1 (en) Heat exchanger and refrigeration cycle device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240912