JP2010014329A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2010014329A
JP2010014329A JP2008174236A JP2008174236A JP2010014329A JP 2010014329 A JP2010014329 A JP 2010014329A JP 2008174236 A JP2008174236 A JP 2008174236A JP 2008174236 A JP2008174236 A JP 2008174236A JP 2010014329 A JP2010014329 A JP 2010014329A
Authority
JP
Japan
Prior art keywords
flat
fin
heat exchanger
flat tube
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008174236A
Other languages
Japanese (ja)
Inventor
Takashi Yoshioka
俊 吉岡
Hirokazu Fujino
宏和 藤野
Genei Kin
鉉永 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2008174236A priority Critical patent/JP2010014329A/en
Publication of JP2010014329A publication Critical patent/JP2010014329A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus
    • F28F17/005Means for draining condensates from heat exchangers, e.g. from evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • F28F1/128Fins with openings, e.g. louvered fins

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchanger improved in dew condensate draining performance. <P>SOLUTION: A plane part 11a of a flat tube 11 in the heat exchanger 10 inclines to be low in height toward the downstream side of air flow. An upstream side end face 12e and a downstream side end face 12f of air flow of a corrugated fin 12 are almost parallel with a vertical direction. The dew condensate produced on the surface of the corrugated fin 12 and on the surface of the flat tube 11 flows along the inclined plane part 11a of the flat tube 11 and moves to the upper part of the downstream side end face 12f of the corrugated fin 12 below. Since the downstream side end face 12f stands almost vertically, the fall speed of the dew condensate is fast to improve drainage. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、扁平管とフィンとを備えた熱交換器に関する。   The present invention relates to a heat exchanger provided with flat tubes and fins.

従来、扁平管の平面部を水平にし、平面部と平面部との間にフィンを配置した熱交換器が広く普及している。このような熱交換器では、フィンが扁平管によって分断されているので、結露水が滞留して通風抵抗となる。この結露水の滞留を解消するために、フィンの端部から突出部を空気流の下流側へ突出させ、その突出部に切り欠きを設けた熱交換器が提供されている(特許文献1参照)。特許文献1に開示されている熱交換器によれば、発生した結露水は、空気流に押されて下流側に集まり、切り欠きを通って下方へ落下する。   Conventionally, a heat exchanger in which a flat portion of a flat tube is horizontal and fins are disposed between the flat portion and the flat portion has been widely used. In such a heat exchanger, since the fins are divided by the flat tube, the condensed water stays and becomes ventilation resistance. In order to eliminate the retention of the condensed water, a heat exchanger is provided in which a protrusion is protruded from the end of the fin to the downstream side of the air flow, and a notch is provided in the protrusion (see Patent Document 1). ). According to the heat exchanger disclosed in Patent Document 1, the generated condensed water is pushed by the air flow, gathers on the downstream side, and falls downward through the notch.

しかしながら、上記のような熱交換器では、結露水が切り欠きから落下するのは、結露水が自重で落下できる程度の大きさまで成長したときであって、周期的に結露水が熱交換器に滞留することがあり、結露水に対する水はけ性は低い。また、熱交換器の小型化がさらに進む状況下において、熱交換器の小型化は結露水に対する熱交換器の水はけ性を低下させる可能性が高いので、さらなる水はけ性の向上が求められている。
実公昭63−6632号公報
However, in the heat exchanger as described above, the condensed water falls from the notch when the condensed water has grown to a size that can be dropped by its own weight, and the condensed water periodically enters the heat exchanger. It may stay, and the drainage of condensed water is low. In addition, in a situation where further downsizing of the heat exchanger is progressing, the downsizing of the heat exchanger is likely to reduce the drainability of the heat exchanger with respect to the dew condensation water, so further improvement in drainage is required. .
Japanese Utility Model Publication No. 63-6632

本発明の課題は、結露水に対する水はけ性を向上させた熱交換器を提供することにある。   The subject of this invention is providing the heat exchanger which improved the drainage property with respect to dew condensation water.

第1発明に係る熱交換器は、扁平管とフィンとを備えている。扁平管は、平面部を上下方向に向けた状態で複数段配列されている。フィンは、上下に隣接する扁平管に挟まれた通風空間に波形に折り曲げられた状態で配置されている。扁平管の平面部は、通風空間を通過する空気流の下流側になるほど高さが低くなるように傾斜している。フィンの空気流の上流側端面及び下流側端面は、鉛直方向とほぼ平行である。   The heat exchanger according to the first invention includes a flat tube and a fin. The flat tubes are arranged in a plurality of stages in a state where the plane portion is directed in the vertical direction. The fins are arranged in a state of being bent into a waveform in a ventilation space sandwiched between upper and lower adjacent flat tubes. The flat portion of the flat tube is inclined so that its height decreases toward the downstream side of the air flow passing through the ventilation space. The upstream end surface and the downstream end surface of the fin air flow are substantially parallel to the vertical direction.

この熱交換器では、フィン表面及び扁平管表面で発生した結露水が、傾斜した扁平管の平面部に沿って流れ落ちる。そして、結露水が下方のフィン端面の上部に伝わったとき、フィンの端面がほぼ鉛直に立っているので、結露水の降下する速度が従来品よりも速くなり、水はけがさらによくなる。さらに、扁平管の傾斜した平面部とフィンの端面とが垂直になっている従来品と比較して、その平面部とフィンとの接触域が広くなるので、熱交換性能が向上する。   In this heat exchanger, the condensed water generated on the fin surface and the flat tube surface flows down along the flat portion of the inclined flat tube. And when dew condensation water is transmitted to the upper part of the fin end surface of the lower part, since the end surface of a fin stands substantially vertical, the speed at which dew condensation water falls will become faster than a conventional product, and water drainage will become still better. Furthermore, compared with the conventional product in which the inclined flat portion of the flat tube and the end face of the fin are perpendicular, the contact area between the flat portion and the fin is widened, so that the heat exchange performance is improved.

第2発明に係る熱交換器は、第1発明に係る熱交換器であって、フィンが波形に折り曲げられる前の平板状態へ展開されたときの端面が、ジグザグにせん断されている。   The heat exchanger according to the second aspect of the present invention is the heat exchanger according to the first aspect of the present invention, wherein the end face when the fin is expanded to a flat plate state before being bent into a corrugated shape is sheared zigzag.

この熱交換器では、折り曲げ後のフィンの端面は、フィンが通風空間に配置されたときに鉛直方向とほぼ平行になる。その結果、フィンの加工が容易で生産性が高くなる。   In this heat exchanger, the end face of the fin after bending is substantially parallel to the vertical direction when the fin is disposed in the ventilation space. As a result, fin processing is easy and productivity is increased.

第3発明に係る熱交換器は、第1発明に係る熱交換器であって、フィンが波形に折り曲げられたときの扁平管の平面部と接する予定の部分が、台形形状に折り曲げられている。   A heat exchanger according to a third aspect of the present invention is the heat exchanger according to the first aspect of the present invention, wherein a portion that is to come into contact with the flat portion of the flat tube when the fin is bent into a corrugated shape is bent into a trapezoidal shape. .

この熱交換器では、折り曲げ後のフィンの端面は、フィンが通風空間に配置されたときに鉛直方向とほぼ平行となる。その結果、フィンの加工が容易で生産性が高くなる。   In this heat exchanger, the end face of the fin after bending is substantially parallel to the vertical direction when the fin is disposed in the ventilation space. As a result, fin processing is easy and productivity is increased.

第4発明に係る熱交換器は、第1発明から第3発明のいずれか1つに係る熱交換器であって、扁平管及び/又はフィンと接触する補助フィンをさらに備えている。補助フィンは、通風空間から空気流の下流側へはみ出ている。   A heat exchanger according to a fourth aspect of the present invention is the heat exchanger according to any one of the first to third aspects of the present invention, further comprising auxiliary fins that come into contact with the flat tube and / or the fins. The auxiliary fin protrudes from the ventilation space to the downstream side of the air flow.

この熱交換器では、フィン表面及び扁平管表面で発生した結露水が、補助フィンを介して下方へ流れるので、さらに水はけがよくなる。   In this heat exchanger, the dew condensation water generated on the fin surface and the flat tube surface flows downward through the auxiliary fins, so that drainage is further improved.

第1発明に係る熱交換器では、結露水の降下する速度が速く、水はけがよい。さらに、平面部とフィンとの接触域が広く、熱交換性能が向上する。   In the heat exchanger according to the first aspect of the invention, the speed at which the condensed water descends is fast, and the drainage is good. Furthermore, the contact area between the flat portion and the fin is wide, and heat exchange performance is improved.

第2発明又は第3発明に係る熱交換器では、フィンの加工が容易で生産性が高い。   In the heat exchanger according to the second or third invention, the fins are easily processed and the productivity is high.

第4発明に係る熱交換器では、フィン表面及び扁平管表面で発生した結露水が補助フィンを介して下方へ流れるので、さらに水はけがよくなる。   In the heat exchanger according to the fourth aspect of the invention, the dew condensation water generated on the fin surface and the flat tube surface flows downward through the auxiliary fin, so that drainage is further improved.

以下図面を参照しながら、本発明の実施形態について説明する。なお、以下の実施形態は、本発明の具体例であって、本発明の技術的範囲を限定するものではない。   Embodiments of the present invention will be described below with reference to the drawings. The following embodiments are specific examples of the present invention and do not limit the technical scope of the present invention.

〔第1実施形態〕
<熱交換器10の構成>
図1は、本発明の第1実施形態に係る熱交換器の正面図であり、図2は、図1の熱交換器を扁平管の長手方向と垂直な平面で切断したときの部分断面図である。図1において、熱交換器10は、扁平管11、波形フィン12及びヘッダ15を備えている。
[First Embodiment]
<Configuration of heat exchanger 10>
FIG. 1 is a front view of a heat exchanger according to the first embodiment of the present invention, and FIG. 2 is a partial cross-sectional view of the heat exchanger of FIG. 1 cut along a plane perpendicular to the longitudinal direction of the flat tube. It is. In FIG. 1, the heat exchanger 10 includes a flat tube 11, a corrugated fin 12, and a header 15.

(扁平管11)
図2において、扁平管11は、アルミニウムまたはアルミニウム合金から成形されており、伝熱面となる平面部11aと、冷媒が流れる複数の冷媒流路11bを有している。扁平管11は、平面部11aを上下に向けた状態で、且つ平面部11aを空気流Aの下流側になるほど高さが低くなるように傾斜させた状態で複数段配列されている。
(Flat tube 11)
In FIG. 2, the flat tube 11 is formed from aluminum or an aluminum alloy, and has a flat portion 11a serving as a heat transfer surface and a plurality of refrigerant flow paths 11b through which a refrigerant flows. The flat tubes 11 are arranged in a plurality of stages in a state in which the flat surface portion 11a is directed upward and downward, and the flat surface portion 11a is inclined so that the height decreases toward the downstream side of the air flow A.

(波形フィン12)
図3は、波形フィンの斜視図である。図3において、波形フィン12は、波形に折り曲げられたアルミニウム製またはアルミニウム合金製のフィンである。波形フィン12は、上下に隣接する扁平管11に挟まれた通風空間に配置され、谷部及び山部となる折り曲げ部12bが扁平管11の平面部11aと接触している(図1参照)。なお、折り曲げ部12bと平面部11aとはロウ付け溶接されている。
(Waveform fin 12)
FIG. 3 is a perspective view of a corrugated fin. In FIG. 3, corrugated fins 12 are fins made of aluminum or aluminum alloy that are bent into corrugations. The corrugated fins 12 are arranged in a ventilation space sandwiched between upper and lower flat tubes 11, and bent portions 12 b serving as valley portions and mountain portions are in contact with the flat portions 11 a of the flat tubes 11 (see FIG. 1). . The bent portion 12b and the flat portion 11a are brazed and welded.

図2に示すように、伝熱面12aは、通風空間を通過する空気流Aと熱交換する部分であり、効率よく熱交換を行うためのルーバー12cが形成されている。ルーバー12cは、伝熱面12aの一方の面から他方の面へ貫通する開口を形成している。説明の便宜上、図2正面視において、伝熱面12aの正面側を「第1面」、背面側を「第2面」と呼ぶ。伝熱面12aの中央から上流側に位置するルーバー12c群は、空気流が第2面からから第1面へ流れるように傾いており、伝熱面12aの中央から下流側に位置するルーバー12c群は、空気流が第1面からから第2面へ流れるように傾いている。   As shown in FIG. 2, the heat transfer surface 12 a is a portion that exchanges heat with the air flow A that passes through the ventilation space, and a louver 12 c for efficiently performing heat exchange is formed. Louver 12c forms an opening penetrating from one surface of heat transfer surface 12a to the other surface. For convenience of explanation, in the front view of FIG. 2, the front side of the heat transfer surface 12a is referred to as a “first surface” and the back side is referred to as a “second surface”. The louver 12c group located upstream from the center of the heat transfer surface 12a is inclined so that the air flow flows from the second surface to the first surface, and the louver 12c located downstream from the center of the heat transfer surface 12a. The group is tilted so that the airflow flows from the first surface to the second surface.

波形フィン12では、空気流Aの上流側に位置する上流側端面12eと下流側に位置する下流側端面12fとが、鉛直方向とほぼ平行になっている。本実施形態では、波形フィン12は、傾斜した扁平管11の平面部11aに置かれたときに、上流側端面12eと下流側端面12fとが鉛直方向とほぼ平行となるように、波形フィン12の素材を波形に折り曲げる前段階で、その素材に所定の加工を行っている。   In the corrugated fin 12, the upstream end face 12e located on the upstream side of the air flow A and the downstream end face 12f located on the downstream side are substantially parallel to the vertical direction. In this embodiment, when the corrugated fin 12 is placed on the flat surface portion 11a of the inclined flat tube 11, the corrugated fin 12 is arranged such that the upstream end surface 12e and the downstream end surface 12f are substantially parallel to the vertical direction. Before the material is bent into a waveform, the material is subjected to predetermined processing.

図4は、波形フィンの展開図である。図4において、展開された波形フィン12は、平行四辺形の伝熱面12aが長辺と垂直な方向に一定間隔で、且つ隣接する伝熱面12aの短辺同士が平行とならないように並んでいる。その結果、隣接する伝熱面12aとの間に長方形領域が形成され、この長方径領域が波形フィン12の折り曲げ部12bである。   FIG. 4 is a development view of corrugated fins. In FIG. 4, the expanded corrugated fins 12 are arranged such that the parallelogram heat transfer surfaces 12a are spaced at a constant interval in a direction perpendicular to the long sides, and the short sides of the adjacent heat transfer surfaces 12a are not parallel to each other. It is out. As a result, a rectangular region is formed between the adjacent heat transfer surfaces 12 a, and this long-diameter region is the bent portion 12 b of the corrugated fin 12.

平行四辺形の伝熱面12aの短辺は、上流側端面12e又は下流側端面12fであるので、上流側端面12e又は下流側端面12fは波形フィン12の長手方向にそってジグザグに並ぶ。その結果、波形フィン12が折り曲げられたとき、上流側端面12e及び下流側端面12fは、折り曲げ部12bに対して傾いた姿勢を成す。そして、折り曲げ部12bが傾いた扁平管11の平面部11aに置かれたとき、上流側端面12e及び下流側端面12fは鉛直方向と平行になる。   Since the short side of the parallelogram heat transfer surface 12 a is the upstream end surface 12 e or the downstream end surface 12 f, the upstream end surface 12 e or the downstream end surface 12 f is zigzag along the longitudinal direction of the corrugated fins 12. As a result, when the corrugated fin 12 is bent, the upstream end surface 12e and the downstream end surface 12f are inclined with respect to the bent portion 12b. When the bent portion 12b is placed on the flat surface portion 11a of the inclined flat tube 11, the upstream end surface 12e and the downstream end surface 12f are parallel to the vertical direction.

(ヘッダ15)
図1において、ヘッダ15は、上下方向に複数段配列された扁平管11の両端に連結されている。説明の便宜上、図1の正面視右側のヘッダを「第1ヘッダ151」と呼び、左側のヘッダを「第2ヘッダ152」と呼ぶ。第1ヘッダ151及び第2ヘッダ152は、扁平管11を支持する機能と、冷媒を扁平管11の冷媒流路11bに導く機能と、冷媒流路11bから出てきた冷媒を集合させる機能とを有している。
(Header 15)
In FIG. 1, the header 15 is connected to both ends of flat tubes 11 arranged in a plurality of stages in the vertical direction. For convenience of explanation, the header on the right side in FIG. 1 is called “first header 151”, and the header on the left side is called “second header 152”. The first header 151 and the second header 152 have a function of supporting the flat tube 11, a function of guiding the refrigerant to the refrigerant flow path 11b of the flat pipe 11, and a function of collecting the refrigerant that has come out of the refrigerant flow path 11b. Have.

(冷媒の流れ)
図1において、第1ヘッダ151の入口151aから流入した冷媒は、最上段の扁平管11の各冷媒流路11bへほぼ均等に分配され第2ヘッダ152に向って流れる。第2ヘッダ152に達した冷媒は、2段目の扁平管11の各冷媒流路11bへ均等に分配され第1ヘッダ151へ向って流れる。以降、奇数段目の扁平管11内の冷媒は、第2ヘッダ152へ向って流れ、偶数段目の扁平管11内の冷媒は、第1ヘッダ151に向って流れる。そして、最下段で且つ偶数段目の扁平管11内の冷媒は、第1ヘッダ151に向って流れ、第1ヘッダ151で集合し出口151bから流出する。
(Refrigerant flow)
In FIG. 1, the refrigerant flowing from the inlet 151 a of the first header 151 is distributed almost evenly to the respective refrigerant flow paths 11 b of the uppermost flat tube 11 and flows toward the second header 152. The refrigerant reaching the second header 152 is evenly distributed to the respective refrigerant flow paths 11b of the second-stage flat tube 11 and flows toward the first header 151. Thereafter, the refrigerant in the odd-numbered flat tubes 11 flows toward the second header 152, and the refrigerant in the even-numbered flat tubes 11 flows toward the first header 151. And the refrigerant | coolant in the flat tube 11 of the lowest level and the even-numbered level flows toward the 1st header 151, gathers at the 1st header 151, and flows out from the exit 151b.

なお、冷媒の流れ方は、用途又は冷媒の圧力損失の程度に応じて変更される。例えば、冷媒が複数の扁平管11内を同時に同方向へ流れるようにして冷媒の圧力損失を抑えてもよい。以下、再度、図1を参照しながら、冷媒の他の流れ方を説明する。   In addition, how the refrigerant flows changes depending on the application or the degree of pressure loss of the refrigerant. For example, the pressure loss of the refrigerant may be suppressed by allowing the refrigerant to flow in the same direction in the plurality of flat tubes 11 at the same time. Hereinafter, another flow of the refrigerant will be described with reference to FIG. 1 again.

先ず、第1ヘッダ151の入口151aから流入した冷媒は、最上段及び第2段目の扁平管11の各冷媒流路11bへほぼ均等に分配され第2ヘッダ152に向って流れる。第2ヘッダ152に達した冷媒は、第3段目及び第4段目の扁平管11の各冷媒流路11bへ均等に分配され第1ヘッダ151に向って流れる。第1ヘッダ151に達した冷媒は第5段目及び第6段目の扁平管11の各冷媒流路11bへほぼ均等に分配され第2ヘッダ152に向って流れる。第2ヘッダ152に達した冷媒は、第7段目及び第8段目の扁平管11の各冷媒流路11bへほぼ均等に分配されヘッダ151に向って流れる。そして、第1ヘッダ151で集合した冷媒は出口151bから流出する。これによって、1つに冷媒流路11bを通る冷媒の流速が低くなり、冷媒の圧力損失が軽減される。   First, the refrigerant flowing from the inlet 151 a of the first header 151 is distributed almost evenly to the respective refrigerant flow paths 11 b of the uppermost and second flat tubes 11 and flows toward the second header 152. The refrigerant reaching the second header 152 is evenly distributed to the refrigerant flow paths 11b of the third and fourth flat tubes 11 and flows toward the first header 151. The refrigerant reaching the first header 151 is distributed almost evenly to the refrigerant flow paths 11 b of the fifth and sixth flat tubes 11 and flows toward the second header 152. The refrigerant that has reached the second header 152 is distributed almost evenly to the refrigerant flow paths 11 b of the seventh and eighth flat tubes 11 and flows toward the header 151. Then, the refrigerant collected at the first header 151 flows out from the outlet 151b. As a result, the flow rate of the refrigerant passing through the refrigerant flow path 11b is lowered, and the pressure loss of the refrigerant is reduced.

熱交換器10が蒸発器として機能するとき、冷媒流路11bを流れる冷媒は、波形フィン12を介して通風空間を流れる空気流から吸熱する。熱交換器10が凝縮器として機能するときは、冷媒流路11bを流れる冷媒は、波形フィン12を介して通風空間を流れる空気流へ放熱する。   When the heat exchanger 10 functions as an evaporator, the refrigerant flowing through the refrigerant flow path 11b absorbs heat from the air flow flowing through the ventilation space via the corrugated fins 12. When the heat exchanger 10 functions as a condenser, the refrigerant flowing through the refrigerant flow path 11b radiates heat to the air flow flowing through the ventilation space via the corrugated fins 12.

(結露水の流れ)
一般に、扁平管11が平面部11aを上下に向けて配列されているとき、熱交換器表面の水はけが悪く、蒸発器として利用した場合、滞留した結露水が空気流の抵抗となり熱交換性能が低下することがある。しかし、本実施形態の熱交換器10では、図2に示すように、扁平管11の平面部11aが傾いているので結露水は滞留することがない。以下、結露水の流れについて図面を用いて説明する。
(Flow of condensed water)
In general, when the flat tubes 11 are arranged with the flat portion 11a facing up and down, drainage of the surface of the heat exchanger is poor, and when used as an evaporator, the accumulated condensed water becomes resistance to air flow and heat exchange performance is improved. May decrease. However, in the heat exchanger 10 of this embodiment, as shown in FIG. 2, since the flat part 11a of the flat tube 11 inclines, dew condensation water does not stay. Hereinafter, the flow of condensed water will be described with reference to the drawings.

図2において、波形フィン12の伝熱面12aで発生した結露水Wは、重力によって伝熱面12aを降下しながら、空気流Aに押されて下流側へ移動する。途中で扁平管11の平面部11aへ落ちた結露水および平面部11aで発生した結露水は、平面部11aの傾斜に沿って下流側へ移動する。また、波形フィン12の折り曲げ部12b(谷部)へ降下した結露水は、折り曲げ部12bも平面部11aと同様に傾斜しているので、その傾斜にそって下流側へ移動する。また、波形フィン12の谷部と扁平管11の平面部11aとの隙間に侵入した結露水は、その隙間による毛細管現象によって平面部11aの傾斜にそって下流側へ移動する。   In FIG. 2, the dew condensation water W generated on the heat transfer surface 12a of the corrugated fin 12 is pushed by the air flow A and moves downstream while descending the heat transfer surface 12a by gravity. The condensed water that has fallen to the flat part 11a of the flat tube 11 and the condensed water generated in the flat part 11a move downstream along the inclination of the flat part 11a. Condensed water descending to the bent part 12b (valley part) of the corrugated fin 12 also moves downstream along the inclination because the bent part 12b is also inclined in the same manner as the flat part 11a. Moreover, the dew condensation water which penetrate | invaded into the clearance gap between the trough part of the corrugated fin 12 and the plane part 11a of the flat tube 11 moves downstream along the inclination of the plane part 11a by the capillary phenomenon by the clearance gap.

波形フィン12の下流側端面12fに達した結露水は、重力および空気流Aの作用によって、扁平管11の下流側端部から下方に位置する波形フィン12の下流側端面12fへ移動する。そして、さらに下方に位置する波形フィン12の下流側端面12fへ移動していく。   Condensed water that has reached the downstream end face 12 f of the corrugated fin 12 moves from the downstream end of the flat tube 11 to the downstream end face 12 f of the corrugated fin 12 positioned below by the action of gravity and airflow A. And it moves to the downstream end surface 12f of the corrugated fin 12 located further downward.

<特徴>
(1)
熱交換器10では、扁平管11の平面部11aが、空気流の下流側になるほど高さが低くなるように傾斜している。波形フィン12の空気流の上流側端面12e及び下流側端面12fは、鉛直方向とほぼ平行である。波形フィン12表面及び扁平管11表面で発生した結露水は、傾斜した扁平管11の平面部11aに沿って流れ、下方の波形フィン12の下流側端面12f上部へ移動する。下流側端面12fはほぼ鉛直に立っているので、結露水の降下速度が速く、水はけがよくなる。また、扁平管11の傾斜した平面部11aと波形フィン12の端面とが垂直になっている従来品と比較して、その平面部11aと波形フィン12との接触域が広くなるので、熱交換性能が向上する。
<Features>
(1)
In the heat exchanger 10, the flat portion 11a of the flat tube 11 is inclined so that its height decreases as it becomes downstream of the air flow. The upstream end surface 12e and the downstream end surface 12f of the airflow of the corrugated fins 12 are substantially parallel to the vertical direction. The condensed water generated on the surface of the corrugated fin 12 and the surface of the flat tube 11 flows along the flat portion 11a of the inclined flat tube 11 and moves to the upper part of the downstream end face 12f of the corrugated fin 12 below. Since the downstream end face 12f stands substantially vertically, the dew rate of condensed water is high and the drainage is improved. In addition, compared with the conventional product in which the inclined flat surface portion 11a of the flat tube 11 and the end surface of the corrugated fin 12 are perpendicular, the contact area between the flat surface portion 11a and the corrugated fin 12 is widened, so that heat exchange is performed. Performance is improved.

(2)
熱交換器10では、波形フィン12の展開されたときの端面がジグザグであるので、折り曲げ後の波形フィン12の上流側端面12e及び下流側端面12fが、波形フィン12が通風空間に配置されたときに鉛直方向とほぼ平行になる。その結果、波形フィンを波形に折り曲げてから端部が折り曲げ部に対して傾斜するようにせん断する方法よりも、波形フィン12の加工が容易で生産性が高い。
(2)
In the heat exchanger 10, since the end face when the corrugated fin 12 is expanded is zigzag, the upstream end face 12e and the downstream end face 12f of the corrugated fin 12 after being bent are arranged in the ventilation space. Sometimes it is almost parallel to the vertical direction. As a result, the processing of the corrugated fin 12 is easier and the productivity is higher than the method of bending the corrugated fin into a corrugated shape and then shearing so that the end portion is inclined with respect to the bent portion.

<変形例>
上記第1実施形態では、波形フィン12の展開されたときの端面がジグザクにすることによって、折り曲げ後の波形フィン12が通風空間に配置されたとき、上流側端面12e及び下流側端面12fが鉛直方向とほぼ平行になるようにしているが、これに限定されるものではない。たとえば、波形フィンの展開されたときの端面が真直ぐであっても、折り曲げ後に上流側端面及び下流側端面が折り曲げ部に対して傾くように折り曲げればよい。以下、図面を用いて説明する。なお、波形フィン以外は、上記実施形態と同じ部材を使用する。
<Modification>
In the first embodiment, when the corrugated fin 12 is deployed, the end face when the corrugated fin 12 is unfolded is zigzag. Although it is made to become substantially parallel to a direction, it is not limited to this. For example, even if the end face when the corrugated fin is deployed is straight, it may be bent so that the upstream end face and the downstream end face are inclined with respect to the bent portion after the bending. Hereinafter, it demonstrates using drawing. In addition, the same member as the said embodiment is used except a waveform fin.

(波形フィン112)
図5は、変形例に係る熱交換器の波形フィンの斜視図である。図5において、波形フィン112は、波形に折り曲げられたアルミニウム製またはアルミニウム合金製のフィンである。伝熱面112aは、通風空間を通過する空気と熱交換する部分であり、効率よく熱交換を行うためのルーバー112cが形成されている。
(Waveform 112)
FIG. 5 is a perspective view of a corrugated fin of a heat exchanger according to a modification. In FIG. 5, corrugated fins 112 are aluminum or aluminum alloy fins bent into corrugations. The heat transfer surface 112a is a portion that exchanges heat with the air passing through the ventilation space, and a louver 112c for efficiently exchanging heat is formed.

変形例では、波形フィン112が上下に隣接する扁平管11に挟まれた通風空間に配置されたときに、上流側端面112eと下流側端面112fとが鉛直方向とほぼ平行となるように、波形フィン112の素材を波形に折り曲げる段階で、折り曲げ部112bの形状が台形となるように折り曲げられている。   In the modified example, when the corrugated fin 112 is disposed in the ventilation space sandwiched between the flat tubes 11 adjacent vertically, the corrugated fin 112 is arranged so that the upstream end surface 112e and the downstream end surface 112f are substantially parallel to the vertical direction. At the stage where the material of the fin 112 is bent into a corrugated shape, the bent portion 112b is bent into a trapezoidal shape.

図6は、変形例に係る波形フィンの展開図である。図6において、展開された波形フィン112は、平行四辺形の伝熱面112aが短辺の方向に一定間隔で真直ぐに、且つ隣接する伝熱面112a同士が平行とならないように並んでいる。その結果、隣接する伝熱面112aとの間に台形が形成され、この台形が波形フィン112の折り曲げ部112bである。   FIG. 6 is a development view of corrugated fins according to a modification. In FIG. 6, the expanded corrugated fins 112 are arranged such that the parallelogram heat transfer surfaces 112a are straight in the direction of the short side at regular intervals, and the adjacent heat transfer surfaces 112a are not parallel to each other. As a result, a trapezoid is formed between adjacent heat transfer surfaces 112 a, and this trapezoid is the bent portion 112 b of the corrugated fin 112.

平行四辺形の伝熱面112aの短辺は、上流側端面112e又は下流側端面112fであるので、台形の折り曲げ部112bを形成しながら波形フィン112が折り曲げられたとき、上流側端面112e及び下流側端面112fは、折り曲げ部112bに対して傾いた姿勢を成す。そして、折り曲げ部112bが傾いた扁平管11の平面部11aに置かれたとき、上流側端面112e及び下流側端面112fは鉛直方向と平行になる。その結果、波形フィンを波形に折り曲げてから端部が折り曲げ部に対して傾斜するようにせん断する方法よりも、波形フィン112の加工が容易で生産性が高い。   Since the short side of the parallelogram heat transfer surface 112a is the upstream end surface 112e or the downstream end surface 112f, when the corrugated fin 112 is bent while forming the trapezoidal bent portion 112b, the upstream end surface 112e and the downstream side The side end face 112f is inclined with respect to the bent portion 112b. When the bent portion 112b is placed on the flat surface portion 11a of the inclined flat tube 11, the upstream end surface 112e and the downstream end surface 112f are parallel to the vertical direction. As a result, the processing of the corrugated fin 112 is easier and the productivity is higher than the method of bending the corrugated fin into a corrugated shape and then shearing so that the end portion is inclined with respect to the bent portion.

〔第2実施形態〕
第1実施形態では、扁平管11を傾斜させ、波形フィン12の上流側端面12e及び下流側端面12fを鉛直方向と平行にすることによって、結露水がはけるようにしているが、さらに水はけをよくするために、空気流の下流側に補助フィンを配置してもよい。以下、図面を参照しながら第2実施形態について説明する。なお、第1実施形態と同じ部材には、同一名称および同一符号を付与して説明を省略する。
[Second Embodiment]
In the first embodiment, the flat tube 11 is inclined and the upstream end surface 12e and the downstream end surface 12f of the corrugated fin 12 are parallel to the vertical direction so that the condensed water is removed. In order to improve, an auxiliary fin may be arranged on the downstream side of the air flow. The second embodiment will be described below with reference to the drawings. In addition, the same name and the same code | symbol are provided to the same member as 1st Embodiment, and description is abbreviate | omitted.

(補助フィン13)
図7は、第2実施形態に係る熱交換器を扁平管の長手方向と垂直な平面で切断したときの部分断面図である。図7において、熱交換器10は、扁平管11及び波形フィン12に接触する補助フィン13を備えている。補助フィン13は、通風空間から空気流Aの下流側へはみ出ている。なお、補助フィン13は、扁平管11又は波形フィン12のいずれか一方に接触しているだけでもよい。
(Auxiliary fin 13)
FIG. 7 is a partial cross-sectional view when the heat exchanger according to the second embodiment is cut along a plane perpendicular to the longitudinal direction of the flat tube. In FIG. 7, the heat exchanger 10 includes auxiliary fins 13 that contact the flat tubes 11 and the corrugated fins 12. The auxiliary fins 13 protrude from the ventilation space to the downstream side of the air flow A. The auxiliary fin 13 may be in contact with either the flat tube 11 or the corrugated fin 12.

(結露水の流れ)
図7に示すように、波形フィン12の伝熱面12aで発生した結露水Wは、重力によって伝熱面12aを降下しながら、空気流Aに押されて下流側へ移動する。途中で扁平管11の平面部11aへ落ちた結露水および平面部11aで発生した結露水は、平面部11aの傾斜に沿って下流側へ移動する。また、波形フィン12の折り曲げ部12b(谷部)へ降下した結露水は、折り曲げ部12bも平面部11aと同様に傾斜しているので、その傾斜にそって下流側へ移動する。また、波形フィン12の谷部と扁平管11の平面部11aとの隙間に侵入した結露水は、その隙間による毛細管現象によって平面部11aの傾斜にそって下流側へ移動する。
(Flow of condensed water)
As shown in FIG. 7, the dew condensation water W generated on the heat transfer surface 12a of the corrugated fin 12 is pushed by the air flow A and moves downstream while descending the heat transfer surface 12a by gravity. The condensed water that has fallen to the flat part 11a of the flat tube 11 and the condensed water generated in the flat part 11a move downstream along the inclination of the flat part 11a. Condensed water descending to the bent part 12b (valley part) of the corrugated fin 12 also moves downstream along the inclination because the bent part 12b is also inclined in the same manner as the flat part 11a. Moreover, the dew condensation water which penetrate | invaded into the clearance gap between the trough part of the corrugated fin 12 and the plane part 11a of the flat tube 11 moves downstream along the inclination of the plane part 11a by the capillary phenomenon by the clearance gap.

波形フィン12の下流側端面12fに達した結露水は、重力および空気流Aの作用によって、補助フィン13へ移動し、補助フィン13に沿って下方に移動する。その結果、補助フィン13がないものに比べてさらに水はけがよくなる。   Condensed water that has reached the downstream end face 12 f of the corrugated fin 12 moves to the auxiliary fin 13 by the action of gravity and airflow A, and moves downward along the auxiliary fin 13. As a result, drainage is further improved as compared with the case without the auxiliary fins 13.

以上のように、本発明に係る熱交換器は、扁平管が上下方向に複数段配列された場合でも結露水に対して水はけがよいので、空調機の熱交換器及び自動車のラジエターに有用である。   As described above, the heat exchanger according to the present invention is useful for a heat exchanger of an air conditioner and a radiator of an automobile because it can drain the condensed water even when the flat tubes are arranged in a plurality of stages in the vertical direction. is there.

本発明の第1実施形態に係る熱交換器の正面図。The front view of the heat exchanger which concerns on 1st Embodiment of this invention. 図1の熱交換器を扁平管の長手方向と垂直な平面で切断したときの部分断面図。The fragmentary sectional view when the heat exchanger of FIG. 1 is cut along a plane perpendicular to the longitudinal direction of the flat tube. 波形フィンの斜視図。The perspective view of a corrugated fin. 波形フィンの展開図。FIG. 変形例に係る熱交換器の波形フィンの斜視図。The perspective view of the corrugated fin of the heat exchanger which concerns on a modification. 変形例に係る波形フィンの展開図。The expanded view of the corrugated fin which concerns on a modification. 第2実施形態に係る熱交換器を扁平管の長手方向と垂直な平面で切断したときの部分断面図。The fragmentary sectional view when the heat exchanger which concerns on 2nd Embodiment is cut | disconnected by the plane perpendicular | vertical to the longitudinal direction of a flat tube.

符号の説明Explanation of symbols

10 熱交換器
11 扁平管
11a 平面部
12,112 波形フィン
12e,112e 上流側端面
12f,112f 下流側端面
13 補助フィン
112b 折り曲げ部(扁平管の平面部と接する予定の部分)
DESCRIPTION OF SYMBOLS 10 Heat exchanger 11 Flat tube 11a Plane | planar part 12,112 Corrugated fin 12e, 112e Upstream side end surface 12f, 112f Downstream side end surface 13 Auxiliary fin 112b Bending part (part which is to touch the flat part of a flat tube)

Claims (4)

平面部(11a)を上下方向に向けた状態で複数段配列される扁平管(11)と、
上下に隣接する前記扁平管(11)に挟まれた通風空間に、波形に折り曲げられた状態で配置されるフィン(12,112)と、
を備え、
前記扁平管(11)の前記平面部(11a)は、前記通風空間を通過する空気流の下流側になるほど高さが低くなるように傾斜し、
前記フィン(12,112)の前記空気流の上流側端面(12e,112e)及び下流側端面(12f,112f)は、鉛直方向とほぼ平行である、
熱交換器(10)。
Flat tubes (11) arranged in a plurality of stages in a state where the flat surface portion (11a) is directed in the vertical direction;
Fins (12, 112) disposed in a state of being bent into a wave shape in a ventilation space sandwiched between the flat tubes (11) adjacent vertically.
With
The flat portion (11a) of the flat tube (11) is inclined so that its height decreases toward the downstream side of the airflow passing through the ventilation space,
The upstream end face (12e, 112e) and the downstream end face (12f, 112f) of the air flow of the fin (12, 112) are substantially parallel to the vertical direction.
Heat exchanger (10).
前記フィン(12)が前記波形に折り曲げられる前の平板状態へ展開されたときの端面が、ジグザグにせん断されている、
請求項1に記載の熱交換器(10)。
The end face when the fin (12) is expanded into a flat plate state before being bent into the corrugated shape is sheared zigzag,
The heat exchanger (10) according to claim 1.
前記フィン(112)が前記波形に折り曲げられたときの前記扁平管(11)の前記平面部(11a)と接する予定の部分(112b)が、台形形状に折り曲げられている、
請求項1に記載の熱交換器(10)。
A portion (112b) scheduled to contact the flat portion (11a) of the flat tube (11) when the fin (112) is bent into the corrugated shape is bent into a trapezoidal shape,
The heat exchanger (10) according to claim 1.
前記扁平管(11)及び/又は前記フィン(12,112)と接触する補助フィン(13)をさらに備え、
前記補助フィン(13)は、前記通風空間から前記空気流の下流側へはみ出ている、
請求項1から請求項3のいずれか1項に記載の熱交換器(10)。
An auxiliary fin (13) in contact with the flat tube (11) and / or the fin (12, 112);
The auxiliary fin (13) protrudes from the ventilation space to the downstream side of the air flow,
The heat exchanger (10) according to any one of claims 1 to 3.
JP2008174236A 2008-07-03 2008-07-03 Heat exchanger Pending JP2010014329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008174236A JP2010014329A (en) 2008-07-03 2008-07-03 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008174236A JP2010014329A (en) 2008-07-03 2008-07-03 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2010014329A true JP2010014329A (en) 2010-01-21

Family

ID=41700598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008174236A Pending JP2010014329A (en) 2008-07-03 2008-07-03 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2010014329A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013113480A (en) * 2011-11-28 2013-06-10 Kobe Steel Ltd Heat pump apparatus
JP2016176646A (en) * 2015-03-20 2016-10-06 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Outdoor unit of air conditioner
EP2947411A4 (en) * 2013-01-21 2016-11-23 Toshiba Lifestyle Products & Services Corp Heat exchanger for air-conditioning device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0379060U (en) * 1989-12-04 1991-08-12
JP2001263861A (en) * 2000-03-17 2001-09-26 Sanyo Electric Co Ltd Heat exchanger

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0379060U (en) * 1989-12-04 1991-08-12
JP2001263861A (en) * 2000-03-17 2001-09-26 Sanyo Electric Co Ltd Heat exchanger

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013113480A (en) * 2011-11-28 2013-06-10 Kobe Steel Ltd Heat pump apparatus
EP2947411A4 (en) * 2013-01-21 2016-11-23 Toshiba Lifestyle Products & Services Corp Heat exchanger for air-conditioning device
JP2016176646A (en) * 2015-03-20 2016-10-06 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Outdoor unit of air conditioner

Similar Documents

Publication Publication Date Title
JP5320846B2 (en) Heat exchanger
JP2010019534A (en) Heat exchanger
EP2857785B1 (en) Heat exchanger and air conditioner
US8613307B2 (en) Finned tube heat exchanger
KR102218301B1 (en) Heat exchanger and corrugated fin thereof
JP4946348B2 (en) Air heat exchanger
JP2010025477A (en) Heat exchanger
JP2013245884A (en) Fin tube heat exchanger
JP2008180468A (en) Heat exchanger
JP5958744B2 (en) Finned tube heat exchanger
KR20140018199A (en) Heat exchanger and air conditioner equipped with same
JP2010025478A (en) Heat exchanger
JP2010025476A (en) Heat exchanger
JP2010025479A (en) Heat exchanger
JP2006105415A (en) Heat exchanger
JP6375897B2 (en) Heat exchanger
JP2010014329A (en) Heat exchanger
JP2012017875A (en) Corrugated fin evaporator
JP2010048473A (en) Heat exchanger unit and air conditioner equipped therewith
JP2007255812A (en) Finned heat exchanger, and air conditioner
JP2010065892A (en) Heat exchanger
JP5402159B2 (en) Air heat exchanger
JP2012251719A (en) Drainage structure of corrugated fin type heat exchanger
JP2010025482A (en) Heat exchanger
JP2010025481A (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130409