JP2012251719A - Drainage structure of corrugated fin type heat exchanger - Google Patents

Drainage structure of corrugated fin type heat exchanger Download PDF

Info

Publication number
JP2012251719A
JP2012251719A JP2011124726A JP2011124726A JP2012251719A JP 2012251719 A JP2012251719 A JP 2012251719A JP 2011124726 A JP2011124726 A JP 2011124726A JP 2011124726 A JP2011124726 A JP 2011124726A JP 2012251719 A JP2012251719 A JP 2012251719A
Authority
JP
Japan
Prior art keywords
heat exchanger
water
corrugated fin
heat exchange
drainage structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011124726A
Other languages
Japanese (ja)
Inventor
Kenji Yoshida
健司 吉田
Masayuki Komaki
正行 古牧
Kazuhiko Yamazaki
和彦 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP2011124726A priority Critical patent/JP2012251719A/en
Publication of JP2012251719A publication Critical patent/JP2012251719A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus
    • F28F17/005Means for draining condensates from heat exchangers, e.g. from evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • F28F1/128Fins with openings, e.g. louvered fins

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a drainage structure of a corrugated fin type heat exchanger which structure improves drainage between heat exchanger tubes and corrugated fins and discharge rate of a large volume of water due to condensation.SOLUTION: In the corrugated fin type heat exchanger, a plurality of flat heat exchanging tubes 3 parallel to each other are arranged horizontally across a pair of opposed header pipes 2a and 2b, and corrugated fins 4 are joined between the heat exchanging tubes, on the outer surfaces of lateral ends of the heat exchanging tubes, a plurality of water channels 10 are formed at proper pitches in the longitudinal direction of the heat exchanging tubes, the water channels that absorb water remaining between the heat exchanging tubes and the corrugated fins vertically adjacent thereto, and a plurality of linear water-guide members 20 are arranged horizontally at proper pitches such as to be in contact with the lateral surfaces of the vertically arranged corrugated fins to guide water downward.

Description

この発明は、コルゲートフィン式熱交換器の排水構造に関するもので、更に詳細には、コルゲートフィンと扁平状熱交換チューブとが交互に配置されるパラレルフロー型熱交換器の排水性を向上させる排水構造に関するものである。   TECHNICAL FIELD The present invention relates to a drainage structure for a corrugated fin heat exchanger, and more specifically, drainage that improves drainage of a parallel flow heat exchanger in which corrugated fins and flat heat exchange tubes are alternately arranged. Concerning structure.

一般に、対峙する一対のヘッダーパイプ間に、互いに平行な複数の扁平状の熱交換チューブを水平方向に配置し、これら熱交換チューブ間にコルゲートフィンを接合してなるコルゲートフィン式熱交換器が広く使用されている。この種のコルゲートフィン式熱交換器を蒸発器として用いた場合、表面に凝縮水(結露水)が付着し、通気抵抗の増大、更には、コルゲートフィン表面に付着する水膜が抵抗となり伝熱を阻害してしまい、熱交換性能の低下を招く問題があった。   Generally, corrugated fin-type heat exchangers are widely used in which a plurality of flat heat exchange tubes parallel to each other are horizontally arranged between a pair of opposing header pipes and corrugated fins are joined between the heat exchange tubes. in use. When this type of corrugated fin heat exchanger is used as an evaporator, condensed water (condensed water) adheres to the surface, increasing the airflow resistance, and further, the water film adhering to the corrugated fin surface acts as a resistance to transfer heat. There is a problem that the heat exchange performance is lowered.

上記問題を解決するために、発明者は鋭意研究した結果、熱交換チューブの幅方向の端部外面に、該熱交換チューブの上下側に隣接するコルゲートフィンとの間に保水される水を吸引する流水路を熱交換チューブの長手方向(水平方向)に適宜ピッチをおいて複数形成した排水構造を提案した(例えば、特許文献1参照)。   In order to solve the above problem, the inventor has intensively studied, and as a result, sucked water retained between corrugated fins adjacent to the upper and lower sides of the heat exchange tube on the outer surface of the end portion in the width direction of the heat exchange tube. A drainage structure has been proposed in which a plurality of flowing water channels are formed with an appropriate pitch in the longitudinal direction (horizontal direction) of the heat exchange tube (see, for example, Patent Document 1).

特許文献1に記載の技術によれば、熱交換チューブを水平配置した場合でも、表面に付着した凝縮水(結露水)の排水が可能となった。   According to the technique described in Patent Document 1, it is possible to drain condensed water (condensation water) adhering to the surface even when the heat exchange tubes are horizontally arranged.

また、熱交換器表面に付着した凝縮水(結露水)を下方に排水する構造として、コルゲートフィンと接触するガイド板を水平方向に適宜ピッチをおいて設けた熱交換器が知られている(例えば、特許文献2参照)。   Moreover, as a structure for draining condensed water (condensation water) adhering to the heat exchanger surface downward, a heat exchanger is known in which guide plates in contact with the corrugated fins are provided at an appropriate pitch in the horizontal direction ( For example, see Patent Document 2).

また、熱交換器表面に付着した凝縮水(結露水)を下方に排水する別の構造として、コルゲートフィンと接触する排水ガイドを線形部材で構成し、該排水ガイドを熱交換器に対して傾斜配置した排水構造が知られている(例えば、特許文献3参照)。   In addition, as another structure for draining the condensed water (condensation water) adhering to the heat exchanger surface, the drainage guide that contacts the corrugated fin is composed of a linear member, and the drainage guide is inclined with respect to the heat exchanger. An arranged drainage structure is known (see, for example, Patent Document 3).

特開2010−243147号公報(特許請求の範囲、図1〜図3)JP 2010-243147 A (Claims, FIGS. 1 to 3) 特開2001−263861号公報(請求項1、図3)JP 2001-263861 A (Claim 1, FIG. 3) 特開2007−285673号公報(特許請求の範囲、図3,図5〜図12)Japanese Patent Laying-Open No. 2007-285673 (Claims, FIGS. 3, 5 to 12)

しかしながら、特許文献1に記載の技術においては、熱交換チューブに形成された流水路によって熱交換チューブとコルゲートフィンとの間の排水性の向上が図れるが、例えば、屋外側熱交換器として用いられ、除霜動作時などの多量の排出水が流れる場合は、熱交換器全体の排水速度が不十分となり、除霜時間が長くなる懸念がある。   However, in the technique described in Patent Document 1, drainage between the heat exchange tube and the corrugated fin can be improved by the flow channel formed in the heat exchange tube, but for example, it is used as an outdoor heat exchanger. When a large amount of discharged water flows during the defrosting operation or the like, there is a concern that the drainage speed of the entire heat exchanger becomes insufficient and the defrosting time becomes longer.

また、特許文献2,3に記載の技術においては、高い排水性を求める場合には、比較的狭いピッチで多くのガイド板や線形部材からなる排水ガイドを配置する必要があるため、熱交換器を通過する風の流れを阻害し、通気抵抗を増大させる懸念がある。   Further, in the techniques described in Patent Documents 2 and 3, when high drainage is required, it is necessary to dispose a drainage guide composed of many guide plates and linear members at a relatively narrow pitch. There is a concern that the flow of wind passing through the air flow may be hindered and the ventilation resistance increased.

この発明は、上記事情に鑑みてなされたもので、熱交換チューブとコルゲートフィンとの間の排水性の向上と多量の排出水の排水速度の向上を図れるようにしたコルゲートフィン式熱交換器の排水構造を提供することを課題とする。   This invention was made in view of the above circumstances, and is a corrugated fin heat exchanger that can improve drainage between a heat exchange tube and a corrugated fin and improve the drainage speed of a large amount of discharged water. It is an object to provide a drainage structure.

上記課題を達成するために、この発明のコルゲートフィン式熱交換器の排水構造は、対峙する一対のヘッダーパイプ間に、互いに平行な複数の扁平状熱交換チューブを水平方向に配置し、コルゲートフィンを上記熱交換チューブ間に接合してなるコルゲートフィン式熱交換器において、 上記各熱交換チューブの幅方向の端部外面に、該熱交換チューブの上下側に隣接する上記コルゲートフィンとの間に保水される水を吸引する流水路を熱交換チューブの長手方向に適宜ピッチをおいて複数形成し、 上下方向に位置する上記コルゲートフィンの幅方向の表面に接触して水を下方へ導く線状の導水部材を水平方向に適宜ピッチをおいて複数配置してなる、ことを特徴とする。   In order to achieve the above object, the corrugated fin heat exchanger drainage structure of the present invention has a plurality of parallel flat heat exchange tubes arranged horizontally between a pair of opposing header pipes, In the corrugated fin type heat exchanger formed by joining between the heat exchange tubes, between the corrugated fins adjacent to the upper and lower sides of the heat exchange tubes on the outer end surface in the width direction of the heat exchange tubes. A plurality of flow channels for sucking water to be retained are formed at an appropriate pitch in the longitudinal direction of the heat exchange tube, and are linearly brought into contact with the surface in the width direction of the corrugated fin located in the vertical direction to guide the water downward A plurality of the water guide members are arranged at an appropriate pitch in the horizontal direction.

このように構成することにより、熱交換チューブとコルゲートフィンとの間に保水された水は流水路を介して流すことができ、また、流水路から流れずに残留した水は導水部材を介して熱交換器の下部側に流すことができる。   By configuring in this way, the water retained between the heat exchange tube and the corrugated fin can flow through the flow channel, and the water remaining without flowing from the flow channel can be passed through the water guide member. It can flow to the lower side of the heat exchanger.

この発明において、上記熱交換チューブの幅方向の端部に延設される鍔部を傾斜状に切り起こした切起し片にて上記流水路を形成し、かつ、上記鍔部の基端側に平坦部を残して形成する方が好ましい。   In the present invention, the flowing water channel is formed by a cut and raised piece obtained by cutting and raising the flange extending at the end in the width direction of the heat exchange tube, and the proximal end side of the flange It is more preferable to form it leaving a flat part.

このように構成することにより、流水路から流れずに残留した水は平坦部を流れて導水部材を介して熱交換器の下部側に流れる。   By comprising in this way, the water which remained without flowing from a flowing water channel flows through a flat part, and flows into the lower part side of a heat exchanger via a water guide member.

また、この発明において、上記導水部材を上記複数の熱交換チューブ及びコルゲートフィンよりなる熱交換器コアの最下端より垂下する方がよい。   Moreover, in this invention, it is better to suspend the said water conveyance member from the lowest end of the heat exchanger core which consists of said several heat exchange tube and a corrugated fin.

この垂下長さは熱交換器下部のコルゲートフィン間に保水される範囲に依存し、少なくともその保水される範囲の高さ、すなわち熱交換器下端からコルゲートフィン間が保水状態となるフィンまでの長さ(高さ)以上であることが好ましい。また、この保水範囲は、コルゲートフィンのピッチ、幅、高さ、熱交換チューブの厚さ等により異なるため、一定ではない。また、この垂下長さが短いと、熱交換器下部に保水された水を確実に排出することができなくなるからである。   This drooping length depends on the range of water retained between the corrugated fins at the bottom of the heat exchanger. It is preferable that the height (height) or more. Further, this water retention range is not constant because it varies depending on the pitch, width, height, thickness of the heat exchange tube, and the like of the corrugated fins. In addition, when the drooping length is short, the water retained in the lower part of the heat exchanger cannot be surely discharged.

また、この発明において、上記熱交換器の下部に排水を受け止めるドレインパンを配置し、上記導水部材の下端を上記ドレインパンに接触させる方が好ましい。   Moreover, in this invention, it is preferable to arrange | position the drain pan which receives waste_water | drain at the lower part of the said heat exchanger, and to make the lower end of the said water conveyance member contact the said drain pan.

このように構成することにより、熱交換器表面に付着した凝縮水(結露水)を下方に配置したドレインパンにて受け止めることができる。   By comprising in this way, the condensed water (condensation water) adhering to the heat exchanger surface can be received with the drain pan arrange | positioned below.

この発明において、導水部材はワイヤーで形成してもよく、あるいは、複数の線状素材を縒った形状にし、各線状素材間の隙間に水路を形成するようにしてもよい。   In the present invention, the water guiding member may be formed of a wire, or may be formed in a shape in which a plurality of linear materials are formed, and a water channel may be formed in a gap between the linear materials.

導水部材を配置するピッチについては、そのピッチが狭いほど排水速度は良化するが、相反して通気抵抗は増大する。通気抵抗の増大は、例えば定置型の機器において、熱交換器への送風にファンを用いる場合においては、送風動力の増大もしくは送風量の低下につながり、機器のエネルギー消費効率の悪化や熱交換性能の低下が懸念される。このため、ピッチの決定に際しては、熱交換器の熱交換性能、通気抵抗、用いられるファンの特性を考慮することが好ましい。   About the pitch which arrange | positions a water conveyance member, although the drainage speed | velocity | rate improves as the pitch is narrow, on the contrary, ventilation resistance increases. The increase in ventilation resistance, for example, in a stationary device, when a fan is used for blowing air to the heat exchanger, leads to an increase in blowing power or a decrease in the blowing amount, resulting in deterioration of the energy consumption efficiency of the device and heat exchange performance. There is concern about the decline. For this reason, when determining the pitch, it is preferable to consider the heat exchange performance of the heat exchanger, the ventilation resistance, and the characteristics of the fan used.

この発明によれば、上記のように構成されているので、以下のような顕著な効果が得られる。   According to this invention, since it is configured as described above, the following remarkable effects can be obtained.

(1)熱交換チューブとコルゲートフィンとの間に保水された水は流水路を介して流すことができ、また、流水路から流れずに残留した水は導水部材を介して熱交換器の下部側に流すことができるので、熱交換チューブとコルゲートフィンとの間の排水性の向上を図ることができると共に、多量の排出水の排水速度の向上を図ることができる。   (1) The water retained between the heat exchange tube and the corrugated fin can flow through the flow channel, and the water remaining without flowing from the flow channel passes through the water guide member to the lower part of the heat exchanger. Therefore, it is possible to improve the drainage between the heat exchange tube and the corrugated fin, and to improve the drainage rate of a large amount of discharged water.

(2)熱交換チューブの幅方向の端部に延設される鍔部を傾斜状に切り起こした切起し片にて上記流水路を形成し、かつ、上記鍔部の基端側に平坦部を残して形成することにより、流水路から流れずに残留した水が平坦部を流れて導水部材を介して熱交換器の下部側に流れるので、上記(1)に加えて更に排水速度を高めることができる。   (2) The flowing water channel is formed by a cut-and-raised piece obtained by cutting and raising the flange extending at the end in the width direction of the heat exchange tube, and flat on the proximal end side of the flange By forming the remaining part, the remaining water without flowing from the flow channel flows through the flat part and flows to the lower side of the heat exchanger through the water guide member. Can be increased.

(3)導水部材を上記複数の熱交換チューブ及びコルゲートフィンよりなる熱交換器コアの最下端より適正な垂下長さを確保することにより、熱交換器の下部(具体的には、下部2段程度)に保水された水を確実に排水することができ、上記(1)に加えて更に排水性の向上を図ることができる。   (3) By ensuring an appropriate drooping length from the lowermost end of the heat exchanger core composed of the plurality of heat exchange tubes and corrugated fins, the water guide member is secured to the lower part of the heat exchanger (specifically, the lower two stages In addition to the above (1), the drainage can be further improved.

(4)熱交換器の下部に排水を受け止めるドレインパンを配置し、導水部材の下端をドレインパンに接触させることにより、熱交換器表面に付着した凝縮水(結露水)を下方に配置したドレインパンにて受け止めることができる。したがって、上記(1),(2)に加えて、更に熱交換器の下部周囲の排水を促進することができる。   (4) A drain pan that receives drainage at the bottom of the heat exchanger, and the drain that has condensed water (condensation water) attached to the surface of the heat exchanger disposed below by bringing the lower end of the water guiding member into contact with the drain pan. You can catch it with bread. Therefore, in addition to the above (1) and (2), drainage around the lower portion of the heat exchanger can be further promoted.

この発明に係るコルゲートフィン式熱交換器の排水構造の第1実施形態を示す正面図(a)及び(a)のI部拡大正面図(b)である。It is the I section expansion front view (b) of (a) and (a) which shows a 1st embodiment of the drainage structure of the corrugated fin type heat exchanger concerning this invention. 第1実施形態に係る排水構造の一部を断面で示す斜視図(a)及びこの発明におけるコルゲートフィンの一部拡大斜視図(b)である。They are a perspective view (a) which shows a part of drainage structure concerning a 1st embodiment in section, and a partial expansion perspective view (b) of a corrugated fin in this invention. 第1実施形態における流水路を有する熱交換チューブの別の形状を示す斜視図である。It is a perspective view which shows another shape of the heat exchange tube which has a flowing water path in 1st Embodiment. この発明に係るコルゲートフィン式熱交換器の排水構造の第2実施形態の一部を断面で示す斜視図である。It is a perspective view which shows a part of 2nd Embodiment of the drainage structure of the corrugated fin type heat exchanger which concerns on this invention in a cross section. 第2実施形態における流水路を有する熱交換チューブを示す斜視図である。It is a perspective view which shows the heat exchange tube which has a flowing water path in 2nd Embodiment. 第2実施形態における流水路と導水部材及びコルゲートフィンの関係を示す要部断面図である。It is principal part sectional drawing which shows the relationship between the water flow path in 2nd Embodiment, a water guide member, and a corrugated fin. 第2実施形態における流水路と導水部材及びコルゲートフィンの関係を示す拡大斜視図である。It is an expansion perspective view which shows the relationship between the water flow path in 2nd Embodiment, a water guide member, and a corrugated fin. 第3実施形態における流水路と導水部材及びコルゲートフィンの関係を示す要部断面図(a)及び導水部材の拡大断面図(b)である。It is principal part sectional drawing (a) which shows the relationship between the flow channel in 3rd Embodiment, a water conveyance member, and a corrugated fin, and an expanded sectional view (b) of a water conveyance member.

以下に、この発明を実施するための形態について、添付図面に基づいて詳細に説明する。   EMBODIMENT OF THE INVENTION Below, the form for implementing this invention is demonstrated in detail based on an accompanying drawing.

<第1実施形態>
この発明に係るコルゲートフィン式熱交換器1(以下に熱交換器1という)は、図1に示すように、それぞれアルミニウム(アルミニウム合金を含む)製の左右に対峙する一対のヘッダーパイプ2a,2bと、これらヘッダーパイプ2a,2b間に互いに平行に水平方向に架設(連結)される複数の扁平状の熱交換チューブ3と、隣接する熱交換チューブ3間に介在されるコルゲートフィン4及び上下方向に位置するコルゲートフィン4の幅方向の表面に接触して水を下方へ導く複数の線状の導水部材20をろう付けしてなる。
<First Embodiment>
As shown in FIG. 1, a corrugated fin heat exchanger 1 (hereinafter referred to as a heat exchanger 1) according to the present invention includes a pair of header pipes 2a and 2b that are made of aluminum (including an aluminum alloy) and that face each other. A plurality of flat heat exchange tubes 3 installed (connected) in parallel with each other between the header pipes 2a and 2b, a corrugated fin 4 interposed between adjacent heat exchange tubes 3, and a vertical direction A plurality of linear water guide members 20 that are in contact with the surface in the width direction of the corrugated fins 4 positioned in the direction and guide water downward are brazed.

この場合、熱交換チューブ3には複数に区画された熱媒体流路3aが形成され、幅方向の端部には肉厚部3bが形成されている。また、上下端のコルゲートフィン4の上部外方側及び下部開放側には、それぞれアルミニウム製のサイドプレート5がろう付けされている。また、ヘッダーパイプ2a,2bの上下開口端にはアルミニウム製のエンドキャップ6がろう付けされている。   In this case, the heat exchange tube 3 is formed with a plurality of divided heat medium passages 3a, and a thick portion 3b is formed at the end in the width direction. Also, aluminum side plates 5 are brazed to the upper outer side and lower open side of the upper and lower corrugated fins 4 respectively. An end cap 6 made of aluminum is brazed to the upper and lower opening ends of the header pipes 2a and 2b.

また、熱交換器1の下部には、排水を受け止めるドレインパン7が配置されており、ドレインパン7の底面7aには導水部材20の下端が接触されている。   In addition, a drain pan 7 that receives drainage is disposed below the heat exchanger 1, and a bottom surface 7 a of the drain pan 7 is in contact with the lower end of the water guide member 20.

上記のように構成される熱交換器1において、コルゲートフィン4は、薄板を所定の高さになるように山−谷折りを交互に繰り返して成形されており、熱交換器正面からの視点では、V字形状の連続として見ることができる。なお、コルゲートフィン4の形状は必ずしもV字形状の連続ではなく、U字形状の連続であってもよい。   In the heat exchanger 1 configured as described above, the corrugated fins 4 are formed by alternately repeating mountain-valley folding so that the thin plate has a predetermined height. , Can be viewed as a continuous V-shape. The shape of the corrugated fin 4 is not necessarily a continuous V shape, but may be a continuous U shape.

上記のように構成される熱交換器1において、図1ないし図3に示すように、熱交換チューブ3の幅方向の端部の肉厚部3bの外面には、該熱交換チューブ3の上下側に隣接するコルゲートフィン4との間に保水される水を吸引する流水路10を熱交換チューブ3の長手方向に適宜ピッチP1をおいて複数形成されている。なおこの場合、スリット11は熱交換チューブ3の長手方向に平行な水平線に対して傾斜状に形成されているが、スリット11は必ずしも傾斜状である必要はなく、図3(b)に示すように、熱交換チューブ3の長手方向に平行な水平線に対して直交状(鉛直状)であってもよい。   In the heat exchanger 1 configured as described above, as shown in FIGS. 1 to 3, the outer surface of the thick portion 3 b at the end portion in the width direction of the heat exchange tube 3 is provided on the upper and lower sides of the heat exchange tube 3. A plurality of water flow paths 10 for sucking water retained between the corrugated fins 4 adjacent to the side are formed in the longitudinal direction of the heat exchange tube 3 with an appropriate pitch P1. In this case, the slit 11 is formed to be inclined with respect to a horizontal line parallel to the longitudinal direction of the heat exchange tube 3, but the slit 11 is not necessarily inclined, as shown in FIG. Alternatively, it may be orthogonal (vertical) to a horizontal line parallel to the longitudinal direction of the heat exchange tube 3.

上記のように形成される構造の排水メカニズムとしては、V字形状(谷折り)フィン表面に凝縮した凝縮水(結露水)は、下段への水路がないため、コルゲートフィン4の幅方向に互いに並行に設けられた複数の縦スリットを切り起こして形成されたフィンルーバ4a(図2(b)参照)を介して隣の逆V字形状(山折り)部に移動し、逆V字形状部に集まった凝縮水は、下方の開口部から、熱交換チューブ3に形成された流水路10を介して、下方側のコルゲートフィン4に流れ込むといったメカニズムをスムーズに繰り返すことにより、排水が促進される構造である。   As a drainage mechanism of the structure formed as described above, the condensed water (condensation water) condensed on the surface of the V-shaped (valley fold) fin does not have a water channel to the lower stage, so that the corrugated fins 4 cross each other in the width direction. It moves to the adjacent inverted V-shaped (mountain fold) part via the fin louver 4a (see FIG. 2B) formed by cutting and raising a plurality of vertical slits provided in parallel, and into the inverted V-shaped part. A structure in which drained water is promoted by smoothly repeating a mechanism in which the collected condensed water flows into the corrugated fin 4 on the lower side from the lower opening through the flowing water channel 10 formed in the heat exchange tube 3. It is.

なお、コルゲートフィン4にフィンルーバ4aを設けることにより、熱交換能力の向上が図れる、すなわち、空気の通路に所定角度に成形された所定数のルーバーを設けることで、乱流効果等により熱伝達性能の向上が図れる。   In addition, heat exchange performance can be improved by providing the fin louver 4a in the corrugated fin 4, that is, by providing a predetermined number of louvers formed at a predetermined angle in the air passage, heat transfer performance due to the turbulent flow effect, etc. Can be improved.

この排水メカニズムにおいて、熱交換チューブ3に形成される流水路10のピッチP1がコルゲートフィン4のピッチ(山頂点−谷頂点寸法)の4倍以上になると、コルゲートフィン4の保水力に対し、排水路が少なくなるため、排水スピードが極端に遅くなり、実用上有効な排水効果が得られなくなる。そのため、図1(b)に示すように、流水路10すなわちスリット11のピッチP1はコルゲートフィン4のピッチP(山頂点−谷頂点寸法)の4倍以下が好ましい。   In this drainage mechanism, when the pitch P1 of the flow channel 10 formed in the heat exchange tube 3 is more than four times the pitch of the corrugated fins 4 (peak apex-valley apex dimension), the drainage with respect to the water retention capacity of the corrugated fins 4 Since there are fewer roads, the drainage speed becomes extremely slow, and a practically effective drainage effect cannot be obtained. Therefore, as shown in FIG. 1B, the pitch P <b> 1 of the flow channel 10, i.e., the slit 11, is preferably not more than four times the pitch P of the corrugated fins 4 (peak apex−valley apex dimension).

一方、上記導水部材20は例えばアルミニウム製のワイヤーによって形成されており、例えば熱交換器1における送風の下流側面に配置されている。なお、導水部材20は必ずしも熱交換器1における送風の下流側面に配置する必要はなく、送風の上流側あるいは送風の上流側及び下流側の双方に配置してもよい。   On the other hand, the water guide member 20 is formed of, for example, an aluminum wire, and is disposed, for example, on the downstream side surface of the air in the heat exchanger 1. The water guide member 20 is not necessarily arranged on the downstream side of the air blowing in the heat exchanger 1 and may be arranged on the upstream side of the blowing or on both the upstream side and the downstream side of the blowing.

この場合、導水部材20は、複数の熱交換チューブ3及びコルゲートフィン4よりなる熱交換器コア9の最上端の熱交換チューブ3から最下端の熱交換チューブ3と、その間に介在されるコルゲートフィン4と、最下端の熱交換チューブ3の下方に配置されるコルゲートフィン4及びサイドプレート5の幅方向の端部にろう付けされると共に、熱交換器コア9の最下端より垂下されて、ドレインパン7の底面7aに接触されている。   In this case, the water conveyance member 20 includes the heat exchange tube 3 from the uppermost end to the lowermost heat exchange tube 3 of the heat exchanger core 9 including the plurality of heat exchange tubes 3 and the corrugated fins 4, and the corrugated fins interposed therebetween. 4 and the corrugated fins 4 and the side plates 5 disposed below the lowermost heat exchange tube 3 are brazed to the widthwise ends and suspended from the lowermost end of the heat exchanger core 9, It is in contact with the bottom surface 7 a of the pan 7.

本実施形態では導水部材20はドレインパン7の底面7aに接触しているが、熱交換器コア9の最下端より適正な長さを垂下されていれば、必ずしもドレインパン7の底面7aに接触させなくてもよい。   In this embodiment, the water guide member 20 is in contact with the bottom surface 7 a of the drain pan 7, but is not necessarily in contact with the bottom surface 7 a of the drain pan 7 as long as an appropriate length is suspended from the lowermost end of the heat exchanger core 9. You don't have to.

この垂下長さは熱交換器下部のコルゲートフィン間に保水される範囲に依存し、少なくともその保水される範囲の高さ、すなわち熱交換器下端からコルゲートフィン間が保水状態となるフィンまでの長さ(高さ)以上であることが好ましい。   This drooping length depends on the range of water retained between the corrugated fins at the bottom of the heat exchanger. It is preferable that the height (height) or more.

コルゲートフィン4の山-谷のピッチPが1.3mmで、上下に隣接する熱交換チューブ3間のピッチP2が10mmの場合、熱交換器下部に保水される範囲は熱交換器最下端から2段程度となるため、20mm(=10mm×2段)以上の垂下長さを確保することにより、下部に保水された水を排出することが可能となる。   When the pitch P between the peaks and valleys of the corrugated fins 4 is 1.3 mm and the pitch P2 between the heat exchange tubes 3 adjacent to each other is 10 mm, the range of water retained in the lower part of the heat exchanger is 2 from the lowest end of the heat exchanger. Since it becomes about a step, it becomes possible to discharge the water retained in the lower portion by ensuring a drooping length of 20 mm (= 10 mm × 2 steps) or more.

なお、図1では導水部材20は3本の場合について図示しているが、導水部材20の水平方向のピッチPAは、熱交換器の熱交換性能、通気抵抗、用いられるファンの特性を考慮することが好ましく、例えば線径φ2mmのワイヤーを導水部材を配した場合、50mm〜150mm程度の範囲に設定する方がよい。この場合、ヘッダーパイプ2a,2bの内側間の距離Lは400mmに設定されている。導水部材20のピッチが50mmより狭いと通気抵抗の増大に伴い、用いられるファンの特性によっては機器のエネルギー消費効率の悪化や熱交換性能の低下を招くことが懸念される。また導水部材20のピッチが150mmより広いと、流水路から流れずに残留した水の排出が不十分となり、さほど排水速度の改善が見込めなくなる。   In FIG. 1, three water guide members 20 are illustrated. However, the horizontal pitch PA of the water guide members 20 takes into consideration the heat exchange performance, the airflow resistance, and the characteristics of the fan used. Preferably, for example, when a water guide member is arranged on a wire having a wire diameter of φ2 mm, it is better to set it in a range of about 50 mm to 150 mm. In this case, the distance L between the insides of the header pipes 2a and 2b is set to 400 mm. When the pitch of the water guide members 20 is narrower than 50 mm, there is a concern that, depending on the characteristics of the fan used, the energy consumption efficiency of the device may be deteriorated and the heat exchange performance may be reduced, as the ventilation resistance increases. On the other hand, if the pitch of the water guide members 20 is wider than 150 mm, the remaining water is not sufficiently discharged without flowing from the water channel, and the drainage speed cannot be improved so much.

上記のように形成される導水部材20によって、流水路10から流れずに残留した水は導水部材20を介して熱交換器1の下部側のドレインパン7内に流すことができる。   By the water guide member 20 formed as described above, the water remaining without flowing from the water flow channel 10 can flow into the drain pan 7 on the lower side of the heat exchanger 1 through the water guide member 20.

上記第1実施形態の排水構造によれば、熱交換器表面がウェットな状態となると、コルゲートフィン4の表面に凝縮し、水滴となった凝縮水(結露水)が、熱交換チューブ3の上下側に隣接するコルゲートフィン4間に保水された状態で、流水路10のエッジ部が保水に接触することで、流れ落ちる起点となり、水を誘引して下方側のコルゲートフィン4へ排出することができる。以下同様にして、コルゲートフィン4の表面に凝縮し、水滴となった凝縮水(結露水)は、順次下方側のコルゲートフィン4へ排出される。一方、流水路10から流れずに残留した水は導水部材20を介して熱交換器1の下部側のドレインパン7内に流れる。これにより、扁平状熱交換チューブ3を水平配置した場合でも、排水速度を速めることができ、排水性の向上を図ることができる。   According to the drainage structure of the first embodiment, when the heat exchanger surface is in a wet state, condensed water (condensed water) that condenses on the surface of the corrugated fins 4 and becomes water droplets is formed above and below the heat exchange tube 3. In the state where water is retained between the corrugated fins 4 adjacent to the side, the edge portion of the water flow channel 10 comes into contact with the water retention, so that it begins to flow down, and water can be attracted and discharged to the corrugated fins 4 on the lower side. . In the same manner, the condensed water (condensed water) condensed on the surface of the corrugated fins 4 and forming water droplets is sequentially discharged to the corrugated fins 4 on the lower side. On the other hand, the water remaining without flowing from the flow channel 10 flows into the drain pan 7 on the lower side of the heat exchanger 1 through the water guide member 20. Thereby, even when the flat heat exchange tube 3 is horizontally arranged, the drainage speed can be increased, and the drainage performance can be improved.

<第2実施形態>
第2実施形態の熱交換器1Aは、図4ないし図7に示すように、熱交換チューブ3Aの幅方向の端部に水平状に延設される鍔部30に切り込まれるスリット11を介して傾斜状に切り起こした切起し片32にて流水路10を形成し、かつ、鍔部30の基端側に平坦部31を残して形成した場合である。
Second Embodiment
As shown in FIGS. 4 to 7, the heat exchanger 1 </ b> A of the second embodiment is provided with a slit 11 cut into a flange 30 that extends horizontally at the end in the width direction of the heat exchange tube 3 </ b> A. The flow channel 10 is formed by the cut and raised pieces 32 that are cut and raised in an inclined manner, and the flat portion 31 is left on the base end side of the flange portion 30.

この場合、導水部材20は、第1実施形態と同様に、例えばアルミニウム製のワイヤーによって形成されており、複数の熱交換チューブ3及びコルゲートフィン4よりなる熱交換器コア9の最上端の熱交換チューブ3から最下端の熱交換チューブ3と、その間に介在されるコルゲートフィン4と、最下端の熱交換チューブ3の下方に配置されるコルゲートフィン4及びサイドプレート5の幅方向の端部にろう付けされると共に、熱交換器コア9の最下端より垂下されて、ドレインパン(図示せず)の底面に接触されている。なお、導水部材20は熱交換器コア9の最下端より適正な長さを垂下されていれば、ドレインパン7の底面7aに接触させなくてもよい。   In this case, similarly to the first embodiment, the water guide member 20 is formed of, for example, an aluminum wire, and heat exchange at the uppermost end of the heat exchanger core 9 including the plurality of heat exchange tubes 3 and the corrugated fins 4 is performed. The heat exchanger tube 3 at the lowermost end from the tube 3, the corrugated fins 4 interposed therebetween, the corrugated fins 4 disposed below the lowermost heat exchanger tube 3, and the end portions in the width direction of the side plates 5 At the same time, it is suspended from the lowermost end of the heat exchanger core 9 and is in contact with the bottom surface of a drain pan (not shown). Note that the water guide member 20 may not be brought into contact with the bottom surface 7 a of the drain pan 7 as long as an appropriate length is suspended from the lowermost end of the heat exchanger core 9.

なお、第2実施形態において、その他の部分は第1実施形態と同じであるので、同一部分には同一符号を付して説明は省略する。   In the second embodiment, the other parts are the same as those in the first embodiment.

第2実施形態の排水構造によれば、熱交換器表面がウェットな状態となると、コルゲートフィン4の表面に凝縮し、水滴となった凝縮水(結露水)が、熱交換チューブ3の上下側に隣接するコルゲートフィン4間に保水された状態で、流水路10のエッジ部が保水に接触することで、流れ落ちる起点となり、水を誘引して下方側のコルゲートフィン4へ排出することができる。以下同様にして、コルゲートフィン4の表面に凝縮し、水滴となった凝縮水(結露水)は、順次下方側のコルゲートフィン4へ排出される。一方、流水路10から流れずに残留した水は、平坦部31を熱交換チューブ3の長手方向に沿って流れ、導水部材20を介して熱交換器1の下部側のドレインパン7内に流れる。これにより、扁平状熱交換チューブ3を水平配置した場合でも、排水速度を速めることができ、排水性の向上を図ることができる。   According to the drainage structure of the second embodiment, when the surface of the heat exchanger becomes wet, the condensed water (condensed water) that condenses on the surface of the corrugated fins 4 and becomes water droplets is formed on the upper and lower sides of the heat exchange tube 3. In the state where the water is retained between the corrugated fins 4 adjacent to each other, the edge portion of the water flow channel 10 comes into contact with the water retaining material, so that it starts to flow down, and water can be attracted and discharged to the corrugated fins 4 on the lower side. In the same manner, the condensed water (condensed water) condensed on the surface of the corrugated fins 4 and forming water droplets is sequentially discharged to the corrugated fins 4 on the lower side. On the other hand, water remaining without flowing from the water flow channel 10 flows along the flat portion 31 along the longitudinal direction of the heat exchange tube 3 and flows into the drain pan 7 on the lower side of the heat exchanger 1 through the water guide member 20. . Thereby, even when the flat heat exchange tube 3 is horizontally arranged, the drainage speed can be increased, and the drainage performance can be improved.

<第3実施形態>
第3実施形態の熱交換器1Bは、図8に示すように、第1,第2実施形態における導水部材20に代えて、導水部材20Aを複数(例えば3本)の線状素材21を縒った形状にし、各線状素材21間の隙間に水路を形成した場合である。
<Third Embodiment>
As shown in FIG. 8, the heat exchanger 1 </ b> B of the third embodiment replaces the water guide member 20 in the first and second embodiments with a plurality of (for example, three) linear materials 21 as the water guide member 20 </ b> A. This is a case where a water channel is formed in the gap between each linear material 21.

このように形成される導水部材20は、例えば第2実施形態と同様に、複数の熱交換チューブ3及びコルゲートフィン4よりなる熱交換器コア9の最上端の熱交換チューブ3から最下端の熱交換チューブ3と、その間に介在されるコルゲートフィン4と、最下端の熱交換チューブ3の下方に配置されるコルゲートフィン4及びサイドプレート5の幅方向の端部にろう付けされると共に、熱交換器コア9の最下端より垂下されて、ドレインパン(図示せず)の底面に接触されている。なお、導水部材20Aは熱交換器コア9の最下端より適正な長さを垂下されていれば、ドレインパン7の底面7aに接触させなくてもよい。   The water guide member 20 formed in this way is, for example, similarly to the second embodiment, the heat at the lowest end from the heat exchange tube 3 at the uppermost end of the heat exchanger core 9 including the plurality of heat exchange tubes 3 and the corrugated fins 4. The exchange tube 3, the corrugated fins 4 interposed therebetween, the corrugated fins 4 disposed below the lowermost heat exchange tube 3, and brazed to the widthwise ends of the side plates 5, and heat exchange It is suspended from the lowermost end of the vessel core 9 and is in contact with the bottom surface of a drain pan (not shown). The water guide member 20 </ b> A may not be brought into contact with the bottom surface 7 a of the drain pan 7 as long as an appropriate length is suspended from the lowermost end of the heat exchanger core 9.

第3実施形態において、その他の部分は第1,第2実施形態と同じであるので、同一部分には同一符号を付して説明は省略する。   In the third embodiment, the other parts are the same as those in the first and second embodiments. Therefore, the same parts are denoted by the same reference numerals and description thereof is omitted.

第3実施形態の排水構造によれば、熱交換器表面がウェットな状態となると、コルゲートフィン4の表面に凝縮し、水滴となった凝縮水(結露水)が、熱交換チューブ3の上下側に隣接するコルゲートフィン4間に保水された状態で、流水路10のエッジ部が保水に接触することで、流れ落ちる起点となり、水を誘引して下方側のコルゲートフィン4へ排出することができる。以下同様にして、コルゲートフィン4の表面に凝縮し、水滴となった凝縮水(結露水)は、順次下方側のコルゲートフィン4へ排出される。一方、流水路10から流れずに残留した水は、平坦部31を熱交換チューブ3の長手方向に沿って流れ、導水部材20Aを形成する各線状素材21間の隙間を介して熱交換器1の下部側のドレインパン7内に流れる。これにより、扁平状熱交換チューブ3を水平配置した場合でも、排水速度を速めることができ、排水性の向上を図ることができる。   According to the drainage structure of the third embodiment, when the surface of the heat exchanger becomes wet, the condensed water (condensed water) that condenses on the surface of the corrugated fins 4 and becomes water droplets is the upper and lower sides of the heat exchange tube 3. In the state where the water is retained between the corrugated fins 4 adjacent to each other, the edge portion of the water flow channel 10 comes into contact with the water retaining material, so that it starts to flow down, and water can be attracted and discharged to the corrugated fins 4 on the lower side. In the same manner, the condensed water (condensed water) condensed on the surface of the corrugated fins 4 and forming water droplets is sequentially discharged to the corrugated fins 4 on the lower side. On the other hand, the water remaining without flowing from the water flow channel 10 flows through the flat portion 31 along the longitudinal direction of the heat exchange tube 3 and passes through the gaps between the respective linear materials 21 forming the water guide member 20A. Flows into the drain pan 7 on the lower side. Thereby, even when the flat heat exchange tube 3 is horizontally arranged, the drainage speed can be increased, and the drainage performance can be improved.

<その他の実施形態>
上記実施形態では、この発明に係る排水構造を蒸発器に適用した場合について説明したが、この発明は、蒸発器以外のパラレルフロー型コルゲートフィン式熱交換器において、熱交換チューブを水平配置した場合でも、表面に付着した水滴の排水性を十分に有し、通気抵抗及び熱交換効率に与える悪影響を抑制することができる。
<Other embodiments>
In the above embodiment, the case where the drainage structure according to the present invention is applied to an evaporator has been described. However, in the parallel flow type corrugated fin type heat exchanger other than the evaporator, the present invention is a case where a heat exchange tube is horizontally disposed. However, it has sufficient drainage properties of water droplets adhering to the surface and can suppress adverse effects on the ventilation resistance and heat exchange efficiency.

1,1A,1B 熱交換器
2a,2b ヘッダーパイプ
3 熱交換チューブ
4 コルゲートフィン
7 ドレインパン
7a 底面
9 熱交換器コア
10 流水路
11 スリット
20,20A 導水部材
21 線状素材
30 鍔部
31 平坦部
32 切起し片
1, 1A, 1B Heat exchanger 2a, 2b Header pipe 3 Heat exchange tube 4 Corrugated fin 7 Drain pan 7a Bottom face 9 Heat exchanger core 10 Flow channel 11 Slit 20, 20A Water guide member 21 Linear material 30 Gutter 31 Flat part 32 Cut and raised pieces

Claims (6)

対峙する一対のヘッダーパイプ間に、互いに平行な複数の扁平状熱交換チューブを水平方向に配置し、コルゲートフィンを上記熱交換チューブ間に接合してなるコルゲートフィン式熱交換器において、
上記各熱交換チューブの幅方向の端部外面に、該熱交換チューブの上下側に隣接する上記コルゲートフィンとの間に保水される水を吸引する流水路を熱交換チューブの長手方向に適宜ピッチをおいて複数形成し、
上下方向に位置する上記コルゲートフィンの幅方向の表面に接触して水を下方へ導く線状の導水部材を水平方向に適宜ピッチをおいて複数配置してなる、ことを特徴とするコルゲートフィン式熱交換器の排水構造。
In a corrugated fin heat exchanger formed by horizontally arranging a plurality of flat heat exchange tubes parallel to each other between a pair of opposing header pipes, and joining corrugated fins between the heat exchange tubes,
On the outer surface of the end portion in the width direction of each heat exchange tube, a flow channel for sucking water retained between the corrugated fins adjacent to the upper and lower sides of the heat exchange tube is appropriately pitched in the longitudinal direction of the heat exchange tube. Multiple formations,
A corrugated fin type characterized in that a plurality of linear water guiding members that contact the surface in the width direction of the corrugated fin positioned in the vertical direction and guide water downward are arranged at an appropriate pitch in the horizontal direction. Heat exchanger drainage structure.
請求項1記載のコルゲートフィン式熱交換器の排水構造において、
上記熱交換チューブの幅方向の端部に延設される鍔部を傾斜状に切り起こした切起し片にて上記流水路を形成し、かつ、上記鍔部の基端側に平坦部を残して形成してなる、ことを特徴とするコルゲートフィン式熱交換器の排水構造。
In the drainage structure of the corrugated fin heat exchanger according to claim 1,
The flowing water channel is formed by a cut and raised piece obtained by cutting and raising the flange extending at the end in the width direction of the heat exchange tube, and a flat portion is provided on the proximal end side of the flange. A drainage structure for a corrugated fin heat exchanger, characterized in that it is formed by leaving.
請求項1又は2に記載のコルゲートフィン式熱交換器の排水構造において、
上記導水部材を上記複数の熱交換チューブ及びコルゲートフィンよりなる熱交換器コアの最下端より垂下してなる、ことを特徴とするコルゲートフィン式熱交換器の排水構造。
In the drainage structure of the corrugated fin-type heat exchanger according to claim 1 or 2,
A drainage structure for a corrugated fin heat exchanger, wherein the water guiding member is suspended from the lowermost end of a heat exchanger core comprising the plurality of heat exchange tubes and corrugated fins.
請求項1ないし3のいずれかに記載のコルゲートフィン式熱交換器の排水構造において、
上記熱交換器の下部に排水を受け止めるドレインパンを配置し、上記導水部材の下端を上記ドレインパンに接触してなる、ことを特徴とするコルゲートフィン式熱交換器の排水構造。
In the drainage structure of the corrugated fin heat exchanger according to any one of claims 1 to 3,
A drainage structure for a corrugated fin heat exchanger, wherein a drain pan for receiving drainage is disposed at a lower portion of the heat exchanger, and a lower end of the water guide member is in contact with the drain pan.
請求項1ないし4のいずれかに記載のコルゲートフィン式熱交換器の排水構造において、
上記導水部材がワイヤーである、ことを特徴とするコルゲートフィン式熱交換器の排水構造。
In the drainage structure of the corrugated fin heat exchanger according to any one of claims 1 to 4,
A drainage structure for a corrugated fin heat exchanger, wherein the water guiding member is a wire.
請求項1ないし4のいずれかに記載のコルゲートフィン式熱交換器の排水構造において、
上記導水部材が、複数の線状素材を縒った形状であり、各線状素材間の隙間に水路を形成してなる、ことを特徴とするコルゲートフィン式熱交換器の排水構造。
In the drainage structure of the corrugated fin heat exchanger according to any one of claims 1 to 4,
A drainage structure for a corrugated fin-type heat exchanger, wherein the water guide member has a shape in which a plurality of linear materials are formed, and a water channel is formed in a gap between the linear materials.
JP2011124726A 2011-06-03 2011-06-03 Drainage structure of corrugated fin type heat exchanger Withdrawn JP2012251719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011124726A JP2012251719A (en) 2011-06-03 2011-06-03 Drainage structure of corrugated fin type heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011124726A JP2012251719A (en) 2011-06-03 2011-06-03 Drainage structure of corrugated fin type heat exchanger

Publications (1)

Publication Number Publication Date
JP2012251719A true JP2012251719A (en) 2012-12-20

Family

ID=47524698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011124726A Withdrawn JP2012251719A (en) 2011-06-03 2011-06-03 Drainage structure of corrugated fin type heat exchanger

Country Status (1)

Country Link
JP (1) JP2012251719A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014103268A1 (en) * 2012-12-26 2014-07-03 日本軽金属株式会社 Heat exchange tube in heat exchanger and method for producing heat exchange tube
WO2017179190A1 (en) * 2016-04-15 2017-10-19 三菱電機株式会社 Heat exchanger and heat pump device
WO2019026243A1 (en) * 2017-08-03 2019-02-07 三菱電機株式会社 Heat exchanger and refrigeration cycle device
JP2021081188A (en) * 2021-03-04 2021-05-27 三菱電機株式会社 Heat exchanger and refrigeration cycle device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014103268A1 (en) * 2012-12-26 2014-07-03 日本軽金属株式会社 Heat exchange tube in heat exchanger and method for producing heat exchange tube
JP2014126240A (en) * 2012-12-26 2014-07-07 Nippon Light Metal Co Ltd Heat exchange tube of heat exchanger and heat exchange tube manufacturing method
WO2017179190A1 (en) * 2016-04-15 2017-10-19 三菱電機株式会社 Heat exchanger and heat pump device
JPWO2017179190A1 (en) * 2016-04-15 2018-06-14 三菱電機株式会社 Heat exchanger and heat pump device
WO2019026243A1 (en) * 2017-08-03 2019-02-07 三菱電機株式会社 Heat exchanger and refrigeration cycle device
JPWO2019026243A1 (en) * 2017-08-03 2019-11-07 三菱電機株式会社 Heat exchanger and refrigeration cycle apparatus
JP7044786B2 (en) 2017-08-03 2022-03-30 三菱電機株式会社 Heat exchanger and refrigeration cycle equipment
US11713926B2 (en) 2017-08-03 2023-08-01 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle apparatus
JP2021081188A (en) * 2021-03-04 2021-05-27 三菱電機株式会社 Heat exchanger and refrigeration cycle device
JP7086504B2 (en) 2021-03-04 2022-06-20 三菱電機株式会社 Heat exchanger and refrigeration cycle equipment

Similar Documents

Publication Publication Date Title
JP5678392B2 (en) Corrugated fin heat exchanger drainage structure
JP5550106B2 (en) Corrugated fin heat exchanger drainage structure
EP2314972B1 (en) Heat exchanger
CN203454475U (en) Tube-fin type heat exchanger
AU2010226063B2 (en) Drainage structure of corrugated fin-type heat exchanger
US20120227945A1 (en) Free-draining finned surface architecture for heat exchanger
JP2010019534A (en) Heat exchanger
JP2014081113A (en) Draining structure of corrugated fin type heat exchanger
JP2013245883A (en) Fin tube heat exchanger
JP2013245884A (en) Fin tube heat exchanger
JPH10141805A (en) Evaporator
JP2012251719A (en) Drainage structure of corrugated fin type heat exchanger
JP2010025478A (en) Heat exchanger
JP2013250016A (en) Fin tube heat exchanger
JP6375897B2 (en) Heat exchanger
JP2004177039A (en) Heat exchanger
JP2008116095A (en) Air heat exchanger
JP2016188708A (en) Drainage structure of corrugated fin type heat exchanger
JPH0545474U (en) Heat exchanger
JPH1123179A (en) Heat exchanger with fin
JP2010014329A (en) Heat exchanger
JP2019045033A (en) Heat exchanger with corrugated fin
JP2019045032A (en) Heat exchanger with corrugated fin
JP2015004450A (en) Finned heat exchanger
JP2019045031A (en) Heat exchanger with corrugated fin

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140805