JP2022040843A - X線管装置及びx線撮像装置 - Google Patents

X線管装置及びx線撮像装置 Download PDF

Info

Publication number
JP2022040843A
JP2022040843A JP2020145754A JP2020145754A JP2022040843A JP 2022040843 A JP2022040843 A JP 2022040843A JP 2020145754 A JP2020145754 A JP 2020145754A JP 2020145754 A JP2020145754 A JP 2020145754A JP 2022040843 A JP2022040843 A JP 2022040843A
Authority
JP
Japan
Prior art keywords
ray
ray tube
support shaft
anode
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020145754A
Other languages
English (en)
Other versions
JP7493416B2 (ja
Inventor
蓮 園田
Ren Sonoda
善隆 関
Yoshitaka Seki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Healthcare Corp
Original Assignee
Fujifilm Healthcare Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Healthcare Corp filed Critical Fujifilm Healthcare Corp
Priority to JP2020145754A priority Critical patent/JP7493416B2/ja
Priority claimed from JP2020145754A external-priority patent/JP7493416B2/ja
Publication of JP2022040843A publication Critical patent/JP2022040843A/ja
Application granted granted Critical
Publication of JP7493416B2 publication Critical patent/JP7493416B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)
  • X-Ray Techniques (AREA)

Abstract

【課題】陽極回転時のブレが極めて少なく、安定した撮像を行うことができる回転陽極型のX線管装置を提供する。【解決手段】X線管装置のX線管は、陽極を支持するロータがロータ回転支持軸部とロータ放熱部とを有し、これらは互いの端部周面でロウ付けによって接合され、その接合部は屈曲している。屈曲する接合部において、ロータ放熱部及びロータ回転支持軸部の少なくとも一方は、軸方向の周面と直交する密着面に半径方向の溝が複数形成されている。ロウ付け時にロウ材が溝を通って屈曲した接合部の周面全体に流入し、強固に結合したロータ構造となる。【選択図】図3

Description

本発明はX線管装置及びそれを用いたX線撮像装置に係り、特に回転陽極型X線管装置の構造に関する。
X線管装置を構成する回転陽極体は、陽極に接続されるロータと回転軸受を介して固定部に支持される回転軸部を有する。ロータは更に放熱部と回転支持軸部に分かれる。放熱部は、陽極で発生する熱を放熱するため熱伝導率の高い材料で構成され、一方、回転支持軸部は耐熱性が高く、熱膨張率が小さく且つ機械的強度の大きい材料で構成されている。このように両者は異なる材料から構成されているため、別々の部材を接合することで一体化される。この接合部には陽極が高速度回転する際にかかる高い負荷に耐えるために、堅牢な接合が必要となる。
特許文献1には、放熱部と回転支持軸部との接合部に、互いに係合する円環歯部を形成し、円環歯部を、ロウ材を用いて接合することが開示されている。特許文献1に記載された技術では、ロウ材の流動性を利用して、歯部間にロウ材を行きわたらせて接合している。
特許4231706号明細書
しかしながら、流動性に優れるロウ材であっても、接合される部材間の形状が屈曲して合わさっていた場合、密着した部材間にロウ材が流入していかない虞がある。また特許文献1に記載されるように接合部を円環歯部とした場合には、放熱部と回転支持軸部の接合部にロウ材が流入されるための適切なクリアランスを設ける必要があり、高度の加工が必要となる。
本発明は、接合部の形状が屈曲していても、屈曲する接合面全体にロウ材が行きわたり、堅固な結合構造を提供すること、それにより安定した陽極の高速回転が可能となるX線管装置を提供することを課題とする。
課題を解決する本発明のX線管装置は、陽極を支持するロータがロータ回転支持軸部とロータ放熱部とを有し、これらは互いの端部周面でロウ付けによって接合され、その接合部は屈曲している。屈曲する接合部において、ロータ放熱部及びロータ回転支持軸部の少なくとも一方は、軸方向の周面と直交する密着面に半径方向の溝が複数形成されている。屈曲部の一部に設けた溝は、接合部にロウ材を注入してロウ付けを行うトンネルの役割となり、密着した部材間にロウ材を流入させることができ、屈曲した接合部の周面全体に流入し、強固に結合したロータ構造となる。
すなわち、本発明のX線管装置は、電子線を放出する陰極と、前記陰極に対向して配置された陽極と、前記陽極を回転可能に支持する回転支持体と、前記陰極、前記陽極及び前記回転支持体を気密に封入する外囲器と、を備え、前記回転支持体は、前記外囲器に固定された固定部と、前記固定部に軸受けを介して接続された回転軸部と、前記回転軸部に対し断熱部を介して接続され、前記陽極が固定されたロータとを有し、前記ロータは、一端に前記陽極が固定されたロータ回転支持軸部と、前記ロータ回転支持軸部の他端側にロウ付けによって接合された円筒状の放熱部とを有し、前記放熱部は、前記ロータ回転支持軸部との接合部に前記ロータ回転支持軸部が密接する座面部が形成されており、当該座面部、または、前記座面部と当接する前記ロータ回転支持軸部の接合面のいずれかに、溝が形成されていることを特徴とする。
本発明のX線撮像装置は、X線源として上述のX線管装置を備えたものであり、例えば、医療用や産業用のX線検査装置やX線CT装置に適用することができる。
本発明によれば、陽極を支持する回転支持軸部と放熱部との接合部において、接合部が屈曲した構造であっても、ロウ材が溝を通して構造全体に流入するので、溝を設けない箇所での部材同士の密着接合が強固となり、ロータ回転支持軸部が傾きにくくなる。これにより陽極回転時の振動が軽減し、X線管装置自体の長寿命化を図ることができ、またX線管装置の振動によるX線撮像への影響を緩和することが可能となる。
本発明が適用されるX線管装置の全体構成を示す図。 図1のX線管装置の回転体支持部の構造を示す図。 実施形態1のX線管装置の、ロータの接合部に形成した溝を示す図。 ロータ放熱部とロータ回転支持軸部との接合部を、図3のB-B線で切り取った断面を示す図。 ロータ放熱部とロータ回転支持軸部との接合部を、図3のA-A線で切り取った断面を示す図。 溝を、図3のC-C線で切り取った断面を示す図で、(A)~(C)は断面形状例を示す図。 (D)、(E)は、それぞれ、図6に示す溝断面形状の変形例を示す図。 (A)、(B)は、それぞれ、図3に示す溝の変形例を示す図。 実施形態2のX線管装置の、ロータの接合部に形成した溝を示す図。 本発明が適用されるX線CT装置の全体構成を示すブロック図。
最初に、本発明が適用される回転陽極型X線管装置1の全体構成について、図1を参照して説明する。図1に示すように、X線管装置1は、X線を発生するX線管10と、X線管10を収容する容器20とを備える。
X線管10は、電子線EBを発生する陰極11と、陰極11に対し正の電位が印加される陽極12と、陰極11と陽極12を真空雰囲気中に保持する外囲器13とを備える。
陰極11は、図示を省略しているが、フィラメントもしくは冷陰極と、集束電極とを備える。フィラメントはタングステンなどの高融点材料をコイル状に巻いたものであり、電流が流されることにより加熱され、電子を放出する。冷陰極はニッケルやモリブデンなどの金属材料を鋭利に尖らせたもので、陰極表面に電界が集中することで電界放出により電子を放出する。集束電極は、放出された電子を陽極12上のX線焦点へと向けて集束させるための集束電界を形成する。フィラメント若しくは冷陰極と、集束電極とは同電位である。
陽極12はターゲット121と陽極母材122とを備える。ターゲット121は、タングステンなどの高融点で原子番号の大きい材質で構成される。ターゲット上のX線焦点に陰極11から放出された電子が衝突することにより、X線焦点からX線(XR)が放射される。陽極母材122は、銅などの熱伝導率の高い材質からなり、ターゲット121を保持する。ターゲット121と陽極母材122とは同電位である。
外囲器13は陰極11と陽極12の間を絶縁するために、陰極11と陽極12を真空中に保持する。外囲器13にはX線(XR)をX線管10外へ放出するための放射窓16が備えられる。放射窓16は、X線透過率が高いベリリウムなどの原子番号の小さい材質で構成される。外囲器13の電位は接地電位である。
陽極12は、外囲器13に軸受け(不図示)を介して固定された回転体支持部14に接続されており、回転体支持部14の駆動により、X線管10の中心軸P(図1中の1点鎖線)を回転軸として回転する。回転体支持部14は、外囲器13の外側に配置された励磁コイル15が発生した磁界を回転駆動力として駆動される。
X線管10と励磁コイル15とは、容器20の中に収容される。容器20には、X線管10の外囲器13の放射窓16に対応する位置に、放射窓16と同様の材質から構成される放射窓26が備えられている。また、容器20の中には、X線管10を電気的に絶縁するとともに冷却触媒となる絶縁油が充填されている。容器20内に充填された絶縁油は、X線管装置1の容器20に接続された配管を通じて冷却器(不図示)に導かれ、冷却器にて熱を放散した後、配管を通じて容器20内に戻される。
このような構成のX線管装置1において、陰極11から放出された電子は、陰極11と陽極12との間に印加される電圧により加速され電子線EBとなる。電子線EBは収束電極が形成する集束電界により集束されてターゲット121上のX線焦点に衝突すると、X線焦点からX線(XR)が発生する。発生するX線のエネルギーは、陰極11と陽極12との間に印加される電圧、いわゆる管電圧によって決まる。発生するX線の線量は、陰極から放出される電子の量いわゆる管電流と、管電圧によって決まる。
電子線EBのエネルギーの内、X線に変換される割合は1%に過ぎず、残りのほとんどのエネルギーは熱となる。医療用のX線CT装置に搭載されるX線管装置では、管電圧は百数十kV、管電流は数百mAであるので、陽極12は数十kWの熱量で加熱される。X線焦点で発生した熱により陽極12は平均温度1000℃程度となる。発生した熱の大半は陽極12の表面から輻射により外囲器13へ放熱されるが、残りの熱は熱伝導により回転体支持部14を通じて外囲器13へ流れる。回転陽極型のX線管装置1では、陽極12を回転させることで、電子線EBの衝突によって生じる熱負荷を分散する。これにより、X線焦点の温度をターゲットの融点より低く保つことができ、陽極12が過熱溶融することを防止できる。
次に、図2を参照して、陽極12に接続される回転体支持部14の構造を詳述する。図2は回転軸Pに沿った回転体支持部14の断面図であり、この図では、陽極を下方向にして示すとともに、図面を簡略化するために、回転軸Pより左側の半分のみを図示している。
回転体支持部14は、陽極12が陰極11と対向する面の裏側に接続され、主な構成として、ロータ35と、ロータ35に断熱部31を介して接続された回転軸部32と、外囲器13に固定された固定部34とを備える。ロータ35は、陽極12が固定されたロータ回転支持軸部(以下、回転支持軸部と略称する)36と、回転支持軸部36にロウ付けによって接合されたロータ放熱部(以下、放熱部と略称する)37とから構成される。本実施形態のX線管装置1は、ロータ35の回転支持軸部36と放熱部37との接合部350(ロウ付けされる部分)の構造に特徴を持つ。
以下、X線管装置1の各部の構成について説明する。
固定部34は、円柱の一端に底面が設けられた形状と円筒を組み合わせた形状を有する金属製の部材であり、底面側が外囲器13に支持されている。
回転軸部32は、段付きの円筒形状を有する金属製の部材であり、細径の軸部が回転軸受33a、33bを介して固定部34に対して回転可能に支持されている。また回転軸部32の太径となった端部には、円筒状の断熱部31が嵌合され、ネジ38bによって断熱部31に結合されている。断熱部31は、ロータ35の内側に嵌合され、ネジ38aによってロータ35に結合される。断熱部31は、ロータ35よりも熱伝導率の低い金属製の部材からなる。
ネジ38aはロータ35と断熱部31との結合に、ネジ38bは断熱部31と回転軸部32との結合に、それぞれ用いられる。ネジ38a、38bは回転軸Pを中心とした円周上に、必要な結合力に応じて複数配置される。
回転軸受33a、33bは、いわゆる転がり軸受であり、複数の球体が回転軸部32の外周上に配置されて構成され、球体の表面には潤滑物質として鉛等の軟質金属が塗布されている。回転軸受33a、33bの温度が潤滑物資の融点以上になると、潤滑物質が部分的に欠落して回転軸受33a、33bの摩擦を増大させ、回転に悪影響を及ぼす。上述のように回転軸部32とロータ35との間に、熱伝導率の小さい断熱部31を設けることによって、陽極12からロータ35に伝わる熱量が回転軸受け33a、33bに伝わるのを抑制し、温度上昇による回転への悪影響を防ぐことができる。
ロータ35は、回転支持軸部36と放熱部37とをロウ材によりロウ付けした、円柱形状と円筒部を組み合わせた形状を有する金属製の部材である。回転支持軸部36の一端に陽極12が接続され、他端に放熱部37が接合される。励磁コイル15によって発せられる磁界を放熱部37が受けることにより、ロータ35は回転軸Pを中心として回転する。
回転支持軸部36は、熱膨張率が低く、高耐熱性で機械的強度の大きい金属製の材料、例えば、モリブデンやモリブデン合金からなる。放熱部37は、熱膨張率が比較的大きく、機械的強度の大きい材料、例えば、ステンレス鋼からなる。これらは異種の材料からなるため、ロウ付けにより接合することで一体化される。ロウ材としては、銅や銀などのロウ材が用いられる。接合部350におけるロウ材の厚みは、薄くなるほど接合強度は向上する。しかし、ある厚みを境にそれ以上ロウ材が薄くなると接合強度が低下する特性を有する。適正な厚みはロウ材の種類によっても異なるが、例えば銀ロウの場合、この適正な厚みはおおよそ50μmとなる。
以上説明した回転体支持部14の構成を踏まえ、ロータ35の接合部350の構造の実施形態を以下説明する。
<実施形態1>
本実施形態は、円柱形状の回転支持軸部36を円筒形状の放熱部37が支持するような構造の接合部でロウ付けを行う構造のロータ35において、回転支持軸部36と放熱部37とが密接する面に溝を有する構造が形成されていることが特徴である。溝は、回転支持軸部36及び放熱部37のいずれか一方の部材に設けてもよいし、両方に設けてもよい。本実施形態では、放熱部37側に溝を設ける場合を説明する。
図2に示したように、回転支持軸部36は、円柱形状を有し、陽極12が固定された端部と反対側は、円盤状の端部(円盤状部分)361になっており、円盤状部分361は大径部と小径部とからなり、外周面に段差が形成された構造である。これに対応して、円筒形状の放熱部37は、端部が円筒の内側に屈曲し、屈曲した部分371に円盤状部分361の大径部が乗る座面(座面部)371aが形成されている。この座面371aに大径部が密着することで、円盤状部分361の段差のある外周面と、放熱部37の屈曲した端部の内周面とが係合し、接合部350を形成している。
さらに放熱部の屈曲部371の座面371aには、図3に示すように、そのリング形状の半径方向に複数(図では4本)の溝39が形成されている。溝39は、座面より上側の内周面と下側の内周面とを連通するように形成されており、ロウ付けの際にトンネルの役割を果たす。
以下、図4及び図5を参照して、溝39の構成と機能を詳述する。図4及び図5は、それぞれ、図3のB-B線及びA-A線で放熱部37を切断した場合の接合部350の拡大断面図である。
図4に示すように、円盤状部分361の外周面と放熱部37の内周面との間はロウ材40によってロウ付けされており、これにより接合部350における両部材間は堅牢に接合されている。
ロウ付けは、例えば、図示するように放熱部37を屈曲部371側が下になるようにした状態で、その座面371aに回転支持軸部36の円盤状部分361が載るように回転支持軸部36を嵌合し、円盤状部分361の大径部外周と放熱部37の内周との間に、ロウ材40を注入する。この際、回転支持軸部36の重量により回転支持軸部36は座面371aと密着しているため、この密着部分で注入したロウ材40の流れが止められ、下側まで流入できない可能性がある。その場合、放熱部37と回転支持軸部36との接合は、概ね、大径部外周面と放熱部37内周面とのロウ付け部のみとなり、高速回転時の負荷に対し耐久性が低下する。
本実施形態では、図5に示すように、回転支持軸部36の円盤状部分361が密着する座面371aに溝39を設けることで、上側から注入されたロウ材は、この溝39を通り、放熱部37下側の内周面と円盤状部分361の小径部外周面との間に流入することができる。その結果、ロウ材40は、屈曲した放熱部37の端部と、段差のある回転支持軸部36の円筒状部分361が接する面全体に注入され、強固な接合が実現する。また溝39内部にもロウ材40が満たされているので、座面においても接合強度が高まる。
なお以上の説明では、図3の上側からロウ材を注入する場合を説明したが、ロウ付けを上下逆転して行う場合でも溝39がロウ材を流入させるトンネルとして機能することは同様であり、同様の効果が得られる。
溝39は、上述したように、トンネルの役割を果たす形状、構造であればよく、例えば、溝部39の長手方向に直交する断面の形状として、図6(A)~(C)に示すように、V字状(A)、U字状(B)、凹字状(C)のいずれでもよく、ロウ材の流入しやすさや、ロウ材を充填した溝39の剛性、さらには加工のしやすさ等を考慮して、形状を適宜決定する。例えば、図6に示す3つの形状において、溝幅と溝深さが同様の場合、溝の断面積は、V字状(A)が最も狭く、次にU字状(B)が広く、断面積が最も広いのは凹字状(C)である。また、溝の長さが同様であれば、溝に充填されるロウ材40の体積は(A)<(B)<(C)となる。一般に、使用するロウ材40の量が少ない程、ロウ付け体の剛性は高くなるため、各溝での剛性の高さは(A)>(B)>(C)となる。
加工のしやすさについては、本実施形態のように、放熱部37の円筒の内側にある座面371aに溝を形成する場合は、図6(A)、(C)に示すV字状や凹字状の形状が加工しやすい。また後述する実施形態のように、回転支持軸部36の段差部のように外側から加工することが可能な場合には、図6(B)形状も、ドリル加工等により容易に加工することができる。
なお、溝形状は図6に示した形状以外の形状でもよく、例えば図7(D)、(E)に示すような台形などでもよい。
溝の深さは、ロウ材の種類に応じた適正な厚みと同等以上であることが好ましく、目安として、ロウ材の種類に応じた適正な厚みの3倍程度の深さが望ましい。例えば銀ロウを使用する場合は、溝深さの下限値を50μmとし、上限値は150μmとする。
溝幅は狭い程、回転支持軸部36と放熱部37の座面間での接触面積を増やすことができ、回転支持軸部36の傾きを抑制できる。しかし溝幅が狭い程、溝に対してロウが流入しにくくなり、ロウ付けが不完全になってしまう虞がある。溝幅は目安として、溝深さに対して10倍の大きさであることが望ましい。例えば銀ロウを使用する場合は、溝幅を500μmから1500μmとする。
溝の設置位置については、図3では、放熱部37の座面を上から(図4の上側から)を見た場合、90度間隔に4つの溝を形成した場合を示したが、溝の数および配置はこれに限定されない。但し、溝が1つでは溝と対向する位置のロウ付けが不完全になる虞があり、また溝が2つでは溝のロウ付け位置を起点に回転支持軸部36が傾く虞がある。以上のことから、溝は少なくとも3個以上を備えることが好ましく、また溝の配置は等間隔であることが好ましい。例えば、図8(A)、(B)に示すように、3個の溝を120度間隔で配置したり、6個の溝を60度間隔で配置することができる。
上述した溝の形状や溝の配置、また溝深さや溝幅などの寸法は、ロウ付け条件に応じて適宜決定する。ロウ付け条件は主にロウ材の量、ロウ付け温度、ロウ付け時間などである。ロウ材の量は供給する量で決定し、ロウ付け時の熱膨張率の差分で生まれる隙間を埋めるための体積量である。ロウ付け温度は、各部材の温度をロウの融点まで上げる必要があるが、過剰な温度はロウ材の流動性を悪くするため注意が必要である。ロウ付け時間はロウ材がロウ付け部全体に行き渡る時間を示し、短すぎるとロウが行き渡らず、長すぎるとロウが部材間からはみ出てしまう。また溝の断面積が狭い程、ロウ材の流速が遅くなるためロウ付け時間は注意が必要である。
このように、本実施形態のX線管装置では、図5に示したように、回転支持軸部36と放熱部37とが接合される接合部350は、屈曲した複数の接合面のうち、回転軸32と平行する方向の接合面(ロウ付け部)はロウが充填されているために接合強度を損なうことなく、回転軸32との垂直方向の接合面は溝部39以外にはロウが入り込まず、回転支持軸部36と放熱部37の面同士が密接している。このため、回転軸32に対して回転支持軸部36の軸心が傾きにくい構造となる。
回転支持軸部36が傾きにくくなることで、陽極回転時の陽極12の振れ回りを抑制でき回転振動を抑制する。これにより回転振動による回転軸受33a、33bの損傷も抑制するため、X線管装置自体の寿命や、回転振動によるX線撮像への影響も緩和することが可能となる。
<実施形態2>
実施形態1では、接合部350の溝39を放熱部37側に設けた場合を説明したが、本実施形態では回転支持軸部36側に設けている。図9に、一例を示す。図9は、回転支持軸部36を陽極固定側から見た図であり、回転支持軸部36の円盤状部分361の、大径部と小径部との径の差によって生じた大径部のリング状の面361aに、複数の溝39が形成されている。ここでも溝を4本設けた例を示しているが、溝の数や配置は実施形態1と同様であり、好ましくは3以上であって互いに等間隔(角度方向の間隔)であることが好ましい。
本実施形態のように回転支持軸部36側に溝を設けた場合にも、溝39の機能は実施形態1と同様であり、ロウ付け時に接合部350の上部から注入されたロウ材は、座面371aと円盤状部分361の面361aとの密着部において溝39を通って接合部350の下部に達し、回転支持軸部36と放熱部37との周面での接合強度を向上することができる。また本実施形態の結合部の構造では、溝39は、円盤状部分361の外周面からのドリル加工によって形成することができるので、実施形態1よりも溝の断面形状の自由度が高い。
以上の実施形態では、溝39を回転支持軸部側或いは放熱部側のいずれかに設けた場合を示したが、両側に設けることも可能である。その場合、両側の溝39は、同じ位置に設けて一対としてトンネルを形成するようにしてもよいし、互い違いになるように設けてもよい。互い違いに設ける場合には、溝はそれぞれに2本ずつ設けても、合計4本の溝が形成されていることになり、回転支持軸部36が傾くのを防止できる。
さらに以上の実施形態では、接合部350の形状が、1段の段差を持つ形状を示したが、段差が2段以上ある構造であっても同様に適用することができる。
次に、本発明を適用したX線CT装置100の全体構成を説明する。X線CT装置はスキャンガントリ部50と操作卓60とを備える。
スキャンガントリ部はX線管装置51と回転円盤54と、コリメータ55と、X線検出器57と、データ収集装置58と、ガントリ制御装置53と、X線制御装置52と、を備えている。X線管装置51は開口部56に向けてX線を照射する装置であり、本実施形態では、上述した回転陽極型のX線管装置1を用いる。すなわち、回転陽極を支持するロータが、ロータ回転支持軸部とロータ放熱部とから構成され、ロータ回転支持部とロータ放熱部とは、ロウ付けによって接合されており、その接合部は屈曲した形状を有し、ロータ回転支持軸部及びロータ放熱部のいずれか一方の屈曲した接合部の一部に溝が形成されている。これにより接合部全体がロウにより密着し、極めて堅固な結合構造を有している。
それ以外の構成は、一般的なX線CT装置と同様であり、以下、簡単に説明する。
コリメータ55はX線管装置51から照射されるX線の放射範囲を制限する装置である。回転円盤54は被検体が入る開口部56を備えるとともにX線管装置51とX線検出器57を搭載し、X線管装置51とX線検出器57を被検体の周囲で回転させるものである。X線検出器57は、X線管装置51と対向配置され、被検体を透過したX線を検出ことにより透過X線の空間的分布を計測する装置であり、多数のX線検出素子と回転円盤54の回転方向に配列したもの、若しくは回転円盤54の回転方向と回転軸方向との2次元に配列したものである。データ収集装置58は X線検出器57で検出されたX線量をデジタルデータとして収集する装置である。ガントリ制御装置53は回転円盤54の回転を制御する装置である。X線制御装置52はX線管装置51に入力される電力を制御する装置である。
操作卓60は、システム制御装置61と、入力装置62と、画像演算装置63と、記憶装置64と、表示装置65とを備えている。入力装置62は、被検体氏名、検査日時、撮影条件などを入力するための装置であり、具体的にはキーボードやポインティングデバイスである。画像演算装置63は、データ収集装置8から送信される計測データを演算処理して断層画像を再構成する装置である。表示装置65は、画像演算装置63で再構成された断層画像を表示する装置であり、具体的にはCRT(Cathode-Ray Tube)や液晶ディスプレイ等である。記憶装置64はデータ収集装置58で収集したデータおよび画像演算装置63で再構成された断層画像の画像データを記憶する装置であり、例えば、HDD(Hard Disk Drive)等が用いられる。システム制御装置61は、これらの装置及びガントリ制御装置53とX線制御装置52を制御する装置である。
本実施形態のX線CT装置は、上述したように、X線管装置51として、陽極の高速回転とそれに伴う熱量の放熱を効果的に実現しながら、支持構造が堅牢なX線管を備えたX線管装置を用いているので、陽極回転時のブレが極めて少なく、安定した撮像を行うことができる。結果として良好なCT画像を取得することができる。
なお図10では、本発明が適用されるX線撮像装置としてX線CT装置を例示したが、本発明は回転陽極型のX線管装置を備えたX線装置であれば、X線CT装置に限定されることなく適用することができる。
1:X線管装置、10:X線管、11:陰極、12:陽極、13:外囲器、14:励磁コイル、15:回転体支持部、16:放射窓、20:容器、31:断熱部、32:回転軸部、33a、33b:回転軸受、34:固定部、35:ロータ、36:ロータ回転支持軸部、37:ロータ放熱部、38a、38b:ネジ、39:溝、40:ロウ材、350:接合部(ロウ付け部)
100:X線撮像装置、50:スキャンガントリ部、51:X線管装置、54:回転円盤、57:X線検出器、60:操作卓

Claims (8)

  1. 電子線を放出する陰極と、
    前記陰極に対向して配置された陽極と、
    前記陽極を回転可能に支持する回転支持体と、
    前記陰極、前記陽極及び前記回転支持体を気密に封入する外囲器と、を備え
    前記回転支持体は、前記外囲器に固定された固定部と、前記固定部に軸受けを介して接続された回転軸部と、前記回転軸部に対し断熱部を介して接続され、前記陽極が固定されたロータと、を有し、
    前記ロータは、一端に前記陽極が固定されたロータ回転支持軸部と、前記ロータ回転支持軸部の他端側にロウ付けによって接合された円筒状の放熱部とを有し、前記放熱部は、前記ロータ回転支持軸部との接合部に前記ロータ回転支持軸部が密接する座面部が形成されており、当該座面部、または、前記座面部と当接する前記ロータ回転支持軸部の接合面のいずれかに、溝が形成されていることを特徴とするX線管装置。
  2. 請求項1に記載のX線管装置であって、
    前記座面部及びそれと当接する前記ロータ回転支持軸部の接合面は、リング形状であって、前記溝はリング形状の半径方向に形成されていることを特徴とするX線管装置。
  3. 請求項1又は2に記載のX線管装置であって、
    前記溝は、2以上形成されていることを特徴とするX線管装置。
  4. 請求項3に記載のX線管装置であって、
    複数の前記溝は、等間隔に形成されていることを特徴とするX線管装置。
  5. 請求項1に記載のX線管装置であって、
    前記ロータ回転支持軸部は、前記陽極が固定される円柱状部分と、当該円柱状部分より径の大きい円盤状部分とを有し、当該円盤状部分は大径部と当該大径部より径の小さい小径部とを有し、前記大径部と前記小径部とをつなぐリング状の面が前記座面部と当接する接合面を構成することを特徴とするX線管装置。
  6. 請求項5に記載のX線管装置であって、
    前記ロータ回転支持軸部の大径部及び小径部の外周面は、前記放熱部の、前記座面部より上側の内周面及び下側の内周面と、それぞれロウ材によって接合されていることを特徴とするX線管装置。
  7. X線源と、前記X線源に対向して配置され、前記X線から照射され、前記X線源と前記X線検出器との間に配置された被検査体を透過したX線を検出するX線検出器とを備え、前記X線検出器の出力を用いて前記被検体の画像を形成するX線撮像装置であって、
    前記X線源として、請求項1ないし6のいずれか一項に記載のX線管装置を用いたことを特徴とするX線撮像装置。
  8. 請求項7に記載のX線撮像装置であって、
    前記X線源と前記X線検出器とを前記被検査体の周囲で回転させる回転盤をさらに備え、X線CT装置であることを特徴とするX線撮像装置。
JP2020145754A 2020-08-31 X線管装置及びx線撮像装置 Active JP7493416B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020145754A JP7493416B2 (ja) 2020-08-31 X線管装置及びx線撮像装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020145754A JP7493416B2 (ja) 2020-08-31 X線管装置及びx線撮像装置

Publications (2)

Publication Number Publication Date
JP2022040843A true JP2022040843A (ja) 2022-03-11
JP7493416B2 JP7493416B2 (ja) 2024-05-31

Family

ID=

Similar Documents

Publication Publication Date Title
JP4298826B2 (ja) ストラドルベアリングアセンブリー
JP5890309B2 (ja) X線管装置及びx線ct装置
JP2022040843A (ja) X線管装置及びx線撮像装置
JP2017091881A (ja) X線管装置及びx線ct装置
WO2018020895A1 (ja) X線管装置及びx線ct装置
JP2005520300A (ja) X線ターゲット用液体金属ヒートパイプ構造
JP7493416B2 (ja) X線管装置及びx線撮像装置
JP2014082208A (ja) 超高真空熱膨脹補償装置及び該装置を構築する方法
JP2003257347A (ja) 回転陽極型x線管
US20230290603A1 (en) X-ray cathode focusing element
JP2012099465A (ja) ターゲットと軸受スリーブとを結合したx線管
JP6464264B2 (ja) X線管装置及びx線ct装置
JP5893927B2 (ja) X線管装置及びx線ct装置
JP6798941B2 (ja) X線管装置及びx線ct装置
JP5959866B2 (ja) X線管装置及びx線ct装置
JP7433274B2 (ja) X線管装置及びx線ct装置
JP5766128B2 (ja) X線管装置及びx線ct装置
JP6008634B2 (ja) X線管装置及びx線ct装置
JP4219486B2 (ja) X線管装置
JP5574672B2 (ja) X線管装置及びx線装置
US20240105415A1 (en) X-ray tube assembly and x-ray ct equipment
JP5865249B2 (ja) X線管装置及びその製造方法とx線画像診断装置
JP6777526B2 (ja) X線管装置及びx線ct装置
JP6318147B2 (ja) X線管装置及びx線撮影装置
JP2000040480A (ja) 回転陽極x線管

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20211014

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240419

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240521