JP2022039535A - Manufacturing method of molded article and molded article - Google Patents

Manufacturing method of molded article and molded article Download PDF

Info

Publication number
JP2022039535A
JP2022039535A JP2020144620A JP2020144620A JP2022039535A JP 2022039535 A JP2022039535 A JP 2022039535A JP 2020144620 A JP2020144620 A JP 2020144620A JP 2020144620 A JP2020144620 A JP 2020144620A JP 2022039535 A JP2022039535 A JP 2022039535A
Authority
JP
Japan
Prior art keywords
shaft body
welded
welded bead
bead
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020144620A
Other languages
Japanese (ja)
Other versions
JP7381422B2 (en
Inventor
貴宏 篠崎
Takahiro Shinozaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2020144620A priority Critical patent/JP7381422B2/en
Publication of JP2022039535A publication Critical patent/JP2022039535A/en
Application granted granted Critical
Publication of JP7381422B2 publication Critical patent/JP7381422B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

To provide a manufacturing method of a molded article capable of manufacturing efficiently a high quality molded article, forming weld beads accurately around a shaft body while inhibiting generation of non-welded portion and provide the molded article.SOLUTION: A manufacturing method of a molded article comprises: a wall portion molding step of molding a plurality of wall portions 53 in a circumferential direction of a shaft body 51 at intervals in an axial direction; and an inside molding step of forming weld beads B2 which are each wider than the wall portion 53 in the circumferential direction of the shaft body 51 within a filling range FR between the wall portions 53 while sequentially arranging the weld beads adjacently toward an axial direction of the shaft body 51 to fill the filling range FR with the weld beads B2. The inside molding step performs a trajectory changing process of directing a trajectory of the weld bead B2 toward the axial direction of the shaft body 51 at a position the weld bead B2 being formed toward one side of the circumferential direction of the shaft body 51 contacts the weld bead B2 previously formed, and, further, directing the trajectory of the weld bead toward the one side of the circumferential direction of the shaft body 51 at a position adjacent to the existing weld bead B2 in the axial direction of the shaft body 51.SELECTED DRAWING: Figure 3D

Description

本発明は、造形物の製造方法及び造形物に関する。 The present invention relates to a method for manufacturing a modeled object and a modeled object.

近年、生産手段としての3Dプリンタのニーズが高まっており、特に金属材料への適用については航空機業界等で実用化に向けて研究開発が行われている。金属材料を用いた3Dプリンタは、レーザやアーク等の熱源を用いて、金属粉体や金属ワイヤを溶融させ、溶融金属を積層させて造形物を造形する。 In recent years, the needs for 3D printers as a means of production have been increasing, and research and development have been carried out for practical use in the aircraft industry and the like, especially for application to metal materials. A 3D printer using a metal material melts a metal powder or a metal wire by using a heat source such as a laser or an arc, and laminates the molten metal to form a modeled object.

特許文献1には、第1方向に沿う第1パスと、第1方向と異なる第2方向に沿う第2パスとを繰り返して枠内にビードを充填し、第1パス及び第2パスの間において、第2パスから離れる方向に延びて第2パスに向かう方向に折り返す折り返しパスを備えることが記載されている。 In Patent Document 1, a first pass along the first direction and a second pass along a second direction different from the first direction are repeated to fill the frame with beads, and between the first pass and the second pass. In, it is described that a folding path extending in a direction away from the second path and folding back in a direction toward the second path is provided.

特開2018-86664号公報Japanese Unexamined Patent Publication No. 2018-86664

ところで、軸体の外周に溶着ビードを積層させて造形物を造形するために、周方向に沿う溶着ビードを軸方向に隣接させながら形成すると、溶着ビードの形成パス数が多くなり生産効率が低下してしまう。また、この場合、周方向に沿って形成した各溶着ビードに始端と終端との繋ぎ目が生じるため、未溶着部や凹凸部分が生じやすく、品質低下を招いてしまう。 By the way, in order to form a model by laminating welded beads on the outer periphery of the shaft body, if welded beads along the circumferential direction are formed while being adjacent to each other in the axial direction, the number of welding bead forming passes increases and the production efficiency decreases. Resulting in. Further, in this case, since a joint between the start end and the end is formed in each welded bead formed along the circumferential direction, an unwelded portion or an uneven portion is likely to occur, which causes quality deterioration.

特許文献1のように、溶着ビードを折り返して充填すれば、溶着ビードの形成パス数を抑えることが可能であるが、折り返し部分で溶着ビードが幅方向や高さ方向に張り出し、溶着ビードによって造形した造形部分の寸法が変動してしまう。 As in Patent Document 1, if the welded bead is folded back and filled, it is possible to reduce the number of paths for forming the welded bead. The dimensions of the shaped part will fluctuate.

そこで本発明は、未溶着部の発生を抑えつつ軸体の周囲に溶着ビードを精度よく形成して高品質な造形物を効率的に製造することが可能な造形物の製造方法及び造形物を提供することを目的とする。 Therefore, the present invention provides a method for manufacturing a modeled object and a modeled object capable of efficiently producing a high-quality modeled object by accurately forming a welded bead around the shaft while suppressing the generation of unwelded portions. The purpose is to provide.

本発明は下記構成からなる。
(1) 軸体の周囲に溶着ビードを繰り返し積層して造形物を製造する造形物の製造方法であって、
前記軸体の周方向に形成した溶着ビードからなる複数の壁部を軸方向に間隔をあけて造形する壁部造形工程と、
前記壁部同士で囲まれた充填範囲内において、前記壁部より幅広な溶着ビードを前記軸体の周方向に形成するとともに前記軸体の軸方向へ向かって順に隣接させて前記充填範囲を前記溶着ビードによって充填する内部造形工程と、
を含み、
前記内部造形工程において、
前記軸体の周方向の一方に向かって形成する溶着ビードが既に形成した既設の溶着ビードと接触する箇所で溶着ビードの軌道を前記軸体の軸方向へ向け、さらに、前記既設の溶着ビードに対して前記軸体の軸方向に隣接する箇所で溶着ビードの軌道を前記軸体の周方向の一方へ向ける軌道変換処理を行う、
造形物の製造方法。
(2) 軸体と、
前記軸体の周方向に形成した溶着ビードからなり、前記軸体の軸方向に間隔をあけて造形された複数の壁部と、
前記壁部より幅広な溶着ビードによって前記壁部同士で囲まれた充填範囲内に造形された造形部と、
を有し、
前記造形部は、
前記軸体の周方向に向かって形成されて前記軸体の軸方向へ隣接された前記溶着ビードからなる複数の環状部と、
隣接する前記環状部の一端と他端とを連結する前記溶着ビードからなる連結部と、
を有する、
造形物。
The present invention has the following configuration.
(1) A method for manufacturing a modeled object, in which welded beads are repeatedly laminated around a shaft body to produce a modeled object.
A wall forming process in which a plurality of walls made of welded beads formed in the circumferential direction of the shaft are formed at intervals in the axial direction.
Within the filling range surrounded by the wall portions, welded beads wider than the wall portions are formed in the circumferential direction of the shaft body and are adjacent to each other in order toward the axial direction of the shaft body to form the filling range. The internal molding process of filling with weld beads and
Including
In the internal modeling process,
At the point where the welded bead formed toward one of the circumferential directions of the shaft body comes into contact with the existing welded bead that has already been formed, the trajectory of the welded bead is directed in the axial direction of the shaft body, and further to the existing welded bead. On the other hand, an orbit conversion process is performed in which the orbit of the welded bead is directed to one of the circumferential directions of the shaft at a position adjacent to the shaft in the axial direction.
Manufacturing method of the modeled object.
(2) Shaft body and
A plurality of wall portions made of welded beads formed in the circumferential direction of the shaft body and formed at intervals in the axial direction of the shaft body, and
A shaped portion formed within a filling range surrounded by the wall portions by a welded bead wider than the wall portion, and a shaped portion.
Have,
The modeling part is
A plurality of annular portions formed of the welded beads formed in the circumferential direction of the shaft body and adjacent to each other in the axial direction of the shaft body, and a plurality of annular portions.
A connecting portion made of the welded bead that connects one end and the other end of the adjacent annular portion,
Have,
Modeled object.

本発明によれば、未溶着部の発生を抑えつつ軸体の周囲に溶着ビードを精度よく形成して高品質な造形物を効率的に製造することができる。 According to the present invention, a welded bead can be accurately formed around a shaft body while suppressing the generation of an unwelded portion, and a high-quality model can be efficiently manufactured.

本発明の造形物の製造に用いる製造システムの構成図である。It is a block diagram of the manufacturing system used for manufacturing the modeled object of this invention. 軸体への溶着ビードの形成の仕方を説明する軸体の概略断面図である。It is the schematic sectional drawing of the shaft body explaining the method of forming the welding bead to the shaft body. 造形物の製造工程を示す製造途中の造形物の軸方向に沿う概略側面図である。It is a schematic side view along the axial direction of the modeled product in the middle of manufacturing which shows the manufacturing process of the modeled object. 造形物の製造工程を示す製造途中の造形物の軸方向に沿う概略側面図である。It is a schematic side view along the axial direction of the modeled product in the middle of manufacturing which shows the manufacturing process of the modeled object. 造形物の製造工程を示す製造途中の造形物の軸方向に沿う概略側面図である。It is a schematic side view along the axial direction of the modeled product in the middle of manufacturing which shows the manufacturing process of the modeled object. 造形物の製造工程を示す製造途中の造形物の軸方向に沿う概略側面図である。It is a schematic side view along the axial direction of the modeled product in the middle of manufacturing which shows the manufacturing process of the modeled object. 造形物の製造工程を示す製造途中の造形物の軸方向に沿う概略側面図である。It is a schematic side view along the axial direction of the modeled product in the middle of manufacturing which shows the manufacturing process of the modeled object. 造形物の製造工程を示す製造途中の造形物の軸方向に沿う概略側面図である。It is a schematic side view along the axial direction of the modeled product in the middle of manufacturing which shows the manufacturing process of the modeled object. 造形物の製造工程を示す製造途中の造形物の軸方向に沿う概略側面図である。It is a schematic side view along the axial direction of the modeled product in the middle of manufacturing which shows the manufacturing process of the modeled object. 造形物の製造工程を示す製造途中の造形物の軸方向に沿う概略側面図である。It is a schematic side view along the axial direction of the modeled product in the middle of manufacturing which shows the manufacturing process of the modeled object. 造形部同士の隙間へ溶着ビードを充填する際の位置の調整制御を説明する充填箇所の概略断面図である。It is schematic cross-sectional view of the filling part explaining the adjustment control of the position at the time of filling the welding bead into the gap between the shaped parts. 内部造形工程における充填範囲への溶着ビードの充填の仕方の他の例を示す製造途中の造形物の軸方向に沿う概略側面図である。It is a schematic side view along the axial direction of the modeled product in the middle of manufacturing which shows another example of the method of filling the welding bead into the filling range in an internal modeling process. 内部造形工程における充填範囲への溶着ビードの充填の仕方の他の例を示す製造途中の造形物の軸方向に沿う概略側面図である。It is a schematic side view along the axial direction of the modeled product in the middle of manufacturing which shows another example of the method of filling the welding bead into the filling range in an internal modeling process. 充填範囲への溶着ビードの形成例を示す図であって、(A)~(C)は、各層における溶着ビードの形成状態を示す造形物の軸方向に沿う概略側面図である。It is a figure which shows the example of the formation of the welded bead in the filling range, and (A)-(C) is the schematic side view along the axial direction of the model which shows the formation state of the welded bead in each layer. 軌道変換処理の位置のずらし方を説明する軸体の概略断面図である。It is schematic cross-sectional view of the shaft body explaining how to shift the position of the trajectory conversion process.

以下、本発明の実施形態について、図面を参照して詳細に説明する。
図1は本発明の造形物の製造に用いる製造システムの構成図である。
本構成の造形物の製造システム100は、積層造形装置11と、積層造形装置11を統括制御するコントローラ13と、電源装置15と、を備える。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a block diagram of a manufacturing system used for manufacturing the modeled object of the present invention.
The model manufacturing system 100 having this configuration includes a laminated modeling device 11, a controller 13 that controls the laminated modeling device 11, and a power supply device 15.

積層造形装置11は、先端軸にトーチ17が設けられた溶接ロボット19と、トーチ17に溶加材(溶接ワイヤ)Mを供給する溶加材供給部21とを有する。 The laminated modeling device 11 includes a welding robot 19 provided with a torch 17 on a tip shaft, and a filler material supply unit 21 that supplies a filler metal (welding wire) M to the torch 17.

溶接ロボット19は、多関節ロボットであり、ロボットアームの先端軸に取り付けたトーチ17には、溶加材Mが連続供給可能に支持される。トーチ17の位置や姿勢は、ロボットアームの自由度の範囲で3次元的に任意に設定可能となっている。 The welding robot 19 is an articulated robot, and the filler metal M is continuously supplied to the torch 17 attached to the tip shaft of the robot arm. The position and posture of the torch 17 can be arbitrarily set three-dimensionally within the range of the degree of freedom of the robot arm.

トーチ17は、不図示のシールドノズルを有し、シールドノズルからシールドガスが供給される。アーク溶接法としては、被覆アーク溶接や炭酸ガスアーク溶接等の消耗電極式、TIG溶接やプラズマアーク溶接等の非消耗電極式のいずれであってもよく、作製する造形物に応じて適宜選定される。 The torch 17 has a shield nozzle (not shown), and shield gas is supplied from the shield nozzle. The arc welding method may be either a consumable electrode type such as shielded metal arc welding or carbon dioxide arc welding, or a non-consumable electrode type such as TIG welding or plasma arc welding, and is appropriately selected according to the model to be manufactured. ..

例えば、消耗電極式の場合、シールドノズルの内部にはコンタクトチップが配置され、溶融電流が給電される溶加材Mがコンタクトチップに保持される。トーチ17は、溶加材Mを保持しつつ、シールドガス雰囲気で溶加材Mの先端からアークを発生する。溶加材Mは、ロボットアーム等に取り付けた不図示の繰り出し機構により、溶加材供給部21からトーチ17に送給される。そして、トーチ17を移動しつつ、連続送給される溶加材Mを溶融及び凝固させると、溶加材Mの溶融凝固体である線状の溶着ビードBが形成される。 For example, in the case of the consumable electrode type, a contact tip is arranged inside the shield nozzle, and the filler metal M to which the melting current is supplied is held by the contact tip. The torch 17 generates an arc from the tip of the filler M in a shield gas atmosphere while holding the filler M. The filler material M is supplied from the filler material supply unit 21 to the torch 17 by a feeding mechanism (not shown) attached to a robot arm or the like. Then, when the filler metal M that is continuously fed is melted and solidified while moving the torch 17, a linear welded bead B that is a melt-solidified body of the filler metal M is formed.

コントローラ13は、CAD/CAM部31と、軌道演算部33と、記憶部35と、これらが接続される制御部37と、を有する。 The controller 13 has a CAD / CAM unit 31, an orbit calculation unit 33, a storage unit 35, and a control unit 37 to which these are connected.

CAD/CAM部31は、作製しようとする造形物Wの形状データ(CADデータ等)を入力又は作成し、軌道演算部33と協働して、造形物の造形手順を表す溶着ビードBの積層モデルを生成する。つまり、形状データを複数の層に分割して、各層の形状を表す層形状データを生成する。そして、生成された積層モデルの層形状データに基づいてトーチ17の移動軌跡を決定する。CAD/CAM部31は、生成された層形状データやトーチ17の移動軌跡等のデータに基づいて、トーチ17を移動させて溶着ビードを形成する溶接ロボット19及び電源装置15の駆動プログラムを生成する。生成された駆動プログラム等の各種データは記憶部35に記憶される。 The CAD / CAM unit 31 inputs or creates shape data (CAD data, etc.) of the modeled object W to be produced, and cooperates with the trajectory calculation unit 33 to stack welded beads B representing the modeling procedure of the modeled object. Generate a model. That is, the shape data is divided into a plurality of layers to generate layer shape data representing the shape of each layer. Then, the movement locus of the torch 17 is determined based on the layer shape data of the generated laminated model. The CAD / CAM unit 31 generates a drive program for the welding robot 19 and the power supply device 15 that move the torch 17 to form a welded bead based on the generated layer shape data and data such as the movement locus of the torch 17. .. Various data such as the generated drive program are stored in the storage unit 35.

制御部37は、記憶部35に記憶された駆動プログラムを実行して、溶接ロボット19や電源装置15等を駆動する。そして、溶接ロボット19は、コントローラ13からの指令により、軌道演算部33で生成されたトーチ17の軌道軌跡に基づき、溶加材Mをアークで溶融させながらトーチ17を移動させる。 The control unit 37 executes the drive program stored in the storage unit 35 to drive the welding robot 19, the power supply device 15, and the like. Then, the welding robot 19 moves the torch 17 while melting the filler metal M with an arc based on the trajectory trajectory of the torch 17 generated by the trajectory calculation unit 33 in response to a command from the controller 13.

溶加材Mとしては、あらゆる市販の溶接ワイヤを用いることができる。例えば、軟鋼,高張力鋼及び低温用鋼用のマグ溶接及びミグ溶接ソリッドワイヤ(JIS Z 3312)、軟鋼,高張力鋼及び低温用鋼用アーク溶接フラックス入りワイヤ(JIS Z 3313)等で規定されるワイヤを用いることができる。 As the filler metal M, any commercially available welding wire can be used. For example, it is defined by MAG welding and MIG welding solid wire (JIS Z 3312) for mild steel, high tension steel and low temperature steel, arc welding flux containing wire for mild steel, high tension steel and low temperature steel (JIS Z 3313) and the like. Wire can be used.

図2は、軸体への溶着ビードの形成の仕方を説明する軸体の概略断面図である。
図2に示すように、上記構成の製造システム100は、設定された層形状データから生成されるトーチ17の移動軌跡に沿って、トーチ17を溶接ロボット19の駆動により移動させるとともに、軸体51を軸回りに回動させながら、溶融した溶加材Mからなる溶着ビードBをトーチ17によって軸体51の周囲に積層させて造形物Wを製造する。軸体51は、例えば、鋼棒等の断面円形の丸棒体であり、その両端が、ベース61上に設けられた支持部63に支持されて回動可能とされている(図1参照)。
FIG. 2 is a schematic cross-sectional view of a shaft body for explaining how to form a welded bead on the shaft body.
As shown in FIG. 2, in the manufacturing system 100 having the above configuration, the torch 17 is moved by the driving of the welding robot 19 along the movement locus of the torch 17 generated from the set layer shape data, and the shaft body 51 is used. The welded bead B made of the molten filler material M is laminated around the shaft body 51 by the torch 17 while rotating around the shaft to manufacture the model W. The shaft body 51 is, for example, a round bar body having a circular cross section such as a steel rod, and both ends thereof are supported by a support portion 63 provided on the base 61 and are rotatable (see FIG. 1). ..

次に、本発明の造形物の製造方法について説明する。
図3A~図3Hは造形物の製造工程を示す製造途中の造形物の軸方向に沿う概略側面図である。図4は、造形部同士の隙間へ溶着ビードを充填する際の制御を説明する充填箇所の概略断面図である。
Next, a method for manufacturing the modeled object of the present invention will be described.
3A to 3H are schematic side views along the axial direction of the modeled object in the process of manufacturing, showing the manufacturing process of the modeled object. FIG. 4 is a schematic cross-sectional view of a filling portion for explaining control when filling the gap between the shaped portions with the welded bead.

(壁部造形工程)
図3Aに示すように、軸体51を回転させながらトーチ17によって軸体51の周面に溶着ビードB1を形成する。これにより、軸体51に、周方向にわたって形成された溶着ビードB1からなる複数の壁部53を、軸体51の軸方向に間隔をあけて造形する。本例では、軸体51に対して、互いに間隔をあけて二つの壁部53を造形する。複数の壁部53が造形された軸体51は、壁部53同士の軸方向に沿う領域が充填範囲FRとされる。なお、壁部53を造形する溶着ビードB1を形成する際には、例えば、低い入熱量で精密な溶着ビードを形成するのが好ましい。これにより、溶着ビードB1のだれ等を抑えつつ壁部53を高精度に造形することができる。
(Wall modeling process)
As shown in FIG. 3A, the weld bead B1 is formed on the peripheral surface of the shaft body 51 by the torch 17 while rotating the shaft body 51. As a result, a plurality of wall portions 53 made of welded beads B1 formed in the circumferential direction are formed on the shaft body 51 at intervals in the axial direction of the shaft body 51. In this example, two wall portions 53 are modeled with respect to the shaft body 51 at intervals from each other. In the shaft body 51 in which the plurality of wall portions 53 are formed, the region along the axial direction of the wall portions 53 is set as the filling range FR. When forming the welded bead B1 for forming the wall portion 53, for example, it is preferable to form a precise welded bead with a low heat input amount. As a result, the wall portion 53 can be molded with high accuracy while suppressing the drooling of the welded bead B1.

(内部造形工程)
図3Bに示すように、壁部53同士で囲まれた充填範囲FR内において、一方の壁部53側から、溶着ビードB2を軸体51の周方向に形成する。これにより、図3Cに示すように、軸体51の周囲に溶着ビードB2からなる環状部54を形成する。この溶着ビードB2は、壁部53を形成する溶着ビードB1よりも幅広とすることが好ましい。溶着ビードB2を幅広とすることにより、充填範囲FR内における充填効率を高めることができる。なお、溶着ビードB2を幅広とするには、溶着速度を下げたり、溶加材Mの送給速度を上げればよく、また、溶着ビードB2の軌道方向と交差する方向へトーチ17を往復移動させるウィービングを行ってもよい。
(Internal modeling process)
As shown in FIG. 3B, the welded bead B2 is formed in the circumferential direction of the shaft body 51 from one wall portion 53 side within the filling range FR surrounded by the wall portions 53. As a result, as shown in FIG. 3C, an annular portion 54 made of the welded bead B2 is formed around the shaft body 51. The welded bead B2 is preferably wider than the welded bead B1 forming the wall portion 53. By widening the welded bead B2, the filling efficiency within the filling range FR can be improved. In order to widen the welded bead B2, the welding speed may be lowered or the feeding speed of the filler metal M may be increased, and the torch 17 may be reciprocated in a direction intersecting the orbital direction of the welded bead B2. Weaving may be performed.

そして、この環状部54を形成する溶着ビードB2の端部が、既に形成した既設の溶着ビードB2と接触する箇所で、軸体51の回転及び溶接ロボット19によるトーチ17の移動を制御して軌道変換処理を行う。 Then, at a point where the end portion of the welded bead B2 forming the annular portion 54 comes into contact with the already formed existing welded bead B2, the rotation of the shaft body 51 and the movement of the torch 17 by the welding robot 19 are controlled to control the trajectory. Perform conversion processing.

図3Dに示すように、軌道変換処理では、まず、軸体51の周方向の一方に向けて形成していた溶着ビードB2の軌道を軸体51の軸方向へ向ける。さらに、軸体51の軸方向へ向けた溶着ビードB2の軌道を、既設の溶着ビードB2からなる環状部54に対して軸体51の軸方向に隣接する箇所で軸体51の周方向の一方へ向ける。 As shown in FIG. 3D, in the orbit conversion process, first, the orbit of the welded bead B2 formed toward one of the circumferential directions of the shaft body 51 is directed to the axial direction of the shaft body 51. Further, the trajectory of the welded bead B2 directed in the axial direction of the shaft body 51 is one of the circumferential directions of the shaft body 51 at a position adjacent to the annular portion 54 made of the existing welded bead B2 in the axial direction of the shaft body 51. Turn to.

この軌道変換処理において、溶着速度が一定であると、軌道の変換箇所で溶着ビードB2の溶着量が局所的に多くなって屈曲部分で盛り上がってしまう。このため、軌道変換処理では、溶着ビードB2の溶着速度を調整し、溶着ビードB2の溶着量を一定にする。具体的には、溶着ビードB2の軌道を変換する際に、溶接速度を上げたり、溶加材Mの送給速度を下げる。すると、溶着ビードB2の軌道の変換箇所において、溶着ビードB2の溶着速度が下げられて溶着量が一定となり、軌道の変換箇所における屈曲部分が盛り上がるような局所的な溶着金属の形状の変動が抑制され、表面の凹凸形状の発生が抑えられる。なお、ウィービングを行っている場合は、ウィービングの振幅を小さくして溶着速度を一転にしてもよい。 In this orbital conversion process, if the welding rate is constant, the amount of welded bead B2 welded locally increases at the orbital conversion point and rises at the bent portion. Therefore, in the orbital conversion process, the welding rate of the welded bead B2 is adjusted to keep the welding amount of the welded bead B2 constant. Specifically, when converting the trajectory of the welded bead B2, the welding speed is increased or the feeding speed of the filler metal M is decreased. Then, at the conversion point of the orbit of the welded bead B2, the welding speed of the welded bead B2 is lowered and the amount of welding becomes constant, and the local fluctuation of the shape of the weld metal such that the bent portion at the changed part of the orbit rises is suppressed. Therefore, the occurrence of uneven shape on the surface is suppressed. When weaving is performed, the weaving amplitude may be reduced to change the welding speed.

図3Eに示すように、軸体51の周方向への溶着ビードB2の形成及び既設の溶着ビードB2からなる環状部54との接触箇所における軌道変換処理を繰り返すと、環状部54の終端部と始端部とが連結部55を介して連続して形成される。そして、充填範囲FRにおける一方の壁部53側には、複数の環状部54が連結部55によって連結された造形部57が造形される。なお、溶着ビードB2は、環状部54との接触箇所を終点として環状部54の端部に接合させて溶着を終了させる。 As shown in FIG. 3E, when the formation of the welded bead B2 in the circumferential direction of the shaft body 51 and the orbital conversion process at the contact point with the annular portion 54 made of the existing welded bead B2 are repeated, the end portion of the annular portion 54 is reached. The start end portion is continuously formed via the connecting portion 55. Then, on one wall portion 53 side in the filling range FR, a modeling portion 57 in which a plurality of annular portions 54 are connected by the connecting portion 55 is formed. The welded bead B2 is joined to the end of the annular portion 54 with the contact point with the annular portion 54 as the end point to complete the welding.

図3Fに示すように、壁部53同士で囲まれた充填範囲FR内において、他方の壁部53側にも造形部57をする。具体的には、他方の壁部53側から、壁部53より幅広な溶着ビードB2を軸体51の周方向に形成し、溶着ビードB2の端部が、既設の溶着ビードB2からなる環状部54と接触する箇所で軌道変換処理を行う。そして、軸体51の周方向への溶着ビードB2の形成及び既設の溶着ビードB2からなる環状部54との接触箇所における軌道変換処理を繰り返す。これにより、充填範囲FRにおいて、他方の壁部53側に、複数の環状部54の終端部と始端部が連結部55介して連続して形成された造形部57を、一方の壁部53側に形成した造形部57に対して隙間Gをあけて造形する。 As shown in FIG. 3F, the modeling portion 57 is also provided on the other wall portion 53 side within the filling range FR surrounded by the wall portions 53. Specifically, a welded bead B2 wider than the wall portion 53 is formed in the circumferential direction of the shaft body 51 from the other wall portion 53 side, and the end portion of the welded bead B2 is an annular portion made of the existing welded bead B2. The orbit conversion process is performed at the point where it comes into contact with 54. Then, the formation of the welded bead B2 in the circumferential direction of the shaft body 51 and the orbital conversion process at the contact point with the annular portion 54 made of the existing welded bead B2 are repeated. As a result, in the filling range FR, on the other wall portion 53 side, the modeling portion 57 in which the end portion and the start end portion of the plurality of annular portions 54 are continuously formed via the connecting portion 55 is provided on the one wall portion 53 side. A gap G is opened with respect to the modeling portion 57 formed in the above.

図3Gに示すように、造形部57同士の隙間Gにおいて、軸体51を回転させながら軸体51の周方向にわたって溶着ビードB2を形成する。これにより、図3Hに示すように、溶着ビードB2によって隙間Gを埋める。 As shown in FIG. 3G, in the gap G between the modeling portions 57, the welded bead B2 is formed over the circumferential direction of the shaft body 51 while rotating the shaft body 51. As a result, as shown in FIG. 3H, the gap G is filled with the welded bead B2.

この隙間Gを溶着ビードB2で埋める際には、隙間Gに対してトーチ17を幅方向へ往復移動させてウィービングさせるのが好ましい。これにより、溶着ビードB2によって隙間Gを良好に埋めることができる。 When filling the gap G with the welded bead B2, it is preferable to reciprocate the torch 17 in the width direction with respect to the gap G to weave it. As a result, the gap G can be satisfactorily filled by the welded bead B2.

このとき、図4に示すように、隙間Gへ充填する溶着ビードB2は、左右の造形部57で囲まれた開先への溶接として溶着することができる。したがって、この隙間Gへの溶着ビードB2の形成は、アークセンサによる開先倣い制御を行うことが好ましい。具体的には、開先とみなされる隙間Gにおいて、溶加材Mと下地との距離の変動によって生じる溶接電流の変化を検出する。そして、この溶接電流の変化に基づいて隙間Gの中心を割り出してトーチ17の位置を隙間Gと直交する幅方向Xにおける適切な位置に調整する。 At this time, as shown in FIG. 4, the welded bead B2 filled in the gap G can be welded to the groove surrounded by the left and right modeling portions 57. Therefore, it is preferable to control the groove copying by the arc sensor for the formation of the welded bead B2 in the gap G. Specifically, in the gap G regarded as the groove, the change in the welding current caused by the change in the distance between the filler metal M and the base is detected. Then, the center of the gap G is determined based on the change in the welding current, and the position of the torch 17 is adjusted to an appropriate position in the width direction X orthogonal to the gap G.

このように、トーチ17の位置を補正しながら溶着ビードB2を形成すれば、造形部57の幅寸法や造形位置の変動によって変化する隙間Gに対して柔軟に対応して隙間Gを埋めることができる。 By forming the welded bead B2 while correcting the position of the torch 17 in this way, it is possible to flexibly fill the gap G in response to the gap G that changes due to changes in the width dimension of the modeling portion 57 and the modeling position. can.

なお、隙間Gに形成する溶着ビードB2は、レーザーセンサ等を用いて溶着箇所の形状を計測することにより、溶着量の過不足を求めてリアルタイムでフィードバック制御し、溶接条件を溶接個所の形状に合わせて補正しながら形成してもよい。 The welded bead B2 formed in the gap G measures the shape of the welded portion using a laser sensor or the like to obtain the excess or deficiency of the welded amount and performs feedback control in real time to change the welding conditions to the shape of the welded portion. It may be formed while being corrected together.

上記の工程を繰り返し行うことにより、軸体51の周囲に溶着ビードB1を積層させた壁部53の内側の充填範囲FRが溶着ビードB2によって埋められた造形物Wが造形される。 By repeating the above steps, a model W in which the filling range FR inside the wall portion 53 in which the welded bead B1 is laminated around the shaft body 51 is filled with the welded bead B2 is formed.

以上、説明したように、本実施形態に係る造形物の製造方法によれば、軸体51の周方向の一方に向かって形成する溶着ビードB2が既に形成した既設の溶着ビードB2と接触する箇所で、溶着ビードB2の軌道を軸体51の軸方向へ向け、さらに、既設の溶着ビードB2に対して軸体51の軸方向に隣接する箇所で軸体51の周方向の一方へ向ける軌道変換処理を行う。これにより、周方向にわたる複数の溶着ビードを一周ごとに形成して軸方向に隣接させる場合と比べ、充填範囲FRを一層あたり少ないパス数で溶着ビードB2を形成して充填することができる。また、壁部53間を埋める溶着ビードB2の始端及び終端の数を少なくすることができ、未溶着部の発生を抑制して高品質な造形物を製造することができる。しかも、周方向に溶着ビードB2を形成するごとに給電をオン・オフさせる必要がなくなるので、造形にかかる時間を短縮させて生産効率を高めることができる。 As described above, according to the method for manufacturing a modeled object according to the present embodiment, a portion where the welded bead B2 formed toward one of the circumferential directions of the shaft body 51 comes into contact with the existing welded bead B2 already formed. Then, the orbit of the welded bead B2 is directed in the axial direction of the shaft body 51, and further, the orbital conversion is directed in one of the circumferential directions of the shaft body 51 at a position adjacent to the existing welded bead B2 in the axial direction of the shaft body 51. Perform processing. As a result, the welding bead B2 can be formed and filled with a smaller number of passes per one layer in the filling range FR as compared with the case where a plurality of welded beads extending in the circumferential direction are formed for each round and adjacent to each other in the axial direction. Further, the number of start ends and ends of the welded bead B2 that fills the space between the wall portions 53 can be reduced, and the generation of unwelded portions can be suppressed to produce a high-quality model. Moreover, since it is not necessary to turn on / off the power supply each time the welded bead B2 is formed in the circumferential direction, the time required for modeling can be shortened and the production efficiency can be improved.

また、二つの造形部57同士の隙間Gに周方向にわたる溶着ビードB2を形成して造形部57同士の隙間Gを埋めるので、隙間Gを埋める溶着ビードB2の幅を調整することにより、造形部57の幅寸法や造形位置の変動によって変化する隙間Gに対して柔軟に対応して充填範囲FR内を良好に埋めることができる。さらに、壁部53同士で囲まれた充填範囲FRの大きさに関わらず、充填範囲FRを一層あたり3パスで溶着ビードB2を形成して充填することができる。また、各造形部57を造形する際には、それぞれ壁部53側から造形する。したがって、各壁部53の隣接位置に溶着ビードB2を形成する際に、トーチ17を傾けて壁部53との干渉を回避させることができ、溶着ビードB2を円滑に形成することができる。 Further, since the welding bead B2 extending in the circumferential direction is formed in the gap G between the two modeling portions 57 to fill the gap G between the modeling portions 57, the width of the welding bead B2 that fills the gap G is adjusted to fill the gap G. It is possible to satisfactorily fill the filling range FR by flexibly responding to the gap G that changes due to the width dimension of 57 and the fluctuation of the modeling position. Further, regardless of the size of the filling range FR surrounded by the wall portions 53, the welding bead B2 can be formed and filled in the filling range FR in 3 passes per layer. Further, when modeling each modeling portion 57, modeling is performed from the wall portion 53 side, respectively. Therefore, when the welded bead B2 is formed at the position adjacent to each wall portion 53, the torch 17 can be tilted to avoid interference with the wall portion 53, and the welded bead B2 can be smoothly formed.

また、軌道変換処理によって溶着ビードB2の軌道を変換させる際に、溶着ビードB2の溶着速度を調整して溶着ビードB2の溶着量を一定にする。このように、軌道変換処理の際に、溶着ビードB2の溶着量を一定にすることで、局所的な溶着金属の形状の変動を抑制し、表面の凹凸形状の発生を抑えることができる。 Further, when the orbit of the welded bead B2 is converted by the orbital conversion process, the welding speed of the welded bead B2 is adjusted to make the welding amount of the welded bead B2 constant. As described above, by making the welding amount of the welded bead B2 constant during the orbital conversion process, it is possible to suppress local fluctuations in the shape of the weld metal and suppress the occurrence of uneven shapes on the surface.

なお、上記の実施形態では、二つの壁部53を軸体51に形成して壁部53で区画された充填範囲FRを充填させたが、三つ以上の壁部53を形成し、それぞれの壁部53で区画された複数の充填範囲FRに溶着ビードB2を充填させてもよい。 In the above embodiment, the two wall portions 53 are formed on the shaft body 51 to fill the filling range FR partitioned by the wall portions 53, but three or more wall portions 53 are formed and each of them is formed. The welded bead B2 may be filled in a plurality of filling range FRs partitioned by the wall portion 53.

ここで、内部造形工程における充填範囲FRへの溶着ビードB2の充填の仕方の他の例を説明する。
図5A及び図5Bは、内部造形工程における充填範囲への溶着ビードの充填の仕方の他の例を示す製造途中の造形物の軸方向に沿う概略側面図である。
Here, another example of how to fill the welded bead B2 into the filling range FR in the internal molding step will be described.
5A and 5B are schematic side views along the axial direction of the modeled object in the process of being manufactured, showing another example of how the welded bead is filled in the filling range in the internal modeling process.

図5Aに示すように、壁部53同士で囲まれた充填範囲FR内において、一方の壁部53側から、壁部53より幅広な溶着ビードB2を軸体51の周方向に形成し、軸体51の周囲に溶着ビードB2からなる環状部54を形成する。この環状部54を形成する溶着ビードB2の端部が、既に形成した既設の溶着ビードB2と接触する箇所で、軸体51の回転及び溶接ロボット19によるトーチ17の移動を制御して軌道変換処理を行う。そして、軸体51に対する溶着ビードB2の周方向への形成及び軌道変換処理を繰り返し、連結部55を介して連続して形成された複数の環状部54からなる造形部を造形する。図5Bに示すように、溶着ビードB2の形成位置が充填範囲FRにおける他方の壁部53側に達したら、既設の溶着ビードB2からなる環状部54との接触箇所を終点として溶着ビードB2の溶着を終了させる。 As shown in FIG. 5A, in the filling range FR surrounded by the wall portions 53, a welded bead B2 wider than the wall portion 53 is formed from one wall portion 53 side in the circumferential direction of the shaft body 51, and the shaft is formed. An annular portion 54 made of a welded bead B2 is formed around the body 51. At a point where the end of the welded bead B2 forming the annular portion 54 comes into contact with the already formed existing welded bead B2, the rotation of the shaft body 51 and the movement of the torch 17 by the welding robot 19 are controlled to perform trajectory conversion processing. I do. Then, the formation of the welded bead B2 on the shaft body 51 in the circumferential direction and the orbital conversion process are repeated to form a modeling portion composed of a plurality of annular portions 54 continuously formed via the connecting portion 55. As shown in FIG. 5B, when the formation position of the welded bead B2 reaches the other wall portion 53 side in the filling range FR, the welded bead B2 is welded with the contact point with the annular portion 54 made of the existing welded bead B2 as the end point. To end.

この溶着ビードB2による充填の仕方によれば、壁部53同士で囲まれた充填範囲FRへ溶着ビードB2を1パスで充填させることができる。 According to this method of filling with the welded bead B2, the welded bead B2 can be filled in the filling range FR surrounded by the wall portions 53 in one pass.

また、内部造形工程によって充填範囲FRに溶着ビードB2を積層させる際に、各層における軌道変換処理の位置を積層方向と交差する方向へずらすのが好ましい。このように、充填範囲FRに溶着ビードB2を積層させる際に、各層における軌道変換処理の位置を積層方向と交差する方向へずらすことにより、軌道変換処理の位置の積層方向への重なりを回避することができ、軌道変換処理で形成される連結部55が積層方向に重なることによる局所的な凹凸の発生を抑制することができる。 Further, when the welded bead B2 is laminated on the filling range FR by the internal molding step, it is preferable to shift the position of the orbital conversion process in each layer in the direction intersecting the laminating direction. In this way, when the welded beads B2 are laminated in the filling range FR, the positions of the orbital conversion processes in each layer are shifted in the direction intersecting the laminating direction, thereby avoiding the overlap of the positions of the orbital conversion processes in the laminating direction. This makes it possible to suppress the occurrence of local unevenness due to the connecting portions 55 formed by the orbital conversion process overlapping in the stacking direction.

ここで、内部造形工程によって充填範囲FRに溶着ビードB2を積層させる際の、各層における軌道変換処理の位置の積層方向と交差する方向へのずらし方の一例を説明する。なお、ここでは、軸体51の外周に、第1層から第3層までの造形部57を積層造形する場合を例示して説明する。
図6は、充填範囲FRへの溶着ビードB2の形成例を示す図であって、(A)~(C)は、各層における溶着ビードB2の形成状態を示す造形物の軸方向に沿う概略側面図である。図7は、軌道変換処理の位置のずらし方を説明する軸体51の概略断面図である。
Here, an example of how to shift the position of the orbital conversion process in each layer in the direction intersecting the stacking direction when laminating the welded bead B2 on the filling range FR by the internal molding step will be described. Here, a case where the modeling portions 57 from the first layer to the third layer are laminated on the outer periphery of the shaft body 51 will be described as an example.
FIG. 6 is a diagram showing an example of forming the welded bead B2 in the filling range FR, and FIGS. 6A to 6C are schematic side surfaces along the axial direction of the modeled object showing the formation state of the welded bead B2 in each layer. It is a figure. FIG. 7 is a schematic cross-sectional view of the shaft body 51 for explaining how to shift the position of the trajectory conversion process.

図6の(A)に示すように、軌道変換処理の位置を螺旋状に配置させながら充填範囲FRに溶着ビードB2を形成する。これにより、軌道変換処理によって形成される連結部55が螺旋状に配置された第1層目の造形部57を造形する。 As shown in FIG. 6A, the welded bead B2 is formed in the filling range FR while the positions of the orbital conversion processing are arranged in a spiral shape. As a result, the first-layer modeling portion 57 in which the connecting portion 55 formed by the orbital conversion process is arranged in a spiral shape is formed.

次に、造形した第1層目の造形部57の外周に、上層である第2層目の造形部57を造形する。このときも、図6の(B)に示すように、軌道変換処理の位置を螺旋状に配置させながら充填範囲FRに溶着ビードB2を形成する。これにより、軌道変換処理によって形成される連結部55が螺旋状に配置された造形部57を造形する。このとき、下層の造形部57に対して、軌道変換処理の位置を積層方向と交差する方向へずらすように、溶着ビードB2を形成する。具体的には、図7に示すように、軌道変換処理を行う位置を角度θずつ軸回りにずらし、下層の造形部57における連結部55を通る螺旋に対して、軌道変換処理によって形成する連結部55を通る螺旋の位相を周方向にずらす。 Next, on the outer periphery of the modeled portion 57 of the first layer that has been modeled, the modeled portion 57 of the second layer, which is the upper layer, is modeled. Also at this time, as shown in FIG. 6B, the welded bead B2 is formed in the filling range FR while the positions of the orbital conversion processing are arranged in a spiral shape. As a result, the modeling portion 57 in which the connecting portion 55 formed by the trajectory conversion process is arranged in a spiral shape is formed. At this time, the welded bead B2 is formed so as to shift the position of the orbital conversion process in the direction intersecting the stacking direction with respect to the modeling portion 57 in the lower layer. Specifically, as shown in FIG. 7, the position where the orbit conversion process is performed is shifted about the axis by an angle θ, and the spiral formed by the orbit conversion process is formed for the spiral passing through the connection portion 55 in the lower layer modeling portion 57. The phase of the spiral passing through the portion 55 is shifted in the circumferential direction.

その後、造形した第2層目の造形部57の外周に、さらに上層である第3層目の造形部57を造形する。このときも、図6の(C)に示すように、軌道変換処理の位置を螺旋状に配置させながら充填範囲FRに溶着ビードB2を形成する。これにより、軌道変換処理によって形成される連結部55が螺旋状に配置された造形部57を造形する。このときも、軌道変換処理を行う位置を角度θずつ軸回りにずらし、下層の造形部57における連結部55を通る螺旋に対して、軌道変換処理によって形成する連結部55を通る螺旋の位相が周方向にずれるように溶着ビードB2を形成する。 After that, on the outer periphery of the second-layer modeling portion 57 that has been modeled, the third-layer modeling portion 57, which is an upper layer, is further modeled. Also at this time, as shown in FIG. 6C, the welded bead B2 is formed in the filling range FR while the positions of the orbital conversion processing are arranged in a spiral shape. As a result, the modeling portion 57 in which the connecting portion 55 formed by the trajectory conversion process is arranged in a spiral shape is formed. Also at this time, the position where the orbit conversion process is performed is shifted about the axis by an angle θ, and the phase of the spiral passing through the connecting portion 55 formed by the orbit conversion process is the phase of the spiral passing through the connecting portion 55 in the lower layer modeling portion 57. The welded bead B2 is formed so as to be displaced in the circumferential direction.

このようにして、各層において、軌道変換処理の位置を積層方向と交差する方向へずらすことにより連結部55の位置が積層方向と交差する方向へずれた造形部57を造形すれば、例えば、連結部55における溶着ビードB2が他の部位に比べて高さにずれが生じていたとしても、連結部55の位置(位相)が各層ごとに積層方向と交差する方向へずらされることで、連結部55における高さのずれを積層につれて周方向へ分散させることができる。これにより、局所的な高さずれが大きくなること緩和して抑制することができる。 In this way, if the position of the orbital conversion process is shifted in the direction intersecting the stacking direction in each layer to form the modeling portion 57 in which the position of the connecting portion 55 is displaced in the direction intersecting the stacking direction, for example, the connection is formed. Even if the welded bead B2 in the portion 55 is displaced in height as compared with other portions, the position (phase) of the connecting portion 55 is shifted in the direction intersecting the stacking direction for each layer, so that the connecting portion is connected. The height deviation at 55 can be dispersed in the circumferential direction as the stacking is performed. As a result, it is possible to alleviate and suppress the increase in local height deviation.

このように、本発明は上記の実施形態に限定されるものではなく、実施形態の各構成を相互に組み合わせることや、明細書の記載、並びに周知の技術に基づいて、当業者が変更、応用することも本発明の予定するところであり、保護を求める範囲に含まれる。 As described above, the present invention is not limited to the above-described embodiment, and can be modified or applied by those skilled in the art based on the mutual combination of the configurations of the embodiments, the description of the specification, and the well-known technique. It is also a matter of the present invention to do so, and it is included in the scope of seeking protection.

以上の通り、本明細書には次の事項が開示されている。
(1) 軸体の周囲に溶着ビードを繰り返し積層して造形物を製造する造形物の製造方法であって、
前記軸体の周方向に形成した溶着ビードからなる複数の壁部を軸方向に間隔をあけて造形する壁部造形工程と、
前記壁部同士で囲まれた充填範囲内において、前記壁部より幅広な溶着ビードを前記軸体の周方向に形成するとともに前記軸体の軸方向へ向かって順に隣接させて前記充填範囲を前記溶着ビードによって充填する内部造形工程と、
を含み、
前記内部造形工程において、
前記軸体の周方向の一方に向かって形成する溶着ビードが既に形成した既設の溶着ビードと接触する箇所で溶着ビードの軌道を前記軸体の軸方向へ向け、さらに、前記既設の溶着ビードに対して前記軸体の軸方向に隣接する箇所で溶着ビードの軌道を前記軸体の周方向の一方へ向ける軌道変換処理を行う、造形物の製造方法。
この造形物の製造方法によれば、周方向にわたる複数の溶着ビードを一周ごとに形成して軸方向に隣接させる場合と比べ、充填範囲を一層あたり少ないパス数で溶着ビードを形成して充填することができる。また、壁部間を埋める溶着ビードの始端及び終端の数を少なくすることができ、未溶着部の発生を抑制して高品質な造形物を製造することができる。しかも、溶着ビードを周方向に形成するごとに給電をオン・オフさせる必要がなくなるので、造形にかかる時間を短縮させて生産効率を高めることができる。
As described above, the following matters are disclosed in this specification.
(1) A method for manufacturing a modeled object, in which welded beads are repeatedly laminated around a shaft body to produce a modeled object.
A wall forming process in which a plurality of walls made of welded beads formed in the circumferential direction of the shaft are formed at intervals in the axial direction.
Within the filling range surrounded by the wall portions, welded beads wider than the wall portions are formed in the circumferential direction of the shaft body and are adjacent to each other in order toward the axial direction of the shaft body to form the filling range. The internal molding process of filling with weld beads and
Including
In the internal modeling process,
At the point where the welded bead formed toward one of the circumferential directions of the shaft body comes into contact with the existing welded bead that has already been formed, the trajectory of the welded bead is directed in the axial direction of the shaft body, and further to the existing welded bead. On the other hand, a method for manufacturing a modeled object, which performs an orbit conversion process in which the orbit of a welded bead is directed to one of the circumferential directions of the shaft at a position adjacent to the shaft in the axial direction.
According to this method for manufacturing a modeled object, the welding bead is formed and filled with a smaller number of passes per one layer in the filling range as compared with the case where a plurality of welded beads extending in the circumferential direction are formed one round and adjacent to each other in the axial direction. be able to. In addition, the number of start ends and ends of the welded beads that fill the space between the wall portions can be reduced, and the generation of unwelded portions can be suppressed to produce a high-quality model. Moreover, since it is not necessary to turn on / off the power supply each time the welded bead is formed in the circumferential direction, the time required for modeling can be shortened and the production efficiency can be improved.

(2) 前記内部造形工程において、
前記軌道変換処理を行いながら前記充填範囲内に前記溶着ビードを連続的に周回させることにより複数の造形部を造形し、
前記造形部同士の間に形成された隙間に周方向にわたる溶着ビードを形成し、前記造形部同士の隙間を埋める、(1)に記載の造形物の製造方法。
この造形物の製造方法によれば、複数の造形部同士の隙間に周方向にわたる溶着ビードを形成して造形部同士の隙間を埋めるので、隙間を埋める溶着ビードの幅を調整することにより、造形部の幅寸法や造形位置の変動によって変化する隙間に対して柔軟に対応して充填範囲内を良好に埋めることができる。
(2) In the internal modeling process,
A plurality of shaped portions are formed by continuously orbiting the welded bead within the filling range while performing the orbital conversion process.
The method for manufacturing a modeled object according to (1), wherein a welded bead extending in the circumferential direction is formed in a gap formed between the shaped portions to fill the gap between the shaped portions.
According to this method for manufacturing a modeled object, a welded bead is formed in the gap between a plurality of shaped parts in the circumferential direction to fill the gap between the shaped parts. Therefore, by adjusting the width of the welded bead that fills the gap, the model is formed. It is possible to flexibly respond to gaps that change due to fluctuations in the width dimension of the portion and the modeling position, and to fill the filling range satisfactorily.

(3) 前記充填範囲の両端側から二つの前記造形部を造形し、
二つの前記造形部同士の隙間に周方向にわたる溶着ビードを形成し、前記造形部同士の隙間を埋める、(2)に記載の造形物の製造方法。
この造形物の製造方法によれば、壁部同士で囲まれた充填範囲の大きさに関わらず、充填範囲を一層あたり3パスで溶着ビードを形成して充填することができる。
(3) Two of the modeling portions are modeled from both ends of the filling range.
The method for manufacturing a modeled object according to (2), wherein a welded bead extending in the circumferential direction is formed in a gap between the two modeling portions to fill the gap between the modeling portions.
According to this method for manufacturing a modeled object, a welded bead can be formed and filled in 3 passes per layer in the filling range regardless of the size of the filling range surrounded by the wall portions.

(4) 前記軌道変換処理によって前記溶着ビードの軌道を変換させる際に、
前記溶着ビードの溶着速度を調整して前記溶着ビードの溶着量を一定にする、(1)~(3)のいずれか一つに記載の造形物の製造方法。
この造形物の製造方法によれば、軌道変換処理の際に、溶着ビードの溶着量を一定にすることで、局所的な溶着金属の形状の変動を抑制し、表面の凹凸形状の発生を抑えることができる。
(4) When converting the orbit of the welded bead by the orbit conversion process,
The method for producing a model according to any one of (1) to (3), wherein the welding rate of the welded bead is adjusted to keep the welding amount of the welded bead constant.
According to this method for manufacturing a modeled object, by keeping the amount of welded beads welded constant during the orbital conversion process, local fluctuations in the shape of the weld metal are suppressed, and the generation of uneven shapes on the surface is suppressed. be able to.

(5) 前記内部造形工程によって前記充填範囲に前記溶着ビードを積層させる際に、
各層における前記軌道変換処理の位置を積層方向と交差する方向へずらす、(1)~(4)のいずれか一つに記載の造形物の製造方法。
この造形物の製造方法によれば、充填範囲に溶着ビードを積層させる際に、各層における前記軌道変換処理の位置を積層方向と交差する方向へずらすことにより、軌道変換処理の位置の積層方向への重なりを回避し、局所的な凹凸の発生を抑制することができる。
(5) When the welded bead is laminated in the filling range by the internal molding step,
The method for manufacturing a model according to any one of (1) to (4), wherein the position of the orbital conversion process in each layer is shifted in a direction intersecting the stacking direction.
According to this method for manufacturing a modeled object, when the welded beads are laminated in the filling range, the position of the orbital conversion process in each layer is shifted in the direction intersecting the laminating direction, so that the position of the orbital conversion process is moved toward the stacking direction. It is possible to avoid overlapping of the above and suppress the occurrence of local unevenness.

(6) 軸体と、
前記軸体の周方向に形成した溶着ビードからなり、前記軸体の軸方向に間隔をあけて造形された複数の壁部と、
前記壁部より幅広な溶着ビードによって前記壁部同士で囲まれた充填範囲内に造形された造形部と、
を有し、
前記造形部は、
前記軸体の周方向に向かって形成されて前記軸体の軸方向へ隣接された前記溶着ビードからなる複数の環状部と、
隣接する前記環状部の一端と他端とを連結する前記溶着ビードからなる連結部と、
を有する、
造形物。
この造形物によれば、軸体の周囲に、複数の壁部が造形され、壁部によって囲われた充填範囲に、複数の環状部と、互いに隣接する環状部の一端と他端とを連結する連結部とからなる造形部が造形されている。つまり、この造形物によれば、軸体の周囲に溶着ビードによって複数の壁部を形成し、壁部によって囲われた充填範囲において溶着ビードによって環状部及び連結部を1パスで形成して造形部を造形することができる。
(6) Shaft body and
A plurality of wall portions made of welded beads formed in the circumferential direction of the shaft body and formed at intervals in the axial direction of the shaft body, and
A shaped portion formed within a filling range surrounded by the wall portions by a welded bead wider than the wall portion, and a shaped portion.
Have,
The modeling part is
A plurality of annular portions formed of the welded beads formed in the circumferential direction of the shaft body and adjacent to each other in the axial direction of the shaft body, and a plurality of annular portions.
A connecting portion made of the welded bead that connects one end and the other end of the adjacent annular portion,
Have,
Modeled object.
According to this model, a plurality of wall portions are formed around the shaft body, and the plurality of annular portions and one end and the other end of the annular portions adjacent to each other are connected to each other in the filling range surrounded by the wall portions. A modeling part consisting of a connecting part is formed. That is, according to this model, a plurality of wall portions are formed around the shaft body by welding beads, and an annular portion and a connecting portion are formed by the welding beads in one pass in the filling range surrounded by the wall portions. The part can be shaped.

(7) 前記充填範囲には、二つの前記造形部が、互いに隙間をあけて造形され、
前記造形部同士の隙間が、前記軸体の周方向へわたって形成された溶着ビードによって埋められている、(6)に記載の造形物。
この造形物によれば、充填範囲に造形された二つの造形部同士の隙間が溶着ビードによって埋められている。つまり、この造形物によれば、充填範囲内に二つの造形部を造形し、造形部同士の隙間に溶着ビードを形成して埋めることにより、容易に造形することができる。
(7) In the filling range, the two modeling portions are modeled with a gap between them.
The model according to (6), wherein the gap between the shaped portions is filled with a welded bead formed along the circumferential direction of the shaft body.
According to this model, the gap between the two models formed in the filling range is filled with the weld bead. That is, according to this modeled object, it is possible to easily model by forming two modeling portions within the filling range and forming and filling a welded bead in the gap between the modeling portions.

(8) 前記充填範囲に前記溶着ビードが積層され、各層において前記溶着ビードの前記連結部の位置が積層方向と交差する方向へずらされている、(6)または(7)に記載の造形物。
この造形物によれば、充填範囲に積層された溶着ビードの各層における連結部の位置が積層方向と交差する方向へずらされているので、積層方向へ連結部が重なることによる局所的な凹凸の発生を抑制することができる。
(8) The model according to (6) or (7), wherein the welded bead is laminated in the filling range, and the position of the connecting portion of the welded bead is shifted in a direction intersecting the laminating direction in each layer. ..
According to this model, the position of the connecting portion in each layer of the welded beads laminated in the filling range is shifted in the direction intersecting the laminating direction, so that the local unevenness due to the overlapping of the connecting portions in the laminating direction is caused. The occurrence can be suppressed.

51 軸体
53 壁部
54 環状部
55 連結部
57 造形部
B,B1,B2 溶着ビード
FR 充填範囲
G 隙間
W 造形物
51 Shaft 53 Wall 54 Circular 55 Connecting 57 Modeling part B, B1, B2 Welding bead FR Filling range G Gap W Modeling

Claims (8)

軸体の周囲に溶着ビードを繰り返し積層して造形物を製造する造形物の製造方法であって、
前記軸体の周方向に形成した溶着ビードからなる複数の壁部を軸方向に間隔をあけて造形する壁部造形工程と、
前記壁部同士で囲まれた充填範囲内において、前記壁部より幅広な溶着ビードを前記軸体の周方向に形成するとともに前記軸体の軸方向へ向かって順に隣接させて前記充填範囲を前記溶着ビードによって充填する内部造形工程と、
を含み、
前記内部造形工程において、
前記軸体の周方向の一方に向かって形成する溶着ビードが既に形成した既設の溶着ビードと接触する箇所で溶着ビードの軌道を前記軸体の軸方向へ向け、さらに、前記既設の溶着ビードに対して前記軸体の軸方向に隣接する箇所で溶着ビードの軌道を前記軸体の周方向の一方へ向ける軌道変換処理を行う、
造形物の製造方法。
It is a manufacturing method of a modeled object in which welded beads are repeatedly laminated around a shaft body to produce a modeled object.
A wall forming process in which a plurality of walls made of welded beads formed in the circumferential direction of the shaft are formed at intervals in the axial direction.
Within the filling range surrounded by the wall portions, welded beads wider than the wall portions are formed in the circumferential direction of the shaft body and are adjacent to each other in order toward the axial direction of the shaft body to form the filling range. The internal molding process of filling with weld beads and
Including
In the internal modeling process,
At the point where the welded bead formed toward one of the circumferential directions of the shaft body comes into contact with the existing welded bead that has already been formed, the trajectory of the welded bead is directed in the axial direction of the shaft body, and further to the existing welded bead. On the other hand, an orbit conversion process is performed in which the orbit of the welded bead is directed to one of the circumferential directions of the shaft at a position adjacent to the shaft in the axial direction.
Manufacturing method of the modeled object.
前記内部造形工程において、
前記軌道変換処理を行いながら前記充填範囲内に前記溶着ビードを連続的に周回させることにより複数の造形部を造形し、
前記造形部同士の間に形成された隙間に周方向にわたる溶着ビードを形成し、前記造形部同士の隙間を埋める、
請求項1に記載の造形物の製造方法。
In the internal modeling process,
A plurality of shaped portions are formed by continuously orbiting the welded bead within the filling range while performing the orbital conversion process.
A welded bead is formed in the gap formed between the shaped portions in the circumferential direction to fill the gap between the shaped portions.
The method for manufacturing a model according to claim 1.
前記充填範囲の両端側から二つの前記造形部を造形し、
二つの前記造形部同士の隙間に周方向にわたる溶着ビードを形成し、前記造形部同士の隙間を埋める、
請求項2に記載の造形物の製造方法。
Two of the modeling portions are modeled from both ends of the filling range.
A welded bead is formed in the gap between the two shaped portions in the circumferential direction to fill the gap between the shaped portions.
The method for manufacturing a model according to claim 2.
前記軌道変換処理によって前記溶着ビードの軌道を変換させる際に、
前記溶着ビードの溶着速度を調整して前記溶着ビードの溶着量を一定にする、
請求項1~3のいずれか一項に記載の造形物の製造方法。
When converting the orbit of the welded bead by the orbit conversion process,
The welding rate of the welded bead is adjusted to keep the welding amount of the welded bead constant.
The method for manufacturing a model according to any one of claims 1 to 3.
前記内部造形工程によって前記充填範囲に前記溶着ビードを積層させる際に、
各層における前記軌道変換処理の位置を積層方向と交差する方向へずらす、
請求項1~4のいずれか一項に記載の造形物の製造方法。
When the welded bead is laminated in the filling range by the internal molding step,
The position of the trajectory conversion process in each layer is shifted in the direction intersecting the stacking direction.
The method for manufacturing a model according to any one of claims 1 to 4.
軸体と、
前記軸体の周方向に形成した溶着ビードからなり、前記軸体の軸方向に間隔をあけて造形された複数の壁部と、
前記壁部より幅広な溶着ビードによって前記壁部同士で囲まれた充填範囲内に造形された造形部と、
を有し、
前記造形部は、
前記軸体の周方向に向かって形成されて前記軸体の軸方向へ隣接された前記溶着ビードからなる複数の環状部と、
隣接する前記環状部の一端と他端とを連結する前記溶着ビードからなる連結部と、
を有する、
造形物。
Axis and
A plurality of wall portions made of welded beads formed in the circumferential direction of the shaft body and formed at intervals in the axial direction of the shaft body, and
A shaped portion formed within a filling range surrounded by the wall portions by a welded bead wider than the wall portion, and a shaped portion.
Have,
The modeling part is
A plurality of annular portions formed of the welded beads formed in the circumferential direction of the shaft body and adjacent to each other in the axial direction of the shaft body, and a plurality of annular portions.
A connecting portion made of the welded bead that connects one end and the other end of the adjacent annular portion,
Have,
Modeled object.
前記充填範囲には、二つの前記造形部が、互いに隙間をあけて造形され、
前記造形部同士の隙間が、前記軸体の周方向へわたって形成された溶着ビードによって埋められている、
請求項6に記載の造形物。
In the filling range, the two modeling portions are modeled with a gap between them.
The gap between the shaped portions is filled with the welding beads formed in the circumferential direction of the shaft body.
The model according to claim 6.
前記充填範囲に前記溶着ビードが積層され、各層において前記溶着ビードの前記連結部の位置が積層方向と交差する方向へずらされている、
請求項6または請求項7に記載の造形物。
The welded bead is laminated in the filling range, and the position of the connecting portion of the welded bead is shifted in each layer in a direction intersecting the laminating direction.
The model according to claim 6 or 7.
JP2020144620A 2020-08-28 2020-08-28 Manufacturing method of modeled object and modeled object Active JP7381422B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020144620A JP7381422B2 (en) 2020-08-28 2020-08-28 Manufacturing method of modeled object and modeled object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020144620A JP7381422B2 (en) 2020-08-28 2020-08-28 Manufacturing method of modeled object and modeled object

Publications (2)

Publication Number Publication Date
JP2022039535A true JP2022039535A (en) 2022-03-10
JP7381422B2 JP7381422B2 (en) 2023-11-15

Family

ID=80499111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020144620A Active JP7381422B2 (en) 2020-08-28 2020-08-28 Manufacturing method of modeled object and modeled object

Country Status (1)

Country Link
JP (1) JP7381422B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024004768A1 (en) * 2022-06-30 2024-01-04 株式会社神戸製鋼所 Method for controlling additive manufacturing device, control device, and program

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT506674B9 (en) 2008-04-22 2010-10-15 Siemens Vai Metals Tech Gmbh ROLE FOR SUPPORTING AND TRANSPORTING HOT GOOD, METHOD FOR PRODUCING THE ROLE, METHOD FOR RECONSTRUCTING A PROTECTED ROLE, WELDING ADDITIVE MATERIAL AND WELDING WIRE FOR PRODUCING ORDER WELDING
US9267184B2 (en) 2010-02-05 2016-02-23 Ati Properties, Inc. Systems and methods for processing alloy ingots

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024004768A1 (en) * 2022-06-30 2024-01-04 株式会社神戸製鋼所 Method for controlling additive manufacturing device, control device, and program

Also Published As

Publication number Publication date
JP7381422B2 (en) 2023-11-15

Similar Documents

Publication Publication Date Title
JP7048435B2 (en) Laminating planning method of laminated model, manufacturing method and manufacturing equipment of laminated model
JP6737762B2 (en) Manufacturing method and manufacturing apparatus for molded article
JP6892371B2 (en) Manufacturing method and manufacturing equipment for laminated models
JP6978350B2 (en) Work posture adjustment method, model manufacturing method and manufacturing equipment
JP2022034759A (en) Laminated molding manufacturing system, laminated molding manufacturing method, and laminated molding manufacturing program
JP7327995B2 (en) LAMINATED PRODUCT MANUFACTURING METHOD AND LAMINATED MOLDED PRODUCT
JP6810018B2 (en) Manufacturing method of laminated model
JP7381422B2 (en) Manufacturing method of modeled object and modeled object
JP6802773B2 (en) Manufacturing method of laminated model and laminated model
JP2019089126A (en) Manufacturing method of molded body, manufacturing apparatus, and molded body
JP7193423B2 (en) Laminate-molded article manufacturing method
WO2022149426A1 (en) Method for fabricating additively manufactured object
JP6859471B1 (en) Manufacturing method of laminated model
JP7355672B2 (en) Manufacturing method for additively manufactured objects
JP6964530B2 (en) Pipe joining structure and joining method
WO2022038960A1 (en) Method for manufacturing multi-layer molded article
JP7181163B2 (en) Laminated structure manufacturing method
JP7189110B2 (en) LAMINATED PRODUCT MANUFACTURING METHOD AND LAMINATED MOLDED PRODUCT
JP7258715B2 (en) LAMINATED PRODUCT MANUFACTURING METHOD AND LAMINATED MOLDED PRODUCT
JP6783964B1 (en) Manufacturing method of laminated model
JP7123738B2 (en) LAMINATED PRODUCT MANUFACTURING METHOD AND LAMINATED MOLDED PRODUCT
JP7303162B2 (en) Laminate-molded article manufacturing method
JP6892542B1 (en) Manufacturing method of modeled object and modeled object
WO2023204113A1 (en) Control information generation device, additive manufacturing system and program
JP2024025180A (en) Control information generation device, control information generation method, program, and laminate molding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231102

R150 Certificate of patent or registration of utility model

Ref document number: 7381422

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150