JP2022036917A - Conductive composition - Google Patents

Conductive composition Download PDF

Info

Publication number
JP2022036917A
JP2022036917A JP2021132275A JP2021132275A JP2022036917A JP 2022036917 A JP2022036917 A JP 2022036917A JP 2021132275 A JP2021132275 A JP 2021132275A JP 2021132275 A JP2021132275 A JP 2021132275A JP 2022036917 A JP2022036917 A JP 2022036917A
Authority
JP
Japan
Prior art keywords
mass
printing
acid
conductive
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021132275A
Other languages
Japanese (ja)
Inventor
和宏 久保田
Kazuhiro Kubota
安宣 田上
Yasunobu Tagami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
NOF Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NOF Corp filed Critical NOF Corp
Publication of JP2022036917A publication Critical patent/JP2022036917A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Conductive Materials (AREA)

Abstract

To provide a conductive composition which is difficult to be changed in a line width of a wiring pattern and viscosity of a composition before and after restart of printing when printing is restarted after printing has been stopped for a constant time, and is excellent in printability and conductivity.SOLUTION: A conductive composition contains (a) 0.1-5 mass% of polyethylene glycol having an average molecular weight of 200-2,000, (b) 0.1-5 mass% of an aliphatic monocarboxylic acid having 8 to 18 carbon atoms, (c) 60-95 mass% of conductive particles, and (d) 1-30 mass% of a binder resin.SELECTED DRAWING: None

Description

本発明は、加熱前の組成物を静置した際に湿潤状態を長時間維持可能であり、印刷性と導電性に優れた導電性組成物に関する。 The present invention relates to a conductive composition which can maintain a wet state for a long time when the composition before heating is allowed to stand and has excellent printability and conductivity.

近年、安全性や環境性に対する意識の高まりから、人体や環境に影響を及ぼす薬液の使用量削減が求められている。電子部品の配線形成法においても、多量の薬液を使用する従来のウェットエッチング法から、比較的薬液の使用量が少ない印刷法への置き換えが進められている。その中で、汎用的な印刷法であるスクリーン印刷機を用いた配線形成技術の開発が盛んに行なわれており、その材料としてスクリーン印刷に適した導電性ペーストの研究開発が進められている。導電性ペーストは、その導電性や塗布する基板への密着性など、目標とする製品の開発に必要な様々な特性が要求される。その中で、生産性の観点から特に強く要求される特性が印刷性であり、印刷性に優れた導電性ペーストが強く求められている。例えば、特許文献1には細線印刷性に優れ、印刷線幅が変化し難い導電性ペーストが開示されている。 In recent years, due to the growing awareness of safety and the environment, it is required to reduce the amount of chemicals used that affect the human body and the environment. In the wiring forming method for electronic components, the conventional wet etching method that uses a large amount of chemical solution is being replaced with a printing method that uses a relatively small amount of chemical solution. Among them, the development of wiring forming technology using a screen printing machine, which is a general-purpose printing method, is being actively carried out, and research and development of a conductive paste suitable for screen printing as a material thereof is being promoted. The conductive paste is required to have various properties necessary for the development of the target product, such as its conductivity and adhesion to the substrate to be coated. Among them, printability is a characteristic that is particularly strongly required from the viewpoint of productivity, and a conductive paste having excellent printability is strongly demanded. For example, Patent Document 1 discloses a conductive paste having excellent fine line printability and having a print line width that does not easily change.

スクリーン印刷を用いた配線形成においては、長時間連続的に同等の線幅の配線パターンが印刷可能な導電性ペーストが生産性の面で好ましい。しかし、実際の製造工程では印刷されたパターンの検査や印刷機の点検などの作業上の都合から、長時間印刷を停止することが頻繁に行われる。例えば、特許文献1の導電性ペーストを用いてスクリーン印刷を実施した場合、印刷を一定時間停止した後に印刷を再開したとき、スクリーン版上で導電性ペーストが乾燥することにより生じるメッシュの目詰まりや、導電性ペースト中の溶剤が揮発することにより生じる増粘によって、印刷再開後の配線パターンにカスレなどの欠陥が発生したり、印刷再開前後で配線パターンの線幅が大きく変化したりするという問題点がある。
すなわち、前述の導電性ペーストを用いてスクリーン印刷を一定時間停止した場合、停止時間の長短によっては、配線パターンの線幅のばらつきによる抵抗値の上昇や、カスレによる断線が生じるおそれがあった。
In wiring formation using screen printing, a conductive paste capable of continuously printing a wiring pattern having the same line width for a long time is preferable in terms of productivity. However, in the actual manufacturing process, printing is frequently stopped for a long time due to work reasons such as inspection of printed patterns and inspection of printing machines. For example, when screen printing is performed using the conductive paste of Patent Document 1, when printing is restarted after printing is stopped for a certain period of time, the mesh is clogged due to the conductive paste drying on the screen plate. The thickening caused by the volatilization of the solvent in the conductive paste causes defects such as blurring in the wiring pattern after resuming printing, and the line width of the wiring pattern changes significantly before and after resuming printing. There is a point.
That is, when screen printing is stopped for a certain period of time using the above-mentioned conductive paste, there is a possibility that the resistance value may increase due to the variation in the line width of the wiring pattern or the wire may be broken due to blurring depending on the length of the stop time.

特開2014-67492号公報Japanese Unexamined Patent Publication No. 2014-67492

本発明が解決すべき課題は、印刷を一定時間停止した後に印刷を再開した場合に、印刷再開前後で配線パターンの線幅や組成物の粘度が変化し難く、印刷性と導電性に優れた導電性組成物を提供することである。 The problem to be solved by the present invention is that when printing is restarted after printing is stopped for a certain period of time, the line width of the wiring pattern and the viscosity of the composition are unlikely to change before and after printing is restarted, and the printability and conductivity are excellent. It is to provide a conductive composition.

本発明者らは、上記課題を解決するために検討を重ねた結果、導電性粒子とバインダ樹脂に加えて、導電性粒子の分散安定性に優れた特定の成分と、組成物の湿潤状態を長時間維持可能な特定の成分とを配合することにより、上記課題を解決できる導電性組成物を提供できることを見出し、本発明を完成するに至った。 As a result of repeated studies to solve the above problems, the present inventors have found, in addition to the conductive particles and the binder resin, a specific component having excellent dispersion stability of the conductive particles and a wet state of the composition. We have found that it is possible to provide a conductive composition that can solve the above-mentioned problems by blending with a specific component that can be maintained for a long time, and have completed the present invention.

すなわち、本発明は、(a)平均分子量が200~2,000のポリエチレングリコールを0.1~5質量%、(b)炭素数が8~18の脂肪族モノカルボン酸を0.1~5質量%、(c)導電性粒子を60~95質量%、および(d)バインダ樹脂を1~30質量%含有する導電性組成物である。 That is, in the present invention, (a) polyethylene glycol having an average molecular weight of 200 to 2,000 is 0.1 to 5% by mass, and (b) an aliphatic monocarboxylic acid having 8 to 18 carbon atoms is 0.1 to 5 by mass. It is a conductive composition containing (c) 60 to 95% by mass of conductive particles and (d) 1 to 30% by mass of a binder resin.

本発明の導電性組成物によれば、導電性と印刷性に優れた配線形成材料として使用でき、印刷を一定時間停止した後に印刷を再開した場合に、印刷再開前後で配線パターンの線幅や組成物の粘度が変化し難いという効果が得られる。したがって、抵抗値の上昇や断線が起き難い配線パターンを印刷することができる。 According to the conductive composition of the present invention, it can be used as a wiring forming material having excellent conductivity and printability, and when printing is restarted after printing is stopped for a certain period of time, the line width of the wiring pattern before and after printing is restarted The effect that the viscosity of the composition does not change easily can be obtained. Therefore, it is possible to print a wiring pattern in which the resistance value is unlikely to increase or disconnection is unlikely to occur.

以下、本発明の実施形態を説明する。
なお、本明細書において記号「~」を用いて規定された数値範囲は「~」の両端(上限および下限)の数値を含むものとする。例えば「2~5」は2以上かつ5以下を表す。
更に、濃度または量を特定した場合、任意のより高い方の濃度または量と、任意のより低い方の濃度または量とを関連づけることができる。例えば「2~10質量%」および「好ましくは4~8質量%」の記載がある場合、「2~4質量%」、「2~8質量%」、「4~10質量%」および「8~10質量%」の記載も包含される。
Hereinafter, embodiments of the present invention will be described.
In addition, the numerical range defined by using the symbol "-" in this specification shall include the numerical values at both ends (upper limit and lower limit) of "-". For example, "2 to 5" represents 2 or more and 5 or less.
Further, if a concentration or amount is specified, any higher concentration or amount can be associated with any lower concentration or amount. For example, when there is a description of "2 to 10% by mass" and "preferably 4 to 8% by mass", "2 to 4% by mass", "2 to 8% by mass", "4 to 10% by mass" and "8". The description of "~ 10% by mass" is also included.

本発明の導電性組成物は、(a)平均分子量が200~2,000のポリエチレングリコール、(b)炭素数が8~18の脂肪族モノカルボン酸、(c)導電性粒子、および(d)バインダ樹脂を含有する。以下、各成分について説明する。
なお、上記成分(a)、(b)、(c)および(d)の各含有量は、成分(a)、(b)、(c)および(d)の各含有量の合計値に対する割合(質量%)である。
The conductive composition of the present invention comprises (a) polyethylene glycol having an average molecular weight of 200 to 2,000, (b) an aliphatic monocarboxylic acid having 8 to 18 carbon atoms, (c) conductive particles, and (d). ) Contains binder resin. Hereinafter, each component will be described.
The content of each of the above components (a), (b), (c) and (d) is the ratio of each content of the components (a), (b), (c) and (d) to the total value. (Mass%).

〔成分(a):ポリエチレングリコール〕
本発明で用いられる成分(a)はポリエチレングリコールであり、その平均分子量は200~2,000であり、湿潤性維持の観点から、好ましく400~1,500、より好ましくは500~800である。これらは一種を単独で使用し、または二種以上を併用することもできる。
[Component (a): Polyethylene glycol]
The component (a) used in the present invention is polyethylene glycol, the average molecular weight thereof is 200 to 2,000, and from the viewpoint of maintaining wettability, it is preferably 400 to 1,500, more preferably 500 to 800. These can be used alone or in combination of two or more.

なお、ポリエチレングリコールの平均分子量は、JIS K1557に準拠して測定した水酸基価に基づいて平均分子量を算出する方法により測定することができる。 The average molecular weight of polyethylene glycol can be measured by a method of calculating the average molecular weight based on the hydroxyl value measured according to JIS K1557.

成分(a)の含有量は、0.1~5質量%である。湿潤性維持の観点からは、好ましくは0.2~5質量%、より好ましくは0.3~5質量%、さらに好ましくは0.5~5質量%である。
一方、硬化膜の導電性の観点からは、好ましくは0.1~4質量%、より好ましくは0.1~3質量%、さらに好ましくは0.1~2質量%である。
成分(a)の含有量が少なすぎると、良好な湿潤性が発揮され難くなり、長時間の湿潤性を維持し難くなるため、印刷再開前後での配線パターンの線幅が変化し易くなることがある。また成分(a)の含有量が多すぎると、導電性組成物の導電性が低下することがある。
The content of the component (a) is 0.1 to 5% by mass. From the viewpoint of maintaining wettability, it is preferably 0.2 to 5% by mass, more preferably 0.3 to 5% by mass, and further preferably 0.5 to 5% by mass.
On the other hand, from the viewpoint of the conductivity of the cured film, it is preferably 0.1 to 4% by mass, more preferably 0.1 to 3% by mass, and further preferably 0.1 to 2% by mass.
If the content of the component (a) is too small, it becomes difficult to exhibit good wettability and it becomes difficult to maintain the wettability for a long time, so that the line width of the wiring pattern tends to change before and after resuming printing. There is. Further, if the content of the component (a) is too large, the conductivity of the conductive composition may decrease.

〔成分(b):脂肪族モノカルボン酸〕
本発明で用いられる成分(b)は炭素数が8~18の脂肪族モノカルボン酸である。脂肪族モノカルボン酸としては、例えば、直鎖飽和脂肪族モノカルボン酸、直鎖不飽和脂肪族モノカルボン酸、分岐飽和脂肪族モノカルボン酸、分岐不飽和脂肪族モノカルボン酸が挙げられる。上記化合物から選ばれる一種を単独で使用し、または二種以上を併用することもできる。
[Component (b): Aliphatic monocarboxylic acid]
The component (b) used in the present invention is an aliphatic monocarboxylic acid having 8 to 18 carbon atoms. Examples of the aliphatic monocarboxylic acid include a linear saturated aliphatic monocarboxylic acid, a linear unsaturated aliphatic monocarboxylic acid, a branched saturated aliphatic monocarboxylic acid, and a branched unsaturated aliphatic monocarboxylic acid. One selected from the above compounds may be used alone, or two or more thereof may be used in combination.

炭素数8~18の直鎖飽和脂肪族モノカルボン酸としては、例えば、カプリル酸、ペラルゴン酸、カプリン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、マルガリン酸、ステアリン酸などが挙げられる。炭素数8~18の直鎖不飽和脂肪族モノカルボン酸としては、例えば、ミリストレイン酸、パルミトレイン酸、ペトロセリン酸、オレイン酸などが挙げられる。炭素数8~18の分岐飽和脂肪族モノカルボン酸としては、例えば、2-エチルヘキサン酸などが挙げられる。 Examples of the linear saturated aliphatic monocarboxylic acid having 8 to 18 carbon atoms include caprylic acid, pelargonic acid, capric acid, undecylic acid, lauric acid, tridecylic acid, myristic acid, pentadecylic acid, palmitic acid, margaric acid, and stear. Acids and the like can be mentioned. Examples of the linear unsaturated aliphatic monocarboxylic acid having 8 to 18 carbon atoms include myristoleic acid, palmitoleic acid, petroselinic acid, and oleic acid. Examples of the branched saturated aliphatic monocarboxylic acid having 8 to 18 carbon atoms include 2-ethylhexanoic acid.

成分(b)として、導電性の観点から、炭素数8~18の直鎖飽和脂肪族モノカルボン酸が好ましい。また、直鎖飽和脂肪族モノカルボン酸は、炭素数が12~18のものがより好ましく、炭素数が12~14のものがさらに好ましく、炭素数12のものが特に好ましい。 As the component (b), a linear saturated aliphatic monocarboxylic acid having 8 to 18 carbon atoms is preferable from the viewpoint of conductivity. Further, the linear saturated aliphatic monocarboxylic acid preferably has 12 to 18 carbon atoms, more preferably 12 to 14 carbon atoms, and particularly preferably 12 carbon atoms.

成分(b)の含有量は、0.1~5質量%である。粘度変化抑制の観点からは、好ましくは0.3~5質量%、より好ましくは0.5~5質量%、さらに好ましくは1~5質量%である。
一方、硬化膜の導電性の観点からは、好ましくは0.1~4質量%、より好ましくは0.1~3.5質量%、さらに好ましくは0.1~3質量%である。
成分(b)の含有量が少なすぎると、導電性組成物の粘度が増加しやすくなることがある。また成分(b)の含有量が多すぎると、導電性組成物の導電性が低下することがある。
The content of the component (b) is 0.1 to 5% by mass. From the viewpoint of suppressing the change in viscosity, it is preferably 0.3 to 5% by mass, more preferably 0.5 to 5% by mass, and further preferably 1 to 5% by mass.
On the other hand, from the viewpoint of the conductivity of the cured film, it is preferably 0.1 to 4% by mass, more preferably 0.1 to 3.5% by mass, and further preferably 0.1 to 3% by mass.
If the content of the component (b) is too small, the viscosity of the conductive composition may easily increase. Further, if the content of the component (b) is too large, the conductivity of the conductive composition may decrease.

〔成分(c):導電性粒子〕
本発明で用いられる成分(c)は導電性粒子であり、例えば、銅粒子などの無機導電性粒子を用いることができる。銅粒子は、銅のみからなっていてもよいが、銀や白金などの銅以外の金属、金属酸化物、金属硫化物を更に含有していてもよい。銅粒子が銅以外の金属、金属酸化物、金属硫化物を更に含有する場合、銅粒子中の銅の質量比率は50質量%以上とすることが好ましい。また、銅粒子は表面層や突起物が形成された形状であってもよい。
[Component (c): Conductive particles]
The component (c) used in the present invention is a conductive particle, and for example, an inorganic conductive particle such as a copper particle can be used. The copper particles may be composed of only copper, but may further contain a metal other than copper such as silver and platinum, a metal oxide, and a metal sulfide. When the copper particles further contain a metal other than copper, a metal oxide, and a metal sulfide, the mass ratio of copper in the copper particles is preferably 50% by mass or more. Further, the copper particles may have a shape in which a surface layer or protrusions are formed.

導電性粒子は市販のものをそのまま用いても良いが、耐酸化性の向上などを目的に、表面を被覆した表面被覆導電性粒子を用いることが好ましい。中でも、アミン化合物により表面を被覆した表面被覆導電性粒子を用いることが好ましく、下記式(1)で表されるアミン化合物により表面を被覆した表面被覆導電性粒子を用いることがより好ましい。 Commercially available conductive particles may be used as they are, but it is preferable to use surface-coated conductive particles for the purpose of improving oxidation resistance and the like. Above all, it is preferable to use surface-coated conductive particles whose surface is coated with an amine compound, and it is more preferable to use surface-coated conductive particles whose surface is coated with an amine compound represented by the following formula (1).

Figure 2022036917000001
Figure 2022036917000001

(式(1)中、
mは0~3の整数、nは0~2の整数であり、
n=0のとき、mは0~3のいずれかであり、
n=1またはn=2のとき、mは1~3のいずれかである。)
(In equation (1),
m is an integer of 0 to 3, n is an integer of 0 to 2, and so on.
When n = 0, m is one of 0 to 3 and
When n = 1 or n = 2, m is either 1 to 3. )

上記式(1)で表されるアミン化合物などのアミン化合物で表面を被覆した表面被覆導電性粒子は、より良好な耐酸化性を得る観点から、脂肪族モノカルボン酸でさらに被覆された表面被覆導電性粒子とすることが好ましい。
これにより導電性粒子表面は、アミン化合物により形成された第1被覆層と、脂肪族モノカルボン酸により形成された第2被覆層とで被覆される。好ましくは、第1被覆層は導電性粒子表面に形成され、第2被覆層は第1被覆層上に形成される。
The surface-coated conductive particles whose surface is coated with an amine compound such as the amine compound represented by the above formula (1) are further coated with an aliphatic monocarboxylic acid from the viewpoint of obtaining better oxidation resistance. It is preferable to use conductive particles.
As a result, the surface of the conductive particles is coated with the first coating layer formed of the amine compound and the second coating layer formed of the aliphatic monocarboxylic acid. Preferably, the first coating layer is formed on the surface of the conductive particles and the second coating layer is formed on the first coating layer.

第2被覆層を形成する脂肪族モノカルボン酸としては、炭素数8~20の脂肪族モノカルボン酸が好ましい。該脂肪族モノカルボン酸としては、例えば、直鎖飽和脂肪族モノカルボン酸、直鎖不飽和脂肪族モノカルボン酸、分岐飽和脂肪族モノカルボン酸、分岐不飽和脂肪族モノカルボン酸が挙げられる。
炭素数8~20の直鎖飽和脂肪族モノカルボン酸としては、例えば、カプリル酸、ペラルゴン酸、カプリン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、マルガリン酸、ステアリン酸、ノナデシル酸、アラキジン酸などが挙げられる。炭素数8~20の直鎖不飽和脂肪族モノカルボン酸としては、例えば、ミリストレイン酸、パルミトレイン酸、ペトロセリン酸、オレイン酸などが挙げられる。炭素数8~20の分岐飽和脂肪族モノカルボン酸としては、例えば、2-エチルヘキサン酸などが挙げられる。
上記脂肪族モノカルボン酸として、上記化合物から選ばれる一種を単独で使用し、または二種以上を併用することもできる。
表面被覆導電性粒子の分散性から、使用する成分(b)の脂肪族モノカルボン酸と構造や炭素数が同じものまたは近似のものを用いることが好ましい。
As the aliphatic monocarboxylic acid forming the second coating layer, an aliphatic monocarboxylic acid having 8 to 20 carbon atoms is preferable. Examples of the aliphatic monocarboxylic acid include a linear saturated aliphatic monocarboxylic acid, a linear unsaturated aliphatic monocarboxylic acid, a branched saturated aliphatic monocarboxylic acid, and a branched unsaturated aliphatic monocarboxylic acid.
Examples of the linear saturated aliphatic monocarboxylic acid having 8 to 20 carbon atoms include caprylic acid, pelargonic acid, capric acid, undecic acid, lauric acid, tridecanoic acid, myristic acid, pentadecic acid, palmitic acid, margaric acid, and stear. Acids, nonadesilic acid, lauric acid and the like can be mentioned. Examples of the linear unsaturated aliphatic monocarboxylic acid having 8 to 20 carbon atoms include myristoleic acid, palmitoleic acid, petroselinic acid, and oleic acid. Examples of the branched saturated aliphatic monocarboxylic acid having 8 to 20 carbon atoms include 2-ethylhexanoic acid.
As the aliphatic monocarboxylic acid, one selected from the above compounds may be used alone, or two or more thereof may be used in combination.
From the viewpoint of the dispersibility of the surface-coated conductive particles, it is preferable to use one having the same structure and carbon number as that of the aliphatic monocarboxylic acid of the component (b) to be used.

表面被覆導電性粒子を製造する方法は特に限定されない。アミン化合物で表面を被覆した表面被覆導電性粒子を得る方法としては、例えば、導電性粒子を塩化アンモニウム水溶液などにより洗浄した後、該洗浄後の導電性粒子をアミン化合物の溶液中に添加し、必要に応じて加熱する方法が挙げられる。
アミン化合物により形成された第1被覆層と、脂肪族モノカルボン酸により形成された第2被覆層とで被覆された表面被覆導電性粒子の製造方法としては、例えば、アミン化合物で表面を被覆した表面被覆導電性粒子を、脂肪族モノカルボン酸の溶液に添加する方法が挙げられる。なお、脂肪族モノカルボン酸の溶液に添加した後に、必要に応じて、加熱してもよい。以下、導電性粒子の記載は、表面被覆導電性粒子を包含するものとする。
The method for producing the surface-coated conductive particles is not particularly limited. As a method for obtaining surface-coated conductive particles whose surface is coated with an amine compound, for example, the conductive particles are washed with an aqueous solution of ammonium chloride or the like, and then the washed conductive particles are added to the solution of the amine compound. Examples include a method of heating as needed.
As a method for producing surface-coated conductive particles coated with a first coating layer formed of an amine compound and a second coating layer formed of an aliphatic monocarboxylic acid, for example, the surface is coated with an amine compound. Examples thereof include a method of adding surface-coated conductive particles to a solution of an aliphatic monocarboxylic acid. After being added to the solution of the aliphatic monocarboxylic acid, it may be heated if necessary. Hereinafter, the description of the conductive particles shall include the surface-coated conductive particles.

導電性粒子の平均粒径(D50)については、特に限定されないが、成分(c)としての導電性粒子を含有する導電性組成物をインクジェット印刷やスクリーン印刷などの各種印刷方法において良好に印刷可能とするためには、導電性粒子の平均粒径(D50)を制御することが好ましい。具体的には、導電性粒子の平均粒径(D50)は、5nm~20μmであることが好ましく、10nm~10μmであることがより好ましい。
なお、導電性粒子の平均粒径(D50)は、レーザー回折・散乱式粒度分布測定装置(マイクロトラック・ベル(株)製「マイクロトラックMT3000II」)により測定することができる。
The average particle size (D50) of the conductive particles is not particularly limited, but the conductive composition containing the conductive particles as the component (c) can be satisfactorily printed by various printing methods such as inkjet printing and screen printing. It is preferable to control the average particle size (D50) of the conductive particles. Specifically, the average particle size (D50) of the conductive particles is preferably 5 nm to 20 μm, more preferably 10 nm to 10 μm.
The average particle size (D50) of the conductive particles can be measured by a laser diffraction / scattering type particle size distribution measuring device (“Microtrack MT3000II” manufactured by Microtrac Bell Co., Ltd.).

また、導電性粒子のBET比表面積は0.05~400m/gであることが好ましく、0.1~200m/gであることがより好ましい。
なお、導電性粒子のBET比表面積は、比表面積測定装置(ユアサアイオニクス(株)製「モノソーブ」)を用いてBET1点法により測定することができる。
The BET specific surface area of the conductive particles is preferably 0.05 to 400 m 2 / g, more preferably 0.1 to 200 m 2 / g.
The BET specific surface area of the conductive particles can be measured by the BET one-point method using a specific surface area measuring device (“Monosorb” manufactured by Yuasa Ionics Co., Ltd.).

導電性粒子の形状やアスペクト比(粒子の長径と短径との比)に特に制限はなく、球状、多面体状、扁平状、板状、フレーク状、薄片状、棒状、樹枝状、ファイバー状等の各種形状のものを用いることができる。導電性粒子は、構成成分、平均粒径、形状、アスペクト比等の異なるもの中から選ばれる一種を単独で使用し、または二種以上を併用することもできる。
導電性粒子として、球状、扁平状、板状、フレーク状、薄片状、樹枝状から選ばれる一種の導電性粒子または二種以上の導電性粒子を用いることが導電性の観点から好ましく、球状、板状、樹枝状から選ばれる一種の導電性粒子または二種の導電性粒子を用いることがより好ましい。また、二種の導電性粒子を併用する場合は、球状の導電性粒子と板状の導電性粒子を用いることが好ましい。
球状の導電性粒子と板状の導電性粒子の二種を併用する場合の質量比は、組成物を加熱硬化して得られる硬化膜の導電性の観点から、球状の導電性粒子:板状の導電性粒子は1:99~99:1であることが好ましく、5:95~95:5であることがより好ましく、10:90~90:10であることがさらに好ましい。
The shape and aspect ratio (ratio of major axis to minor axis of particles) of conductive particles are not particularly limited, and are spherical, polyhedral, flat, plate-like, flake-like, flaky, rod-like, dendritic, fiber-like, etc. Various shapes can be used. As the conductive particles, one type selected from those having different constituents, average particle size, shape, aspect ratio, etc. may be used alone, or two or more types may be used in combination.
As the conductive particles, it is preferable to use one kind of conductive particles selected from spherical, flat, plate-like, flake-like, flaky-like, and dendritic-like, or two or more kinds of conductive particles, and it is preferable from the viewpoint of conductivity to use spherical particles. It is more preferable to use one kind of conductive particles selected from plate-like and dendritic-like ones or two kinds of conductive particles. When two types of conductive particles are used in combination, it is preferable to use spherical conductive particles and plate-shaped conductive particles.
When two types of spherical conductive particles and plate-shaped conductive particles are used in combination, the mass ratio is determined from the viewpoint of the conductivity of the cured film obtained by heating and curing the composition: spherical conductive particles: plate-shaped. The conductive particles of No. 1 are preferably 1:99 to 99: 1, more preferably 5:95 to 95: 5, and even more preferably 10:90 to 90:10.

成分(c)の含有量は、60~95質量%である。成分(c)の含有量の下限は、好ましくは70質量%であり、より好ましくは80質量%である。また、成分(c)の含有量の上限は、好ましくは90質量%である。 The content of the component (c) is 60 to 95% by mass. The lower limit of the content of the component (c) is preferably 70% by mass, more preferably 80% by mass. The upper limit of the content of the component (c) is preferably 90% by mass.

〔成分(d):バインダ樹脂〕
本発明で用いられる成分(d)はバインダ樹脂であり、本発明の導電性組成物においてバインダとして作用する成分である。
成分(d)としては、導電性ペースト等に用いられる公知のバインダ樹脂を用いることができ、加熱や光照射により硬化する熱硬化性樹脂や光硬化性樹脂、および熱可塑性樹脂などを例示することができる。
[Component (d): Binder resin]
The component (d) used in the present invention is a binder resin, which is a component that acts as a binder in the conductive composition of the present invention.
As the component (d), a known binder resin used for a conductive paste or the like can be used, and examples thereof include a thermosetting resin, a photocurable resin, and a thermoplastic resin that are cured by heating or light irradiation. Can be done.

熱硬化性樹脂としては、例えば、エポキシ樹脂、メラミン樹脂、フェノール樹脂、シリコーン樹脂、ポリウレタン樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、ポリビニルフェノール樹脂、キシレン樹脂、アクリル樹脂、オキセタン樹脂、ジアリルフタレート樹脂などが挙げられる。光硬化性樹脂としては、例えば、アクリル樹脂、イミド樹脂、ウレタン樹脂などが挙げられる。熱可塑性樹脂としては、例えば、ポリアミド、ポリエチレンテレフタレート、ポリエチレンなどのポリオレフィン系樹脂;アクリロニトリル-ブタジエン-スチレン共重合体樹脂などが挙げられる。
成分(d)のバインダ樹脂として、これらの樹脂から選ばれる一種を単独で使用し、または二種以上を併用することもできる。
Examples of the thermosetting resin include epoxy resin, melamine resin, phenol resin, silicone resin, polyurethane resin, unsaturated polyester resin, vinyl ester resin, polyvinylphenol resin, xylene resin, acrylic resin, oxetane resin, diallyl phthalate resin and the like. Can be mentioned. Examples of the photocurable resin include acrylic resin, imide resin, urethane resin and the like. Examples of the thermoplastic resin include polyolefin resins such as polyamide, polyethylene terephthalate, and polyethylene; and acrylonitrile-butadiene-styrene copolymer resins.
As the binder resin of the component (d), one kind selected from these resins may be used alone, or two or more kinds may be used in combination.

また、熱硬化性樹脂であるエポキシ樹脂、フェノール樹脂、およびポリビニルフェノール樹脂から選ばれる一種または二種以上を用いることが硬化性の観点から好ましく、エポキシ樹脂およびフェノール樹脂から選ばれる一種または二種を用いることがより好ましい。 Further, it is preferable to use one or more selected from the thermosetting resins such as epoxy resin, phenol resin, and polyvinylphenol resin from the viewpoint of curability, and one or two selected from epoxy resin and phenol resin. It is more preferable to use it.

成分(d)の含有量は、1~30質量%であり、好ましくは3~25質量%、より好ましくは4~20質量%、さらに好ましくは5~15質量%である。成分(d)の含有量が少なすぎると、導電性組成物を用いて印刷するときに十分な流動性を持たせることが難しくなることがある。成分(d)の含有量が多すぎると、導電性組成物中における成分(c)の導電性粒子同士が接触し難くなり、優れた導電性を示す硬化膜が得られ難くなることがある。 The content of the component (d) is 1 to 30% by mass, preferably 3 to 25% by mass, more preferably 4 to 20% by mass, and further preferably 5 to 15% by mass. If the content of the component (d) is too small, it may be difficult to provide sufficient fluidity when printing with the conductive composition. If the content of the component (d) is too large, it may be difficult for the conductive particles of the component (c) to come into contact with each other in the conductive composition, and it may be difficult to obtain a cured film exhibiting excellent conductivity.

また、成分(d)としてエポキシ樹脂とフェノール樹脂の二種を併用する場合の質量比は、硬化性の観点から、エポキシ樹脂:フェノール樹脂は1:99~99:1であることが好ましく、5:95~95:5であることがより好ましく、10:90~90:10であることがさらに好ましい。 Further, the mass ratio when two kinds of epoxy resin and phenol resin are used in combination as the component (d) is preferably 1:99 to 99: 1 for epoxy resin: phenol resin from the viewpoint of curability. : 95 to 95: 5 is more preferable, and 10:90 to 90:10 is even more preferable.

〔その他成分〕
本発明の導電性組成物は、上記の成分(a)~(d)以外に、本発明の効果を阻害しない範囲で、必要に応じて、溶剤、滑剤、レベリング剤、分散剤、硬化剤、硬化促進剤、可塑剤、粘度調整剤、発泡剤等の各種添加剤を含有していてもよい。また、本発明の導電性組成物は、原料成分および製造過程の装置等から不可避的に混入し得る不純物を含んでいてもよい。
[Other ingredients]
In addition to the above-mentioned components (a) to (d), the conductive composition of the present invention contains a solvent, a lubricant, a leveling agent, a dispersant, a curing agent, as needed, as long as the effects of the present invention are not impaired. It may contain various additives such as a curing accelerator, a plasticizer, a viscosity modifier, and a foaming agent. In addition, the conductive composition of the present invention may contain impurities that can be inevitably mixed from raw material components and devices in the manufacturing process.

(溶剤)
本発明の導電性組成物は、塗工性の改善や粘度の調節を目的に、溶剤を含有していてもよい。
溶剤の種類としては、例えば、エチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、プロピレングリコールジアセテート、ジプロピレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテルアセテートなどのエーテル系アルコール類;プロピレングリコール、1,4-ブタンジオールなどの非エーテル系アルコール類;シクロヘキサノールアセテート、メチルメトキシプロピオネート、エチルエトキシプロピオネート、1,6-ヘキサンジオールアセテートなどのエステル類;イソホロン、シクロヘキサノンなどのケトン類;ターピネオール、ジヒドロターピネオール、ジヒドロターピニルアセテート、イソボルニルシクロヘキサノールなどのテルペン類;オクタン、デカン、ドデカン、テトラデカン、ヘキサデカン、炭酸プロピレンなどのその他の炭化水素類等が挙げられる。
これらの溶剤の中で、上記エーテル系アルコール類、上記エステル類および上記テルペン類から選ばれる一種または二種以上を用いることが好ましく、更にテルペン類から選ばれる一種または二種以上を用いることがより好ましい。
(solvent)
The conductive composition of the present invention may contain a solvent for the purpose of improving the coatability and adjusting the viscosity.
Examples of the type of solvent include ether alcohols such as ethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether, diethylene glycol monoethyl ether acetate, propylene glycol diacetate, dipropylene glycol monomethyl ether, and ethylene glycol monobutyl ether acetate; propylene glycol. , Non-ether alcohols such as 1,4-butanediol; esters such as cyclohexanol acetate, methylmethoxypropionate, ethylethoxypropionate, 1,6-hexanediol acetate; ketones such as isophorone and cyclohexanone. Terpenes such as tarpineol, dihydroterpineol, dihydroterpinyl acetate, isobornylcyclohexanol; other hydrocarbons such as octane, decane, dodecane, tetradecane, hexadecane, propylene carbonate and the like.
Among these solvents, it is preferable to use one or more kinds selected from the above ether alcohols, the above esters and the above terpenes, and more preferably one or more kinds selected from the terpenes. preferable.

溶剤の種類は上記に制限されず、用途に応じて、様々な溶剤から選ばれる一種を単独で使用し、または二種以上を混合して使用することもできる。二種以上を混合する場合の混合比率は特に制限されない。 The type of solvent is not limited to the above, and depending on the application, one selected from various solvents may be used alone, or two or more of them may be mixed and used. The mixing ratio when two or more kinds are mixed is not particularly limited.

本発明の導電性組成物が溶剤を含有する場合、溶剤の含有量は、成分(a)~(d)の合計含有量100質量部に対して、好ましくは2~20質量部であり、より好ましくは3~15質量部、さらに好ましくは4~10質量部である。 When the conductive composition of the present invention contains a solvent, the content of the solvent is preferably 2 to 20 parts by mass with respect to 100 parts by mass of the total content of the components (a) to (d). It is preferably 3 to 15 parts by mass, more preferably 4 to 10 parts by mass.

(滑剤)
本発明で用いる導電性組成物は、組成物中での成分(c)の導電性粒子の分散性調節を目的に、滑剤を適宜添加することができる。滑剤の種類およびその混合比率は特に制限されず、用途に応じて一種を単独で、または二種以上を混合して用いることができる。
滑剤の種類としては、例えば、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ベヘン酸などの脂肪酸類;ナトリウム、カリウム、バリウム、マグネシウム、カルシウム、アルミニウム、鉄、コバルト、マンガン、亜鉛、スズなどの金属と前記脂肪酸類とから形成された脂肪酸金属塩類;ステアリン酸アミド、オレイン酸アミド、ベヘン酸アミド、パルミチン酸アミド、ラウリン酸アミドなどの脂肪酸アミド類;ステアリン酸ブチルなどの脂肪酸エステル類;パラフィンワックス、流動パラフィン等のワックス類;エチレングリコール、ステアリルアルコール等のアルコール類;ポリエチレングリコール、ポリプロピレングリコール、およびこれらの変性物からなるポリエーテル類;シリコーンオイル等のポリシロキサン類;フッ素系オイルなどのフッ素化合物が挙げられる。
これらの滑剤の中で、脂肪酸類および脂肪酸金属塩類から選ばれる一種または二種以上を用いることが好ましく、更に、ステアリン酸マグネシウムを用いることがより好ましい。
(Glidant)
In the conductive composition used in the present invention, a lubricant can be appropriately added for the purpose of adjusting the dispersibility of the conductive particles of the component (c) in the composition. The type of lubricant and the mixing ratio thereof are not particularly limited, and one type may be used alone or two or more types may be mixed depending on the intended use.
Types of lubricants include, for example, fatty acids such as lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid; sodium, potassium, barium, magnesium, calcium, aluminum, iron, cobalt, manganese, zinc, tin, etc. Fatty acid metal salts formed from the metal and the fatty acids; fatty acid amides such as stearate amide, oleic acid amide, behenic acid amide, palmitate amide, lauric acid amide; fatty acid esters such as butyl stearate; paraffin wax , Waxes such as liquid paraffin; Alcohols such as ethylene glycol and stearyl alcohol; Polyethers composed of polyethylene glycol, polypropylene glycol and modified products thereof; Polysiloxanes such as silicone oil; Fluorine compounds such as fluorine-based oil Can be mentioned.
Among these lubricants, it is preferable to use one or more selected from fatty acids and fatty acid metal salts, and it is more preferable to use magnesium stearate.

本発明の導電性組成物が滑剤を含有する場合、滑剤の含有量は、成分(a)~(d)の合計含有量100質量部に対して、好ましくは0.01~10質量部であり、より好ましくは0.1~5質量部、さらに好ましくは0.2~3質量部である。 When the conductive composition of the present invention contains a lubricant, the content of the lubricant is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the total content of the components (a) to (d). , More preferably 0.1 to 5 parts by mass, still more preferably 0.2 to 3 parts by mass.

(レベリング剤)
本発明で用いる導電性組成物は、導電性組成物から得られる塗工膜の表面欠陥を調節することを目的に、レベリング剤を適宜添加することができる。レベリング剤の種類およびその混合比率は特に制限されず、用途に応じて一種を単独で、または二種以上を混合して用いることができる。
レベリング剤の種類としては、例えば、BYK-354、BYK-355、BYK-356、BYK-350、BYK-381、BYK-394、BYK-399、BYK-3440、BYK-3441、BYK-358N、BYK-361N(以上、ビックケミー・ジャパン(株)製、「BYK」は登録商標)などのアクリル系化合物類;ポリフローKL-400X、ポリフローKL-400HF、ポリフローKL-401、ポリフローKL-402、ポリフローKL-403、ポリフローKL-404、ポリフローKL-406X(以上、共栄社化学(株)製)などのシリコーン系化合物類;メガファックF410、メガファックF281、メガファックF477、メガファックF510、メガファックF552、メガファックF554、メガファックF556、メガファックF557、メガファックF558、メガファックF559、メガファックF560、メガファックF561、メガファックF563、メガファックF569(以上、DIC(株)製、「メガファック」は登録商標)などのフッ素系化合物類が挙げられる。
これらのレベリング剤の中で、フッ素系化合物類から選ばれる一種または二種以上を用いることが好ましく、更に、メガファックF477を用いることがより好ましい。
(Leveling agent)
In the conductive composition used in the present invention, a leveling agent can be appropriately added for the purpose of adjusting the surface defects of the coating film obtained from the conductive composition. The type of leveling agent and the mixing ratio thereof are not particularly limited, and one type may be used alone or two or more types may be mixed depending on the intended use.
Examples of the type of leveling agent include BYK-354, BYK-355, BYK-356, BYK-350, BYK-381, BYK-394, BYK-399, BYK-3440, BYK-3441, BYK-358N, BYK. Acrylic compounds such as -361N (above, manufactured by Big Chemie Japan Co., Ltd., "BYK" is a registered trademark); Polyflow KL-400X, Polyflow KL-400HF, Polyflow KL-401, Polyflow KL-402, Polyflow KL- Silicone compounds such as 403, Polyflow KL-404, Polyflow KL-406X (all manufactured by Kyoeisha Chemical Co., Ltd.); Megafuck F410, Megafuck F281, Megafuck F477, Megafuck F510, Megafuck F552, Megafuck F554, Mega Fuck F556, Mega Fuck F557, Mega Fuck F558, Mega Fuck F559, Mega Fuck F560, Mega Fuck F561, Mega Fuck F563, Mega Fuck F569 (all manufactured by DIC Co., Ltd., "Mega Fuck" is a registered trademark). Fluorine compounds such as.
Among these leveling agents, it is preferable to use one or more selected from fluorine-based compounds, and it is more preferable to use Megafuck F477.

本発明の導電性組成物がレベリング剤を含有する場合、レベリング剤の含有量は、成分(a)~(d)の合計含有量100質量部に対して、好ましくは0.01~10質量部であり、より好ましくは0.1~5質量部、さらに好ましくは0.2~3質量部である。 When the conductive composition of the present invention contains a leveling agent, the content of the leveling agent is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the total content of the components (a) to (d). It is more preferably 0.1 to 5 parts by mass, still more preferably 0.2 to 3 parts by mass.

(分散剤)
本発明で用いる導電性組成物は、組成物中での成分(c)の導電性粒子の分散性調節を目的に、分散剤を適宜添加することができる。分散剤の種類およびその混合比率は特に制限されず、用途に応じて一種を単独で、または二種以上を混合して用いることができる。
分散剤の種類としては、例えば、ラウロイルザルコシン、ミリストイルザルコシン、パルミトイルザルコシン、ステアロイルザルコシン、オレオイルザルコシンなどのザルコシン化合物類;フィラノールPA-075F、フィラノールPA-085C、フィラノールPA-107P、エスリームAD-3172M、エスリームAD-374M、エスリームAD-508E、(以上、日油(株)製、「エスリーム」は登録商標)などの高分子アミン系化合物類;マリアリムAKM-0531、マリアリムAFB-1521、マリアリムAAB-0851、マリアリムAWS-0851、マリアリムSC-0505K、マリアリムSC-1015F、マリアリムSC-0708A(以上、日油(株)製)などの高分子ポリカルボン酸系化合物類が挙げられる。
これらの分散剤の中で、ザルコシン化合物類から選ばれる一種または二種以上を用いることが好ましく、更に、オレオイルザルコシンを用いることがより好ましい。
(Dispersant)
In the conductive composition used in the present invention, a dispersant can be appropriately added for the purpose of adjusting the dispersibility of the conductive particles of the component (c) in the composition. The type of the dispersant and the mixing ratio thereof are not particularly limited, and one type may be used alone or two or more types may be mixed depending on the intended use.
Examples of the type of dispersant include sarcosine compounds such as lauroyl sarcosine, myritoyl sarcosin, palmitoyl sarcosin, stearoyl sarcosin, and oleoyl sarcosin; filanol PA-075F, philanol PA-085C, and filanol PA. High molecular weight amine compounds such as -107P, Esleam AD-3172M, Esleam AD-374M, Esleam AD-508E (all manufactured by Nichiyu Co., Ltd., "Esleam" is a registered trademark); Marialim AKM-0531, Marialim Examples include high molecular weight polycarboxylic acid compounds such as AFB-1521, Marialim AAB-0851, Marialim AWS-0851, Marialim SC-0505K, Marialim SC-1015F, and Marialim SC-0708A (all manufactured by Nichiyu Co., Ltd.). Be done.
Among these dispersants, it is preferable to use one or more selected from sarcosine compounds, and it is more preferable to use oleoyl sarcosine.

本発明の導電性組成物が分散剤を含有する場合、分散剤の含有量は、成分(a)~(d)の合計含有量100質量部に対して、好ましくは0.1~10質量部であり、より好ましくは0.2~5質量部、さらに好ましくは0.3~3質量部である。 When the conductive composition of the present invention contains a dispersant, the content of the dispersant is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the total content of the components (a) to (d). It is more preferably 0.2 to 5 parts by mass, still more preferably 0.3 to 3 parts by mass.

以下に、本発明に係る導電性組成物の製造例および評価方法を示す。また、実施例および比較例を挙げて本発明の実施形態をさらに具体的に説明する。
実施例および比較例で用いた各成分を下記に示す。
なお、各成分の物性は、本明細書に記載の方法により測定された値である。
The production example and evaluation method of the conductive composition which concerns on this invention are shown below. Moreover, the embodiment of the present invention will be described more specifically with reference to Examples and Comparative Examples.
Each component used in Examples and Comparative Examples is shown below.
The physical characteristics of each component are values measured by the method described in the present specification.

〔成分(a):ポリエチレングリコール〕
PEG200(平均分子量が200のポリエチレングリコール)
PEG600(平均分子量が600のポリエチレングリコール)
PEG2000(平均分子量が2,000のポリエチレングリコール)
PEG4000(平均分子量が4,000のポリエチレングリコール)
グリセリン
[Component (a): Polyethylene glycol]
PEG200 (polyethylene glycol with an average molecular weight of 200)
PEG600 (polyethylene glycol with an average molecular weight of 600)
PEG2000 (polyethylene glycol with an average molecular weight of 2,000)
PEG4000 (polyethylene glycol with an average molecular weight of 4,000)
Glycerin

〔成分(b):脂肪族モノカルボン酸〕
2-エチルヘキサン酸(炭素数が8の分岐飽和脂肪族モノカルボン酸)
ラウリン酸(炭素数が12の直鎖飽和脂肪族モノカルボン酸)
ステアリン酸(炭素数が18の直鎖飽和脂肪族モノカルボン酸)
[Component (b): Aliphatic monocarboxylic acid]
2-Ethylhexanoic acid (branched saturated aliphatic monocarboxylic acid with 8 carbon atoms)
Lauric acid (a linear saturated aliphatic monocarboxylic acid having 12 carbon atoms)
Stearic acid (a linear saturated aliphatic monocarboxylic acid with 18 carbon atoms)

〔成分(c):導電性粒子〕
銅粒子(1):球状銅粒子[表面被覆銅粒子(1)、下記合成例1に製造方法を示す。]
銅粒子(2):樹枝状銅粒子[FCC-TB、福田金属箔粉工業(株)製、粒径(D50):5.5~8.0μm]
銅粒子(3):板状銅粒子[表面被覆銅粒子(2)、下記合成例2に製造方法を示す。]
[Component (c): Conductive particles]
Copper particles (1): Spherical copper particles [Surface-coated copper particles (1), the production method is shown in Synthesis Example 1 below. ]
Copper particles (2): Dendrite copper particles [FCC-TB, manufactured by Fukuda Metal Foil Powder Industry Co., Ltd., particle size (D50): 5.5 to 8.0 μm]
Copper particles (3): Plate-shaped copper particles [Surface-coated copper particles (2), the production method is shown in Synthesis Example 2 below. ]

〔成分(d):バインダ樹脂〕
レゾール型フェノール樹脂[PL-5208、群栄化学工業(株)製、固形分60.0質量%、溶剤:ジエチレングリコールモノエチルエーテル]
ビスフェノールF型エポキシ樹脂[jER(登録商標)-806、三菱ケミカル(株)製]
[Component (d): Binder resin]
Resol type phenol resin [PL-5208, manufactured by Gun Ei Chemical Industry Co., Ltd., solid content 60.0% by mass, solvent: diethylene glycol monoethyl ether]
Bisphenol F type epoxy resin [jER (registered trademark) -806, manufactured by Mitsubishi Chemical Corporation]

その他の成分として、以下の材料を使用した。
(滑剤)
ステアリン酸マグネシウム
(分散剤)
オレオイルザルコシン
(レベリング剤)
フッ素系化合物[メガファック(登録商標)F-477、DIC(株)製]
(溶剤)
ターピネオール
イソボロニルシクロヘキサノール
The following materials were used as other ingredients.
(Glidant)
Magnesium stearate (dispersant)
Ole oil sarcosin (leveling agent)
Fluorine compound [Megafuck (registered trademark) F-477, manufactured by DIC Corporation]
(solvent)
Tarpineol isovoronylcyclohexanol

〔合成例1〕
(銅粒子(1):表面被覆銅粒子(1)の製造)
水100gに対し塩化アンモニウム5gを溶解した塩化アンモニウム水溶液を調製した。銅粒子a[三井金属鉱業(株)製「1200Y」;粒径(D50)2μm、BET比表面積0.40m/g、形状:球状]50gを、該塩化アンモニウム水溶液に添加し、窒素バブリング下、30℃で60分間攪拌した。撹拌は、メカニカルスターラーを使用し、回転数150rpmで実施した。以下、撹拌は同様の撹拌装置を使用して同じ回転数で行った。攪拌終了後、5C濾紙の桐山ロートを用いて減圧濾過にて銅粒子を濾別し、つづいて、桐山ロート上で150gの水により銅粒子の洗浄を2回行った。
洗浄した銅粒子を、40質量%のジエチレントリアミン水溶液250gに添加し、窒素バブリングをしながら60℃下で1時間加熱攪拌を行った。
[Synthesis Example 1]
(Copper particles (1): Production of surface-coated copper particles (1))
An ammonium chloride aqueous solution was prepared by dissolving 5 g of ammonium chloride in 100 g of water. Copper particles a [“1200Y” manufactured by Mitsui Metal Mining Co., Ltd .; particle size (D50) 2 μm, BET specific surface area 0.40 m 2 / g, shape: spherical] 50 g were added to the ammonium chloride aqueous solution and subjected to nitrogen bubbling. , 30 ° C. for 60 minutes. The stirring was carried out using a mechanical stirrer at a rotation speed of 150 rpm. Hereinafter, stirring was performed at the same rotation speed using the same stirring device. After the stirring was completed, the copper particles were filtered off by vacuum filtration using a Kiriyama funnel of 5C filter paper, and subsequently, the copper particles were washed twice with 150 g of water on the Kiriyama funnel.
The washed copper particles were added to 250 g of a 40% by mass diethylenetriamine aqueous solution, and the mixture was heated and stirred at 60 ° C. for 1 hour while nitrogen bubbling.

撹拌を止めて5分間静置した後、上澄み液約200gを抜き取って除去した。つづいて、沈殿物に洗浄用溶剤としてイソプロパノール200gを添加し、30℃で3分間攪拌を行った。撹拌を止めて5分間静置した後、上澄み液約200gを抜き取って除去し、その後、2質量%のラウリン酸イソプロパノール溶液250gを添加した後、30℃で30分間攪拌した。
攪拌終了後、5C濾紙の桐山ロートを用いて減圧濾過にて銅粒子を濾別した。得られた銅粒子を25℃で3時間減圧乾燥することにより、表面被覆銅粒子(1)(銅粒子(1))を得た。
After the stirring was stopped and the mixture was allowed to stand for 5 minutes, about 200 g of the supernatant liquid was withdrawn and removed. Subsequently, 200 g of isopropanol was added to the precipitate as a cleaning solvent, and the mixture was stirred at 30 ° C. for 3 minutes. After stopping the stirring and allowing to stand for 5 minutes, about 200 g of the supernatant liquid was withdrawn and removed, and then 250 g of 2% by mass isopropanol laurate solution was added, and then the mixture was stirred at 30 ° C. for 30 minutes.
After the stirring was completed, the copper particles were filtered off by vacuum filtration using a Kiriyama funnel of 5C filter paper. The obtained copper particles were dried under reduced pressure at 25 ° C. for 3 hours to obtain surface-coated copper particles (1) (copper particles (1)).

〔合成例2〕
(銅粒子(3):表面被覆銅粒子(2)の製造)
銅粒子aを銅粒子b[三井金属鉱業(株)製「1400YP」;粒径(D50)6μm、BET比表面積0.60m/g、形状:板状]に変更した以外は合成例1と同様にして、表面被覆銅粒子(2)(銅粒子(3))を得た。
[Synthesis Example 2]
(Copper particles (3): Production of surface-coated copper particles (2))
Synthesis Example 1 except that the copper particles a were changed to copper particles b [“1400YP” manufactured by Mitsui Metal Mining Co., Ltd .; particle size (D50) 6 μm, BET specific surface area 0.60 m 2 / g, shape: plate shape]. In the same manner, surface-coated copper particles (2) (copper particles (3)) were obtained.

〔実施例1〕
(導電性組成物の製造)
成分(a)としてPEG200を1.5g、成分(b)としてラウリン酸を1.5g、成分(c)として表面被覆銅粒子(1)(銅粒子(1))を87g、成分(d)としてレゾール型フェノール樹脂[PL-5208、群栄化学工業(株)製、固形分60質量%、溶剤:ジエチレングリコールモノエチルエーテル]を16.7g(固形分として10g)混合した。次に、プラネタリーミキサー[ARV-310、(株)シンキー製]を用いて、室温下、回転数1500rpmで60秒間撹拌し、1次混練を行った。
次に、3本ロールミル[EXAKT-M80S、(株)永瀬スクリーン印刷研究所製]を用いて、室温、ロール間距離5μmの条件下で5回通すことで、2次混練を行った。2次混練で得られた混練物に、ターピネオール(Ter)を8g加え、プラネタリーミキサーを用いて、室温、真空条件下、回転数1000rpmで90秒間撹拌し脱泡混練することにより、導電性組成物を製造した。
導電性組成物中の各成分の配合割合を表1に示す。
[Example 1]
(Manufacturing of conductive composition)
1.5 g of PEG200 as the component (a), 1.5 g of lauric acid as the component (b), 87 g of the surface-coated copper particles (1) (copper particles (1)) as the component (c), and the component (d). 16.7 g (10 g as a solid content) of a resole-type phenol resin [PL-5208, manufactured by Gunei Chemical Industry Co., Ltd., solid content 60% by mass, solvent: diethylene glycol monoethyl ether] was mixed. Next, using a planetary mixer [ARV-310, manufactured by Shinky Co., Ltd.], the mixture was stirred at a rotation speed of 1500 rpm for 60 seconds at room temperature to perform primary kneading.
Next, secondary kneading was carried out by passing through a three-roll mill [EXAKT-M80S, manufactured by Nagase Screen Printing Laboratory Co., Ltd.] 5 times under the conditions of room temperature and a distance between rolls of 5 μm. 8 g of tarpineol (Ter) is added to the kneaded product obtained by the secondary kneading, and the mixture is stirred at room temperature and vacuum conditions at a rotation speed of 1000 rpm for 90 seconds using a planetary mixer to defoam and knead the conductive composition. Manufactured a thing.
Table 1 shows the blending ratio of each component in the conductive composition.

(硬化膜の形成)
得られた導電性組成物をガラス基板上に、メタルマスクを用いて、幅×長さ×厚み=1.0mm×30mm×50μmのパターンを塗布した。導電性組成物を塗布したガラス基板を対流オーブンにて、大気雰囲気下で250℃、30分間加熱することにより硬化膜を作製した。
(Formation of cured film)
The obtained conductive composition was coated on a glass substrate with a pattern of width × length × thickness = 1.0 mm × 30 mm × 50 μm using a metal mask. A cured film was prepared by heating a glass substrate coated with the conductive composition in a convection oven at 250 ° C. for 30 minutes in an atmospheric atmosphere.

(抵抗値の評価方法)
上記の方法で得られた硬化膜の導電性を下記の抵抗値測定により評価した。形成したパターンの両端に測定プローブを押し当て、デジタルマルチメータ[PC7000、三和電気計器(株)製]を用いて硬化膜の抵抗値を測定し、下記の評価基準により判定した。
硬化膜の抵抗値が低いほど電流が流れやすく、導電性が優れていることを示す。
◎: 抵抗値が1.0Ω未満である。
○: 抵抗値が1.0Ω以上、10.0Ω未満である。
△: 抵抗値が10.0Ω以上、50.0Ω未満である。
×: 抵抗値が50.0Ω以上である。
(Evaluation method of resistance value)
The conductivity of the cured film obtained by the above method was evaluated by the following resistance value measurement. A measuring probe was pressed against both ends of the formed pattern, and the resistance value of the cured film was measured using a digital multimeter [PC7000, manufactured by Sanwa Electric Instrument Co., Ltd.], and the resistance value was determined according to the following evaluation criteria.
The lower the resistance value of the cured film, the easier it is for current to flow, indicating that the conductivity is excellent.
⊚: The resistance value is less than 1.0Ω.
◯: The resistance value is 1.0 Ω or more and less than 10.0 Ω.
Δ: The resistance value is 10.0 Ω or more and less than 50.0 Ω.
X: The resistance value is 50.0Ω or more.

(連続印刷前後の粘度変化率の評価方法)
得られた導電性組成物を、スクリーン印刷機[MT-320T、マイクロ・テック(株)製]を用いて、PETフィルム上に100枚連続で印刷した。
E型粘度計[TV-25、東機産業(株)製]を用いて、スクリーン印刷機を用いた連続印刷前と連続印刷後それぞれの導電性組成物の粘度を測定し、粘度変化率を下記式(I)で求め、下記の評価基準により判定した。
本試験では、粘度変化率の値が小さいほど、連続印刷時に導電性組成物の粘度が変化しにくく、印刷性が安定していることを示す。
(Evaluation method of viscosity change rate before and after continuous printing)
The obtained conductive composition was continuously printed on a PET film using a screen printing machine [MT-320T, manufactured by Microtech Co., Ltd.].
Using an E-type viscometer [TV-25, manufactured by Toki Sangyo Co., Ltd.], measure the viscosity of each conductive composition before and after continuous printing using a screen printing machine, and determine the viscosity change rate. It was calculated by the following formula (I) and judged by the following evaluation criteria.
In this test, it is shown that the smaller the value of the viscosity change rate is, the less the viscosity of the conductive composition is changed during continuous printing, and the more stable the printability is.

粘度変化率(%)=
[(連続印刷試験後における導電性組成物の粘度)/(連続印刷試験前における導電性組成物の粘度)]×100・・・ (I)
◎: 粘度変化率が110%未満である。
○: 粘度変化率が110%以上、150%未満である。
△: 粘度変化率が150%以上、200%未満である。
×: 粘度変化率が200%以上である。
Viscosity change rate (%) =
[(Viscosity of the conductive composition after the continuous printing test) / (Viscosity of the conductive composition before the continuous printing test)] × 100 ... (I)
⊚: The viscosity change rate is less than 110%.
◯: The viscosity change rate is 110% or more and less than 150%.
Δ: The viscosity change rate is 150% or more and less than 200%.
X: The viscosity change rate is 200% or more.

(断続印刷前後の線幅維持率の評価方法)
スクリーン印刷機[MT-320T、マイクロ・テック(株)製]を用いて、得られた導電性組成物をPETフィルム上に1枚印刷した後に、導電性組成物をスクリーン版上で60分間静置してから、別のPETフィルムに1枚印刷した。
レーザー顕微鏡[VK-9700、(株)キーエンス製]を用いて印刷前と印刷後のそれぞれの線幅を測定し、線幅維持率を下記式(II)で求め、下記の評価基準により判定した。
本試験では、線幅維持率の値が100%に近いほど、断続印刷時に導電性組成物の湿潤性が長時間維持され、配線パターンが安定して印刷可能であることを示す。
(Evaluation method of line width maintenance rate before and after intermittent printing)
After printing one sheet of the obtained conductive composition on a PET film using a screen printing machine [MT-320T, manufactured by Microtech Co., Ltd.], the conductive composition is allowed to stand on a screen plate for 60 minutes. After placing it, one sheet was printed on another PET film.
The line width before and after printing was measured using a laser microscope [VK-9700, manufactured by KEYENCE CORPORATION], the line width maintenance rate was calculated by the following formula (II), and the judgment was made according to the following evaluation criteria. ..
In this test, it is shown that the closer the line width retention rate value is to 100%, the longer the wettability of the conductive composition is maintained during intermittent printing, and the more stable the wiring pattern can be printed.

線幅維持率(%)=
[(60分間静置後に印刷した配線パターンの線幅)/(1枚目に印刷した配線パターンの線幅)]×100・・・ (II)
◎: 線幅維持率が90%以上、100%以下である。
○: 線幅維持率が70%以上、90%未満である。
△: 線幅維持率が50%以上、70%未満である。
×: 線幅維持率が50%未満である。
Line width maintenance rate (%) =
[(Line width of wiring pattern printed after standing for 60 minutes) / (Line width of wiring pattern printed on the first sheet)] × 100 ... (II)
⊚: The line width maintenance rate is 90% or more and 100% or less.
◯: The line width maintenance rate is 70% or more and less than 90%.
Δ: The line width maintenance rate is 50% or more and less than 70%.
X: The line width maintenance rate is less than 50%.

〔実施例2~11:比較例1~4〕
各成分の配合割合を表1~3に示すとおりとした以外は、実施例1と同様にして導電性組成物の製造とメタルマスクを用いたガラス基板への塗布を行った。なお、硬化膜の形成については、実施例2~6、8~10と比較例1~4は大気雰囲気下で加熱を行ない、実施例7、11は窒素雰囲気下で加熱を行った。
さらに、各硬化膜について、実施例1と同様にして抵抗値、連続印刷前後の粘度変化率および断続印刷前後の線幅維持率を評価した。実施例1~6の結果を表1に、実施例7~11の結果を表2に、比較例1~4の結果を表3にそれぞれ示す。なお、表1~3におけるフェノール樹脂の含有量は固形分換算量である。
[Examples 2 to 11: Comparative Examples 1 to 4]
The conductive composition was produced and applied to a glass substrate using a metal mask in the same manner as in Example 1 except that the blending ratio of each component was as shown in Tables 1 to 3. Regarding the formation of the cured film, Examples 2 to 6 and 8 to 10 and Comparative Examples 1 to 4 were heated in an atmospheric atmosphere, and Examples 7 and 11 were heated in a nitrogen atmosphere.
Further, for each cured film, the resistance value, the viscosity change rate before and after continuous printing, and the line width maintenance rate before and after intermittent printing were evaluated in the same manner as in Example 1. The results of Examples 1 to 6 are shown in Table 1, the results of Examples 7 to 11 are shown in Table 2, and the results of Comparative Examples 1 to 4 are shown in Table 3. The content of the phenol resin in Tables 1 to 3 is a solid content conversion amount.

Figure 2022036917000002
Figure 2022036917000002

Figure 2022036917000003
Figure 2022036917000003

Figure 2022036917000004
Figure 2022036917000004

実施例1~11では、硬化膜の抵抗値がいずれも10.0Ω未満であり、連続印刷前後の粘度変化率が150%未満であり、断続印刷前後の線幅維持率が70%以上である。
これに対して、成分(a)を配合せずに導電性組成物を調製した比較例1では、硬化膜の抵抗値が10.0Ω以上と高く、連続印刷前後の粘度変化率が200%以上と高く、断続印刷前後の線幅維持率が70%未満と低かった。
また、成分(b)を配合せずに導電性組成物を調製した比較例2では、断続印刷前後の線幅維持率が70%であったが、硬化膜の抵抗値が50.0Ω以上と高く、連続印刷前後の粘度変化率が200%以上と高かった。
成分(a)に代えてPEG4000を用いて導電性組成物を調製した比較例3では、硬化膜の抵抗値が10.0Ω未満であったが、連続印刷前後の粘度変化率が200%以上と高く、断続印刷前後の線幅維持率が50%未満と低かった。
また、成分(a)に代えてグリセリンを用いて導電性組成物を調製した比較例4では、硬化膜の抵抗値が85Ωと高かった。
In Examples 1 to 11, the resistance values of the cured films are all less than 10.0Ω, the viscosity change rate before and after continuous printing is less than 150%, and the line width maintenance rate before and after intermittent printing is 70% or more. ..
On the other hand, in Comparative Example 1 in which the conductive composition was prepared without blending the component (a), the resistance value of the cured film was as high as 10.0 Ω or more, and the viscosity change rate before and after continuous printing was 200% or more. The line width maintenance rate before and after intermittent printing was as low as less than 70%.
Further, in Comparative Example 2 in which the conductive composition was prepared without blending the component (b), the line width retention rate before and after intermittent printing was 70%, but the resistance value of the cured film was 50.0 Ω or more. It was high, and the rate of change in viscosity before and after continuous printing was as high as 200% or more.
In Comparative Example 3 in which the conductive composition was prepared using PEG4000 instead of the component (a), the resistance value of the cured film was less than 10.0Ω, but the viscosity change rate before and after continuous printing was 200% or more. It was high, and the line width maintenance rate before and after intermittent printing was as low as less than 50%.
Further, in Comparative Example 4 in which the conductive composition was prepared by using glycerin instead of the component (a), the resistance value of the cured film was as high as 85Ω.

〔実施例12〕
以下の配合で、実施例1と同様にして導電性組成物の製造および硬化膜の形成を行った。さらに、各硬化膜について、実施例1と同様にして抵抗値、連続印刷前後の粘度変化率および断続印刷前後の線幅維持率を評価した。
[Example 12]
With the following composition, the conductive composition was produced and the cured film was formed in the same manner as in Example 1. Further, for each cured film, the resistance value, the viscosity change rate before and after continuous printing, and the line width maintenance rate before and after intermittent printing were evaluated in the same manner as in Example 1.

成分(a): PEG200 1.5g
成分(b): ラウリン酸 1.5g
成分(c)導電性粒子: 表面被覆銅粒子(銅粒子(1)) 87g
成分(d)バインダ樹脂: レゾール型フェノール樹脂 16.7g(固形分として10g)
滑剤 : ステアリン酸マグネシウム 0.3g
レベリング剤: メガファックF-477 0.3g
溶剤 : ターピネオール 8g
Ingredient (a): PEG200 1.5g
Ingredient (b): Lauric acid 1.5 g
Component (c) Conductive particles: Surface-coated copper particles (copper particles (1)) 87 g
Ingredient (d) Binder resin: Resol type phenol resin 16.7 g (10 g as solid content)
Lubricants: Magnesium stearate 0.3g
Leveling agent: Megafuck F-477 0.3g
Solvent: Tarpineol 8g

硬化膜の抵抗値が2.5Ωであったことから評価は「○」、連続印刷前後の粘度変化率が105%であったことから評価は「◎」、断続印刷前後の線幅維持率が85%であったことから評価は「○」と判定した。 The evaluation was "○" because the resistance value of the cured film was 2.5Ω, the evaluation was "◎" because the viscosity change rate before and after continuous printing was 105%, and the line width maintenance rate before and after intermittent printing was Since it was 85%, the evaluation was judged to be "○".

〔実施例13〕
以下の配合で、実施例1と同様にして導電性組成物の製造および硬化膜の形成を行った。さらに、各硬化膜について、実施例1と同様にして抵抗値、連続印刷前後の粘度変化率および断続印刷前後の線幅維持率を評価した。
[Example 13]
With the following composition, the conductive composition was produced and the cured film was formed in the same manner as in Example 1. Further, for each cured film, the resistance value, the viscosity change rate before and after continuous printing, and the line width maintenance rate before and after intermittent printing were evaluated in the same manner as in Example 1.

成分(a): PEG600 1.5g
成分(b): ラウリン酸 1.5g
成分(c)導電性粒子: 表面被覆銅粒子(銅粒子(1)) 87g
成分(d)バインダ樹脂: レゾール型フェノール樹脂 10g(固形分として6g)、ビスフェノールF型エポキシ樹脂 4g
分散剤: オレオイルザルコシン 1g
溶剤 : ターピネオール 2g、イソボロニルシクロヘキサノール 6g
Ingredient (a): PEG600 1.5g
Ingredient (b): Lauric acid 1.5 g
Component (c) Conductive particles: Surface-coated copper particles (copper particles (1)) 87 g
Ingredient (d) Binder resin: Resol type phenol resin 10 g (6 g as solid content), bisphenol F type epoxy resin 4 g
Dispersant: Oleoil Zarcosin 1g
Solvent: Tarpineol 2g, Isoborolcyclohexanol 6g

硬化膜の抵抗値が1.2Ωであったことから評価は「○」、連続印刷前後の粘度変化率が105%であったことから評価は「◎」、断続印刷前後の線幅維持率が95%であったことから評価「◎」と判定した。 The evaluation was "○" because the resistance value of the cured film was 1.2Ω, the evaluation was "◎" because the viscosity change rate before and after continuous printing was 105%, and the line width maintenance rate before and after intermittent printing was Since it was 95%, it was judged as "◎".

Claims (1)

(a)平均分子量が200~2,000のポリエチレングリコールを0.1~5質量%、
(b)炭素数が8~18の脂肪族モノカルボン酸を0.1~5質量%、
(c)導電性粒子を60~95質量%、および
(d)バインダ樹脂を1~30質量%含有する導電性組成物。
(A) Polyethylene glycol having an average molecular weight of 200 to 2,000 in an amount of 0.1 to 5% by mass,
(B) 0.1 to 5% by mass of an aliphatic monocarboxylic acid having 8 to 18 carbon atoms.
(C) A conductive composition containing 60 to 95% by mass of conductive particles and (d) 1 to 30% by mass of a binder resin.
JP2021132275A 2020-08-24 2021-08-16 Conductive composition Pending JP2022036917A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020140914 2020-08-24
JP2020140914 2020-08-24

Publications (1)

Publication Number Publication Date
JP2022036917A true JP2022036917A (en) 2022-03-08

Family

ID=80296141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021132275A Pending JP2022036917A (en) 2020-08-24 2021-08-16 Conductive composition

Country Status (3)

Country Link
JP (1) JP2022036917A (en)
KR (1) KR20220025669A (en)
TW (1) TW202219986A (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014067492A (en) 2012-09-24 2014-04-17 Hitachi Chemical Co Ltd Composition for forming conductive part and manufacturing method of conductive part

Also Published As

Publication number Publication date
TW202219986A (en) 2022-05-16
KR20220025669A (en) 2022-03-03
CN114093551A (en) 2022-02-25

Similar Documents

Publication Publication Date Title
KR102237717B1 (en) Ink for screen printing
JP6029719B2 (en) Silver powder, method for producing the same, and conductive paste
JP6180769B2 (en) Flaky microparticles
JP2008176951A (en) Silver-based particulate ink paste
WO2016204105A1 (en) Composition for manufacturing metal nanoparticles
JPWO2019225271A1 (en) Conductive ink
KR20180031635A (en) Method for producing silver nanoparticle dispersion and method for producing silver nanoparticle ink
JP5830237B2 (en) Silver particle-containing composition, dispersion and method for producing paste
JP6446069B2 (en) Conductive fine particles
JP2014051569A (en) Conductive copper ink composition
JP2022036917A (en) Conductive composition
CN114093551B (en) Conductive composition
JP2007317535A (en) Conductive composition, method for forming conductive film, and conductive film
JP7276052B2 (en) conductive composition
JP6404523B1 (en) Method for producing silver nanoparticles
JP2023028100A (en) conductive composition
JP7147488B2 (en) conductive composition
TW201516179A (en) Copper film forming composition
JP2024131508A (en) Conductive composition
JP6992582B2 (en) Conductive composition, cured product and laminated body using the conductive composition
JP7276058B2 (en) conductive composition
CN116344095A (en) Conductive composition
JP2015115147A (en) Metal particle, paste for forming conductive film, and article
JP2023019161A (en) Method of producing surface-coated copper filler
KR20230036119A (en) Manufacturing method of conductive laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240618