JP2022035700A - Resin ink and electronic device - Google Patents
Resin ink and electronic device Download PDFInfo
- Publication number
- JP2022035700A JP2022035700A JP2020140200A JP2020140200A JP2022035700A JP 2022035700 A JP2022035700 A JP 2022035700A JP 2020140200 A JP2020140200 A JP 2020140200A JP 2020140200 A JP2020140200 A JP 2020140200A JP 2022035700 A JP2022035700 A JP 2022035700A
- Authority
- JP
- Japan
- Prior art keywords
- compound
- ink
- viscosity
- solvent
- polar organic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
- C09D11/02—Printing inks
- C09D11/03—Printing inks characterised by features other than the chemical nature of the binder
- C09D11/033—Printing inks characterised by features other than the chemical nature of the binder characterised by the solvent
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
- C09D11/02—Printing inks
- C09D11/10—Printing inks based on artificial resins
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Inks, Pencil-Leads, Or Crayons (AREA)
Abstract
Description
本発明は、樹脂を溶媒に混合してインク化した樹脂インク、及びその樹脂インクが印刷された電子デバイスに関するものである。 The present invention relates to a resin ink obtained by mixing a resin with a solvent to form an ink, and an electronic device on which the resin ink is printed.
近年、印刷技術を用いた電子デバイスの製造技術は、「プリンテッドエレクトロニクス(Printed electronics)」等と称され、省資源、低電力で環境負荷の少ない電子デバイス製造技術であるとして注目されている。 In recent years, the manufacturing technology of electronic devices using printing technology is called "Printed electronics" and the like, and is attracting attention as a resource-saving, low-power, low-environmental-load electronic device manufacturing technology.
このような電子デバイスの製造技術は、半導体材料、導電性材料、絶縁性材料或いは他の機能性材料を溶媒に混合してインク化したもの(インク組成物)をフィルム等の基板に印刷して、回路・素子やデバイスを形成する(例えば、下記特許文献1参照)。 In the manufacturing technology of such an electronic device, a semiconductor material, a conductive material, an insulating material or another functional material mixed with a solvent and made into an ink (ink composition) is printed on a substrate such as a film. , Forming circuits / elements and devices (see, for example, Patent Document 1 below).
印刷法を用いて電子回路を形成する場合、スクリーン印刷やグラビアオフセット印刷、フレキソ印刷、インクジェット印刷等の印刷法が用いられるが、各印刷法において、最適な成膜を行うことが可能なインク組成物の粘度の範囲が決まっている。そのため、インク組成物の粘度は、使用したい印刷法に対して適正な範囲を持つよう調整されている。従って、インク組成物の粘度が大きく変化すると、印刷パターン形状の乱れや印刷された樹脂層の平滑度の低下等が生じ、所望の印刷状態で回路、素子、デバイス等を形成することができなくなる。 When forming an electronic circuit by using a printing method, printing methods such as screen printing, gravure offset printing, flexographic printing, and inkjet printing are used. In each printing method, an ink composition capable of forming an optimum film formation is possible. The range of viscosity of an object is fixed. Therefore, the viscosity of the ink composition is adjusted to have an appropriate range for the printing method to be used. Therefore, if the viscosity of the ink composition changes significantly, the shape of the print pattern is disturbed, the smoothness of the printed resin layer is lowered, and the like, and circuits, elements, devices, and the like cannot be formed in a desired printing state. ..
電子回路製造において、印刷状態の品質維持は、回路の短絡や電気特性の低下等の不具合を生じさせないために不可欠であり、印刷状態の品質が維持できない場合には、電子デバイスの製造において著しく歩留まりの低下を引き起こすことになる。 In the manufacture of electronic circuits, maintaining the quality of the printed state is indispensable in order not to cause problems such as short circuit of the circuit and deterioration of electrical characteristics. Will cause a decrease in.
発明者らは、インク組成物を構成する特定の溶媒において、吸湿することでインク組成物の粘度が大きく変動することを見出した。特に、発明者らは、樹脂を溶媒に溶解させた高粘度のインク組成物(樹脂インク)において、特定の極性有機溶媒を用いた場合に吸湿の影響により粘度が著しく変動してしまい、印刷状態の品質が損なわれることを見出した。 The inventors have found that in a specific solvent constituting the ink composition, the viscosity of the ink composition changes significantly by absorbing moisture. In particular, the inventors have found that in a high-viscosity ink composition (resin ink) in which a resin is dissolved in a solvent, the viscosity significantly fluctuates due to the influence of moisture absorption when a specific polar organic solvent is used, resulting in a printing state. It was found that the quality of the ink was impaired.
本発明では、樹脂インクが用いられる工程において、電子回路製造における印刷状態の品質低下を回避するために提案されたものである。すなわち、大気中での印刷であっても、印刷状態の品質維持を確保することが可能な樹脂インク、及びその樹脂インクが印刷された電子デバイスを提供することが、本発明の課題である。 The present invention has been proposed in order to avoid deterioration of the quality of the printed state in the manufacture of electronic circuits in the process in which the resin ink is used. That is, it is an object of the present invention to provide a resin ink capable of ensuring quality maintenance in a printed state even when printing in the atmosphere, and an electronic device on which the resin ink is printed.
このような課題を解決するために、本発明は、以下の構成を具備するものである。 In order to solve such a problem, the present invention has the following configurations.
すなわち、本発明の樹脂インクは、樹脂材料を溶媒に混合してインク化した樹脂インクであって、前記溶媒は、前記溶媒100質量部に対して水を30質量部加えたときの増粘率が50%以下である極性有機溶媒であることを特徴とする。 That is, the resin ink of the present invention is a resin ink obtained by mixing a resin material with a solvent to form an ink, and the solvent has a thickening rate when 30 parts by mass of water is added to 100 parts by mass of the solvent. It is characterized in that it is a polar organic solvent having a value of 50% or less.
好適には、前記溶媒は、水の溶解度が500g/L以下であることを特徴とする。 Preferably, the solvent is characterized in that the solubility of water is 500 g / L or less.
好適には、前記溶媒は、カルボニル基を有する飽和環式化合物(環骨格中にヘテロ原子として酸素原子を有するものも含む)、又は、カルボニル基を有し鎖状骨格の炭素数が5以上の飽和鎖式化合物(鎖状骨格中にヘテロ原子として酸素原子を有するものを含む)である極性有機溶媒であることを特徴とする。 Preferably, the solvent is a saturated cyclic compound having a carbonyl group (including one having an oxygen atom as a hetero atom in the ring skeleton) or a chain skeleton having a carbonyl group and having 5 or more carbon atoms. It is characterized by being a polar organic solvent which is a saturated chain compound (including a compound having an oxygen atom as a hetero atom in the chain skeleton).
好適には、前記樹脂材料がフッ素系樹脂であることを特徴とする。 Preferably, the resin material is a fluororesin.
本発明の電子デバイスは、本発明の樹脂インクが印刷されてなる。 The electronic device of the present invention is printed with the resin ink of the present invention.
本発明によれば、大気中での印刷であっても、印刷状態の品質維持を確保することが可能な樹脂インク及びその樹脂インクが印刷された電子デバイスを提供することができる。 According to the present invention, it is possible to provide a resin ink capable of ensuring quality maintenance in a printed state even when printing in the atmosphere and an electronic device on which the resin ink is printed.
以下、図面を参照して本発明の実施形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(樹脂インク)
本実施形態の樹脂インクは、樹脂材料を溶媒に混合(溶解又は分散)してインク化したペースト状の組成物(インク組成物)であり、主に、印刷装置を用いた電子回路の製造において、基板に所望の回路パターン等の各種のパターンを印刷するためのインクとして用いられる。このような樹脂インクには、極性基を有する樹脂材料と、その樹脂材料との相溶性(又は混和性)に優れた極性有機溶媒とが含まれるものがある。
(Resin ink)
The resin ink of the present embodiment is a paste-like composition (ink composition) in which a resin material is mixed (dissolved or dispersed) in a solvent to form an ink, and is mainly used in the manufacture of electronic circuits using a printing device. , Used as an ink for printing various patterns such as desired circuit patterns on a substrate. Some such resin inks include a resin material having a polar group and a polar organic solvent having excellent compatibility (or miscibility) with the resin material.
(極性有機溶媒)
極性有機溶媒は、例えば、カルボニル基、エステル基、ヒドロキシ基、リン酸基、スルフィニル基、アミノ基、アミド基等の極性基の1種又は2種以上を有する環式又は鎖式(直鎖又は分岐鎖)の化合物をいう。
(Polar organic solvent)
The polar organic solvent is, for example, a cyclic or chain type (linear or chain type) having one or more polar groups such as a carbonyl group, an ester group, a hydroxy group, a phosphoric acid group, a sulfinyl group, an amino group and an amide group. Branched chain) compound.
極性有機溶媒の例として、カルボニル基を有する飽和環式化合物(環骨格中にヘテロ原子として酸素原子を有するものも含む)(下記化合物1~5)、窒素原子を有する飽和環式化合物(下記化合物6~8)、カルボニル基を有する不飽和環式化合物(下記化合物9~24)、カルボニル基を有する飽和鎖式化合物(鎖状骨格中にヘテロ原子として酸素原子を有するものを含む)(下記化合物25~51)、窒素原子を有する鎖式化合物(下記化合物52)、リン酸基を有する鎖式化合物(下記化合物53)、スルフィニル基を有する鎖式化合物(下記化合物54)等が挙げられる。 Examples of polar organic solvents are saturated cyclic compounds having a carbonyl group (including those having an oxygen atom as a hetero atom in the ring skeleton) (compounds 1 to 5 below) and saturated cyclic compounds having a nitrogen atom (compounds below). 6-8), unsaturated cyclic compounds having a carbonyl group (compounds 9 to 24 below), saturated chain compounds having a carbonyl group (including those having an oxygen atom as a hetero atom in the chain skeleton) (compounds below). 25 to 51), chain compounds having a nitrogen atom (compound 52 below), chain compounds having a phosphate group (compound 53 below), chain compounds having a sulfinyl group (compound 54 below) and the like can be mentioned.
このような極性有機溶媒の内、本実施形態の樹脂インク中の極性有機溶媒としては、印刷工程での吸湿によりその粘度が大きく変化してしまうことを抑制するために、吸湿しても増粘しない、又は、吸湿し難い極性有機溶媒である。吸湿の度合いは、環境や大気への暴露量(印刷作業時間)等に影響されるため、過剰量の水分と混合しても増粘率が低い溶媒を選定する必要がある。具体的には、極性有機溶媒100質量部に対して水を30質量部加えたときの増粘率が50%以下である極性有機溶媒を用いるようにする。なお、本実施形態において「増粘率」とは、溶媒の粘度に対する吸湿による粘度変化の割合をいう。例えば、溶媒のみの粘度をDaとし、その溶媒が水を吸収(吸湿)した後の粘度をDbとしたとき、その溶媒の吸湿による増粘率は、Db÷Da×100-100(%)である。 Among such polar organic solvents, the polar organic solvent in the resin ink of the present embodiment is thickened even if it absorbs moisture in order to prevent the viscosity from changing significantly due to moisture absorption in the printing process. It is a polar organic solvent that does not absorb moisture or does not easily absorb moisture. Since the degree of moisture absorption is affected by the environment and the amount of exposure to the atmosphere (printing work time), it is necessary to select a solvent having a low thickening rate even when mixed with an excessive amount of water. Specifically, a polar organic solvent having a thickening ratio of 50% or less when 30 parts by mass of water is added to 100 parts by mass of the polar organic solvent is used. In the present embodiment, the "viscosity thickening rate" means the ratio of the viscosity change due to moisture absorption to the viscosity of the solvent. For example, when the viscosity of the solvent alone is Da and the viscosity after the solvent absorbs (absorbs) water is Db, the viscosity increase due to the absorption of the solvent is Db ÷ Da × 100-100 (%). be.
本実施形態において、樹脂インクの溶媒として用いられる極性有機溶媒としては、カルボニル基を有する飽和環式化合物(環骨格中にヘテロ原子として酸素原子を有するものも含む)(例えば化合物1~5)、カルボニル基を有し鎖状骨格の炭素数が5以上の飽和鎖式化合物(鎖状骨格中にヘテロ原子として酸素原子を有するものを含む)(例えば化合物26~51)、リン酸基を有する鎖式化合物(例えば化合物53)等が挙げられる。 In the present embodiment, the polar organic solvent used as the solvent for the resin ink includes saturated cyclic compounds having a carbonyl group (including those having an oxygen atom as a hetero atom in the ring skeleton) (for example, compounds 1 to 5). Saturated chain compounds having a carbonyl group and having 5 or more carbon atoms in the chain skeleton (including those having an oxygen atom as a hetero atom in the chain skeleton) (for example, compounds 26 to 51), chains having a phosphate group. Formula compounds (eg, compound 53) and the like can be mentioned.
[化合物1]シクロヘキサノン
[化合物2]シクロヘプタノン
[化合物3]3,3,5-トリメチルシクロヘキサノン
[化合物4]γ-ブチロラクトン
[化合物5]プロピレンカルボナート
[化合物6]NMP(1-メチル-2-ピロリドン)
[化合物7]1,3-ジメチル-2-イミダゾリジノン
[化合物8]N,N-ジメチルシクロヘキシルアミン
[化合物9]イソホロン
[Compound 1] Cyclohexanone [Compound 2] Cycloheptanone [Compound 3] 3,3,5-trimethylcyclohexanone [Compound 4] γ-Butyrolactone [Compound 5] Propropylene Carbonate [Compound 6] NMP (1-Methyl-2-) Pyrrolidone)
[Compound 7] 1,3-dimethyl-2-imidazolidinone [Compound 8] N, N-dimethylcyclohexylamine [Compound 9] Isophorone
[化合物10]2-メトキシ-4-メチルフェノール
[化合物11]サリチル酸メチル(メチルサリチレート)
[化合物12]2'-ヒドロキシアセトフェノン
[化合物13]ベンズアルデヒド
[化合物14]p-トルアルデヒド
[化合物15]アセトフェノン
[化合物16]4'-メチルアセトフェノン
[化合物17]4-エチルベンズアルデヒド
[化合物18]4'-エチルアセトフェノン
[化合物19]安息香酸メチル(メチルベンゾエート)
[Compound 10] 2-Methoxy-4-methylphenol [Compound 11] Methyl salicylate (methyl salicylate)
[Compound 12] 2'-Hydroxyacetophenone [Compound 13] Benzaldehyde [Compound 14] p-tolualdehyde [Compound 15] Acetphenone [Compound 16] 4'-Methylacetophenone [Compound 17] 4-Ethylbenzaldehyde [Compound 18] 4' -Ethylacetophenone [Compound 19] Methyl benzoate (Methylbenzoate)
[化合物20]安息香酸エチル(エチルベンゾエート)
[化合物21]メチルp-トルエート
[化合物22]プロピルベンゾエート
[化合物23]エチルp-トルエート
[化合物24]ブチルベンゾエート
[化合物25]MEK(2-ブタノン)
[化合物26]2-ペンタノン
[化合物27]2-ヘキサノン
[化合物28]2-ヘプタノン
[化合物29]2-オクタノン
[Compound 20] Ethyl benzoate (ethylbenzoate)
[Compound 21] Methyl p-toluate [Compound 22] Propylbenzoate [Compound 23] Ethyl p-toluate [Compound 24] Butylbenzoate [Compound 25] MEK (2-butanone)
[Compound 26] 2-Pentanone [Compound 27] 2-Hexanone [Compound 28] 2-Heptanone [Compound 29] 2-Octanone
[化合物30]2-ノナノン
[化合物31]2-デカノン
[化合物32]ノナナール
[化合物33]酢酸2-エトキシエチル
[化合物34]エチレングリコールモノブチルエーテルアセテート
[化合物35]ジエチレングリコールモノエチルエーテルアセテート
[化合物36]ジエチレングリコールモノブチルエーテルアセタート
[化合物37]プロピルヘキサノエート
[化合物38]プロピルn-オクタノエート
[化合物39]エチルn-オクタノエート
[Compound 30] 2-Nonanone [Compound 31] 2-Decanone [Compound 32] Nonanal [Compound 33] 2-ethoxyethyl acetate [Compound 34] Ethylene glycol monobutyl ether acetate [Compound 35] Diethylene glycol monoethyl ether acetate [Compound 36] Diethylene glycol monobutyl ether acetate [Compound 37] propylhexanoate [Compound 38] propyl n-octanoate [Compound 39] ethyl n-octanoate
[化合物40]メチルデカノエート
[化合物41]2-エチルヘキシルアセテート
[化合物42]3,4-ヘキサンジオン
[化合物43]ジエチルオキサレート
[化合物44]ジブチルオキサレート
[化合物45]アセチルアセトン
[化合物46]メチルアセトアセテート
[化合物47]ジエチルマロネート
[化合物48]アセトニルアセトン
[化合物49]エチレングリコールジアセタート
[Compound 40] Methyldecanoate [Compound 41] 2-Ethylhexyl acetate [Compound 42] 3,4-Hexanedione [Compound 43] diethyl oxalate [Compound 44] Dibutyl oxalate [Compound 45] Acetylacetone [Compound 46] Methyl Acetoacetate [Compound 47] Diethylmalonate [Compound 48] Acetonylacetone [Compound 49] Ethylene glycol diacetate
[化合物50]1,2-ジアセトキシプロパン
[化合物51]2,6-ジメチル-4-ヘプタノン
[化合物52]テトラメチル尿素
[化合物53]リン酸トリメチル
[化合物54]DMSO(ジメチルスルホキシド)
[Compound 50] 1,2-Diacetoxypropane [Compound 51] 2,6-dimethyl-4-heptanone [Compound 52] Tetramethylurea [Compound 53] Trimethyl phosphate [Compound 54] DMSO (dimethyl sulfoxide)
樹脂濃度が高く粘度の高いインクでは、吸湿による粘度変化が起こり易くなるため、水を加えた際の増粘率がより小さい溶媒を選択することが好ましい。 In an ink having a high resin concentration and a high viscosity, a change in viscosity due to moisture absorption is likely to occur. Therefore, it is preferable to select a solvent having a smaller viscosity increase rate when water is added.
(樹脂材料)
樹脂インク中に含まれる樹脂材料としては、例えば、フッ素系樹脂(ポリフッ化ビニリデントリフルオライド(PVDF‐TrFE)、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)等)、ポリビニルフェノール(PVP)樹脂等の絶縁性樹脂等の極性基を有する樹脂材料を1種又は2種以上含むものが挙げられる。
(Resin material)
Examples of the resin material contained in the resin ink include fluororesins (polyvinylidene fluoride trifluoride (PVDF-TrFE), polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), etc.) and polyvinylphenol (PVP). Examples thereof include one or more resin materials having a polar group such as an insulating resin such as a resin.
樹脂インク(インク組成物)における樹脂材料の重量比率は、要求される粘度や目標膜厚により変わるため、特に最適な値はないが、樹脂濃度が高く粘度の高いインクでは、吸湿による粘度変化が起こり易くなるため、水を加えた際の増粘率がより小さい溶媒を選択することが好ましい。 The weight ratio of the resin material in the resin ink (ink composition) varies depending on the required viscosity and the target film thickness, so there is no particular optimum value. It is preferable to select a solvent having a smaller viscosity when water is added, because it is more likely to occur.
(その他の材料)
極性有機溶媒に混合させるその他の材料としては、例えば、導電性粒子(例えば、銅、亜鉛、クロム、白金、金、銀、アルミニウム、パラジウム、鉄、コバルト、ニッケル、或いはこれらの金属酸化物、カーボン材料等の1種又は2種以上の材料からなる粒子)、添加剤(例えば、湿潤剤、分散剤、消泡剤、接着促進剤、腐食防止剤、安定剤、界面活性剤等の1種又は2種以上からなるもの)等が更に含まれるようにしてもよい。
(Other materials)
Other materials to be mixed with polar organic solvents include, for example, conductive particles (eg, copper, zinc, chromium, platinum, gold, silver, aluminum, palladium, iron, cobalt, nickel, or their metal oxides, carbon. One or more of additives (eg, wetting agents, dispersants, defoaming agents, adhesion promoters, corrosion inhibitors, stabilizers, surfactants, etc.), additives (particles consisting of one or more materials such as materials) (Those consisting of two or more types) and the like may be further included.
(基板)
樹脂インクにより、回路パターン等の各種のパターンが印刷される被印刷物の基板(基材)としては、例えば、ポリイミド、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等の樹脂からなるフレキシブル基板、セラミックス(アルミナ、窒化アルミニウム等)、ガラス、紙等が挙げられる。
(substrate)
Examples of the substrate (base material) of the object to be printed on which various patterns such as circuit patterns are printed by the resin ink include flexible substrates made of resin such as polyimide, polyethylene terephthalate (PET), and polyethylene naphthalate (PEN). Examples include ceramics (alumina, aluminum nitride, etc.), glass, paper, and the like.
(電子デバイス)
本実施形態の樹脂インクは、基板(基材)上に所望の回路パターン等の各種のパターンを印刷する際に用いられる。このような樹脂インク(パターン)が印刷された電子デバイスとしては、例えば半導体、電子ディスプレイ、電子回路(プリント回路等)、センサ等が挙げられる。このパターンの印刷は、例えばスクリーン印刷法、インクジェット印刷法、凸版反転印刷法、グラビアオフセット印刷法、オフセット印刷法、スピンコート法、スプレーコート法、バーコート法、ダイコート法、スリットコート法、ロールコート法、ディップコート法等の方法で行われる。
(Electronic device)
The resin ink of this embodiment is used when printing various patterns such as a desired circuit pattern on a substrate (base material). Examples of electronic devices on which such resin ink (pattern) is printed include semiconductors, electronic displays, electronic circuits (print circuits, etc.), sensors, and the like. Printing of this pattern is, for example, screen printing method, inkjet printing method, letterpress reversal printing method, gravure offset printing method, offset printing method, spin coating method, spray coating method, bar coating method, die coating method, slit coating method, roll coating method. It is performed by a method such as a method or a dip coat method.
以下に、実施例を挙げて本発明を詳細に説明する。但し、本発明は、この実施例に限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to examples. However, the present invention is not limited to this embodiment.
(実験1:溶媒に対する含水による粘度変化)
構造が異なる極性基を有する極性有機溶媒について、その溶媒に対する含水による粘度変化の影響を調査した。
(Experiment 1: Change in viscosity due to water content with respect to solvent)
For polar organic solvents having polar groups with different structures, the effect of changes in viscosity due to water content on the solvent was investigated.
樹脂インクの溶媒の候補として、15種類の極性有機溶媒を選定した([表1]及び[表2]に示す番号[1]~[15]の極性有機溶媒)。番号[1]~[15]の各極性有機溶媒について、極性有機溶媒のみの粘度をD1、極性有機溶媒100質量部に対し、30質量部の超純水をその極性有機溶媒に混合した後の粘度をD2とし、D1とD2とから計算されるその極性有機溶媒の増粘率(D2÷D1×100-100)(%)を算出した。 Fifteen types of polar organic solvents were selected as solvent candidates for the resin ink (polar organic solvents of numbers [1] to [15] shown in [Table 1] and [Table 2]). For each of the polar organic solvents Nos. [1] to [15], the viscosity of only the polar organic solvent is D 1 , and 30 parts by mass of ultrapure water is mixed with 100 parts by mass of the polar organic solvent. The viscosity of the polar organic solvent was D 2 , and the thickening rate (D 2 ÷ D 1 × 100-100) (%) of the polar organic solvent calculated from D 1 and D 2 was calculated.
粘度D1、粘度D2は、ブルックフィールド社製の回転式粘度計(DV-3T:LV)を用いて測定した。スピンドルは、コーンプレート型スピンドル(CPA-40)を使用した。温度を25℃に保ち、スピンドルを50rpmで回転させたときの粘度D1、粘度D2を測定した。 Viscosity D 1 and viscosity D 2 were measured using a rotary viscometer (DV-3T: LV) manufactured by Brookfield. The spindle used was a cone plate type spindle (CPA-40). Viscosity D 1 and viscosity D 2 were measured when the spindle was rotated at 50 rpm while the temperature was maintained at 25 ° C.
また、参考として、溶媒便覧等の文献に記載されている、水に対する溶解度を併せて示した。この実験1の結果を[表1]及び[表2]に示す。 In addition, as a reference, the solubility in water described in the literature such as the solvent handbook is also shown. The results of this experiment 1 are shown in [Table 1] and [Table 2].
[表1]及び[表2]に示すように、番号[4](化合物6)、番号[8](化合物8)、番号[9](化合物25)、番号[10](化合物52)の極性有機溶媒では、増粘率が50%を超えたことから、極性有機溶媒100質量部に対して30質量部の水を混合することによる状態変化が大きいことが確認された。 As shown in [Table 1] and [Table 2], of No. [4] (Compound 6), No. [8] (Compound 8), No. [9] (Compound 25), No. [10] (Compound 52). Since the thickening rate of the polar organic solvent exceeded 50%, it was confirmed that the state change was large by mixing 30 parts by mass of water with 100 parts by mass of the polar organic solvent.
また、番号[4](化合物6)、番号[8](化合物8)、番号[10](化合物52)は、アミノ基、アミン基等の窒素原子を含有する構造であり、このような構造の化合物で増粘率が大きいことがわかった。 Further, the numbers [4] (Compound 6), No. [8] (Compound 8), and No. [10] (Compound 52) are structures containing nitrogen atoms such as an amino group and an amine group, and have such a structure. It was found that the thickening rate of this compound was large.
番号[3](化合物4)、番号[14](化合物35)、番号[15](化合物53)の極性有機溶媒は、水との親和性(水に対する溶解度(g/L))が高いにもかかわらず、増粘率が50%以下であり、樹脂インクの溶媒として適用可能であることがわかった。 The polar organic solvents of No. [3] (Compound 4), No. [14] (Compound 35), and No. [15] (Compound 53) have high affinity with water (solubility in water (g / L)). Nevertheless, the thickening rate was 50% or less, and it was found that it could be applied as a solvent for resin ink.
番号[5](化合物9)、番号[6](化合物19)、番号[7](化合物11)の極性有機溶媒は、水を混合したときに極性有機溶媒の層と、水の層とに分離してしまい、正確に粘度D2、増粘率を測定することができなかったが、粘度D2は粘度D1とほぼ同等の値であり、粘度の大きな増加は観測されなかった。 The polar organic solvents of Nos. [5] (Compound 9), No. [6] (Compound 19), and No. [7] (Compound 11) were added to the layer of the polar organic solvent and the layer of water when water was mixed. Although they were separated and the viscosity D 2 and the thickening rate could not be measured accurately, the viscosity D 2 was almost the same value as the viscosity D 1 , and no large increase in the viscosity was observed.
以上の実験1の結果から、番号[1](化合物1)、番号[2](化合物3)、及び、番号[3](化合物4)(カルボニル基を有する飽和環式化合物(環骨格中にヘテロ原子として酸素原子を有するものも含む))の極性有機溶媒と、番号[11](化合物33)、番号[12](化合物46)、番号[13](化合物47)、番号[14](化合物35)(カルボニル基を有し鎖状骨格の炭素数が5以上の鎖飽和鎖式化合物(鎖状骨格中にヘテロ原子として酸素原子を有するもの))の極性有機溶媒と、番号[15](化合物53)(リン酸基を有する鎖式化合物)の極性有機溶媒とが、樹脂インクの溶媒として好適であることがわかる。 From the results of Experiment 1 above, No. [1] (Compound 1), No. [2] (Compound 3), and No. [3] (Compound 4) (saturated cyclic compound having a carbonyl group (in the ring skeleton). (Including those having an oxygen atom as a hetero atom)) and the polar organic solvent of No. [11] (Compound 33), No. [12] (Compound 46), No. [13] (Compound 47), No. [14] ( Compound 35) (a chain saturated chain compound having a carbonyl group and having 5 or more carbon atoms in the chain skeleton (having an oxygen atom as a hetero atom in the chain skeleton)) and the number [15]. It can be seen that the polar organic compound of (Compound 53) (chain compound having a phosphoric acid group) is suitable as a solvent for the resin ink.
(実験2:フッ素樹脂インクの印刷工程での粘度変化)
実験1で確認した2種類の極性有機溶媒(番号[2](化合物3)、及び、番号[4](化合物6))を、それぞれ、フッ素樹脂であるポリフッ化ビニリデントリフルオライド(PVDF-TrFE)共重合体と混合し、フッ素樹脂インクとしてPVDF-TrFインクを調整し、その調整したPVDF-TrFインクを用いた印刷前後で、PVDF-TrFインクの粘度変化が生じるかどうかを確認した。
(Experiment 2: Viscosity change in the printing process of fluororesin ink)
The two types of polar organic solvents confirmed in Experiment 1 (No. [2] (Compound 3) and No. [4] (Compound 6)) were each subjected to polyvinylidene fluoride trifluoride (PVDF-TrFE), which is a fluororesin. PVDF-TrF ink was prepared as a fluororesin ink by mixing with a copolymer, and it was confirmed whether the viscosity of PVDF-TrF ink changed before and after printing using the adjusted PVDF-TrF ink.
具体的には、フッ素樹脂であるポリフッ化ビニリデントリフルオライド(PVDF-TrFE)共重合体の粉末を、番号[2](化合物3)、番号[4](化合物6)の各極性有機溶媒と混合し、樹脂濃度が18wt%であるPVDF-TrFEインク(フッ素樹脂インク)を2種類調整した。 Specifically, the powder of the polyvinylidene fluoride (PVDF-TrFE) copolymer, which is a fluororesin, is mixed with the polar organic solvents of No. [2] (Compound 3) and No. [4] (Compound 6). Then, two types of PVDF-TrFE ink (fluororesin ink) having a resin concentration of 18 wt% were adjusted.
印刷装置として、セリア社製のスクリーン印刷装置SSA-PC250E-IPを用いた。この印刷装置において、印刷エリアが100mm×100mmであり版枠サイズが320mm×320mmであるマスク(版)を用い、スキージの移動速度を10mm/sとしてスクリーン印刷を行った。 As a printing device, a screen printing device SSA-PC250E-IP manufactured by Ceria Co., Ltd. was used. In this printing apparatus, a mask (plate) having a printing area of 100 mm × 100 mm and a plate frame size of 320 mm × 320 mm was used, and screen printing was performed with a squeegee moving speed of 10 mm / s.
調整した2種類のPVDF-TrFEインクについて、スクリーン印刷を行う前の初期状態の粘度をそれぞれ測定した。 The viscosities of the two prepared PVDF-TrFE inks in the initial state before screen printing were measured.
次に、調整した2種類のPVDF-TrFEインクをそれぞれスクリーン印刷装置に充填し、10枚の被印刷物であるPEN基板に対してスクリーン印刷を連続で行い(すなわち10回の印刷)、その後、マスク(版)に残ったPVDF-TrFEインクを回収し、その粘度を測定した。印刷に要した時間は、1枚の被印刷物につき3分程度要することから、10枚の被印刷物で30分~40分程度要し、その間、PVDF-TrFEインクは、この印刷工程での作業雰囲気中の大気に暴露された(吸湿可能な)状態にあった。なお、この作業雰囲気の温度及び湿度は、温度25℃、湿度(相対湿度)50%RHであった。 Next, each of the two prepared PVDF-TrFE inks is filled in the screen printing device, and screen printing is continuously performed on the PEN substrate which is the 10 sheets to be printed (that is, 10 times of printing), and then the mask is performed. The PVDF-TrFE ink remaining on the (plate) was collected and its viscosity was measured. Since the time required for printing is about 3 minutes for one printed matter, it takes about 30 to 40 minutes for 10 printed matter, during which the PVDF-TrFE ink has a working atmosphere in this printing process. It was exposed (hygroscopic) to the atmosphere inside. The temperature and humidity of this working atmosphere were 25 ° C. and 50% humidity (relative humidity) RH.
このように、2種類のPVDF-TrFEインクの粘度について、初期状態の粘度と、10回の印刷後の粘度とを測定することで、10回の印刷動作中における大気中の水分を吸湿したことによるPVDF-TrFEインクの粘度の変化を調査した。粘度の測定では、ブルックフィールド社製の回転式粘度計(DV-2T:HV)を用いた。この実験2の結果を図1に示す。
In this way, regarding the viscosities of the two types of PVDF-TrFE inks, by measuring the viscosities in the initial state and the viscosities after 10 printings, the moisture in the atmosphere during the 10th printing operation was absorbed. The change in viscosity of PVDF-TrFE ink was investigated. A rotary viscometer (DV-2T: HV) manufactured by Brookfield Co., Ltd. was used for measuring the viscosity. The result of this
この図1は、ロータの回転数(rpm)に対する粘度(mPa・s)を示している。この図1において、破線a1は、番号[2](化合物3)の極性有機溶媒を用いたPVDF-TrFEインクにおける、印刷前(初期状態)での回転数(rpm)に対する粘度(mPa・s)を示し、実線a2は、番号[2](化合物3)の極性有機溶媒を用いたPVDF-TrFEインクにおける、10回印刷後の状態での回転数(rpm)に対する粘度(mPa・s)を示している。 FIG. 1 shows the viscosity (mPa · s) with respect to the rotation speed (rpm) of the rotor. In FIG. 1 , the broken line a1 indicates the viscosity (mPa · s) with respect to the rotation speed (rpm) before printing (initial state) in the PVDF-TrFE ink using the polar organic solvent of No. [2] (Compound 3). ), The solid line a2 is the viscosity (mPa · s) with respect to the rotation speed (rpm) in the state after printing 10 times in the PVDF-TrFE ink using the polar organic solvent of No. [ 2 ] (Compound 3). Is shown.
また、破線b1は、番号[4](化合物6)の極性有機溶媒を用いたPVDF-TrFEインクにおける、印刷前(初期状態)での回転数(rpm)に対する粘度(mPa・s)を示し、実線b2は、番号[4](化合物6)の極性有機溶媒を用いたPVDF-TrFEインクにおける、10回印刷後の状態での回転数(rpm)に対する粘度(mPa・s)を示している。 Further, the broken line b1 indicates the viscosity (mPa · s) with respect to the rotation speed (rpm) before printing (initial state) in the PVDF-TrFE ink using the polar organic solvent of No. [ 4 ] (Compound 6). , Solid line b 2 shows the viscosity (mPa · s) with respect to the rotation speed (rpm) in the state after printing 10 times in the PVDF-TrFE ink using the polar organic solvent of No. [4] (Compound 6). There is.
図1の破線a1及び実線a2に示すように、実験1の水との混合において増粘の変化が小さい番号[2](化合物3)の極性有機溶媒を用いたPVDF-TrFEインクでは、初期状態の粘度(破線a1)に比較して、10回の印刷後の粘度(実線a2)は、ほとんど変化しなかった。 As shown by the broken line a1 and the solid line a2 in FIG. 1 , the PVDF-TrFE ink using the polar organic solvent of No. [2] (Compound 3) having a small change in viscosity when mixed with water in Experiment 1 Compared with the viscosity in the initial state (dashed line a1), the viscosity after 10 printings (solid line a2 ) hardly changed.
一方、図1の破線b1及び実線b2に示すように、実験1の水との混合において増粘の変化が大きい番号[4](化合物6)の極性有機溶媒を用いたPVDF-TrFEインクでは、初期状態の粘度(破線b1)に比較して、10回の印刷後の粘度(実線b2)は、2倍以上に変化した。 On the other hand, as shown by the broken line b1 and the solid line b2 in FIG . 1 , the PVDF-TrFE ink using the polar organic solvent of No. [4] (Compound 6) having a large change in viscosity when mixed with water in Experiment 1 Then, the viscosity after 10 printings (solid line b 2 ) changed more than twice as much as the viscosity in the initial state (dashed line b 1 ).
このように、非吸湿性の極性有機溶媒(番号[2](化合物3))を用いたPVDF-TrFEインクよりも、吸湿性の極性有機溶媒(番号[4](化合物6))を用いたPVDF-TrFEインクの方が、印刷工程での増粘が大きかった。これにより、印刷工程での作業雰囲気中の大気により、PVDF-TrFEインクが吸湿して増粘したことがわかる。 As described above, a hygroscopic polar organic solvent (No. [4] (Compound 6)) was used rather than a PVDF-TrFE ink using a non-moisture-absorbing polar organic solvent (No. [2] (Compound 3)). PVDF-TrFE ink had a greater thickening in the printing process. From this, it can be seen that the PVDF-TrFE ink absorbs moisture and thickens due to the atmosphere in the working atmosphere in the printing process.
(実験3:ポリビニルフェノールインクの吸湿による粘度変化)
実験1で確認した2種類の極性有機溶媒(番号[2](化合物3)、及び、番号[4](化合物6))を、それぞれ、絶縁性樹脂であるポリビニルフェノール(PVP)に混合し、絶縁性樹脂インクとしてPVPインクを調整し、吸湿による絶縁性樹脂インクの粘度変化が生じるかどうかを確認した。
(Experiment 3: Viscosity change due to moisture absorption of polyvinylphenol ink)
The two types of polar organic solvents confirmed in Experiment 1 (No. [2] (Compound 3) and No. [4] (Compound 6)) were mixed with polyvinylphenol (PVP), which is an insulating resin, respectively. PVP ink was adjusted as the insulating resin ink, and it was confirmed whether or not the viscosity of the insulating resin ink changed due to moisture absorption.
具体的には、絶縁性樹脂であるPVPの粉末を、番号[2](化合物3)、番号[4](化合物6)の各極性有機溶媒に混合し、樹脂濃度が10wt%であるPVPインク(絶縁性樹脂インク)を2種類調整した。 Specifically, PVP ink, which is an insulating resin, is mixed with each polar organic solvent of No. [2] (Compound 3) and No. [4] (Compound 6), and the resin concentration is 10 wt%. Two types of (insulating resin ink) were adjusted.
調整した2種類のPVPインクについて、それぞれ超純水を加える前の粘度を測定した。 The viscosities of the two prepared PVP inks before adding ultrapure water were measured.
次に、調整した2種類のPVPインクについて、それぞれPVPインク100質量部に対して5質量部の超純水を加えた状態とし、その状態の粘度を測定した。 Next, for each of the two prepared PVP inks, 5 parts by mass of ultrapure water was added to 100 parts by mass of the PVP ink, and the viscosity in that state was measured.
このように、2種類のPVPインクの粘度について、水(超純水)添加前の粘度と、水(超純水)添加後の粘度とを測定することで、印刷動作中における吸湿によるPVPインクの粘度の変化を調査した。この実験3の結果を図2に示す。 In this way, regarding the viscosity of the two types of PVP ink, by measuring the viscosity before the addition of water (ultrapure water) and the viscosity after the addition of water (ultrapure water), the PVP ink due to moisture absorption during the printing operation. The change in the viscosity of the ink was investigated. The result of this experiment 3 is shown in FIG.
この図2においても、ロータの回転数(rpm)に対する粘度(mPa・s)を示している。この図2において、破線c1は、番号[2](化合物3)の極性有機溶媒を用いたPVPインクにおける、水添加前での回転数(rpm)に対する粘度(mPa・s)を示し、実線c2は、番号[2](化合物3)の極性有機溶媒を用いたPVPインクにおける、水添加後での回転数(rpm)に対する粘度(mPa・s)を示している。 Also in FIG. 2, the viscosity (mPa · s) with respect to the rotation speed (rpm) of the rotor is shown. In FIG. 2, the broken line c 1 indicates the viscosity (mPa · s) with respect to the rotation speed (rpm) before water addition in the PVP ink using the polar organic solvent of No. [2] (Compound 3), and is a solid line. c 2 indicates the viscosity (mPa · s) with respect to the rotation speed (rpm) after the addition of water in the PVP ink using the polar organic solvent of No. [2] (Compound 3).
また、破線d1は、番号[4](化合物6)の極性有機溶媒を用いたPVPインクにおける、水添加前での回転数(rpm)に対する粘度(mPa・s)を示し、実線d2は、番号[4](化合物6)の極性有機溶媒を用いたPVPインクにおける、水添加後の状態での回転数(rpm)に対する粘度(mPa・s)を示している。 Further, the broken line d 1 indicates the viscosity (mPa · s) with respect to the rotation speed (rpm) before water addition in the PVP ink using the polar organic solvent of No. [4] (Compound 6), and the solid line d 2 is. , No. [4] (Compound 6) shows the viscosity (mPa · s) with respect to the number of revolutions (rpm) in the state after water addition in the PVP ink using the polar organic solvent.
図2の破線c1及び実線c2に示すように、番号[2](化合物3)の極性有機溶媒を用いたPVPインクでは、水を添加する前(破線c1)と、水を添加した後(実線c2)とで粘度の変化はほとんど見られなかった。 As shown by the broken line c 1 and the solid line c 2 in FIG. 2, in the PVP ink using the polar organic solvent of No. [2] (Compound 3), water was added before water was added (broken line c 1 ). Almost no change in viscosity was observed after (solid line c 2 ).
一方、図2の破線d1及び実線d2に示すように、番号[4](化合物6)の極性有機溶媒を用いたPVPインクでは、水を添加する前(破線d1)と比較して、水を添加した後(実線d2)には大きく増粘し、インクの状態が変化することが確認された。 On the other hand, as shown by the broken line d1 and the solid line d2 in FIG . 2 , the PVP ink using the polar organic solvent of No. [4] (Compound 6 ) is compared with that before water is added (broken line d1). After adding water (solid line d 2 ), it was confirmed that the ink was greatly thickened and the state of the ink changed.
このように、非吸湿性の極性有機溶媒(番号[2](化合物3))を用いたPVPインクよりも、吸湿性の極性有機溶媒(番号[4](化合物6))を用いたPVPインクの方が、増粘が大きかった。これにより、PVPインクにおいても、吸湿により増粘することがわかった。 As described above, the PVP ink using the hygroscopic polar organic solvent (No. [4] (Compound 6)) is more than the PVP ink using the non-hygroscopic polar organic solvent (No. [2] (Compound 3)). The thickening was greater in. From this, it was found that the PVP ink also thickened by moisture absorption.
Claims (5)
前記溶媒は、前記溶媒100質量部に対して水を30質量部加えたときの増粘率が50%以下である極性有機溶媒であることを特徴とする樹脂インク。 A resin ink made by mixing a resin material with a solvent to make ink.
The solvent is a resin ink characterized by being a polar organic solvent having a thickening rate of 50% or less when 30 parts by mass of water is added to 100 parts by mass of the solvent.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020140200A JP2022035700A (en) | 2020-08-21 | 2020-08-21 | Resin ink and electronic device |
PCT/JP2021/030115 WO2022039179A1 (en) | 2020-08-21 | 2021-08-18 | Resin ink and electronic device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020140200A JP2022035700A (en) | 2020-08-21 | 2020-08-21 | Resin ink and electronic device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2022035700A true JP2022035700A (en) | 2022-03-04 |
Family
ID=80350428
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020140200A Pending JP2022035700A (en) | 2020-08-21 | 2020-08-21 | Resin ink and electronic device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2022035700A (en) |
WO (1) | WO2022039179A1 (en) |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011001514A (en) * | 2009-06-22 | 2011-01-06 | Teijin Chem Ltd | Electric-electronic device component obtained by performing injection molding of glass fiber-reinforced resin composition |
JP2011178832A (en) * | 2010-02-26 | 2011-09-15 | Dic Corp | Ultraviolet-curable ink for inkjet recording, insulation film obtained therefrom, electronic element and process for production thereof |
JP5751438B2 (en) * | 2010-04-26 | 2015-07-22 | 日立化成株式会社 | Insulator ink and insulating layer, composite layer, circuit board, and semiconductor package using the same |
CN102863845A (en) * | 2012-10-11 | 2013-01-09 | 复旦大学 | Silver-organic conductive ink for printed electronics |
JP6321992B2 (en) * | 2014-02-24 | 2018-05-09 | 出光興産株式会社 | Electrode modification composition, electrode modification method, and organic thin film transistor manufacturing method |
WO2017080307A1 (en) * | 2015-11-12 | 2017-05-18 | 广州华睿光电材料有限公司 | Composition for printing electronic devices and application thereof in electronic devices |
KR20230110377A (en) * | 2017-04-13 | 2023-07-21 | 제이엔씨 주식회사 | Heat curable resin composition, cured film, substrate with cured film, electronic component, and inkjet ink |
FR3069544B1 (en) * | 2017-07-28 | 2020-05-15 | Arkema France | PROCESS FOR THE PREPARATION OF A CROSSLINKED FLUORINATED POLYMER FILM |
JP6958323B2 (en) * | 2017-12-18 | 2021-11-02 | 東洋インキScホールディングス株式会社 | Quantum dots, quantum dot-containing compositions, and inkjet inks |
FR3086665B1 (en) * | 2018-10-02 | 2021-06-25 | Arkema France | FLUORINE POLYMER INK WITH RHEOLOGICAL BEHAVIOR OF FLUID WITH STRESS THRESHOLD |
-
2020
- 2020-08-21 JP JP2020140200A patent/JP2022035700A/en active Pending
-
2021
- 2021-08-18 WO PCT/JP2021/030115 patent/WO2022039179A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2022039179A1 (en) | 2022-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2304821B1 (en) | Mixed solvent systems for deposition of organic semiconductors | |
US20160152851A1 (en) | Method for Preparing Nano-Silver Powder and Application in Preparation of Electrically Conductive Ink of the Nano-Silver Powder and Electrically Conductive Ink | |
WO2008051719A1 (en) | Conductive ink formulations | |
EP2292707B1 (en) | Ink composition for forming an insulating film and an insulating film formed from said ink composition | |
JP6424148B2 (en) | Method for aerosol printing a solder mask ink composition | |
KR20090119732A (en) | Printable compositions containing silver nanoparticles, processes for producing electrically conductive coatings using the same, and coatings prepared thereby | |
DE10240105B4 (en) | Production of organic electronic circuits by contact printing techniques | |
EP2684918B1 (en) | Electrically conductive aqueous ink for inkjet recording | |
Matavž et al. | Inkjet printing of functional oxide nanostructures from solution-based inks | |
WO2004004025A2 (en) | Method for the economical structuring of conducting polymers by means of defining hydrophilic and hydrophobic regions | |
DE102016200046A1 (en) | Solder mask compositions for aerosol jet printing | |
CN107699049A (en) | The organic semiconducting materials composition of inkjet printable | |
WO2022039179A1 (en) | Resin ink and electronic device | |
EP3425687B1 (en) | Organic semiconductor composition, organic thin film comprising same, and use thereof | |
CN106947320A (en) | Ink, ink film layer for preparing transistor dielectric layer and its preparation method and application | |
US9217093B1 (en) | Palladium ink compositions | |
KR101782799B1 (en) | Method for preparation of copper-amine co-complex and conductive ion ink comprising the same and the fine pattern electrode using the same | |
JP2016050311A (en) | Solder mask ink composition | |
JP6737873B2 (en) | Photo-sintering of polymer thick film copper conductor composition | |
CN111051442B (en) | copper ink | |
KR101264861B1 (en) | Sintering composition and sintering method | |
EP3335226B1 (en) | Photonic sintering of a solderable polymer thick film copper conductor composition | |
TWI783103B (en) | Copper ink for high conductivity fine printing | |
TWI856947B (en) | Copper ink | |
CN107083107B (en) | Ink for manufacturing active layer, preparation method and application |