JP2022035005A - Method for producing paste in which planes of powder formed of metal or alloy are overlapped through solution of organic compound and producing sheet formed of aggregate of powder in which overlapped planes of the powder are jointed by frictional heat using the paste - Google Patents

Method for producing paste in which planes of powder formed of metal or alloy are overlapped through solution of organic compound and producing sheet formed of aggregate of powder in which overlapped planes of the powder are jointed by frictional heat using the paste Download PDF

Info

Publication number
JP2022035005A
JP2022035005A JP2020139002A JP2020139002A JP2022035005A JP 2022035005 A JP2022035005 A JP 2022035005A JP 2020139002 A JP2020139002 A JP 2020139002A JP 2020139002 A JP2020139002 A JP 2020139002A JP 2022035005 A JP2022035005 A JP 2022035005A
Authority
JP
Japan
Prior art keywords
powder
flat
paste
sheet
powders
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020139002A
Other languages
Japanese (ja)
Inventor
博 小林
Hiroshi Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2020139002A priority Critical patent/JP2022035005A/en
Publication of JP2022035005A publication Critical patent/JP2022035005A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a production method of a paste formed of an aggregate of powder in which planes of flaky, scaly or flat-state powder formed of metal or alloy are overlapped through a solution of an organic compound.SOLUTION: A method is configured to: produce a paste formed of an aggregate of powder in which planes of the powder are overlapped through a solution of an organic compound; then apply the paste to a substrate for forming a coat. The solution of the organic compound is evaporated from the coat, then a coating sheet formed of the aggregate of the powder in which planes of the powder are overlapped is formed on the substrate, and a plane above the coating sheet is compressed in a uniform manner, overlapped planes are jointed by frictional heat, for forming a sheet formed of an aggregate of jointed powder on the substrate. Then, impact is applied to the substrate, then the sheet is detached from the substrate.SELECTED DRAWING: Figure 1

Description

本発明は、金属ないしは合金からなるフレーク状、鱗片状ないしは扁平状の粉体の平面同士を有機化合物の溶解液を介して重なり合わせ、該粉体の集まりからなるペーストを製造する。該ペーストを用い、粉体の重なり合った平面同士を摩擦熱で接合し、該粉体の集まりからなるシートを製造する方法に係わる。前記粉体が軟磁性の扁平粉であれば、シートは電磁波の受信感度が高く、電磁ノイズを吸収するシートとして、また、磁気シールド効果が高いシートとして用いられる。また、前記粉体が金属のフレーク紛ないしは鱗片粉であれば、シートは帯電防止のシート、電磁波シールドのシート、熱伝導性のシート、表面が潤滑性に優れたシートや電気機器の配線、電極などに用いられる。 The present invention produces a paste composed of a collection of flakes, scaly or flat powders made of a metal or an alloy, which are overlapped with each other via a solution of an organic compound. The present invention relates to a method for producing a sheet composed of a collection of powders by joining the overlapping planes of powders by frictional heat using the paste. If the powder is a soft magnetic flat powder, the sheet is used as a sheet having high electromagnetic wave reception sensitivity and absorbing electromagnetic noise, and as a sheet having a high magnetic shielding effect. If the powder is metal flake powder or scale powder, the sheet is an antistatic sheet, an electromagnetic wave shielding sheet, a heat conductive sheet, a sheet having an excellent surface lubricity, wiring for electrical equipment, and electrodes. It is used for such purposes.

金属ないしは合金からなるフレーク状、鱗片状ないしは扁平状の平面を持つ粉体として、軟磁性の扁平粉と、金属からなるフレーク紛ないしは鱗片粉との2種類がある。
最初に、軟磁性の扁平粉に係る背景技術を説明する。軟磁性の扁平粉の扁平面同士を接合できれば、扁平粉の集まりからなるシートが形成でき、扁平粉の複素透磁率を活かして、電磁ノイズを吸収するシートになる。また、扁平粉の比透磁率を活かして、磁気をシールドするシートになる。
近年、高周波数信号を使用する携帯電話やパーソナルコンピュータなどの電子機器の普及が著しい。例えば、携帯電話や無線LANなどでは、数GHzから10GHzに及ぶ高周波数信号を用いるものがある。さらに、電子機器が使用する信号の高周波数化に加え、電子機器の小型化や薄型化、高性能化に伴って、電子機器内での電磁干渉による誤動作や機器外部への放射ノイズに依る障害が問題となっている。このため、2005年に発行された国際無線障害特別委員会(CISPR)の規格CISPR22では、最高6GHzの電磁ノイズを規制している。
There are two types of powder having a flake-like, scaly or flat flat surface made of a metal or an alloy, a soft magnetic flat powder and a flake powder or a scaly powder made of a metal.
First, the background technology relating to the soft magnetic flat powder will be described. If the flat surfaces of the soft magnetic flat powder can be joined to each other, a sheet composed of a collection of the flat powder can be formed, and the complex magnetic permeability of the flat powder can be utilized to obtain a sheet that absorbs electromagnetic noise. In addition, it becomes a sheet that shields magnetism by utilizing the relative magnetic permeability of flat powder.
In recent years, electronic devices such as mobile phones and personal computers that use high-frequency signals have become widespread. For example, some mobile phones, wireless LANs, and the like use high frequency signals ranging from several GHz to 10 GHz. Furthermore, in addition to increasing the frequency of signals used by electronic devices, with the miniaturization, thinning, and higher performance of electronic devices, malfunctions due to electromagnetic interference inside the electronic devices and obstacles due to radiation noise to the outside of the devices Is a problem. For this reason, the CISPR22 standard issued by the International Special Committee on Radio Interference (CISPR) in 2005 regulates electromagnetic noise of up to 6 GHz.

ところで、電磁ノイズの吸収エネルギーPは数式1で与えられる。第一項は軟磁性材料に依る電磁ノイズの吸収であり、複素透磁率の虚部μ”の大きさと周波数とに応じて磁気損失が発生し、この磁気損失は熱に替わる。第二項は誘電体材料に依る電磁ノイズの吸収であり、複素誘電率の虚部ε”の大きさと周波数とに応じて誘電損失が発生し、この誘電損失も熱に替わる。第三項は導電性に依る電磁ノイズの吸収であり、高周波数の電界の表皮効果で表面に導電電流が流れて抵抗被膜を形成し、この抵抗被膜が導電率σの大きさに応じて抵抗損失を発生させ、この抵抗損失も熱に替わる。従って、電磁ノイズの周波数帯域で、軟磁性材料が一定の大きさの複素透磁率の虚部μ”を持てば、ないしは、誘電体材料が一定の大きさの複素誘電率の虚部ε”を持てば、一定の周波数帯域に及ぶ電磁ノイズが吸収される。数式1において、Eは電磁ノイズにおける電界の大きさ、Hは電磁ノイズにおける磁界の大きさ、fは電磁ノイズの周波数、σは導電率である。なお、磁性体が電磁ノイズにおける交番磁界を受信した時に、磁束密度の変化に位相の遅れが生じ、透磁率は、実部μ’と虚部μ”との差であるμ’-jμ”で与えられる。ないしは、誘電体が電磁ノイズにおける交番電界を受信した時に、電束密度の変化に位相の遅れが生じ、誘電率は、実部ε’と虚部ε”との差ε’-jε”で与えられる。
(数1)
P=πfμ”H+πfε”E+1/2・σE
By the way, the absorption energy P of the electromagnetic noise is given by the mathematical formula 1. The first term is the absorption of electromagnetic noise by the soft magnetic material, and magnetic loss occurs depending on the magnitude and frequency of the imaginary part μ "of complex magnetic permeability, and this magnetic loss is replaced by heat. The second term is Electromagnetic noise is absorbed by the dielectric material, and a dielectric loss is generated according to the magnitude and frequency of the imaginary part ε "of the complex dielectric constant, and this dielectric loss is also replaced by heat. The third term is the absorption of electromagnetic noise due to conductivity. Due to the skin effect of a high-frequency electric field, a conductive current flows on the surface to form a resistance film, and this resistance film resists according to the magnitude of conductivity σ. A loss is generated, and this resistance loss is also replaced by heat. Therefore, in the frequency band of electromagnetic noise, if the soft magnetic material has a imaginary part μ "with a complex magnetic permeability of a certain size, or if the dielectric material has a imaginary part ε" of a complex permittivity of a certain size. If you have it, electromagnetic noise over a certain frequency band will be absorbed. In Equation 1, E is the magnitude of the electric field in the electromagnetic noise, H is the magnitude of the magnetic field in the electromagnetic noise, f is the frequency of the electromagnetic noise, and σ is the conductivity. When the magnetic material receives an alternating magnetic field due to electromagnetic noise, a phase delay occurs in the change in magnetic flux density, and the magnetic permeability is μ'-jμ ", which is the difference between the real part μ'and the imaginary part μ'. Given. Or, when the dielectric receives an alternating electric field in electromagnetic noise, a phase delay occurs in the change in the electric flux density, and the permittivity is given by the difference ε'-jε "between the real part ε'and the imaginary part ε'. Be done.
(Number 1)
P = πfμ "H 2 + πfε" E 2 + 1/2 · σE 2

従来、電磁ノイズを吸収するシートの性能は、シートを形成する軟磁性材料の透磁率に基づいて行われてきた。つまり、100MHz付近までの電磁ノイズに対しては、軟磁性材料の複素透磁率の実部μ’による磁束収束効果が、磁界を遮蔽して磁気シールド効果をもたらす。また、複素透磁率の虚部μ”による磁気損失効果が、電磁ノイズを吸収して熱に替え、電磁ノイズを抑制する効果をもたらす。しかし、多くの軟磁性材料は、100MHzの手前の周波数から複素透磁率の実部が低下し、実部の値が大きいほど急激に低下する。この現象は、フェライトの複素透磁率の実部が大きいほど、10MHzを超えると実部が低下するスネークの限界として知られている。いっぽう、複素透磁率の虚部は、実部がピーク値を示す周波数の手前の周波数から急増し、一定の周波数でピーク値を示し、ピーク値を示す周波数から離れるほど低下し、500MHzを超える周波数帯域では必要な大きさを持たない。 Conventionally, the performance of a sheet that absorbs electromagnetic noise has been performed based on the magnetic permeability of the soft magnetic material forming the sheet. That is, for electromagnetic noise up to around 100 MHz, the magnetic flux convergence effect due to the real part μ'of the complex magnetic permeability of the soft magnetic material shields the magnetic field and brings about the magnetic shield effect. In addition, the magnetic loss effect due to the imaginary part μ of complex magnetic permeability has the effect of absorbing electromagnetic noise and converting it into heat to suppress electromagnetic noise. However, many soft magnetic materials start from a frequency before 100 MHz. The real part of the complex magnetic permeability decreases, and the larger the value of the real part, the sharper the decrease. This phenomenon is the limit of the snake that the larger the real part of the complex magnetic permeability of ferrite, the lower the real part when it exceeds 10 MHz. On the other hand, the imaginary part of the complex magnetic permeability rapidly increases from the frequency before the frequency at which the real part shows the peak value, shows the peak value at a constant frequency, and decreases as the distance from the frequency showing the peak value increases. However, it does not have the required size in the frequency band exceeding 500 MHz.

いっぽう、誘電体材料の複素誘電率の虚部が、500MHzを超える周波数帯域で一定の大きさを持てば、数式1に基づく誘電体材料の誘電損失によって、500MHzを超える周波数帯域の電磁ノイズが吸収される。つまり、誘電体の双極子(これを配向分極という)が500MHz以上の電界の変化に追随できず、誘電体の誘電率が低下する誘電分散が起こればよい。この現象は、3段落で説明した電磁ノイズの交番電界に、電束密度の変化に位相の遅れが生じる現象である。しかしながら、500MHz以上の周波数帯域において、固体からなる殆どの誘電体の複素誘電率の虚部の値は小さい。このことを、電子レンジで用いている2.45GHzのマイクロ波における虚部の値で以下に説明する。
電磁ノイズを抑制する複合材料からなるシートについて、軟磁性材料を分散させる高分子材料の2.45GHzにおける複素誘電率の虚部は、フェノール樹脂が0.2-0.5で、尿素樹脂が0.16-0.23で、塩化ビニル樹脂が0.08-0.25で、ポリアミド樹脂が0.12-0.28で、セルロース樹脂が0.03-0.42で、合成ゴムが0.027-0.03で、ポリエチレン樹脂が1.2×10-3で、ポリプロピレン樹脂が4×10-4である。いずれの高分子材料の複素誘電率の虚部は小さい。いっぽう、代表的な極性分子である水の複素誘電率の虚部は22.0と大きい。2.45GHzにおける水の複素誘電率の虚部の大きさが、電レンジにおける食品の加熱の原理に利用される。つまり、食品に2.45GHzのマイクロ波を照射すると、食品に含まれる水分子は電界の変化に追随できず、誘電損失によってマイクロ波を吸収して熱に替える。いっぽう、氷の2.45GHzにおける複素誘電率の虚部は、2.8×10-4と小さく、このため、マイクロ波の照射によって氷は溶けない。このように、水やアルコールやアセトンといった極性分子からなる液体を除くと、500MHz以上の周波数帯域における複素誘電率の虚部の値は小さく、500MHz以上の周波数帯域における電磁ノイズを吸収できない。
On the other hand, if the imaginary part of the complex permittivity of the dielectric material has a certain magnitude in the frequency band exceeding 500 MHz, the dielectric loss of the dielectric material based on Equation 1 absorbs the electromagnetic noise in the frequency band exceeding 500 MHz. Will be done. That is, it is sufficient that the dipole of the dielectric (this is called orientation polarization) cannot follow the change of the electric field of 500 MHz or more, and the dielectric dispersion in which the dielectric constant of the dielectric decreases occurs. This phenomenon is a phenomenon in which a phase delay occurs in the change in the electric flux density in the alternating electric field of the electromagnetic noise described in the third paragraph. However, in the frequency band of 500 MHz or more, the value of the imaginary part of the complex permittivity of most dielectrics made of solid is small. This will be described below with the value of the imaginary part in the 2.45 GHz microwave used in the microwave oven.
Regarding the sheet made of a composite material that suppresses electromagnetic noise, the imaginary part of the complex dielectric constant at 2.45 GHz of the polymer material that disperses the soft magnetic material is 0.2-0.5 for phenol resin and 0 for urea resin. At .16-0.23, vinyl chloride resin is 0.08-0.25, polyamide resin is 0.12-0.28, cellulose resin is 0.03-0.42, and synthetic rubber is 0. It is 027-0.03, the polyethylene resin is 1.2 × 10 -3 , and the polypropylene resin is 4 × 10 -4 . The imaginary part of the complex permittivity of any polymer material is small. On the other hand, the imaginary part of the complex permittivity of water, which is a typical polar molecule, is as large as 22.0. The size of the imaginary part of the complex permittivity of water at 2.45 GHz is utilized in the principle of heating food in a microwave oven. That is, when the food is irradiated with microwaves of 2.45 GHz, the water molecules contained in the food cannot follow the change of the electric field, and absorb the microwaves by the dielectric loss and convert them into heat. On the other hand, the imaginary part of the complex permittivity of ice at 2.45 GHz is as small as 2.8 × 10 -4 , so that the ice does not melt by microwave irradiation. As described above, except for liquids composed of polar molecules such as water, alcohol, and acetone, the value of the imaginary part of the complex permittivity in the frequency band of 500 MHz or more is small, and electromagnetic noise in the frequency band of 500 MHz or more cannot be absorbed.

ところで、電磁波には電磁波の表皮の深さがある。表皮の深さとは、軟磁性体からなるシートに入射した電磁波の電磁界が、1/e(0.368に相当する)に減衰する距離である。表皮の深さは、電磁波の周波数と扁平粉の複素透磁率と扁平粉の導電率との3者の積の平方根に反比例する。従って、電磁波の周波数が高いほど、扁平粉の複素透磁率が大きいほど、扁平粉の導電率が大きいほど、表皮の深さは浅い。このため、表皮効果を利用すれば、軟磁性体からなるシートの厚みは薄く、軽いシートになる。従って、吸収する電磁波の周波数帯域に応じて、軟磁性体からなるシートの厚みを変え、必要となる厚みでシートを構成すると、軟磁性体の使用量が少なく、軽量のシートになる。同様に、磁気をシールドするシートについても、シールドする電磁波の周波数帯域に応じて、軟磁性体からなるシートの厚みを変え、必要となる厚みでシートを構成すると、軟磁性体の使用量が少なく、軽量のシートになる。 By the way, electromagnetic waves have the depth of the epidermis of electromagnetic waves. The depth of the epidermis is the distance at which the electromagnetic field of the electromagnetic wave incident on the sheet made of the soft magnetic material is attenuated to 1 / e (corresponding to 0.368). The depth of the epidermis is inversely proportional to the square root of the product of the frequency of the electromagnetic wave, the complex magnetic permeability of the flat powder, and the conductivity of the flat powder. Therefore, the higher the frequency of the electromagnetic wave, the larger the complex magnetic permeability of the flat powder, and the larger the conductivity of the flat powder, the shallower the depth of the epidermis. Therefore, if the skin effect is utilized, the thickness of the sheet made of a soft magnetic material is thin and the sheet becomes light. Therefore, if the thickness of the sheet made of the soft magnetic material is changed according to the frequency band of the electromagnetic wave to be absorbed and the sheet is formed with the required thickness, the amount of the soft magnetic material used is small and the sheet becomes lightweight. Similarly, for a sheet that shields magnetism, if the thickness of the sheet made of soft magnetic material is changed according to the frequency band of the electromagnetic wave to be shielded and the sheet is configured with the required thickness, the amount of soft magnetic material used is small. , Becomes a lightweight seat.

特許文献1に、電磁波を吸収するシートとして、新たな材料構成からなるシートが開示されている。すなわち、磁性体の微粒子によって電磁波を吸収するシートで、磁性体の微粒子が分散されている高分子材料からなる第1の磁性層と、第1の磁性層の上に形成される、高分子材料からなる非磁性層と、非磁性層の上に形成される、磁性体の微粒子が分散されている高分子材料からなる第2の磁性層とを備え、第1の磁性層における磁化容易軸方向が、第2の磁性層における磁化容易軸方向と異なる構成とした。
つまり、第1の磁性層によって効率的に吸収できない方向の電磁波が輻射されても、第1の磁性層とは異なる磁化容易軸方向を持つ第2の磁性層によって電磁波を効率的に吸収することを目的とした電磁波を吸収するシートである。
しかし、電磁波を吸収する磁性材料が微粒子でなく、一定の面積を持つ扁平粉であれば、磁化容易軸方向である扁平面をランダムに接合してシートを形成すれば、特許文献1に記載された3層を形成する必要はなく、安価なシートが形成できる。
Patent Document 1 discloses a sheet having a new material composition as a sheet that absorbs electromagnetic waves. That is, it is a sheet that absorbs electromagnetic waves by the fine particles of the magnetic material, and is a polymer material formed on the first magnetic layer made of a polymer material in which the fine particles of the magnetic material are dispersed and the first magnetic layer. It is provided with a non-magnetic layer made of a non-magnetic layer and a second magnetic layer made of a polymer material in which fine particles of a magnetic substance are dispersed, which is formed on the non-magnetic layer. However, the configuration is different from that of the easy axial direction of magnetism in the second magnetic layer.
That is, even if an electromagnetic wave in a direction that cannot be efficiently absorbed by the first magnetic layer is radiated, the electromagnetic wave is efficiently absorbed by the second magnetic layer having an easy-to-magnetize axial direction different from that of the first magnetic layer. It is a sheet that absorbs electromagnetic waves for the purpose of.
However, if the magnetic material that absorbs electromagnetic waves is not fine particles but flat powder having a certain area, it is described in Patent Document 1 if a sheet is formed by randomly joining flat surfaces in the axial direction in which magnetization is easy. It is not necessary to form the three layers, and an inexpensive sheet can be formed.

特許文献2に、従来最も高い透磁率を有する合金粉である、Fe-9.6%Si-5.4%Alの合金の組成から、意図的に組成を外すことによって、さらに高い透磁率を持つ合金の扁平粉が開示されている。
特許文献2において、この合金の扁平粉を用いたシートとして、塩素化ポリエチレンをトルエンで溶解し、この溶解液に合金粉の扁平粉を混合し、さらに、ポリエステル樹脂に塗布して乾燥させ、その後、130℃で15MPaの圧力でプレスし、複合シートを製作した実施例が、透磁率の高いシートとして記載されている。
しかしながら、塩素化ポリエチレン樹脂は非磁性体で、電磁波の吸収および磁気シールドに貢献しない。このため、非磁性体の塩素化ポリエチレン樹脂の体積割合に応じて、複合シートにおける電磁波の吸収性能および磁気シールドの性能は低下する。また、合金の扁平粉は、扁平率が15以上である場合に、高い透磁率を持つとの記載がある。しかしながら、扁平率が大きい扁平粉の透磁率特性を複合シートに反映するには、扁平面がシート面と同じ方向に揃って重なり合うことで、扁平粉の集まりが効率よく電磁波の吸収および磁気シールドに貢献する。しかし、大きさが数十ミクロン以下である扁平粉を、塩素化ポリエチレンの溶解溶液に単純に混合し、この混合液を塗布するだけでは、扁平粉の扁平面がシート面と同じ方向に揃わない。
このように、軟磁性材料の透磁率特性がたとえ優れていても、軟磁性材料の透磁率特性がシートの構造に反映されなければ、透磁率特性が反映されたシートにならない。
In Patent Document 2, a higher magnetic permeability is obtained by intentionally removing the composition from the composition of the alloy of Fe-9.6% Si-5.4% Al, which is an alloy powder having the highest magnetic permeability in the past. The flat powder of the alloy having is disclosed.
In Patent Document 2, as a sheet using the flat powder of this alloy, chlorinated polyethylene is dissolved in toluene, the flat powder of the alloy powder is mixed with this solution, further applied to a polyester resin and dried, and then dried. , An example in which a composite sheet is produced by pressing at 130 ° C. and a pressure of 15 MPa is described as a sheet having a high magnetic permeability.
However, the chlorinated polyethylene resin is a non-magnetic material and does not contribute to the absorption of electromagnetic waves and the magnetic shielding. Therefore, the electromagnetic wave absorption performance and the magnetic shield performance of the composite sheet deteriorate depending on the volume ratio of the non-magnetic chlorinated polyethylene resin. Further, it is described that the flat powder of the alloy has a high magnetic permeability when the flatness is 15 or more. However, in order to reflect the magnetic permeability characteristics of flat powder with a large flatness on the composite sheet, the flat surfaces are aligned and overlapped in the same direction as the sheet surface, so that the collection of flat powder efficiently absorbs electromagnetic waves and becomes a magnetic shield. To contribute. However, simply mixing flat powder with a size of several tens of microns or less with a solution of chlorinated polyethylene and applying this mixed solution does not align the flat surface of the flat powder in the same direction as the sheet surface. ..
As described above, even if the magnetic permeability characteristic of the soft magnetic material is excellent, the sheet does not reflect the magnetic permeability characteristic unless the magnetic permeability characteristic of the soft magnetic material is reflected in the structure of the sheet.

次に、金属からなるフレーク紛ないしは鱗片粉に係る背景技術を説明する。金属からなるフレーク紛ないしは鱗片粉の平面同士を接合し、フレーク紛ないしは鱗片粉の集まりからなるシートが形成できれば、帯電防止のシート、電磁波シールドのシートや、電気機器の配線、電極などに用いることができる。こうした導電性のシートは、従来は、導電性ペーストを用いて、導電性膜として形成している。この導電性ペーストは、樹脂系バインダと溶媒からなるビヒクル中に、金属や合金からなる導電性フィラーを分散させた流動性組成物で構成される。なお、スクリーン印刷などの手段で導電性ペーストを印刷すると、導電性フィラーが液状物質を介して被印刷物に映され、樹脂系バインダと溶媒からなる液状物質が導電性フィラーを運ぶ役割を担うため、液状物質をビヒクルと呼ぶ。
こうした導電性ペーストは、樹脂の硬化を介して導電性フィラー同士が圧着され、導電性フィラーによる通電路が形成される樹脂硬化型と、焼成によって有機成分が揮発して導電性フィラー同士が焼結し、焼結した導電性フィラーによって、通電路が形成される焼成型に二分される。
樹脂硬化型導電性ペーストは、金属粉または合金粉からなる導電性フィラーと、エポキシ樹脂等の熱硬化性樹脂を溶解させた有機バインダとからなるペースト状の組成物である。熱を加えることで熱硬化型樹脂が導電フィラーとともに硬化収縮し、硬化した樹脂を介して導電性フィラー同士が圧着されて互いに接触状態となり、導通性がもたらされる。この樹脂硬化型導電性ペーストは、200℃程度の低い温度で加熱処理されるため、熱ダメージが少なく、熱に弱い合成樹脂からなるプリント配線基板や回路基板などの配線の形成に使用されている。
いっぽう、焼成型導電性ペーストは、金属粉または合金粉からなる導電性フィラーとガラスフリットとを、有機ビヒクル中に分散させたペースト状の組成物であり、900℃程度の高温で加熱焼成し、有機ビヒクルを揮発させ、次にガラスフリットを融解させ、さらに金属粉同士または合金粉同士が焼結することによって導通性がもたらされる。この際、ガラスフリットが、金属粉または合金粉からなる導電性膜を基板に接合させ、有機ビヒクルが、金属粉または合金粉とガラスフリットとを、印刷が可能になる液状媒体とする。焼成型導電性ペーストは焼成温度が高いため、合成樹脂からなるプリント配線基板や回路基板には使用できないが、金属粉または合金粉が焼結して一体化することから低抵抗化が実現でき、例えば、積層セラミックコンデンサの内部電極などに使用されている。
Next, the background technology relating to flake powder or scale powder made of metal will be described. If planes of flake powder or scale powder made of metal can be joined to form a sheet consisting of a collection of flake powder or scale powder, it should be used for antistatic sheets, electromagnetic wave shield sheets, wiring of electrical equipment, electrodes, etc. Can be done. Conventionally, such a conductive sheet is formed as a conductive film by using a conductive paste. This conductive paste is composed of a fluid composition in which a conductive filler made of a metal or an alloy is dispersed in a vehicle composed of a resin-based binder and a solvent. When the conductive paste is printed by means such as screen printing, the conductive filler is reflected on the printed matter via the liquid substance, and the liquid substance consisting of the resin binder and the solvent plays a role of carrying the conductive filler. Liquid substances are called vehicles.
In such a conductive paste, the conductive fillers are crimped to each other through the curing of the resin to form a current path by the conductive filler, and the organic component is volatilized by firing and the conductive fillers are sintered to each other. Then, the sintered conductive filler divides it into a firing mold in which a current-carrying path is formed.
The resin-curable conductive paste is a paste-like composition composed of a conductive filler made of a metal powder or an alloy powder and an organic binder in which a thermosetting resin such as an epoxy resin is dissolved. When heat is applied, the thermosetting resin is cured and shrunk together with the conductive filler, and the conductive fillers are pressure-bonded to each other via the cured resin to be in contact with each other, resulting in conductivity. Since this resin-curable conductive paste is heat-treated at a low temperature of about 200 ° C., it is used for forming wiring such as printed wiring boards and circuit boards made of synthetic resin which has little heat damage and is sensitive to heat. ..
On the other hand, the firing type conductive paste is a paste-like composition in which a conductive filler made of metal powder or alloy powder and glass frit are dispersed in an organic vehicle, and is heated and fired at a high temperature of about 900 ° C. Continuity is provided by volatilizing the organic vehicle, then melting the glass frit, and sintering the metal or alloy powders together. At this time, the glass frit bonds a conductive film made of metal powder or alloy powder to the substrate, and the organic vehicle uses the metal powder or alloy powder and the glass frit as a liquid medium capable of printing. Since the firing type conductive paste has a high firing temperature, it cannot be used for printed wiring boards and circuit boards made of synthetic resin, but it is possible to realize low resistance because metal powder or alloy powder is sintered and integrated. For example, it is used as an internal electrode of a multilayer ceramic capacitor.

導電性ペーストは、導電性フィラーとして金属粉または合金粉を用い、金属粉または合金粉を、または、金属粉または合金粉とガラスフリットとを、樹脂系バインダと有機溶媒からなるビヒクル中に分散させた分散液で構成される。この導電性ペーストによって形成した導電性膜は、導電性フィラーとして金属粉または合金粉を用いることと、この金属粉または合金粉を分散させることに起因する諸課題を持つ。
第一の課題は、導電性ペーストの熱処理によって形成した導電性膜の抵抗値が、金属粉または合金粉の抵抗値より増大する。つまり、樹脂硬化型導電性ペーストでは、絶縁性の熱硬化性樹脂が、金属粉同士または合金粉同士が直接接触することを妨げる。また、焼成型導電性ペーストでは、導電性が低いガラスフリットが、金属粉同士または合金粉同士の焼結を妨げる。これによって、導電性ペーストの熱処理によって形成した電気回路の配線、電極、電磁波シールド膜、帯電防止膜などの電気抵抗が増大し、電気エネルギーが損失すると共に、発熱現象をもたらし、不具合の要因となる。
第二の課題は、金属粉または合金粉の分散性にある。つまり、金属粉または合金粉の集まりをビヒクル中に分散させる分散性が悪いと、熱処理後に金属粉または合金粉が偏在し、金属粉同士または合金粉同士が直接接触できない。この結果、前記と同様に、導電性ペーストの熱処理によって形成した電気回路の配線、電極、電磁波シールド膜、帯電防止膜の電気抵抗が増大する。
第三の課題は、金属粉同士または合金粉同士が焼結する際に、金属粉または合金粉が収縮する。つまり、金属粉または合金粉が収縮すると、積層セラミックスコンデンサの内部電極においては、電極と誘電体とのデラミネーション(層間剥離)や、電極層にクラックが発生などの構造欠陥が起きる。
第四の課題は、金属粉同士または合金粉同士が凝集する。さらに、粉体が微細になるほど凝集しやすい。粉体の凝集が起こると、ビヒクル中への粉体の分散性が悪化し、結果として、導電性ペーストの熱処理で形成した導電性膜の電気抵抗が増大する。
上記した4つの課題はいずれも、導電性フィラーとして金属粉または合金粉を用いることと、この金属粉または合金粉の集まりを分散させる分散媒体に起因するため、根本的な解決は難しい。
The conductive paste uses a metal powder or an alloy powder as a conductive filler, and the metal powder or the alloy powder, or the metal powder or the alloy powder and the glass frit are dispersed in a vehicle composed of a resin binder and an organic solvent. It is composed of a dispersion liquid. The conductive film formed by this conductive paste has various problems due to the use of metal powder or alloy powder as the conductive filler and the dispersion of the metal powder or alloy powder.
The first problem is that the resistance value of the conductive film formed by the heat treatment of the conductive paste is higher than the resistance value of the metal powder or the alloy powder. That is, in the resin-curable conductive paste, the insulating thermosetting resin prevents the metal powders or the alloy powders from coming into direct contact with each other. Further, in the firing type conductive paste, the glass frit having low conductivity prevents sintering of metal powders or alloy powders. As a result, the electrical resistance of the wiring, electrodes, electromagnetic wave shielding film, antistatic film, etc. of the electric circuit formed by the heat treatment of the conductive paste increases, the electrical energy is lost, and a heat generation phenomenon is caused, which causes a malfunction. ..
The second issue is the dispersibility of metal powder or alloy powder. That is, if the dispersibility of dispersing a collection of metal powder or alloy powder in the vehicle is poor, the metal powder or alloy powder is unevenly distributed after the heat treatment, and the metal powder or alloy powder cannot come into direct contact with each other. As a result, similarly to the above, the electric resistance of the wiring, the electrode, the electromagnetic wave shielding film, and the antistatic film of the electric circuit formed by the heat treatment of the conductive paste increases.
The third problem is that the metal powder or the alloy powder shrinks when the metal powder or the alloy powder sinters with each other. That is, when the metal powder or alloy powder shrinks, structural defects such as delamination (delamination) between the electrode and the dielectric and cracks in the electrode layer occur in the internal electrode of the laminated ceramics capacitor.
The fourth problem is that metal powders or alloy powders aggregate with each other. Further, the finer the powder, the easier it is to aggregate. When the powder agglomerates, the dispersibility of the powder in the vehicle deteriorates, and as a result, the electric resistance of the conductive film formed by the heat treatment of the conductive paste increases.
All of the above four problems are difficult to solve fundamentally because they are caused by the use of metal powder or alloy powder as the conductive filler and the dispersion medium that disperses the collection of the metal powder or alloy powder.

導電性ペーストを用いた導電性膜の課題を解決する様々な試みがなされている。
例えば、特許文献3に、相対的に卑な金属の金属粉を、相対的に貴な金属によって被覆した金属粉フィラーと、被覆剤で被覆された金属ナノ粒子と、有機溶剤とによって導電性ペーストを構成し、バインダとしての樹脂成分を含まない導電性ペーストが記載されている。金属ナノ粒子を導電性ペーストに分散させるため、有機溶剤に対する親和性を持たせ、かつ、沸点が有機溶剤の沸点に近いアルキルアミンで、金属ナノ粒子を被覆する。塗布された導電性ペーストを熱処理すると、金属のナノ粒子が析出し、金属のナノ粒子によって金属フィラーが結合され、樹脂成分を含まない導電性膜が形成される。
しかし、金属ナノ粒子は極めて凝集しやすく、一度凝集するとナノサイズの粒子であるため、凝集の解除は難しく、取り扱いが厄介な微粒子である。さらに、金属ナノ粒子を生成する際に、生成された金属ナノ粒子同士が容易に凝集する。このため、生成された金属ナノ粒子にアルキルアンミンを吸着させることはできず、アルキルアンミンを含む液体中で金属ナノ粒子を析出させ、アルキルアミンで金属ナノ粒子を覆い、アルキルアンミンを除く液体成分を気化させることで、アルキルアンミンで被覆された金属ナノ粒子が製造される。このため、アルキルアミンで金属ナノ粒子を被覆する製造費用は、導電性ペーストを製造する費用を大きく上回る。従って、電気回路の配線、電極、電磁波シールド膜、帯電防止膜などの汎用性の導電性膜が高価な膜になる。なお、特許文献3に、導電性ペーストとして、アルキルアンミンで被覆された金属ナノ粒子を用いる記載はあるが、アルキルアミンで金属ナノ粒子を被覆する製造方法に関する記載はない。
Various attempts have been made to solve the problem of conductive films using conductive pastes.
For example, in Patent Document 3, a conductive paste is prepared by using a metal powder filler in which a relatively base metal powder is coated with a relatively noble metal, metal nanoparticles coated with a coating agent, and an organic solvent. A conductive paste that constitutes the above and does not contain a resin component as a binder is described. In order to disperse the metal nanoparticles in the conductive paste, the metal nanoparticles are coated with an alkylamine having an affinity for an organic solvent and having a boiling point close to the boiling point of the organic solvent. When the applied conductive paste is heat-treated, metal nanoparticles are precipitated, metal fillers are bonded by the metal nanoparticles, and a conductive film containing no resin component is formed.
However, metal nanoparticles are extremely easy to aggregate, and once aggregated, they are nano-sized particles, so that it is difficult to release the aggregation and it is difficult to handle. Further, when the metal nanoparticles are generated, the generated metal nanoparticles are easily aggregated with each other. For this reason, alkylammine cannot be adsorbed on the generated metal nanoparticles, and the metal nanoparticles are precipitated in a liquid containing alkylammine, the metal nanoparticles are covered with the alkylamine, and the liquid component excluding the alkylammine is removed. By vaporization, metal nanoparticles coated with alkylammine are produced. Therefore, the manufacturing cost of coating the metal nanoparticles with alkylamine greatly exceeds the manufacturing cost of the conductive paste. Therefore, a general-purpose conductive film such as an electric circuit wiring, an electrode, an electromagnetic wave shielding film, and an antistatic film becomes an expensive film. In Patent Document 3, there is a description that metal nanoparticles coated with alkylammine are used as the conductive paste, but there is no description about a production method of coating the metal nanoparticles with alkylamine.

特許文献4に、酸化銀と、アミノ基を1個以上有する脂肪酸銀からなる導電性ペーストが記載されている。つまり、導電性ペーストを塗布した塗膜を熱処理すると、脂肪酸銀塩が熱処理により銀に分解され、分解で生じた脂肪酸またはその分解物が揮発する一方で、分解により生じた一部の脂肪酸と酸化銀とが反応し、再び脂肪酸銀塩を生成し、この脂肪酸銀が銀と脂肪酸とに分解されるサイクルを繰り返し、銀からなる導電性膜が形成される。
しかし、アミノ基を1個以上有する脂肪酸銀は、2-アミノイソ酪酸、DL-トレオニン、DL-セリン、DL-ノルバリンおよび6-アミノヘキサンからなる少なくとも1種類の水酸基を持つα-アミノ酸を、ブチルカルビトール、メチルエチルケトン、イソホロン、α-テルピネオールなどからなる溶媒に溶解し、この溶解液に酸化銀の粉末を加え、室温で長時間反応させることで生成される。このため、上記の特殊な薬品を用いて脂肪酸銀を製造する費用は、導電性ペーストを製造する費用を大きく上回る。従って、前記した特許文献3と同様に、電気回路の配線、電極、電磁波シールド膜、帯電防止膜などの汎用性の導電性膜が高価な膜になる。
Patent Document 4 describes a conductive paste composed of silver oxide and fatty acid silver having one or more amino groups. In other words, when the coating film coated with the conductive paste is heat-treated, the fatty acid silver salt is decomposed into silver by the heat treatment, and the fatty acid produced by the decomposition or its decomposition product volatilizes, while oxidation with some fatty acids generated by the decomposition. The reaction with silver produces a fatty acid silver salt again, and the cycle in which this fatty acid silver is decomposed into silver and fatty acid is repeated to form a conductive film made of silver.
However, the fatty acid silver having one or more amino groups is an α-amino acid having at least one type of hydroxyl group consisting of 2-aminoisobutyric acid, DL-threonine, DL-serine, DL-norvaline and 6-aminohexane. It is produced by dissolving in a solvent consisting of threonine, methylethylketone, isophorone, α-terpineol and the like, adding silver oxide powder to this solution, and reacting at room temperature for a long time. Therefore, the cost of producing fatty acid silver using the above-mentioned special chemicals greatly exceeds the cost of producing a conductive paste. Therefore, similarly to Patent Document 3 described above, a general-purpose conductive film such as an electric circuit wiring, an electrode, an electromagnetic wave shielding film, and an antistatic film becomes an expensive film.

特開2008-198873号公報Japanese Unexamined Patent Publication No. 2008-198873 特開2007-118114号公報Japanese Unexamined Patent Publication No. 2007-118114 特開2014-035974号公報Japanese Unexamined Patent Publication No. 2014-035974 特開2010-102884号公報Japanese Unexamined Patent Publication No. 2010-102884

山陽特殊鋼技報、VOl.13、No.1、53-61Sanyo Special Steel Technical Report, VOL. 13, No. 1, 53-61

最初に、軟磁性の扁平粉の扁平面同士を接合した扁平粉の集まりからなるシートを形成する際に発生する課題について説明する。
軟磁性粉を磁化の容易軸方向である面方向に扁平化すると、反磁場係数が小さくなり、扁平率が大きいほど複素透磁率の虚部μ”が増大することが知られている。また、軟磁性粉の材質は、フェライトを除くと合金であるため、導電性である。このため、導電性の軟磁性の扁平粉は、3段落に記載した式1において、複素透磁率の虚部μ”の大きさと導電率の大きさが、電磁ノイズの吸収に貢献する。さらに、軟磁性粉の扁平処理は、ボールミルに依る長時間のバッチ処理に依らず、アトマイズ軟磁性粉ないしは還元軟磁性粉を、メディア撹拌型ミルに依ってアトライタ処理するため、短時間で連続して扁平粉が得られ、安価な加工処理で製造される。
いっぽう、軟磁性の扁平粉の扁平面同士を重ね合わせ、重なり合った扁平面同士を接合した扁平粉の集まりで、シートを形成すれば、少ない扁平粉の使用量で、広い面積のシートが形成できる。また、全ての扁平粉が、複素透磁率の虚部が一定の大きさを持ち、扁平面がシート面を形成すれば、扁平面が電磁波の吸収に参加し、電磁波の受信感度が高く、電磁波を吸収する性能が高いシートになる。このシートは、軟磁性の扁平粉の扁平効果を最大限発揮する。さらに、吸収する電磁波の周波数帯域に応じて、シートの厚みが自在に変えられれば、表皮効果が利用でき、扁平粉の使用量が少なく、軽量のシートになる。
いっぽう、軟磁性の扁平粉の複素透磁率の虚部の大きさは、電磁波の周波数帯域に依存する。また、軟磁性粉の材質によって、扁平粉の複素透磁率の虚部の大きさと、複素透磁率の虚部の周波数特性は変わる。従って、複数種類の軟磁性の扁平粉が、互いに異なる周波数帯域で、複素透磁率の虚部が一定の大きさを持ち、かつ、各々の扁平粉の複素透磁率の虚部の周波数特性が、異なる周波数範囲を互い補完し合う複素透磁率の虚部の周波数特性を持つ複数種類の扁平粉であれば、複数種類の扁平粉の扁平面同士を重ね合わせ、重なり合った扁平面同士を接合できれば、広い周波数帯域の電磁波ノイズを吸収する。
さらに、軟磁性の扁平粉の扁平面同士を重ね合わせ、重なり合った扁平面同士を接合した扁平粉の集まりからなるシートは、磁気をシールドするシートになる。つまり、直流磁場における扁平粉の透磁率が大きいほど、また、磁気抵抗が小さいほど、磁力線がシートに流れやすくなり、より大きな磁気シールド効果が得られる。いっぽう、磁気抵抗は透磁率に反比例するため、比透磁率が大きい軟磁性の扁平粉の扁平面同士を重ね合わせ、重なり合った扁平面同士を直接接合したシートは、磁気シールド効果が高いシートになる。さらに、少ない扁平粉の使用量で、広い面積のシートが形成でき、扁平面がシート面を形成するため、全ての扁平粉が磁気シールドに参加し、磁気シールドの効果が高まる。さらに、シールドする電磁波の周波数帯域に応じて、シートの厚みを変えると、表皮効果が利用でき、扁平粉の使用量が少なく、軽量のシートになる。
このように、軟磁性の扁平粉の扁平面同士を直接重ね合わせた扁平粉の集まりは、電磁波のノイズを吸収するシートとして、また、磁気をシールドするシールド膜として、優れた作用効果をもたらす。しかしながら、軟磁性の扁平粉の扁平面同士を直接接合した事例はこれまでにない。
従来のシートは、特許文献2に記載されているように、バインダ中の有機溶剤を気化させ、固体の高分子材料の結合を介して扁平粉同士を結合させる複合材料からなるシートである。しかし、高分子材料が軟磁性の扁平粉とは異なる性質を持つため、シートに高分子材料の性質が反映する。このように、一定の体積を占有する固体の異種材料の結合を介して軟磁性の扁平粉同士を結合すると、異種材料の性質が反映され、軟磁性の扁平粉が持つ固有の性質が犠牲になる。また、扁平面がシート面を形成しない。
これに対し、軟磁性の扁平粉の扁平面同士が重なり合って直接接合した扁平粉の集まりで、シートが形成できれば、シートを形成する扁平粉の使用量が少なくなるとともに、シートに軟磁性の扁平粉と扁平面との性質が反映される。さらに、扁平面がシート面を形成すれば、全ての扁平粉が電磁波の吸収に参加でき、ないしは、全ての扁平粉が磁気シールドに参加し、軟磁性の扁平粉の磁気特性が最も反映されたシートになる。これによって、軟磁性の扁平粉の性能を最大限発現できる理想的なシートになる。
First, the problems that occur when forming a sheet consisting of a collection of flat powders obtained by joining the flat surfaces of soft magnetic flat powders to each other will be described.
It is also known that when the soft magnetic powder is flattened in the plane direction, which is the easy axial direction of magnetization, the demagnetizing field coefficient becomes smaller, and the larger the flattening ratio, the larger the imaginary portion μ of the complex magnetic permeability. Since the material of the soft magnetic powder is an alloy excluding ferrite, it is conductive. Therefore, the conductive soft magnetic flat powder is the imaginary portion μ of the complex magnetic permeability in the formula 1 described in paragraph 3. The size of "" and the size of conductivity contribute to the absorption of electromagnetic noise. Further, the flattening treatment of the soft magnetic powder is continuous in a short time because the atomized soft magnetic powder or the reduced soft magnetic powder is subjected to the attritor treatment by the media stirring type mill without relying on the long-time batch processing by the ball mill. Flat powder is obtained and manufactured by an inexpensive processing process.
On the other hand, if a sheet is formed by superimposing the flat surfaces of soft magnetic flat powder and joining the overlapping flat surfaces together, a sheet with a large area can be formed with a small amount of flat powder used. .. In addition, if the imaginary part of the complex magnetic permeability of all the flat powder has a certain size and the flat surface forms the sheet surface, the flat surface participates in the absorption of the electromagnetic wave, the reception sensitivity of the electromagnetic wave is high, and the electromagnetic wave is high. It becomes a sheet with high performance to absorb. This sheet maximizes the flattening effect of soft magnetic flat powder. Further, if the thickness of the sheet can be freely changed according to the frequency band of the electromagnetic wave to be absorbed, the skin effect can be utilized, the amount of flat powder used is small, and the sheet becomes lightweight.
On the other hand, the size of the imaginary part of the complex magnetic permeability of the soft magnetic flat powder depends on the frequency band of the electromagnetic wave. Further, depending on the material of the soft magnetic powder, the size of the imaginary part of the complex magnetic permeability of the flat powder and the frequency characteristic of the imaginary part of the complex magnetic permeability change. Therefore, a plurality of types of soft magnetic flat powders have a constant size in the imaginary part of the complex magnetic permeability in different frequency bands, and the frequency characteristics of the imaginary part of the complex magnetic permeability of each flat powder are different. In the case of multiple types of flat powder having the frequency characteristics of the imaginary part of complex magnetic permeability that complement each other in different frequency ranges, if the flat surfaces of the multiple types of flat powder can be overlapped and the overlapping flat surfaces can be joined. Absorbs electromagnetic noise in a wide frequency band.
Further, a sheet made of a collection of flat powders obtained by superimposing the flat surfaces of soft magnetic flat powders and joining the overlapping flat surfaces to each other becomes a sheet that shields magnetism. That is, the larger the magnetic permeability of the flat powder in the DC magnetic field and the smaller the magnetic resistance, the easier it is for the magnetic field lines to flow to the sheet, and a larger magnetic shielding effect can be obtained. On the other hand, since the magnetic resistance is inversely proportional to the magnetic permeability, a sheet in which the flat surfaces of soft magnetic flat powder having a large relative magnetic permeability are overlapped and the overlapping flat surfaces are directly bonded to each other becomes a sheet having a high magnetic shielding effect. .. Further, since a sheet having a large area can be formed with a small amount of flat powder used and the flat surface forms a sheet surface, all the flat powder participates in the magnetic shield, and the effect of the magnetic shield is enhanced. Furthermore, by changing the thickness of the sheet according to the frequency band of the electromagnetic wave to be shielded, the skin effect can be utilized, the amount of flat powder used is small, and the sheet becomes lightweight.
As described above, the collection of flat powders in which the flat surfaces of the soft magnetic flat powders are directly overlapped with each other brings about excellent action and effect as a sheet for absorbing electromagnetic wave noise and as a shielding film for shielding magnetism. However, there has never been a case where the flat surfaces of soft magnetic flat powder are directly bonded to each other.
As described in Patent Document 2, the conventional sheet is a sheet made of a composite material that vaporizes the organic solvent in the binder and bonds the flat powders to each other through the bonding of the solid polymer material. However, since the polymer material has different properties from the soft magnetic flat powder, the properties of the polymer material are reflected in the sheet. In this way, when soft magnetic flat powders are bonded to each other through the bonding of solid dissimilar materials that occupy a certain volume, the properties of the dissimilar materials are reflected and the unique properties of the soft magnetic flat powders are sacrificed. Become. Also, the flat surface does not form a sheet surface.
On the other hand, if a sheet can be formed by a collection of flat powders in which the flat surfaces of the soft magnetic flat powders are overlapped and directly bonded, the amount of the flat powder used to form the sheet is reduced and the soft magnetic flat powder is used on the sheet. The properties of the powder and the flat surface are reflected. Furthermore, if the flat surface forms a sheet surface, all the flat powders can participate in the absorption of electromagnetic waves, or all the flat powders participate in the magnetic shield, and the magnetic properties of the soft magnetic flat powders are most reflected. It becomes a sheet. This makes it an ideal sheet that can maximize the performance of soft magnetic flat powder.

次に、金属からなるフレーク紛ないしは鱗片粉の平面同士を接合したフレーク紛ないしは鱗片粉の集まりからなるシートを形成する際に発生する課題について説明する。
10段落に記載した導電性膜を形成する4つの課題は、シートを形成する際に、導電性フィラーを用いなければ、4つの課題を根本的に解決することができる。従って、金属からなるフレーク紛ないしは鱗片粉の平面同士を直接接合したフレーク紛ないしは鱗片粉の集まりからなるシートが形成できれば、4つの課題が根本的に解決される。
従って、軟磁性の扁平粉の扁平面同士を直接接合した扁平粉の集まりからなるシートを形成する課題と、金属からなるフレーク紛ないしは鱗片粉の平面同士を直接接合したフレーク紛ないしは鱗片粉の集まりからなるシートを形成する課題は、いずれも粉体の平面同士を重ね合わせ、重なり合った平面同士を直接接合することであり、共通の課題になる。
しかしながら、粉体以外の固体を用い、固体を介して粉体の平面同士を結合し、シートを形成すると、固体が一定の体積を占めるため、シートに固体の性質が反映する。従って、シートの形成において、粉体以外の固体を用いることができない。さらに、粉体の平面同士を直接接合することは、平面同士を重ね合わせる際に摩擦が発生するため困難である。いっぽう、液体を介して粉体の平面同士を重ね合わせることは可能である。なぜならば、液体は分子が自由自在に動くエネルギーを持ち、液体の形状は自由自在に変わる。このため、液体の移動を利用し、アスペクト比が大きい粉体が平面を上にして移動させ、粉体の平面同士を重ね合わせることは可能である。また、液体を利用し、液体中で粉体の平面同士を重ね合わせるため、粉体に摩擦は発生しない。しかし、粉体の平面同士を重ね合わせ、平面同士を直接接合した粉体の集まりからなるシートを形成するには、液体を介して粉体の平面同士が重なり合った粉体の集まりに対し、シートに加工する処理が必要になる。このため、シートを加工する際に、液体を介して粉体の平面同士が重なり合った粉体の集まりの状態を維持することが必要になる。
従って、液体を介して粉体の平面同士を重ね合わせた粉体の集まりからなるペーストを作成し、このペーストを用いて、粉体の平面同士を直接接合した粉体の集まりからなるシートを形成するには、次の5つの処理が必要になる。このため、本発明が解決しようとする課題は、次の5つの処理が容易に実施できる方法を見出すことである。
第一に、液体を介して粉体の平面同士が重なり合った粉体の集まりからなるペーストを作成する。いっぽう、該ペーストを用いてシートに加工するには、ペーストを塗布した塗膜において、粉体の平面同士が液体を介して重なり合った状態を維持しなければならない。従って、第二に、前記液体は一定の粘度を持ち、該粘度によって液体が粉体の平面に吸着するとともに、液体を介して粉体の平面同士が重なり合って吸着する。さらに、ペーストを塗布した塗膜をシートに加工するには、次の2つの処理が必要になる。第三に、塗膜から前記液体を気化させると、粉体の平面同士が重なり合う。第四に、重なり合った平面同士を直接接合させ、粉体の平面同士が直接接合したシートに加工する。この結果、粉体の平面同士が直接接合したシートが製造される。
ところで、軟磁性の扁平紛と、金属のフレーク紛ないしは鱗片粉は、様々な材質、形状、粒度分布を持つ。従って、第五に、粉体の材質、形状、粒度分布に拘わらず、前記ペーストが作成でき、さらに、重なり合った平面同士を直接接合できる。これによって、様々な粉体の集まりからなるシートが製造でき、シートの製造方法は汎用性を持ち、様々な性質を持つシートが、様々な用途に使用できる。さらに、材質が異なる複数種類の粉体の平面同士が接合できる。
さらに、第六に、前記した第一から第五までの処理が、安価な材料を用い、極めて簡単な処理である。これによって、平面同士が重なり合った粉体を直接接合したシートが安価に製造できる。
本発明が解決しようとする課題は、これら6つの事項で、これら6つの課題を解決すると、様々な材質と粒子形状と粒度分布からなる平面を持つ粉体について、粉体の平面同士を直接接合したシートを製造することができる。このシートは、粉体の性質を生かした安価なシートになる。
Next, the problems that occur when forming a sheet composed of a collection of flake powder or scale powder obtained by joining planes of flake powder or scale powder made of metal to each other will be described.
The four problems of forming the conductive film described in paragraph 10 can be fundamentally solved if the conductive filler is not used when forming the sheet. Therefore, if a sheet consisting of flake powder or a collection of scale powder in which planes of flake powder or scale powder made of metal are directly bonded to each other can be formed, the four problems will be fundamentally solved.
Therefore, the problem of forming a sheet consisting of a collection of flat powders directly bonded to the flat surfaces of soft magnetic flat powder and the collection of flake powder or scale powder directly bonded to the flat surfaces of metal flake powder or scale powder. The problem of forming a sheet made of the powder is to superimpose the planes of the powder and directly join the overlapping planes, which is a common problem.
However, when a solid other than the powder is used and the planes of the powder are bonded to each other via the solid to form a sheet, the solid occupies a certain volume, and the properties of the solid are reflected in the sheet. Therefore, solids other than powder cannot be used to form the sheet. Further, it is difficult to directly join the planes of the powder to each other because friction is generated when the planes are overlapped with each other. On the other hand, it is possible to superimpose the planes of the powder on top of each other via the liquid. This is because the liquid has the energy to move the molecules freely, and the shape of the liquid changes freely. Therefore, it is possible to use the movement of the liquid to move the powder having a large aspect ratio with the plane facing up, and to superimpose the planes of the powder on each other. Further, since the liquid is used and the planes of the powder are overlapped with each other in the liquid, friction does not occur in the powder. However, in order to form a sheet consisting of a collection of powders in which the planes of the powder are overlapped with each other and the planes are directly bonded to each other, the sheet is opposed to the collection of powders in which the planes of the powder are overlapped with each other via a liquid. Processing is required. Therefore, when processing the sheet, it is necessary to maintain the state of the powder aggregate in which the planes of the powder are overlapped with each other through the liquid.
Therefore, a paste consisting of a collection of powders in which planes of powder are overlapped with each other via a liquid is created, and a sheet consisting of a collection of powders in which the planes of powder are directly bonded is formed using this paste. To do so, the following five processes are required. Therefore, the problem to be solved by the present invention is to find a method in which the following five processes can be easily carried out.
First, a paste consisting of a collection of powders in which planes of powder are overlapped with each other through a liquid is created. On the other hand, in order to process a sheet using the paste, it is necessary to maintain a state in which the planes of the powder are overlapped with each other through the liquid in the coating film to which the paste is applied. Therefore, secondly, the liquid has a constant viscosity, and the liquid is adsorbed on the plane of the powder due to the viscosity, and the planes of the powder are overlapped and adsorbed via the liquid. Further, in order to process the coating film coated with the paste into a sheet, the following two treatments are required. Third, when the liquid is vaporized from the coating film, the planes of the powder overlap each other. Fourth, the overlapping planes are directly bonded to each other, and the powder is processed into a sheet in which the planes are directly bonded to each other. As a result, a sheet in which the planes of the powder are directly bonded to each other is manufactured.
By the way, soft magnetic flat powder and metal flake powder or scale powder have various materials, shapes, and particle size distributions. Therefore, fifthly, the paste can be prepared regardless of the material, shape, and particle size distribution of the powder, and the overlapping planes can be directly joined to each other. As a result, a sheet composed of a collection of various powders can be produced, the sheet manufacturing method has versatility, and sheets having various properties can be used for various purposes. Further, the planes of a plurality of types of powders made of different materials can be joined to each other.
Sixth, the above-mentioned first to fifth treatments are extremely simple treatments using inexpensive materials. As a result, a sheet in which powders having overlapping planes are directly bonded can be manufactured at low cost.
The problems to be solved by the present invention are these six matters, and when these six problems are solved, the planes of the powder are directly bonded to each other for the powder having a plane consisting of various materials, particle shapes and particle size distributions. Can be manufactured. This sheet is an inexpensive sheet that takes advantage of the properties of powder.

本発明における金属ないしは合金からなるフレーク状、鱗片状ないしは扁平状の粉体の平面同士が有機化合物の溶解液を介して重なり合った該粉体の集まりからなるペーストを製造する方法は、
有機化合物を溶媒で溶解した該有機化合物の溶解液の粘度を、金属ないしは合金からなるフレーク状、鱗片状ないしは扁平状の粉体の平均の厚みと平均の粒径と密度とから設定し、該粘度を有する有機化合物の溶解液の体積が、前記粉体の集まりが占める体積の3倍より多い体積になるように秤量して該有機化合物の溶解液を作成し、該有機化合物の溶解液と前記粉体の集まりを容器に充填する、この後、該容器中でホモジナイザー装置を稼働させ、前記有機化合物の溶解液を介して前記粉体の集まりに衝撃を繰り返し加え、該粉体の集まりを、前記有機化合物の溶解液を介して1枚1枚の粉体に分離させ、該粉体を前記有機化合物の溶解液で覆う、この後、前記ホモジナイザー装置を前記容器から取り出す、さらに、前記容器に前後、左右、上下の3方向の振動加速度を繰り返し加え、前記粉体の平面同士が前記有機化合物の溶解液を介して重なり合った該粉体の集まりからなるペーストを前記容器内に製造する、金属ないしは合金からなるフレーク状、鱗片状ないしは扁平状の粉体の平面同士が有機化合物の溶解液を介して重なり合った該粉体の集まりからなるペーストを製造する方法である。
In the present invention, the method for producing a paste consisting of a collection of flakes, scaly or flat powders made of a metal or an alloy in which planes of the powders are overlapped with each other via a solution of an organic compound is used.
The viscosity of the solution of the organic compound in which the organic compound is dissolved with a solvent is set from the average thickness, the average particle size and the density of the flake-like, scaly or flat powder made of a metal or an alloy, and the like. The volume of the solution of the organic compound having viscosity is weighed so that the volume is more than three times the volume occupied by the collection of the powders to prepare the solution of the organic compound, and the solution of the organic compound is combined with the solution of the organic compound. The container is filled with the aggregate of the powder, and then the homogenizer device is operated in the container, and the impact is repeatedly applied to the aggregate of the powder via the solution of the organic compound to form the aggregate of the powder. , The powder is separated into individual powders via the solution of the organic compound, the powder is covered with the solution of the organic compound, and then the homogenizer device is taken out from the container, and further, the container is further removed. A paste consisting of a collection of the powders in which the planes of the powders are overlapped with each other via the solution of the organic compound is produced in the container by repeatedly applying vibration accelerations in three directions of front-back, left-right, and up-down. This is a method for producing a paste consisting of a collection of flakes, scaly or flat powders made of a metal or an alloy in which planes of the powder are overlapped with each other via a solution of an organic compound.

つまり、製造したペーストにおいて、有機化合物の溶解液の粘度に応じた吸着力で、有機化合物の溶解液が粉体に吸着し、また、有機化合物の溶解液を介して粉体の平面同士が重なり合う。このため、有機化合物の溶解液の粘度は、ペーストを形成する重要な要素になる。いっぽう、粉体の厚みは材質によって変わる。例えば、硬度が高く扁平しにくい金属の扁平粉の厚みは、10-20μmと厚い。これに対し、合金の組成を変え、硬度を低下させ、扁平処理を容易にさせた扁平粉の厚みは、1-1.5μmと薄い。さらに、金属からなるフレーク紛ないしは鱗片粉の厚みは、0.15-1.0μmとさらに薄い。従って、ペーストを基材に塗布することで、基材に形成される塗膜の厚みは、粉体の厚みに応じて変える必要がある。このため、粉体の平均の厚みに応じて、有機化合物の溶解液の粘度を変える。例えば、平均の厚みが15μmと厚い粉体の平面が4層積層して塗膜を形成する場合は、粉体の平面だけで60μmに近い厚みになる。これに対し、平均の厚みが1μmと薄い粉体が、平面が4層積層して塗膜を形成する場合は、粉体の平面だけで4μmに近い厚みになる。さらに、粉体の重量は粉体の粒径と密度とによって変わる。相対的に粒径が大きく密度が高い粉体は、有機化合物の溶解液の粘度を相対的に高め、有機化合物の溶解液が粉体に吸着する吸着力を相対的に高める必要がある。このように、粉体の平均の厚みと平均粒径と密度とに応じて、ペーストを構成する有機化合物の溶解液の粘度を設定する必要性がある。
つまり、粉体の平均の厚みが厚く、また、粉体の平均の粒径が大きく密度が高い場合は、ペーストの粘度を相対的に高め、有機化合物の溶解液が粉体に吸着する吸着力を高めるとともに、粉体の平面同士が有機化合物の溶解液を介して互いに吸着する吸着力を高め、厚みが厚く、重量が大きい粉体の平面同士を有機化合物の溶解液を介して吸着させ、該粉体の平面同士が有機化合物の溶解液を介して吸着した塗膜を形成する必要がある。このため、塗膜の厚みは厚くなる。これとは反対に、粉体の平均の厚みが薄く、また、平均の粒径が小さく密度が低い粉体を用いる場合は、ペーストの粘度を相対的に低くし、有機化合物の溶解液が粉体に吸着する吸着力を低下させるとともに、粉体の平面同士が有機化合物の溶解液を介して互いに吸着する吸着力を低下させ、厚みが薄く、重量が小さい粉体の平面同士が有機化合物の溶解液を介して吸着し、該粉体の平面同士が有機化合物の溶解液を介して吸着した塗膜を形成する必要がある。このため、塗膜の厚みが薄くなる。このように、粉体の平均の厚みと平均の粒径と密度とから、有機化合物の溶解液の粘度を設定する。
いっぽう、有機化合物の溶解液の粘度と共に、有機化合物の溶解液がペーストに占める体積割合も、ペーストを形成する重要な要素になる。つまり、ペーストに占める有機化合物の溶解液の体積割合が少ない場合は、薄い厚みの有機化合物の溶解液を介して平面同士が接合された粉体の集まりになり、ペーストは液体としての性質が低下し、ペーストの流動性が低い。こうした流動性の低いペーストを基材に塗布すると、塗膜の厚みの制御が困難になる。つまり、粉体の平面同士が有機化合物の溶解液を介して重なり合った塗膜が形成できない。従って、有機化合物の溶解液がペーストに占める体積割合が、粉体の集まりがペーストに占める体積割合の3倍より多くし、粉体の平面の厚みの3倍より厚い厚みからなる有機化合物の溶解液を介して、粉体の平面同士を重ね合せれば、ペーストは、有機化合物の溶解液の性質が優勢になり、ペーストは液体としての流動性を持つ。これによって、有機化合物の溶解液の粘度に応じた厚みからなる塗膜が形成される。
以上に説明したように、粉体の平面同士が有機化合物の溶解液を介して重なり合った該粉体の集まりからなるペーストを製造するうえで、有機化合物の溶解液の粘度と、ペーストに占める有機化合物の溶解液の体積割合が重要な要素になる。
ここで、本発明のペーストを製造する方法を説明する。
最初に、粉体の平均の厚みと平均の粒径と密度とから、有機化合物の溶解液の粘度を設定する。この粘度になるように、有機化合物を溶媒で溶解させるとともに、有機化合物の溶解液の体積が用いる粉体の集まりの体積の3倍より多い体積になるように有機化合物の溶解液を秤量し、該溶解液を容器に充填し、さらに、粉体の集まりを容器に混合する。
次に、容器内の混合液中でホモジナイザー装置を稼働させ、有機化合物の溶解液を介して粉体に衝撃を繰り返し加え、粉体の集まりを、有機化合物の溶解液を介して1枚1枚の粉体に分離させ、全ての粉体を有機化合物の溶解液で覆う。つまり、粉体は、厚さに対する長径と短径との平均値の比率であるアスペクト比が大きい平面を有する。さらに、平面の大きさと粉体の厚みとにバラツキがある。このような粉体の集まりは、大気雰囲気で取り扱う際に、平面同士が複雑に重なり合う。また、粉体が微細で軽量であるため、平面同士で重なり合っているか否かは肉眼では識別しにくい。いっぽう、平面同士が重なり合った粉体を用いてペーストを作成し、このペーストを用いてシートを形成した場合は、平面同士が接合しない粉体が発生し、シートに機械的強度が弱い部分が形成される。また、重なり合った粉体の全てを個々の粉体に分離できれば、シートを形成する粉体の量が減る。従って、粉体の平面同士が重なり合った部位を、確実に分離させる処理が必要になる。いっぽう、大気雰囲気で、平面同士が重なり合った粉体を分離しようとすると、重なり合った平面に摩擦力が発生し、分離は容易でない。また、平面同士が重なり合っているか否かの識別が難しい。しかし、有機化合物の溶解液がペーストに占める体積が、粉体の集まりがペーストに占める体積の3倍より多いため、ペーストは液体としての流動性を持つ。この有機化合物の溶解液に、ホモジナイザー装置によって衝撃を加えると、衝撃が有機化合物の溶解液の全体に広がり、これによって、粉体の平面同士が重なり合った部位に衝撃が確実に加わり、粉体が軽量であるため、重なり合った平面同士が容易に分離する。この結果、平面同士が重なり合った粉体が確実に分離される。なお、ホモジナイザー装置として、超音波方式のホモジナイザー装置を用いると、粉体の平面よりさらに2桁以上小さく莫大な数からなる気泡の発生と気泡の消滅とが、有機化合物の溶解液で繰り返され(この現象をキャビテーションという)、気泡がはじける際の衝撃波が、有機化合物の溶解液の全体に継続して発生し、平面同士が重なり合った粉体が短時間で一枚一枚の粉体に分離する。この結果、全ての粉体が有機化合物の溶解液で覆われる。いっぽう、有機化合物の溶解液の粘度に応じた吸着力で、有機化合物の溶解液が粉体に吸着するため、この後の処理において、有機化合物の溶解液が粉体から剥離しない。このため、粉体の平面同士が再び重なり合わない。この後、ホモジナイザー装置を容器から取り出す。
さらに、容器に前後、左右、上下の3方向の振動加速度を繰り返し加え、粉体の平面同士が有機化合物の溶解液を介して重なり合った該粉体の集まりからなるペーストを容器内に製造する。つまり、ホモジナイザー装置を用いた処理で、全ての粉体は、有機化合物の溶解液で覆われている。こうした粉体の集まりが充填された容器に振動加速度を加えると、粉体の体積の3倍より多い体積を占める有機化合物の溶解液が、粉体を伴って振動加速度の方向に移動する。この際、粉体はアスペクト比が大きい平面を有するため、平面を上にして振動加速度の方向に移動するとともに、平面を上にして粉体の再配列が進み、平面同士が有機化合物の溶解液を介して重なり合う。この結果、平面同士が重なり合った粉体の集まりが、容器の全体に広がる。最後に上下方向の振動加速度を加え、容器への加振を停止する。この結果、平面同士が有機化合物の溶解液を介して重なり合った該粉体の集まりからなるペーストが、容器の全体に広がって製造される。
この結果、容器内に、粉体の平面同士が有機化合物の溶解液を介して重なり合った該粉体の集まりからなるペーストが形成され、16段落に記載した第一の課題が解決される。また、有機化合物の溶解液の粘度に応じた吸着力で、有機化合物の溶解液が粉体の平面に吸着するため、ペーストを基材に塗布する際に、粉体の平面から有機化合物の溶解液が剥離しない。また、粉体の平面同士は、3倍以上の厚みからなる有機化合物の溶解液を介して重なり合うため、ペーストは液体としての流動性を持つ。従って、ペーストを基材に塗布すると、有機化合物の溶解液の粘度に応じた厚みで塗膜が形成される。この塗膜は、粉体の平面同士が有機化合物の溶解液を介して重なり合うとともに、粉体の平面が塗膜面を形成する。これによって、16段落に記載した第二と第三の課題が解決される。また、塗膜から有機化合物の溶解液を気化すれば、塗膜は、粉体の平面同士が直接重なり合うとともに、粉体の平面が塗膜面を形成した該粉体の集まりになる。さらに、重なり合った平面同士を接合すれば、塗膜は、平面同士が直接重なり合うとともに、平面がシート面を形成する該シートになる。これによって、16段落に記載した第四の課題が解決される。さらに、用いる粉体の材質、形状、粒度分布が変わったとしても、粉体の平均の厚みと平均の粒径と密度とによって、有機化合物の溶解液の粘度を設定し、同一の方法でペーストが製造できる。これによって、16段落に記載した第五の課題が解決される。
次に、本発明におけるペーストの作用効果を説明する。
本ペーストを製造する方法は、有機化合物の溶解液と粉体の集まりとからなる混合物を作成し、混合物中でホモジナイザー装置を稼働させ、さらに、容器に3方向の振動加速度を繰り返し加える3つの処理からなる。こため、安価な費用でペーストが製造できる。また、粉体は汎用的な工業用の素材で、有機化合物と溶媒とは汎用的な工業用の薬品である。このため、ペースト原料は安価である。従って、安価な費用で安価なペーストが製造される。このペーストを塗布して塗膜を形成し、塗膜から有機化合物の溶解液を気化し、さらに、重なり合った平面同士を接合すれば、平面同士が直接重なり合うとともに、平面がシート面を形成する粉体の集まりからなるシートが形成される。このため、安価な費用でシートが形成できる。これによって、16段落に記載した第六の課題が解決され、16段落に記載した全ての課題が解決される。
さらに、本ペーストの製造方法は、前記した3つの処理からなるため、用いる粉体の材質、形状、粒度分布に制約はない。従って、本ペーストを用いて、平面同士が重なり合うとともに、平面がシート面を形成する粉体の集まりからなるシートが作成でき、少ない粉体の使用量で、広い面積のシートが形成でき、様々な粉体がシートとしての作用を発揮する。このシートは、粉体の材質に基づく機能を最大限発揮するシートになる。従って、本発明におけるペーストを用いることで、画期的なシートが形成できる。
That is, in the produced paste, the solution of the organic compound is adsorbed on the powder by the adsorption force according to the viscosity of the solution of the organic compound, and the planes of the powder overlap each other via the solution of the organic compound. .. Therefore, the viscosity of the solution of the organic compound is an important factor in forming the paste. On the other hand, the thickness of the powder varies depending on the material. For example, the thickness of the flat powder of a metal having a high hardness and being difficult to flatten is as thick as 10-20 μm. On the other hand, the thickness of the flat powder obtained by changing the composition of the alloy, lowering the hardness, and facilitating the flattening treatment is as thin as 1-1.5 μm. Further, the thickness of the flake powder or scale powder made of metal is as thin as 0.15-1.0 μm. Therefore, it is necessary to change the thickness of the coating film formed on the base material by applying the paste to the base material according to the thickness of the powder. Therefore, the viscosity of the solution of the organic compound is changed according to the average thickness of the powder. For example, when four layers of thick powder planes having an average thickness of 15 μm are laminated to form a coating film, the thickness of the powder planes alone is close to 60 μm. On the other hand, when a powder having an average thickness of 1 μm is laminated with four layers to form a coating film, the thickness of the powder surface alone is close to 4 μm. Furthermore, the weight of the powder depends on the particle size and density of the powder. For powders having a relatively large particle size and high density, it is necessary to relatively increase the viscosity of the solution of the organic compound and relatively increase the adsorption force of the solution of the organic compound to be adsorbed on the powder. As described above, it is necessary to set the viscosity of the solution of the organic compound constituting the paste according to the average thickness, the average particle size and the density of the powder.
That is, when the average thickness of the powder is thick, and when the average particle size of the powder is large and the density is high, the viscosity of the paste is relatively increased, and the adsorption force for the solution of the organic compound to be adsorbed on the powder. In addition, the planes of the powder are adsorbed to each other via the solution of the organic compound, and the planes of the thick and heavy powder are adsorbed to each other via the solution of the organic compound. It is necessary to form a coating film in which the planes of the powder are adsorbed on each other via the solution of the organic compound. Therefore, the thickness of the coating film becomes thick. On the contrary, when the average thickness of the powder is thin and the average particle size is small and the density is low, the viscosity of the paste is relatively low and the solution of the organic compound is the powder. In addition to reducing the adsorption force that is adsorbed to the body, the planes of the powder that adsorb each other through the solution of the organic compound are also reduced, and the planes of the powder that are thin and light in weight are the organic compounds. It is necessary to form a coating film that is adsorbed via the solution and the planes of the powder are adsorbed via the solution of the organic compound. Therefore, the thickness of the coating film becomes thin. In this way, the viscosity of the solution of the organic compound is set from the average thickness of the powder and the average particle size and density.
On the other hand, along with the viscosity of the solution of the organic compound, the volume ratio of the solution of the organic compound to the paste is also an important factor for forming the paste. In other words, when the volume ratio of the organic compound solution to the paste is small, it becomes a collection of powders in which the planes are joined via a thin organic compound solution, and the paste has reduced properties as a liquid. However, the fluidity of the paste is low. When such a paste having low fluidity is applied to a base material, it becomes difficult to control the thickness of the coating film. That is, it is not possible to form a coating film in which the planes of the powder are overlapped with each other via the solution of the organic compound. Therefore, the volume ratio of the solution of the organic compound in the paste is more than 3 times the volume ratio of the powder aggregate in the paste, and the dissolution of the organic compound having a thickness thicker than 3 times the thickness of the flat surface of the powder. When the planes of the powder are overlapped with each other via the liquid, the paste has the predominant property of the solution of the organic compound, and the paste has fluidity as a liquid. As a result, a coating film having a thickness corresponding to the viscosity of the solution of the organic compound is formed.
As described above, in producing a paste consisting of a collection of powders in which planes of powder are overlapped with each other via a solution of an organic compound, the viscosity of the solution of the organic compound and the organic content of the paste The volume ratio of the solution of the compound is an important factor.
Here, a method for producing the paste of the present invention will be described.
First, the viscosity of the solution of the organic compound is set from the average thickness of the powder and the average particle size and density. The organic compound is dissolved in a container so as to have this viscosity, and the volume of the solution of the organic compound is weighed so that the volume of the solution of the organic compound is more than 3 times the volume of the collection of powders used. The solution is filled in a container, and a collection of powders is further mixed in the container.
Next, the homogenizer device is operated in the mixed solution in the container, and the impact is repeatedly applied to the powder through the solution of the organic compound, and the aggregate of the powder is collected one by one through the solution of the organic compound. Separate into powders and cover all powders with a solution of organic compound. That is, the powder has a plane having a large aspect ratio, which is the ratio of the average value of the major axis to the minor axis to the thickness. Furthermore, there are variations in the size of the flat surface and the thickness of the powder. When handling such a collection of powders in an atmospheric atmosphere, the planes overlap each other in a complicated manner. Moreover, since the powder is fine and lightweight, it is difficult to distinguish whether or not the planes overlap each other with the naked eye. On the other hand, when a paste is created using powder in which planes overlap each other and a sheet is formed using this paste, powder in which the planes do not join is generated, and a portion having weak mechanical strength is formed on the sheet. Will be done. Further, if all the overlapping powders can be separated into individual powders, the amount of powders forming the sheet can be reduced. Therefore, it is necessary to perform a process for surely separating the portions where the planes of the powder overlap each other. On the other hand, when trying to separate powders having overlapping planes in an atmospheric atmosphere, frictional force is generated on the overlapping planes, and the separation is not easy. In addition, it is difficult to identify whether or not the planes overlap each other. However, since the volume occupied by the solution of the organic compound in the paste is more than three times the volume occupied by the aggregate of powders in the paste, the paste has fluidity as a liquid. When an impact is applied to the solution of the organic compound by a homogenizer device, the impact spreads over the entire solution of the organic compound, whereby the impact is surely applied to the portion where the planes of the powder overlap each other, and the powder is generated. Due to its light weight, overlapping planes can be easily separated from each other. As a result, the powder on which the planes overlap is surely separated. When an ultrasonic homogenizer is used as the homogenizer, the generation of bubbles and the disappearance of a huge number of bubbles, which are two orders of magnitude smaller than the plane of the powder and the disappearance of bubbles, are repeated in the solution of the organic compound ( This phenomenon is called cavitation), and a shock wave when bubbles burst is continuously generated in the entire solution of the organic compound, and the powder on which the planes overlap is separated into individual powders in a short time. .. As a result, all the powder is covered with the solution of the organic compound. On the other hand, since the solution of the organic compound is adsorbed on the powder by the adsorption force according to the viscosity of the solution of the organic compound, the solution of the organic compound does not peel off from the powder in the subsequent treatment. Therefore, the planes of the powder do not overlap again. After this, the homogenizer device is taken out of the container.
Further, vibration acceleration in three directions of front-back, left-right, and up-down is repeatedly applied to the container to produce a paste consisting of a collection of the powder in which the planes of the powder are overlapped with each other via the solution of the organic compound. That is, in the treatment using the homogenizer device, all the powders are covered with the solution of the organic compound. When vibration acceleration is applied to a container filled with such a collection of powders, the solution of the organic compound, which occupies a volume more than three times the volume of the powder, moves in the direction of the vibration acceleration with the powder. At this time, since the powder has a plane having a large aspect ratio, the powder moves in the direction of vibration acceleration with the plane facing up, and the rearrangement of the powder proceeds with the plane facing up, so that the planes are the solutions of the organic compound. Overlap through. As a result, a collection of powders having overlapping planes spreads over the entire container. Finally, the vibration acceleration in the vertical direction is applied to stop the vibration to the container. As a result, a paste consisting of a collection of powders in which planes are overlapped with each other via a solution of an organic compound is produced by spreading over the entire container.
As a result, a paste consisting of a collection of the powders in which the planes of the powders are overlapped with each other via the solution of the organic compound is formed in the container, and the first problem described in paragraph 16 is solved. In addition, since the solution of the organic compound is adsorbed on the plane of the powder by the adsorption force according to the viscosity of the solution of the organic compound, when the paste is applied to the substrate, the organic compound is dissolved from the plane of the powder. The liquid does not peel off. Further, since the planes of the powder overlap each other via the solution of the organic compound having a thickness of 3 times or more, the paste has fluidity as a liquid. Therefore, when the paste is applied to the substrate, a coating film is formed with a thickness corresponding to the viscosity of the solution of the organic compound. In this coating film, the flat surfaces of the powder overlap each other via the solution of the organic compound, and the flat surfaces of the powder form the coating film surface. This solves the second and third problems described in paragraph 16. Further, when the solution of the organic compound is vaporized from the coating film, the coating film becomes a collection of the powders in which the planes of the powder directly overlap each other and the planes of the powder form the coating film surface. Further, if the overlapping planes are joined to each other, the coating film becomes the sheet in which the planes directly overlap each other and the planes form the sheet surface. This solves the fourth problem described in paragraph 16. Furthermore, even if the material, shape, and particle size distribution of the powder used change, the viscosity of the solution of the organic compound is set according to the average thickness and average particle size and density of the powder, and the paste is made by the same method. Can be manufactured. This solves the fifth problem described in paragraph 16.
Next, the action and effect of the paste in the present invention will be described.
The method for producing this paste is to prepare a mixture consisting of a solution of an organic compound and a collection of powders, operate a homogenizer device in the mixture, and repeatedly apply vibration acceleration in three directions to the container. Consists of. Therefore, the paste can be produced at a low cost. Further, powder is a general-purpose industrial material, and organic compounds and solvents are general-purpose industrial chemicals. Therefore, the paste raw material is inexpensive. Therefore, an inexpensive paste can be produced at a low cost. If this paste is applied to form a coating film, the solution of the organic compound is vaporized from the coating film, and the overlapping planes are joined together, the planes directly overlap each other and the planes form the sheet surface. A sheet consisting of a collection of bodies is formed. Therefore, the sheet can be formed at a low cost. As a result, the sixth problem described in paragraph 16 is solved, and all the problems described in paragraph 16 are solved.
Further, since the method for producing this paste comprises the above-mentioned three treatments, there are no restrictions on the material, shape, and particle size distribution of the powder used. Therefore, using this paste, it is possible to create a sheet consisting of a collection of powders whose flat surfaces overlap each other and form a sheet surface, and it is possible to form a sheet having a large area with a small amount of powder used. The powder acts as a sheet. This sheet is a sheet that maximizes the functions based on the material of the powder. Therefore, by using the paste in the present invention, an epoch-making sheet can be formed.

17段落に記載したペーストを製造する方法は、17段落に記載した金属ないしは合金からなる扁平状の粉体が、鉄、パーマロイ、ケイ素鋼、センダストないしは電磁ステンレス鋼のいずれかの材質からなる軟磁性の扁平粉であり、該軟磁性の扁平粉を、17段落に記載した金属ないしは合金からなる扁平状の粉体として用い、17段落に記載したペーストを製造する方法に従ってペーストを製造する、17段落に記載したペーストを製造する方法である。 In the method for producing the paste described in paragraph 17, the flat powder made of the metal or alloy described in paragraph 17 is soft magnetic made of any of iron, permalloy, silicon steel, sentust or electromagnetic stainless steel. 17 paragraphs, wherein the soft magnetic flat powder is used as a flat powder made of a metal or an alloy described in paragraph 17, and a paste is produced according to the method for producing a paste described in paragraph 17. Is a method for producing the paste described in 1.

つまり、鉄、パーマロイ、ケイ素鋼、センダストないしは電磁ステンレス鋼のいずれかの材質からなる軟磁性の扁平粉を、17段落に記載した金属ないしは合金からなる扁平状の粉体として用い、17段落に記載したペーストを製造する方法に従ってペーストを製造し、このペーストを用いて、扁平粉の扁平面同士を直接接合したシートを形成すると、磁気をシールドするシートとして、また、電磁波のノイズを吸収する、ないしは、電磁ノイズの干渉を防止するシートとして用いることができる。
ここで、軟磁性の扁平粉の磁気特性について説明する。鉄、パーマロイからなる軟磁性の扁平粉は、初比透磁率、最大比透磁率が大きく、扁平粉の扁平面同士を直接接合した扁平粉の集まりからなるシートは、磁気をシールドするシートとして有効である。また、鉄、パーマロイ、ケイ素鋼、センダストないしは電磁ステンレス鋼からなる軟磁性の扁平粉は、複素透磁率の虚部が固有の周波数帯域で一定の値を持つため、扁平粉の扁平面同士を直接接合した扁平粉の集まりからなるシートは、固有の周波数帯域において、電磁波のノイズを吸収する、ないしは、電磁ノイズの干渉を防止するシートとして有効である。このことを、各々の軟磁性の扁平粉の磁気特性から以下に説明する。
最初に、鉄の扁平紛について説明する。強磁性金属からなる軟磁性材料の中で、鉄が唯一交流の磁場で一定の透磁率を持つ。純鉄の磁気特性に近い電磁軟鉄は、直流磁場では、初比透磁率が150で、最大比透磁率が1×10である。これに対し、ニッケルの初比透磁率が110で、最大比透磁率が600と小さい。いっぽう、100kHzの交流磁場での比透磁率は、電磁軟鉄が100で、ニッケルが1に近い。また、電磁軟鉄の飽和磁束密度は、軟磁性材料の中で最も大きく、2.2テスラである。従って、鉄の扁平粉の扁平面同士を重ね合わせたシートは、磁気をシールドするシールド膜として有効に作用する。特に、MRI(Magnetic Resonance Imagingの略で、磁気共鳴画像診断装置をいう)や電源トランスのような強磁界を発生する機器の磁気シールドとして有効である。いっぽう、鉄は、ビッカース硬度が2.45GPaで、相対的に硬い金属である。また、鉄粉に還元鉄粉とアトマイズ鉄粉があるが、還元鉄粉は空孔が多く存在し、アトマイズ鉄粉に比べると、相対的に扁平処理がしやすいが、硬度が高いため扁平粉の厚みは厚い。従って、還元鉄粉の扁平粉は、アトマイズ鉄粉より扁平率が大きく、100kHz-10MHzの周波数帯域において、複素透磁率の虚部が一定の大きさを持つ。このため、還元鉄粉の扁平粉からなるシートは、100kHz-10MHzの周波数帯域の電磁ノイズの吸収ないしは電磁ノイズの干渉防止のシートとして作用する。なお、還元鉄粉の100kHzの電磁波の表皮深さは50μmになる。従って、還元鉄粉からなる扁平粉は、強磁界を発生する機器の磁気シールドとして優れた性能を発揮する。また、電磁波ノイズの吸収ないしは電磁ノイズの干渉防止のシートとして、限られた周波数帯域で有効である。このため、還元鉄粉の扁平粉を17段落に記載した金属からなる扁平状の粉体として用い、17段落に記載したペーストを製造する方法に従ってペーストを製造し、このペーストを用いて、扁平粉の扁平面同士を直接接合した扁平粉の集まりからなるシートを形成すると、磁気をシールドするシートとして、また、電磁ノイズの吸収ないしは電磁ノイズの干渉防止のシートとして用いることができる。
これに対し、透磁率が大きい軟磁性材料にパーマロイがある。扁平粉の透磁率が大きいほど、また、磁気抵抗が小さいほど、大きな磁気シールド効果が得られる。磁気抵抗は透磁率に反比例するため、透磁率が大きいパーマロイの扁平粉からなるシートは、磁気シールド効果が高い。例えば、45%がニッケルのパーマロイは、直流磁場では初比透磁率が2.5×10で、最大比透磁率は2.5×10と大きい。しかし、飽和磁束密度は電磁軟鉄に比べて小さく、0.9テスラである。これに対し、79%がニッケルで、4%がモリブデンからなるパーマロイは、初比透磁率が2×10で、最大比透磁率が2×10と大きい。しかし、ニッケルの含有量が多くなるほど、パーマロイが高価になる。従って、パーマロイの扁平粉の扁平面同士を重ね合わせたシートは、磁気をシールドする優れたシートになる。このため、電気機器からの漏洩磁界、電流送配電線からの交流磁界、都市磁気雑音、環境磁界など、外部磁界が比較的小さな領域で、パーマロイの扁平粉からなるシートは、磁気をシールドするシートとして有効である。なお、非特許文献1に依れば、ニッケルが50%からなるパーマロイの扁平粉は、アスペクト比が38で、平均粒径が14μmである。また、複素透磁率の虚部は、100MHz付近から鋭く立ち上がり、3.3GHzでピーク値の8.8をもち、4GHz付近から減少し、10GHzで3.5の値を持つ。従って、1-8GHzの周波数帯域で、複素透磁率の虚部が5以上の値を持ち、この周波数帯域での電磁ノイズの吸収ないしは電磁ノイズの干渉防止のシートとして作用する。しかし、複素透磁率の虚部が小さいため、電磁波の吸収割合は低い。従って、パーマロイは、高い透磁率を活かして、外部磁界が比較的小さな領域で、磁気をシールドするシートとして優れた性能を発揮する。また、電磁ノイズの吸収ないしは電磁ノイズの干渉防止のシートとして、限られた周波数帯域で有効である。このため、パーマロイの扁平粉を、17段落に記載した合金からなる扁平状の粉体として用い、17段落に記載したペーストを製造する方法に従ってペーストを製造し、このペーストを用いて、扁平粉の扁平面同士を直接接合した扁平粉の集まりからなるシートを形成すると、磁気をシールドするシートとして、また、電磁ノイズの吸収ないしは電磁ノイズの干渉防止のシートとして用いることができる。
ところで、合金からなる軟磁性材料に、鉄に少量のケイ素を加えたケイ素鋼と、鉄にニッケルを加えたパーマロイと、鉄にケイ素とアルミニウムとを加えたセンダストと、鉄にコバルトを加えたパーメンジュールと、鉄にクロムとケイ素とを加えた電磁ステンレス鋼とがある。このうち、ケイ素鋼は、ケイ素の添加量が増えると脆くなり、扁平処理ができるケイ素鋼におけるケイ素の添加量は、10%より少なくする。なお、ケイ素の添加量が僅かに異なると、ケイ素鋼の透磁率特性は大きく変わる。さらに、パーマロイはニッケルの添加量が多くなるほど製造コストが高くなるが、ニッケルの添加量が少ないと透磁率が低下するため、ニッケルの添加量を50%程度に抑える。また、センダストは硬度が高くて脆いが、微量のニッケルを添加し、ケイ素の添加量を減らすと、扁平処理が可能になる。さらに、パーメンジュールはコバルトとの合金であるため製造コストが高く、電磁ノイズを吸収する、ないしは、電磁ノイズの干渉を防止するシートに用いる扁平粉として適さない。また、電磁ステンレス鋼は、アルミニウムを添加すると、扁平処理が容易になる。従って、パーメンジュールを除く4種類の合金は、軟磁性の扁平粉に加工できる。また、4種類の合金からなる扁平粉の厚みは、1-1.5μmの範囲内に入る。これに対し、還元鉄粉の硬度が4種類の合金の硬度より高いため、還元鉄粉からなる扁平粉の厚みは、10-20μmと厚い。
いっぽう、15段落で説明したように、扁平粉の扁平率が大きいほど、複素透磁率の虚部が増大する。また、電磁ノイズの吸収は、扁平粉の複素透磁率の虚部の大きさと導電率の大きさとに依存する。従って、電磁ノイズの吸収ないしは電磁ノイズの干渉防止に用いるシートに、ケイ素の添加量が10%より少ないケイ素鋼の扁平粉と、ニッケルの添加量を50%近くに抑えたパーマロイの扁平粉と、微量のニッケルを添加しケイ素の添加量を減らしたセンダストの扁平粉と、アルミニウムを添加した電磁ステンレス鋼の扁平粉とを用いることができる。しかし、これら4種類の合金からなる扁平粉は、鉄以外の成分の組成が僅かに変わると複素透磁率が変わる。また、4種類の合金の硬度が各々異なるため、扁平粉の扁平率が各々異なり、複素透磁率の虚部の大きさは各々異なる。さらに、複素透磁率の周波数特性は、4種類の合金で大きく異なり、同じ合金でも鉄以外の成分で異なる。従って、電磁ノイズの吸収ないしは電磁ノイズの干渉防止に用いるシートの作成に当たっては、吸収する電磁波の周波数帯域に応じて、軟磁性扁平粉の材質を使い分ける。従って、4種類の合金からなる扁平粉を、17段落に記載した合金からなる扁平状の粉体として用い、17段落に記載したペーストを製造する方法に従ってペーストを製造し、このペーストを用いて、扁平粉の扁平面同士を直接接合した扁平粉の集まりからなるシートを形成すると、電磁波のノイズを吸収する、ないしは、電磁ノイズの干渉を防止するシートとして用いることができる。
ところで、本発明におけるペーストは、18段落に説明したように、有機化合物の溶解液の粘度に応じて、有機化合物の溶解液が扁平粉に吸着し、また、扁平粉の扁平面同士が、有機化合物の溶解液を介して重なり合う。従って、有機化合物の溶解液の粘度は、ペーストの性質を決める要素になる。いっぽう、軟磁性の扁平粉の硬度が異なるため、扁平粉の厚みは材質によって変わる。例えば、硬度が高く、扁平しにくい還元鉄粉を扁平処理した扁平粉の厚みは、10-20μmと厚い。これに対し、鉄・ケイ素・アルミニウムからなる三元合金であるセンダストに、微量のニッケルを添加し、ケイ素の添加量を減らし、扁平処理を容易にさせた扁平粉の厚みは、1-1.5μmと薄い。このため、ペーストを基材に塗布することで形成する塗膜の厚みは、扁平粉の厚みに応じて変える必要がある。また、扁平粉の重量は、扁平粉の厚みとともに、扁平粉の粒径と密度によって変わる。例えば、粒径が100μmで厚みが15μmからなる還元鉄粉の扁平粉の重量は0.927×10-6gである。これに対し、粒径が40μmで厚みが1μmからなるセンダストの扁平粉の重量は0.86×10-8gである。なお、鉄の密度は7.8g/cmで、センダストの密度は7.6g/cmであり、両者の密度は近い。従って、還元鉄粉の扁平粉の重量が、センダストの扁平粉の重量に比べて2桁大きくなった理由は、扁平粉の厚みと粒径の違いによる。このため、18段落に記載したように、扁平粉の平均の厚みと平均の粒径と密度とに応じて、ペーストを構成する有機化合物の溶解液の粘度を変える必要性がある。なお、金属ないしは合金からなる軟磁性の扁平粉の密度は、7.7-8.3g/cmの範囲内にある。
いっぽう、18段落に記載したように、有機化合物の溶解液の粘度と共に、有機化合物の溶解液がペーストに占める体積も、ペーストの性質を決める重要な要素になる。このため、有機化合物の溶解液がペーストに占める体積が、軟磁性の扁平紛の集まりがペーストに占める体積の3倍より多い体積とし、ペーストに液体としての流動性を持たせる。
なお、本ペーストの製造方法は、有機化合物の溶解液と軟磁性の扁平粉の集まりとからなる混合物を作成し、混合物中でホモジナイザー装置を稼働させ、さらに、容器に3方向の振動加速度を繰り返し加える3つの処理からなる。従って、ペーストを製造する際に用いる扁平粉の材質と形状と粒径分布と硬度に制約はない。さらに、扁平粉の扁平面同士が有機化合物の溶解液を介して重なり合った扁平粉の集まりからなり、有機化合物の溶解液を気化させ、さらに、重なり合った扁平面同士を接合すれば、扁平面同士が重なり合ったシートになる。
さらに、軟磁性の扁平粉の扁平面同士を接合し、扁平粉を積層させたシートを形成する際に、扁平粉を積層させる層の数の制約はない。従って、透磁率が大きい扁平粉を用い、この扁平粉の表皮の深さを求め、表皮の深さに近い厚みでシートを形成すれば、少ない扁平粉の使用量で、広い面積のシートが形成でき、全ての扁平粉が磁気シールドに参加し、磁気シールドの効果が高まる。このシートは、扁平粉の磁気シールド効果を最大限発揮するシートになる。本発明におけるペーストを用いることで、こうしたシートが形成できる。
また、軟磁性の扁平粉が特定の周波数帯域で複素透磁率の虚部が一定の大きさを持ち、この扁平紛の集まりでシートを構成すれば、少ない扁平粉の使用量で、広い面積のシートが形成できる。さらに、軟磁性の扁平粉の扁平面同士を接合し、扁平粉を積層させたシートを形成する際に、扁平粉を積層させる層の数の制約はない。従って、用いる軟磁性の扁平粉の導電率と複素透磁率の周波数特性によって、扁平粉の表皮の深さを求め、表皮の深さに近い厚みでシートを形成すれば、シートは、少ない量の扁平粉で効率よく電磁ノイズを吸収する。このようにシートは、扁平粉の電磁波の吸収効果を最大限発揮する。
本発明におけるペーストを用いることで、こうした画期的なシートが形成できる。
That is, the soft magnetic flat powder made of any of iron, permalloy, silicon steel, sendust or electromagnetic stainless steel is used as the flat powder made of the metal or alloy described in paragraph 17, and is described in paragraph 17. When a paste is produced according to the method for producing the above-mentioned paste and a sheet in which the flat surfaces of the flat powder are directly bonded to each other is formed by using this paste, it can be used as a sheet for shielding magnetism and absorbing or absorbing electromagnetic noise. , Can be used as a sheet to prevent interference of electromagnetic noise.
Here, the magnetic properties of the soft magnetic flat powder will be described. The soft magnetic flat powder made of iron and permalloy has a large initial relative permeability and maximum specific magnetic permeability, and a sheet consisting of a collection of flat powders in which the flat surfaces of the flat powders are directly bonded to each other is effective as a sheet for shielding magnetism. Is. In addition, soft magnetic flat powder made of iron, permalloy, silicon steel, sendust or electromagnetic stainless steel has a constant value in the imaginary part of the complex magnetic permeability in the unique frequency band, so the flat surfaces of the flat powder are directly connected to each other. A sheet made of a collection of bonded flat powders is effective as a sheet that absorbs electromagnetic noise or prevents electromagnetic noise from interfering in a unique frequency band. This will be described below from the magnetic properties of each soft magnetic flat powder.
First, the flattening of iron will be described. Among the soft magnetic materials made of ferromagnetic metals, iron is the only one that has a constant magnetic permeability in an alternating current magnetic field. Electromagnetic soft iron, which has similar magnetic characteristics to pure iron, has an initial relative permeability of 150 and a maximum relative permeability of 1 × 10 4 in a DC magnetic field. On the other hand, nickel has a small initial relative permeability of 110 and a maximum relative permeability of 600. On the other hand, the relative magnetic permeability in an AC magnetic field of 100 kHz is 100 for electromagnetic soft iron and close to 1 for nickel. The saturation magnetic flux density of electromagnetic soft iron is the largest among soft magnetic materials, which is 2.2 tesla. Therefore, the sheet in which the flat surfaces of the iron flat powder are overlapped with each other effectively acts as a shield film that shields magnetism. In particular, it is effective as a magnetic shield for equipment that generates a strong magnetic field, such as MRI (abbreviation of Magnetic Resonance Imaging, which means a magnetic resonance imaging) and a power transformer. On the other hand, iron has a Vickers hardness of 2.45 GPa and is a relatively hard metal. In addition, iron powder includes reduced iron powder and atomized iron powder. Reduced iron powder has many pores and is relatively easier to flatten than atomized iron powder, but it is flat because of its high hardness. Is thick. Therefore, the flat powder of the reduced iron powder has a larger flatness than the atomized iron powder, and the imaginary portion of the complex magnetic permeability has a constant size in the frequency band of 100 kHz-10 MHz. Therefore, the sheet made of the flat powder of the reduced iron powder acts as a sheet for absorbing electromagnetic noise in the frequency band of 100 kHz to 10 MHz or preventing interference of electromagnetic noise. The skin depth of the 100 kHz electromagnetic wave of the reduced iron powder is 50 μm. Therefore, the flat powder made of reduced iron powder exhibits excellent performance as a magnetic shield for equipment that generates a strong magnetic field. Further, it is effective in a limited frequency band as a sheet for absorbing electromagnetic noise or preventing interference of electromagnetic noise. Therefore, the flat powder of the reduced iron powder is used as the flat powder made of the metal described in paragraph 17, and the paste is produced according to the method for producing the paste described in paragraph 17, and the paste is used to produce the flat powder. When a sheet made of a collection of flat powders directly bonded to each other is formed, it can be used as a sheet for shielding magnetism and as a sheet for absorbing electromagnetic noise or preventing interference of electromagnetic noise.
On the other hand, permalloy is a soft magnetic material having a high magnetic permeability. The larger the magnetic permeability of the flat powder and the smaller the magnetic resistance, the greater the magnetic shielding effect can be obtained. Since the reluctance is inversely proportional to the magnetic permeability, a sheet made of permalloy flat powder having a large magnetic permeability has a high magnetic shielding effect. For example, permalloy, which is 45% nickel, has a large initial relative permeability of 2.5 × 10 3 and a maximum specific permeability of 2.5 × 10 4 in a DC magnetic field. However, the saturation magnetic flux density is smaller than that of electromagnetic soft iron, which is 0.9 Tesla. On the other hand, permalloy, which is 79% nickel and 4% molybdenum, has a large initial relative permeability of 2 × 10 4 and a maximum relative permeability of 2 × 105. However, the higher the nickel content, the more expensive the permalloy. Therefore, a sheet in which the flat surfaces of permalloy flat powder are overlapped with each other is an excellent sheet that shields magnetism. For this reason, in areas where the external magnetic field is relatively small, such as leakage magnetic fields from electrical equipment, AC magnetic fields from current transmission and distribution lines, urban magnetic noise, and environmental magnetic fields, the sheet made of Permalloy flat powder is a sheet that shields magnetism. It is effective as. According to Non-Patent Document 1, the permalloy flat powder containing 50% nickel has an aspect ratio of 38 and an average particle size of 14 μm. Further, the imaginary part of the complex magnetic permeability rises sharply from around 100 MHz, has a peak value of 8.8 at 3.3 GHz, decreases from around 4 GHz, and has a value of 3.5 at 10 GHz. Therefore, in the frequency band of 1-8 GHz, the imaginary part of the complex magnetic permeability has a value of 5 or more, and acts as a sheet for absorbing electromagnetic noise or preventing interference of electromagnetic noise in this frequency band. However, since the imaginary part of the complex magnetic permeability is small, the absorption rate of electromagnetic waves is low. Therefore, permalloy takes advantage of its high magnetic permeability and exhibits excellent performance as a sheet that shields magnetism in a region where the external magnetic field is relatively small. Further, it is effective in a limited frequency band as a sheet for absorbing electromagnetic noise or preventing interference of electromagnetic noise. Therefore, the permalloy flat powder is used as a flat powder made of the alloy described in paragraph 17, and a paste is produced according to the method for producing the paste described in paragraph 17, and this paste is used to prepare the flat powder. When a sheet made of a collection of flat powders directly bonded to each other is formed, it can be used as a sheet for shielding magnetism and as a sheet for absorbing electromagnetic noise or preventing interference of electromagnetic noise.
By the way, in a soft magnetic material made of an alloy, silicon steel made by adding a small amount of silicon to iron, permendur made by adding nickel to iron, sentust made by adding silicon and aluminum to iron, and per made by adding cobalt to iron. There are mendur and electromagnetic stainless steel made by adding chromium and silicon to iron. Of these, silicon steel becomes brittle as the amount of silicon added increases, and the amount of silicon added to silicon steel that can be flattened is less than 10%. If the amount of silicon added is slightly different, the magnetic permeability characteristics of the silicon steel will change significantly. Further, the manufacturing cost of permalloy increases as the amount of nickel added increases, but the magnetic permeability decreases when the amount of nickel added is small, so the amount of nickel added is suppressed to about 50%. In addition, although sendust has high hardness and is brittle, flattening can be performed by adding a small amount of nickel and reducing the amount of silicon added. Further, since permendur is an alloy with cobalt, the manufacturing cost is high, and it is not suitable as a flat powder used for a sheet that absorbs electromagnetic noise or prevents interference of electromagnetic noise. Further, when aluminum is added to the electromagnetic stainless steel, the flattening treatment becomes easy. Therefore, the four types of alloys except permendur can be processed into soft magnetic flat powder. Further, the thickness of the flat powder made of four kinds of alloys falls within the range of 1-1.5 μm. On the other hand, since the hardness of the reduced iron powder is higher than the hardness of the four types of alloys, the thickness of the flat powder made of the reduced iron powder is as thick as 10-20 μm.
On the other hand, as explained in paragraph 15, the larger the flattening ratio of the flat powder, the larger the imaginary portion of the complex magnetic permeability. Further, the absorption of electromagnetic noise depends on the size of the imaginary portion of the complex magnetic permeability of the flat powder and the size of the conductivity. Therefore, in the sheet used for absorbing electromagnetic noise or preventing interference of electromagnetic noise, a flat powder of silicon steel in which the amount of silicon added is less than 10%, and a flat powder of permalloy in which the amount of nickel added is suppressed to nearly 50%. It is possible to use a flat powder of Sendust in which a small amount of nickel is added to reduce the amount of silicon added, and a flat powder of electromagnetic stainless steel to which aluminum is added. However, in the flat powder composed of these four types of alloys, the complex magnetic permeability changes when the composition of the components other than iron changes slightly. Further, since the hardness of each of the four types of alloys is different, the flatness of the flat powder is different, and the size of the imaginary portion of the complex magnetic permeability is different. Furthermore, the frequency characteristics of complex magnetic permeability differ greatly between the four types of alloys, and even for the same alloy, the components other than iron differ. Therefore, when creating a sheet used for absorbing electromagnetic noise or preventing interference of electromagnetic noise, the material of the soft magnetic flat powder is properly used according to the frequency band of the absorbed electromagnetic wave. Therefore, a flat powder composed of four kinds of alloys is used as a flat powder composed of the alloy described in paragraph 17, and a paste is produced according to the method for producing a paste described in paragraph 17, and this paste is used. When a sheet made of a collection of flat powders in which the flat surfaces of the flat powders are directly bonded to each other is formed, it can be used as a sheet that absorbs electromagnetic noise or prevents electromagnetic noise from interfering with each other.
By the way, in the paste in the present invention, as described in paragraph 18, the solution of the organic compound is adsorbed on the flat powder according to the viscosity of the solution of the organic compound, and the flat surfaces of the flat powder are organic. Overlapping via a solution of the compound. Therefore, the viscosity of the solution of the organic compound is a factor that determines the properties of the paste. On the other hand, since the hardness of the soft magnetic flat powder is different, the thickness of the flat powder varies depending on the material. For example, the thickness of the flat powder obtained by flattening the reduced iron powder, which has high hardness and is difficult to flatten, is as thick as 10-20 μm. On the other hand, the thickness of the flat powder obtained by adding a small amount of nickel to sendust, which is a ternary alloy composed of iron, silicon, and aluminum, to reduce the amount of silicon added, and to facilitate the flattening treatment, is 1-1. It is as thin as 5 μm. Therefore, it is necessary to change the thickness of the coating film formed by applying the paste to the base material according to the thickness of the flat powder. In addition, the weight of the flat powder varies with the thickness of the flat powder and the particle size and density of the flat powder. For example, the weight of the flat powder of the reduced iron powder having a particle size of 100 μm and a thickness of 15 μm is 0.927 × 10 -6 g. On the other hand, the weight of the flat powder of Sendust having a particle size of 40 μm and a thickness of 1 μm is 0.86 × 10-8 g. The density of iron is 7.8 g / cm 3 , and the density of sendust is 7.6 g / cm 3 , both of which are close in density. Therefore, the reason why the weight of the flat powder of the reduced iron powder is two orders of magnitude larger than the weight of the flat powder of Sendust is due to the difference in the thickness and the particle size of the flat powder. Therefore, as described in paragraph 18, it is necessary to change the viscosity of the solution of the organic compound constituting the paste according to the average thickness and the average particle size and density of the flat powder. The density of the soft magnetic flat powder made of a metal or an alloy is in the range of 7.7-8.3 g / cm 3 .
On the other hand, as described in paragraph 18, the viscosity of the solution of the organic compound and the volume occupied by the solution of the organic compound in the paste are also important factors that determine the properties of the paste. Therefore, the volume occupied by the solution of the organic compound in the paste is set to be more than three times the volume occupied by the collection of soft magnetic flat powder in the paste, and the paste is made to have fluidity as a liquid.
In the method for producing this paste, a mixture consisting of a solution of an organic compound and a collection of soft magnetic flat powder is prepared, a homogenizer device is operated in the mixture, and vibration acceleration in three directions is repeated in a container. It consists of three additional processes. Therefore, there are no restrictions on the material, shape, particle size distribution, and hardness of the flat powder used in producing the paste. Further, the flat powders are composed of a collection of flat powders in which the flat powders are overlapped with each other via the solution of the organic compound, and the solution of the organic compound is vaporized. Becomes an overlapping sheet.
Further, when the flat surfaces of the soft magnetic flat powder are joined to each other to form a sheet on which the flat powder is laminated, there is no limitation on the number of layers on which the flat powder is laminated. Therefore, if a flat powder having a large magnetic permeability is used, the depth of the epidermis of the flat powder is obtained, and the sheet is formed with a thickness close to the depth of the epidermis, a sheet having a large area can be formed with a small amount of the flat powder used. All the flat powder can participate in the magnetic shield, and the effect of the magnetic shield is enhanced. This sheet is a sheet that maximizes the magnetic shielding effect of the flat powder. Such a sheet can be formed by using the paste in the present invention.
In addition, if the soft magnetic flat powder has a certain size of the imaginary part of the complex magnetic permeability in a specific frequency band and the sheet is composed of this collection of flat powder, the amount of the flat powder used is small and the area is wide. Sheets can be formed. Further, when the flat surfaces of the soft magnetic flat powder are joined to each other to form a sheet on which the flat powder is laminated, there is no limitation on the number of layers on which the flat powder is laminated. Therefore, if the depth of the epidermis of the flat powder is obtained from the frequency characteristics of the conductivity and the complex magnetic permeability of the soft magnetic flat powder used, and the sheet is formed with a thickness close to the depth of the epidermis, the amount of the sheet is small. Efficiently absorbs electromagnetic noise with flat powder. In this way, the sheet maximizes the electromagnetic wave absorption effect of the flat powder.
By using the paste in the present invention, such an epoch-making sheet can be formed.

19段落に記載したペーストを製造する方法は、19段落に記載した軟磁性の扁平粉が、還元鉄粉の扁平粉を除く複数種類の合金からなる扁平粉であり、該複数種類の合金からなる扁平粉の複素透磁率の虚部の周波数特性が互いに異なり、かつ、各々の扁平粉の複素透磁率の虚部の周波数特性が、異なる周波数範囲を互い補完し合う複素透磁率の虚部の周波数特性であり、該複素透磁率の虚部の周波数特性を持つ複数種類の合金からなる扁平粉を、19段落に記載した軟磁性の扁平粉として用い、19段落に記載した方法に従ってペーストを製造する、19段落に記載したペーストを製造する方法である。 The method for producing the paste described in paragraph 19 is that the soft magnetic flat powder described in paragraph 19 is a flat powder composed of a plurality of types of alloys excluding the flat powder of reduced iron powder, and is composed of the plurality of types of alloys. The frequency characteristics of the imaginary part of the complex magnetic permeability of the flat powder are different from each other, and the frequency characteristics of the imaginary part of the complex magnetic permeability of each flat powder complement each other in different frequency ranges. A flat powder made of a plurality of types of alloys having a characteristic and the frequency characteristic of the imaginary portion of the complex magnetic permeability is used as the soft magnetic flat powder described in paragraph 19, and a paste is produced according to the method described in paragraph 19. , 19 is a method for producing the paste described in paragraph 19.

つまり、15段落に記載したように、軟磁性粉を磁化の容易軸方向である面方向に扁平化すると、反磁場係数が小さくなり、扁平率が大きいほど複素透磁率の虚部μ”が増大する。また、扁平粉の材質によって、扁平粉の複素透磁率の虚部の周波数特性は大きく変わる。従って、複数種類の合金からなる軟磁性の扁平粉において、複素透磁率の虚部の周波数特性が互いに異なり、各々の複素透磁率の虚部の周波数特性が、異なる周波数範囲を互い補完し合う複素透磁率の虚部の周波数特性であれば、こうした複数種類の合金からなる軟磁性の扁平粉を用いて、シートを形成すれば、シートは広い周波数帯域において、電磁ノイズを吸収する。また、電磁波が互いに干渉することに依る電磁ノイズの干渉防止のシートになる。いっぽう、軟磁性の扁平粉の中で、還元鉄粉の扁平粉のみが、他の軟磁性の扁平粉に比べ硬度が高いため、扁平粉の厚みが10-20μmと厚い。他の軟磁性の扁平粉は、アトマイズ軟磁性紛ないしは還元軟磁性粉の硬度を低下させるため、合金の組成を微細に調整し、扁平処理を可能にするため、厚みの偏差は1-1.5μmの範囲内に入る。従って、還元鉄粉の扁平粉が、他の材質からなる扁平粉と一緒に混合された扁平粉の集まりを、有機化合物の溶解液に分散し、この混合物に3方向の振動加速度を加えた際に、全ての扁平粉の扁平面同士が有機化合物の溶解液を介して重ならない。このため、ペーストを製造する際に、19段落に記載した軟磁性の扁平粉から、還元鉄粉の扁平粉を除く。
つまり、19段落に記載したペーストを製造する方法において、19段落に記載した軟磁性の扁平粉として、還元鉄粉の扁平粉を除く複数種類の合金からなる扁平粉を用い、該複数種類の合金からなる扁平粉の複素透磁率の虚部の周波数特性が互いに異なり、かつ、各々の扁平粉の複素透磁率の虚部の周波数特性が、異なる周波数範囲を互い補完し合う複素透磁率の虚部の周波数特性を持てば、該複数種類の合金からなる扁平粉の集まりは、1種類の扁平粉では困難であったより広い周波数帯域で複素透磁率の虚部が一定の大きさを持つ。こうした複数種類の合金からなる扁平粉の集まりを用い、19段落に記載した方法に従ってペーストを製造し、該ペーストから有機化合物の溶解液を気化し、複数種類の合金からなる扁平粉同士を接合すれば、複数種類の合金からなる扁平粉の集まりからなるシートが形成できる。このシートは、従来は困難であった広い周波数帯域の電磁ノイズを吸収する、ないしは、電磁ノイズの干渉を防止する。
いっぽう、扁平粉は、15段落に記載したように、アトマイズ軟磁性粉ないしは還元軟磁性粉を、メディア撹拌型ミルに依ってアトライタ処理して扁平粉を製造する。従って、扁平粉の材質が異なると、アトマイズ軟磁性粉ないしは還元軟磁性粉の形状と構造と硬度が変わるため、扁平率のみならず、扁平粉の形状と粒径分布と硬度が異なる。しかし、前記したように、厚みの偏差は1-1.5μmの範囲内に入る。ところで、ペーストの製造は、19段落に記載したように、有機化合物の溶解液と軟磁性の扁平粉の集まりとからなる混合液を作成し、混合液中でホモジナイザー装置を稼働させ、容器に3方向の振動加速度を繰り返し加える3つの処理からなる。従って、扁平粉が、扁平粉の扁平率、形状、粒度分布、硬度が異なる複数種類の扁平粉であっても、ペーストを製造する3つの処理が可能であるため、ペーストが製造できる。
That is, as described in paragraph 15, when the soft magnetic powder is flattened in the plane direction, which is the easy axial direction of magnetization, the demagnetic field coefficient becomes smaller, and the larger the flattening ratio, the larger the imaginary portion μ of the complex magnetic permeability. Further, the frequency characteristic of the imaginary part of the complex magnetic permeability of the flat powder changes greatly depending on the material of the flat powder. Therefore, in the soft magnetic flat powder made of a plurality of types of alloys, the frequency characteristic of the imaginary part of the complex magnetic permeability of the flat powder is changed. Are different from each other, and if the frequency characteristics of the imaginary part of each complex magnetic permeability are the frequency characteristics of the imaginary part of the complex magnetic permeability that complement each other in different frequency ranges, the soft magnetic flat powder composed of these multiple types of alloys. If a sheet is formed using the above, the sheet absorbs electromagnetic noise in a wide frequency band, and becomes a sheet for preventing electromagnetic noise interference due to electromagnetic interference with each other. On the other hand, soft magnetic flat powder. Among them, only the flat powder of reduced iron powder has a higher hardness than other soft magnetic flat powder, so that the thickness of the flat powder is as thick as 10-20 μm. The other soft magnetic flat powder is atomized soft magnetic. In order to reduce the hardness of the powder or reduced soft magnetic powder, the composition of the alloy is finely adjusted to enable flattening, and the thickness deviation is within the range of 1-1.5 μm. Therefore, the reduced iron powder. When a collection of flat powder mixed with flat powder made of other materials is dispersed in a solution of an organic compound and vibration acceleration in three directions is applied to this mixture, all flat powder is obtained. The flat surfaces of the powder do not overlap with each other via the solution of the organic compound. Therefore, when producing the paste, the flat powder of the reduced iron powder is removed from the soft magnetic flat powder described in paragraph 19.
That is, in the method for producing the paste described in paragraph 19, as the soft magnetic flat powder described in paragraph 19, a flat powder composed of a plurality of types of alloys excluding the flat powder of reduced iron powder is used, and the plurality of types of alloys are used. The frequency characteristics of the imaginary part of the complex magnetic permeability of the flat powder are different from each other, and the frequency characteristics of the imaginary part of the complex magnetic permeability of each flat powder complement each other in different frequency ranges. With the frequency characteristics of, the aggregate of the flat powder made of the plurality of types of alloys has a constant size of the imaginary portion of the complex magnetic permeability in a wider frequency band, which was difficult with one type of flat powder. Using a collection of flat powders made of multiple types of alloys, a paste is produced according to the method described in paragraph 19, vaporizing a solution of an organic compound from the paste, and joining the flat powders made of multiple types of alloys. For example, a sheet made of a collection of flat powders made of a plurality of types of alloys can be formed. This sheet absorbs electromagnetic noise in a wide frequency band, which was difficult in the past, or prevents interference of electromagnetic noise.
On the other hand, as described in paragraph 15, the flat powder is produced by treating the atomized soft magnetic powder or the reduced soft magnetic powder with an attritor treatment using a media stirring type mill. Therefore, if the material of the flat powder is different, the shape, structure and hardness of the atomized soft magnetic powder or the reduced soft magnetic powder are different, so that not only the flatness but also the shape, particle size distribution and hardness of the flat powder are different. However, as mentioned above, the thickness deviation falls within the range of 1-1.5 μm. By the way, in the production of the paste, as described in paragraph 19, a mixed solution consisting of a solution of an organic compound and a collection of soft magnetic flat powder is prepared, a homogenizer device is operated in the mixed solution, and 3 is placed in a container. It consists of three processes in which the vibration acceleration in the direction is repeatedly applied. Therefore, even if the flat powder is a plurality of types of flat powder having different flatness, shape, particle size distribution, and hardness, the paste can be produced because the three processes for producing the paste are possible.

19段落に記載した製造方法で製造したペーストを用い、軟磁性の扁平粉の扁平面同士を接合し、該軟磁性の扁平粉の集まりからなるシートを形成する方法は、ないしは、21段落に記載した製造方法で製造したペーストを用い、複数種類の合金の扁平粉の扁平面同士を接合し、該複数種類の合金の扁平粉の集まりからなるシートを形成する方法は、
19段落ないしは21段落に記載した方法で製造したペーストを基材に塗布し、該基材に前記ペーストからなる塗膜を形成し、この後、該塗膜から前記有機化合物の溶解液を気化させる、これによって、軟磁性の扁平粉の扁平面同士が重なり合った該扁平粉の集まりからなる被膜を前記基材に形成する、ないしは、複数種類の合金の扁平粉の扁平面同士が重なり合った該複数種類の合金の扁平粉の集まりからなる被膜を前記基材に形成する、この後、該被膜の上方の平面を均等に圧縮する、これによって、前記軟磁性の扁平粉の扁平面同士が重なり合った部位に摩擦熱が発生し、該摩擦熱によって前記重なり合った扁平粉同士が接合され、該接合した軟磁性の扁平粉の集まりからなるシートが前記基材に形成される、ないしは、前記複数種類の合金の扁平粉の扁平面同士が重なり合った部位に摩擦熱が発生し、該摩擦熱によって前記重なり合った扁平粉同士が接合され、該接合した複数種類の合金の扁平粉の集まりからなるシートが前記基材に形成される、この後、前記基材の側面に繰り返し衝撃加速度を加え、該基材に形成された前記シートを該基材から引き剥がし、該シートを取り出す、19段落に記載した製造方法で製造したペーストを用い、軟磁性の扁平粉の扁平面同士を接合し、該軟磁性の扁平粉の集まりからなるシートを形成する方法、ないしは、21段落に記載した製造方法で製造したペーストを用い、複数種類の合金の扁平粉の扁平面同士を接合し、該複数種類の合金の扁平粉の集まりからなるシートを形成する方法である。
A method of joining the flat surfaces of the soft magnetic flat powder to each other using the paste produced by the production method described in paragraph 19 to form a sheet composed of a collection of the soft magnetic flat powder is described in paragraph 21. The method of joining the flat surfaces of the flat powders of a plurality of types of alloys to each other using the paste produced by the above-mentioned production method to form a sheet composed of a collection of the flat powders of the plurality of types of alloys is described.
The paste produced by the method described in paragraph 19 or 21 is applied to a substrate to form a coating film composed of the paste on the substrate, and then the solution of the organic compound is vaporized from the coating film. As a result, a film composed of a collection of the flat powders in which the flat powders of the soft magnetic soft powders are overlapped is formed on the base material, or the flat surfaces of the flat powders of a plurality of types of alloys are overlapped with each other. A coating consisting of a collection of flat powders of different types is formed on the substrate, and then the upper plane of the coating is evenly compressed, whereby the flat surfaces of the soft magnetic flat powder are overlapped with each other. Friction heat is generated at the site, and the overlapping flat powders are bonded to each other by the friction heat, and a sheet composed of a collection of the bonded soft magnetic flat powders is formed on the base material, or the plurality of types. Friction heat is generated at the portion where the flat powders of the alloy overlap each other, and the overlapping flat powders are bonded to each other by the frictional heat. The production according to paragraph 19, wherein the sheet formed on the base material is subsequently repeatedly subjected to impact acceleration on the side surface of the base material, the sheet formed on the base material is peeled off from the base material, and the sheet is taken out. Using the paste produced by the method, the flat surfaces of the soft magnetic flat powder are joined to each other to form a sheet composed of a collection of the soft magnetic flat powder, or the paste produced by the production method described in paragraph 21. Is a method of joining flat surfaces of flat powders of a plurality of types of alloys to form a sheet composed of a collection of flat powders of the plurality of types of alloys.

つまり、19段落ないしは21段落に記載した方法で製造したペーストを基材に塗布すると、ペーストの粘度に応じた厚みからなる塗膜が基材に形成される。この後、塗膜から有機化合物の溶解液を気化させる。これによって、塗膜が、軟磁性の扁平粉の扁平面同士が重なり合った該扁平粉の集まりからなる被膜になる。ないしは、塗膜が、複数種類の合金の扁平粉の扁平面同士が重なり合った該扁平粉の集まりからなる被膜になる。さらに、被膜の上方の平面を均等に圧縮する。例えば、被膜の上に被膜と同等の形状からなる板材を載せ、この板材の上に、被膜の面積に応じて、数十から数百キログラムの重りを載せ、被膜の上方の平面を均等に圧縮する。この際、扁平面同士が重なり合った扁平面同士が接触する部位に摩擦熱が発生する。この摩擦熱によって、扁平紛の扁平面同士が直接接合する。つまり、扁平粉の扁平面は、扁平処理の加工に伴う表面粗さを持ち、加えられた圧縮応力で扁平粉は移動できず、加えられた圧縮応力が減少しないで、重なり合った扁平面を均等に圧縮する。この際、扁平面に加えられた圧縮応力の多くが、扁平面同士が接触する部位に発生する摩擦熱に変換される。つまり、金属ないしは合金からなるアトマイズ紛、ないしは還元粉を扁平処理した扁平粉の扁平面は、加工に伴う表面粗さ、つまり、凹凸を持っている。従って、扁平面同士が直接重なり合った扁平面の集まりを圧縮すると、扁平面が凹凸を持つことで、加圧する側の局所的な部位が、加圧される側の局所的な部位と接触する部位が、重なり合った扁平面に多数形成され、こうした部位に摩擦熱が発生する。この摩擦熱で、扁平面同士が接触する多数の部位が接合され、接合された扁平粉の集まりからなるシートが基材に形成される。この後、重りと板材とを取り除き、シートが形成された基材の側面に衝撃を繰り返し加え、シートを基材から引き剥がす。例えば、シートの面積に応じて、0.4-1.0Gの衝撃加速度を加える。この後、基材からシートを取り出す。
なお、複数種類の合金の扁平粉においては、扁平粉の材質が異なるため、扁平粉の硬度が異なる。しかし、扁平処理を可能にするため、複数種類の合金の扁平粉の硬度の差は小さい。また、複数種類の合金の扁平粉の厚みの差は小さい。いっぽう、複数種類の合金の扁平粉において、扁平粉の厚みに差異があっても、また、扁平粉の硬度に差異があっても、扁平面同士が重なり合った扁平粉の集まりを圧縮すると、扁平面同士が重なり合った部位に、扁平面同士が接触する部位が確実に形成される。この部位に摩擦熱が発生し、重なり合った扁平面同士が接合する。なお、扁平粉の集まりを圧縮する際に、重なり合った扁平面の接触部位に摩擦熱が発生すればよいので、扁平粉を塑性変形させる必要がない。これによって、複数種類の合金の扁平粉の扁平面同士が、摩擦熱で接合される。
このシートは、次の作用効果をもたらす。
第一に、扁平粉の扁平面同士を、直接摩擦熱で接合した扁平粉のみでシートが構成される。このため、シートは扁平粉の性質を持つ。
第二に、基材にペーストを塗布して、シートを形成するため、シートの面積と形状の制約はない。また、前記したように、扁平粉の形状、大きさ、粒度分布、硬度に関わらず、ペーストが製造できる。さらに、ペーストを塗布し、塗膜から有機化合物の溶解液を気化し、さらに、圧縮応力を加えることで、重なり合った扁平面同士を摩擦熱で接合し、扁平粉の集まりからなるシート形成する。このため、本シートの製造方法は、扁平還元鉄粉を除く軟磁性の扁平粉に対し、汎用性を持ってシートが形成できる。
第三に、比透磁率が大きい軟磁性の材質からなる扁平粉の扁平面同士を重ね合わせたシートは、磁気シールド効果が高いシートになる。さらに、シートの厚みを、扁平粉の表皮の深さに近づければ、少ない扁平粉の使用量で、広い面積のシートが形成でき、全ての扁平粉が磁気シールドに参加し、磁気シールドの効果が高まる。
第四に、複数種類の合金からなる軟磁性の扁平粉が、複素透磁率の虚部の周波数特性が互いに異なり、各々の複素透磁率の虚部の周波数特性が、異なる周波数範囲を互い補完し合う複素透磁率の虚部の周波数特性であるため、複数種類の合金からなる軟磁性の扁平粉を用いて形成したシートは、従来は困難であった幅広い周波数帯域において、電磁ノイズを吸収する。また、シートの厚みを、複数種類の合金の扁平粉の表皮の深さに近づければ、少ない扁平粉の使用量で、広い面積のシートが形成でき、全ての扁平粉が電磁ノイズの吸収に参加し、電磁ノイズの吸収効果が高まる。
That is, when the paste produced by the method described in paragraph 19 or paragraph 21 is applied to the base material, a coating film having a thickness corresponding to the viscosity of the paste is formed on the base material. After that, the solution of the organic compound is vaporized from the coating film. As a result, the coating film becomes a film formed of a collection of the flat powders in which the flat surfaces of the soft magnetic flat powders are overlapped with each other. Or, the coating film becomes a coating film composed of a collection of flat powders in which flat surfaces of flat powders of a plurality of types of alloys are overlapped with each other. In addition, the plane above the coating is evenly compressed. For example, a plate having the same shape as the coating is placed on the coating, and a weight of tens to hundreds of kilograms is placed on the plate depending on the area of the coating, and the plane above the coating is evenly compressed. do. At this time, frictional heat is generated at a portion where the flat surfaces that overlap each other come into contact with each other. Due to this frictional heat, the flat surfaces of the flat powder are directly bonded to each other. In other words, the flat surface of the flat powder has the surface roughness associated with the processing of the flat treatment, the flat powder cannot move due to the applied compressive stress, the applied compressive stress does not decrease, and the overlapping flat surfaces are evenly distributed. Compress to. At this time, most of the compressive stress applied to the flat surfaces is converted into frictional heat generated at the sites where the flat surfaces come into contact with each other. That is, the atomized powder made of a metal or an alloy, or the flat surface of the flat powder obtained by flattening the reduced powder has surface roughness, that is, unevenness due to processing. Therefore, when a group of flat surfaces in which flat surfaces are directly overlapped with each other is compressed, the flat surfaces have irregularities, so that the local part on the pressurizing side comes into contact with the local part on the pressurized side. However, a large number of them are formed on the overlapping flat surfaces, and frictional heat is generated in these parts. By this frictional heat, a large number of parts where the flat surfaces come into contact with each other are joined, and a sheet composed of a collection of the joined flat powders is formed on the base material. After that, the weight and the plate material are removed, and an impact is repeatedly applied to the side surface of the base material on which the sheet is formed, and the sheet is peeled off from the base material. For example, an impact acceleration of 0.4-1.0 G is applied depending on the area of the sheet. After this, the sheet is taken out from the base material.
In the flat powder of a plurality of types of alloys, the hardness of the flat powder is different because the material of the flat powder is different. However, in order to enable flattening treatment, the difference in hardness between the flat powders of the plurality of types of alloys is small. Further, the difference in the thickness of the flat powders of the plurality of types of alloys is small. On the other hand, even if there is a difference in the thickness of the flat powder or a difference in the hardness of the flat powder in the flat powder of a plurality of types of alloys, when the group of flat powder in which the flat surfaces are overlapped is compressed, the flat powder is flattened. A portion where the flat surfaces are in contact with each other is surely formed in the portion where the surfaces overlap each other. Friction heat is generated in this part, and the overlapping flat surfaces are joined together. It should be noted that it is not necessary to plastically deform the flat powder because frictional heat may be generated at the contact portion of the overlapping flat surfaces when the collection of the flat powder is compressed. As a result, the flat surfaces of the flat powders of a plurality of types of alloys are joined by frictional heat.
This sheet has the following effects.
First, the sheet is composed only of the flat powder obtained by directly joining the flat surfaces of the flat powder by frictional heat. Therefore, the sheet has the property of flat powder.
Secondly, since the paste is applied to the base material to form the sheet, there are no restrictions on the area and shape of the sheet. Further, as described above, a paste can be produced regardless of the shape, size, particle size distribution, and hardness of the flat powder. Further, by applying a paste, vaporizing the solution of the organic compound from the coating film, and further applying compressive stress, the overlapping flat surfaces are joined by frictional heat to form a sheet composed of a collection of flat powders. Therefore, the method for producing this sheet can form a sheet with versatility for soft magnetic flat powder excluding flat reduced iron powder.
Thirdly, a sheet in which flat surfaces of flat powder made of a soft magnetic material having a large relative permeability are overlapped with each other is a sheet having a high magnetic shielding effect. Furthermore, if the thickness of the sheet is made close to the depth of the epidermis of the flat powder, a sheet with a large area can be formed with a small amount of flat powder used, and all the flat powder participates in the magnetic shield, and the effect of the magnetic shield is obtained. Will increase.
Fourth, the soft magnetic flat powder made of multiple types of alloys has different frequency characteristics of the imaginary part of complex magnetic permeability, and the frequency characteristics of the imaginary part of each complex magnetic permeability complement each other in different frequency ranges. Due to the frequency characteristics of the imaginary part of the matching complex magnetic permeability, the sheet formed by using soft magnetic flat powder made of a plurality of types of alloys absorbs electromagnetic noise in a wide frequency band, which was difficult in the past. In addition, if the thickness of the sheet is made close to the depth of the skin of the flat powder of multiple types of alloy, a sheet with a large area can be formed with a small amount of flat powder used, and all the flat powder absorbs electromagnetic noise. Participate and enhance the absorption effect of electromagnetic noise.

17段落に記載した金属ないしは合金からなるフレーク状ないしは鱗片状の粉体が、銀、銅、真鍮、ニッケル、亜鉛ないしはアルミニウムのいずれかの材質からなるフレーク粉ないしは鱗片粉であり、該フレーク粉ないしは該鱗片粉を17段落に記載した金属ないしは合金からなるフレーク状ないしは鱗片状の粉体として用い、17段落に記載したペーストを製造する方法に従ってペーストを製造する、17段落に記載したペーストを製造する方法である。 The flake-like or scaly powder made of a metal or alloy described in paragraph 17 is a flake powder or scaly powder made of any material of silver, copper, brass, nickel, zinc or aluminum, and the flake powder or scaly powder. The scaly powder is used as a flake-like or scaly powder made of the metal or alloy described in paragraph 17, and the paste is produced according to the method for producing the paste described in paragraph 17, to produce the paste described in paragraph 17. The method.

つまり、フレーク粉は、アルミニウムを除く銀、銅、真鍮、ニッケルないしは亜鉛などから金属の粉体を、スタンプミルを用い、多数の金属製の杵で金属粉を叩き、薄いフレーク状になるように延ばして扁平加工され、薄片状のフレーク粉が製造される。このフレーク粉は、多数の金属製の杵で金属粉を叩く際に、表面にうねりが形成され、平面度は高くない。いっぽう、アルミニウムについては、微粒子の活性度が高いため、アトマイズ法で製造した微粒子を、湿式ボールミルで扁平処理し、薄片状の鱗片粉が製造される。このアルミニウムの鱗片粉は、湿式ボールミルによる扁平処理に依る表面粗さを持つ。これらのフレーク粉ないしは鱗片粉は、長軸に対する厚みの比率であるアスペクト比が高い。従って、平面同士を重ね合わせれば、少ない量のフレーク粉ないしは鱗片粉の集まりで、一定ン面積を持つシートが形成できる。また、フレーク粉の表面が滑らかであるため、表面の摩擦係数は、0.20-0.25と小さい。このため、金属のフレーク紛は、表面が潤滑性を持つとともに、材質に基づく導電性と熱伝導性を兼備する。
いっぽう、アルミニウムを除く金属のフレーク粉の耐熱温度は、軟化点で決まり、最も低い電解銅であっても、軟化点が800℃と高い。また、金属は低温脆性を持たないので、極低温での使用が可能になる。従って、フレーク粉の集まりからなるシートは、油潤滑が適用できない高温、極低温、超真空、超高圧下など、過酷な環境でも使用できる。さらに、耐荷重性は600MPaと高い。このため、フレーク粉の集まりを圧縮する際に、フレーク紛の平面は圧縮応力に耐え、平面同士が重なり合った接触部位に摩擦熱が発生し、平面同士が摩擦熱で接合される。
これに対し、アルミニウムの軟化点は350℃と低い。従って、アルミニウムの鱗片紛同士を摩擦熱で接合する際に、アルミニウムの鱗片紛の接触部位は軟化する。しかし、摩擦熱が発生する時間が短く、摩擦熱の発生は接触部位に限定され、鱗片粉の全体は軟化しない。このため、軟化したアルミニウムの鱗片紛の接触部位は、摩擦熱で平面同士が接合する。この結果、熱伝導性と導電性とを兼備する軽量なシートが形成される。
なお、金属のフレーク紛は、表面が滑らかであるが、表面は平面ではなく、固有のうねりを持つ。従って、平面同士が直接重なり合った平面を圧縮すると、平面がうねりを持つことで、加圧する側の局所的な部位が、加圧される側の局所的な部位と接触する部位が形成され、こうした部位に摩擦熱が発生する。この摩擦熱で、重なり合った平面同士が接合され、接合されたフレーク粉の集まりからなるシートが、基材に形成される。なお、アルミニウムの鱗片粉は、湿式ボールミルによる扁平処理で、表面に凹凸が形成される。このため、平面同士が重なり合った鱗片紛の集まりを圧縮すると、フレーク紛と同様に、平面同士が互いに接触する局所的な部位が形成され、こうした部位に摩擦熱が発生する。この摩擦熱で、重なり合った平面同士が接合され、接合された鱗片粉の集まりからなるシートが、基材に形成される。
ところで、本発明におけるペーストにおいては、18段落に説明したように、有機化合物の溶解液の粘度に応じて、有機化合物の溶解液が粉体に吸着し、また、粉体の平面同士が、有機化合物の溶解液を介して吸着する。従って、有機化合物の溶解液の粘度は、ペーストの性質を決める要素になる。いっぽう、金属のフレーク粉ないしは鱗片粉の厚みは、材質によって0.2-1μmの幅を持つが、使用するフレーク粉ないしは鱗片粉の製品のグレード内では、厚みの偏差は0.1μm以内に収まる。また、フレーク粉ないしは鱗片粉の粒径は、材質が同じでも、扁平加工の条件が異なるため、製品によって異なる。また、金属の密度は、アルミニウムが2.7g/cmで、銀が10.5g/cmで、銅が9.0g/cmで、真鍮が8.7g/cmで、ニッケルが8.9g/cmで、亜鉛が7.1g/cmである。従って、ペーストを構成する有機化合物の溶解液の粘度は、フレーク粉ないしは鱗片粉の平均の厚みと、平均の粒径と、金属の密度に応じて変える。
また、18段落に記載したように、有機化合物の溶解液の粘度と共に、有機化合物の溶解液がペーストに占める体積も、ペーストの性質を決める重要な要素になる。このため、有機化合物の溶解液がペーストに占める体積が、フレーク粉ないしは鱗片粉の集まりがペーストに占める体積の3倍より多くし、ペーストに液体としての流動性を持たせる。
なお、本ペーストの製造方法は、有機化合物の溶解液と金属からなるフレーク粉ないしは鱗片粉の集まりとからなる混合物を作成し、混合物中でホモジナイザー装置を稼働させ、さらに、容器に3方向の振動加速度を繰り返し加える3つの処理からなる。従って、ペーストを製造する際に用いる金属のフレーク粉ないしは鱗片粉の材質と形状と粒径分布とに制約はない。さらに、ペーストは、フレーク粉ないしは鱗片粉の平面同士が有機化合物の溶解液を介して重なり合った粉体の集まりからなり、有機化合物の溶解液を気化させ、さらに、重なり合った平面同士を接合すれば、平面同士が重なり合ったシートになる。このため、少ない粉体の使用量で、広い面積のシートが形成できる。このシートは、帯電防止のシート、電磁波シールドのシートや表面が潤滑性に優れたシートになる。本発明におけるペーストを用いることで、こうしたシートが形成できる。
In other words, the flake powder is made of silver, copper, brass, nickel or zinc excluding aluminum, and the metal powder is beaten with a large number of metal punches using a stamp mill to form thin flakes. It is stretched and flattened to produce flaky flake powder. When the flake powder is hit with a large number of metal pestle, undulations are formed on the surface and the flatness is not high. On the other hand, with respect to aluminum, since the activity of the fine particles is high, the fine particles produced by the atomizing method are flattened with a wet ball mill to produce flaky scale powder. This aluminum scale powder has a surface roughness due to flattening treatment with a wet ball mill. These flake powders or scale powders have a high aspect ratio, which is the ratio of the thickness to the major axis. Therefore, if the planes are overlapped with each other, a sheet having a certain area can be formed by collecting a small amount of flake powder or scale powder. Further, since the surface of the flake powder is smooth, the coefficient of friction of the surface is as small as 0.20-0.25. For this reason, the flake powder of metal has a lubricity on the surface and also has conductivity and thermal conductivity based on the material.
On the other hand, the heat resistant temperature of the flake powder of metal other than aluminum is determined by the softening point, and even the lowest electrolytic copper has a high softening point of 800 ° C. Moreover, since the metal does not have low temperature brittleness, it can be used at extremely low temperatures. Therefore, the sheet composed of a collection of flake powder can be used in a harsh environment such as high temperature, ultra-low temperature, ultra-vacuum, and ultra-high pressure to which oil lubrication cannot be applied. Further, the load bearing capacity is as high as 600 MPa. Therefore, when the collection of flake powder is compressed, the planes of the flake powder withstand the compressive stress, frictional heat is generated at the contact portion where the planes overlap each other, and the planes are joined by the frictional heat.
On the other hand, the softening point of aluminum is as low as 350 ° C. Therefore, when the aluminum scale powders are joined together by frictional heat, the contact portion of the aluminum scale powders is softened. However, the time for which frictional heat is generated is short, the generation of frictional heat is limited to the contact portion, and the entire scale powder is not softened. For this reason, the contact portions of the softened aluminum scale powder are joined to each other by frictional heat. As a result, a lightweight sheet having both thermal conductivity and conductivity is formed.
The metal flake powder has a smooth surface, but the surface is not flat and has a peculiar undulation. Therefore, when the planes on which the planes are directly overlapped are compressed, the planes have undulations, so that a local part on the pressurizing side comes into contact with the local part on the pressurizing side. Friction heat is generated at the site. By this frictional heat, the overlapping planes are joined to each other, and a sheet consisting of a collection of joined flake powders is formed on the base material. The aluminum scale powder is flattened by a wet ball mill to form irregularities on the surface. For this reason, when a collection of scale powders on which planes overlap each other is compressed, local parts where the planes come into contact with each other are formed, and frictional heat is generated in these parts, similar to flake powder. By this frictional heat, the overlapping planes are joined to each other, and a sheet consisting of a collection of joined scale powders is formed on the base material.
By the way, in the paste in the present invention, as described in paragraph 18, the solution of the organic compound is adsorbed on the powder according to the viscosity of the solution of the organic compound, and the planes of the powder are organic. Adsorbs through the solution of the compound. Therefore, the viscosity of the solution of the organic compound is a factor that determines the properties of the paste. On the other hand, the thickness of metal flake powder or scale powder has a width of 0.2-1 μm depending on the material, but within the grade of the flake powder or scale powder product used, the thickness deviation is within 0.1 μm. .. Further, the particle size of the flake powder or the scale powder differs depending on the product because the flattening conditions are different even if the material is the same. The density of the metal is 2.7 g / cm 3 for aluminum, 10.5 g / cm 3 for silver, 9.0 g / cm 3 for copper, 8.7 g / cm 3 for brass, and 8 for nickel. At 9.9 g / cm 3 , zinc is 7.1 g / cm 3 . Therefore, the viscosity of the solution of the organic compound constituting the paste varies depending on the average thickness of the flake powder or the scale powder, the average particle size, and the density of the metal.
Further, as described in paragraph 18, the viscosity of the solution of the organic compound and the volume occupied by the solution of the organic compound in the paste are also important factors that determine the properties of the paste. Therefore, the volume occupied by the solution of the organic compound in the paste is more than three times the volume occupied by the collection of flake powder or scale powder in the paste, and the paste is made to have fluidity as a liquid.
In the method for producing this paste, a mixture consisting of a solution of an organic compound and a collection of flake powder or scale powder composed of metal is prepared, a homogenizer device is operated in the mixture, and the container is vibrated in three directions. It consists of three processes of repeatedly applying acceleration. Therefore, there are no restrictions on the material, shape, and particle size distribution of the metal flake powder or scale powder used in producing the paste. Further, the paste consists of a collection of powders in which the planes of flake powder or scale powder are overlapped with each other via the solution of the organic compound, and the solution of the organic compound is vaporized, and further, the overlapping planes are joined. , It becomes a sheet in which planes overlap each other. Therefore, a sheet having a large area can be formed with a small amount of powder used. This sheet is an antistatic sheet, an electromagnetic wave shielding sheet, or a sheet having an excellent lubricity on the surface. Such a sheet can be formed by using the paste in the present invention.

25段落に記載した方法で製造したペーストを用い、金属のフレーク粉ないしは鱗片粉の平面同士が重なり合った部位を摩擦熱で接合し、該平面同士が接合した金属のフレーク粉ないしは鱗片粉の集まりからなるシートを形成する方法は、
25段落に記載した方法で製造したペーストを基材に塗布し、該基材に前記ペーストからなる塗膜を形成し、この後、該塗膜から前記有機化合物の溶解液を気化させ、金属のフレーク粉ないしは鱗片粉の平面同士が重なり合った該フレーク粉ないしは該鱗片粉の集まりからなる被膜を前記基材に形成する、この後、該被膜の上方の平面を均等に圧縮する、これによって、前記フレーク粉ないしは前記鱗片粉の平面同士が重なり合った部位に摩擦熱が発生し、該摩擦熱によって前記重なり合ったフレーク粉ないしは鱗片粉の平面同士が接合され、該平面同士が接合したフレーク粉ないしは鱗片粉の集まりからなるシートが前記基材に形成される、この後、前記基材の側面に繰り返し衝撃を加え、該基材に形成された前記シートを該基材から引き剥がし、該シートを取り出す、25段落に記載した方法で製造したペーストを用い、金属のフレーク粉ないしは鱗片粉の平面同士が重なり合った部位を摩擦熱で接合し、該平面同士が接合した金属のフレーク粉ないしは鱗片粉の集まりからなるシートを形成する方法である。
Using the paste produced by the method described in paragraph 25, the parts where the planes of the metal flake powder or the scale powder overlap each other are joined by frictional heat, and the metal flake powder or the scale powder to which the planes are joined are joined together. The method of forming the sheet is
The paste produced by the method described in paragraph 25 is applied to a substrate to form a coating film composed of the paste on the substrate, and then the solution of the organic compound is vaporized from the coating film to form a metal. A coating consisting of a collection of the flake powder or the scale powder on which the planes of the flake powder or the scale powder are overlapped is formed on the substrate, and then the upper plane of the coating is evenly compressed, whereby the said. Friction heat is generated at the portion where the planes of the flake powder or the scale powder overlap each other, and the friction heat joins the planes of the overlapped flake powder or the scale powder to each other, and the flake powder or the scale powder to which the planes are joined is joined. A sheet consisting of a collection of the above is formed on the base material, and then the side surface of the base material is repeatedly impacted to peel off the sheet formed on the base material and take out the sheet. Using the paste produced by the method described in paragraph 25, the parts where the planes of the metal flake powder or the scale powder overlap are joined by frictional heat, and from the collection of the metal flake powder or the scale powder to which the planes are joined. It is a method of forming a sheet.

つまり、25段落に記載した方法で製造したペーストを基材に塗布すると、ペーストの粘度に応じた厚みからなる塗膜が基材に形成される。この後、塗膜から有機化合物の溶解液を気化させる。これによって、塗膜が、金属のフレーク粉ないしは鱗片粉の平面同士が重なり合った該フレーク粉ないしは該鱗片粉の集まりからなる被膜になる。さらに、被膜の上方の平面を均等に圧縮する。例えば、被膜の上に被膜と同等の形状からなる板材を載せ、この板材の上に、被膜の面積に応じて、数十から数百キログラムの重りを載せ、被膜の上方の平面を均等に圧縮する。この際、平面同士が重なり合った平面に摩擦熱が発生する。この摩擦熱によって、金属のフレーク粉ないしは鱗片粉の平面同士が摩擦熱で直接接合する。つまり、フレーク粉の平面は、フレーク粉の加工に伴ううねりを持つ。また、鱗片粉の表面は、鱗片粉の加工に伴う表面の粗さを持つ。このため、加えられた圧縮応力でフレーク粉ないしは鱗片粉は移動できず、加えられた圧縮応力が減少しないで、重なり合った平面を均等に圧縮する。この際、平面に加えられた圧縮応力の多くが摩擦熱に変換される。つまり、平面同士が直接重なり合った平面を圧縮すると、平面がうねりないしは凹凸を持つことで、加圧する側の局所的な部位が、加圧される側の局所的な部位と接触する部位が形成され、こうした部位に摩擦熱が発生する。この摩擦熱で、重なり合った平面同士が接合され、接合された粉体の集まりからなるシートが、基材に形成される。この後、重りと板材とを取り除き、シートが形成された基材の側面に衝撃加速度を繰り返し加え、シートを基材から引き剥がす。例えば、シートの面積に応じて、0.4-1.0Gの衝撃加速度を加える。この後、基材からシートを取り出す。
このシートは、次の作用効果をもたらす。
第一に、金属のフレーク粉ないしは鱗片粉の平面同士を、直接摩擦熱で接合したフレーク粉ないしは鱗片粉のみでシートが構成される。このため、シートは粉体の性質を持つ。
第二に、基材にペーストを塗布して、シートを形成するため、シートの面積と形状の制約はない。また、前記したように、金属のフレーク粉ないしは鱗片粉の形状、大きさ、粒度分布、硬度に関わらず、ペーストが製造できる。さらに、ペーストを塗布し、塗膜から有機化合物の溶解液を気化し、さらに、圧縮応力を加えることで、重なり合った平面同士を摩擦熱で接合し、フレーク粉ないしは鱗片粉の集まりからなるシート形成する。このため、本シートの製造方法は、金属のフレーク粉ないしは鱗片粉に対し、汎用性を持ってシートが形成できる。
第三に、少ない粉体の使用量で広い面積のシートが形成できる。シートは、粉体の性質を反映した帯電防止のシート、電磁波シールドのシートや潤滑性に優れたシートになる。
That is, when the paste produced by the method described in paragraph 25 is applied to the base material, a coating film having a thickness corresponding to the viscosity of the paste is formed on the base material. After that, the solution of the organic compound is vaporized from the coating film. As a result, the coating film becomes a film composed of a collection of the flake powder or the scale powder in which the planes of the metal flake powder or the scale powder are overlapped with each other. In addition, the plane above the coating is evenly compressed. For example, a plate having the same shape as the coating is placed on the coating, and a weight of tens to hundreds of kilograms is placed on the plate depending on the area of the coating, and the plane above the coating is evenly compressed. do. At this time, frictional heat is generated on the planes on which the planes overlap each other. Due to this frictional heat, the flat surfaces of the metal flake powder or scale powder are directly bonded to each other by the frictional heat. That is, the flat surface of the flake powder has undulations associated with the processing of the flake powder. In addition, the surface of the scale powder has a surface roughness due to the processing of the scale powder. Therefore, the flake powder or the scale powder cannot move due to the applied compressive stress, and the applied compressive stress does not decrease, and the overlapping planes are evenly compressed. At this time, most of the compressive stress applied to the plane is converted into frictional heat. In other words, when the planes on which the planes directly overlap each other are compressed, the planes have undulations or irregularities, so that a local part on the pressurizing side comes into contact with the local part on the pressurizing side. , Friction heat is generated in these parts. By this frictional heat, the overlapping planes are joined to each other, and a sheet consisting of a collection of the joined powders is formed on the base material. After that, the weight and the plate material are removed, impact acceleration is repeatedly applied to the side surface of the base material on which the sheet is formed, and the sheet is peeled off from the base material. For example, an impact acceleration of 0.4-1.0 G is applied depending on the area of the sheet. After this, the sheet is taken out from the base material.
This sheet has the following effects.
First, a sheet is composed of only flake powder or scale powder obtained by directly joining flat surfaces of metal flake powder or scale powder by frictional heat. Therefore, the sheet has the property of powder.
Secondly, since the paste is applied to the base material to form the sheet, there are no restrictions on the area and shape of the sheet. Further, as described above, a paste can be produced regardless of the shape, size, particle size distribution, and hardness of the metal flake powder or scale powder. Furthermore, by applying a paste, vaporizing the solution of the organic compound from the coating film, and further applying compressive stress, the overlapping planes are joined by frictional heat to form a sheet consisting of a collection of flake powder or scale powder. do. Therefore, the method for producing this sheet can form a sheet with versatility for metal flake powder or scale powder.
Thirdly, a sheet having a large area can be formed with a small amount of powder used. The sheet will be an antistatic sheet that reflects the properties of the powder, an electromagnetic wave shielding sheet, or a sheet with excellent lubricity.

17段落に記載したペーストを製造する方法は、17段落に記載した有機化合物の溶解液が、1、5-ペンタンジオールの水溶液ないしはグリセリンの水溶液であり、該1、5-ペンタンジオールの水溶液ないしは該グリセリンの水溶液を、17段落に記載した有機化合物の溶解液として用い、17段落に記載した方法に従ってペーストを製造する、17段落に記載したペーストを製造する方法である。 In the method for producing the paste described in paragraph 17, the solution of the organic compound described in paragraph 17 is an aqueous solution of 1,5-pentanediol or an aqueous solution of glycerin, and the aqueous solution of 1,5-pentanediol or the solution thereof. A method for producing a paste according to paragraph 17, wherein an aqueous solution of glycerin is used as a solution for the organic compound described in paragraph 17, and a paste is produced according to the method described in paragraph 17.

つまり、1、5-ペンタンジオールは、2価のアルコールに属し、20℃で135mPa・sの粘度を持ち、水に容易に溶け、融点が-16℃で、沸点が238℃の有機化合物である。また、塗料用ポリウレタン、ポリエステル樹脂、ポリカーボネートジオール樹脂の原料として用いられている汎用的な有機化合物である。
いっぽう、グリセリンは、3価のアルコールであり、20℃で1499mPa・sの粘度を持ち、水に容易に溶け、融点が20℃で、沸点が290℃の有機化合物である。また、医薬品、化粧品、トイレタリー、食品、モノグリセライド、カプセル、アルキッド樹脂、ポリウレタン、セロファン、フィルム、ハミガキ、マウスウオッシュ、インキ、香料、タバコ、タバコのフィルター、火薬、不凍剤、石鹸、繊維、紙、溶剤、コンデンサーの原料として幅広く用いられている汎用的な有機化合物である。
ところで、17段落に記載したペーストを構成する有機化合物の溶解液は、18段落に記載したように、溶解液の粘度に応じた吸着力で溶解液が粉体に吸着し、また、溶解液を介して粉体の平面同士が重なり合って吸着する。また、18段落に記載したように、有機化合物の溶解液がペーストに占める体積割合が、粉体の集まりがペーストに占める体積割合の3倍より多くし、粉体の平面の厚みの3倍より厚い厚みからなる有機化合物の溶解液を介して、粉体の平面同士を重ね合せれば、ペーストは液体としての流動性を持つ。従って、17段落に記載したペーストは、粉体の平面同士が、粉体の厚みの3倍より厚い厚みからなる有機化合物の溶解液を介して重なり合った該粉体の集まりからなる。
いっぽう、17段落に記載した金属ないしは合金からなるフレーク状、鱗片状ないしは扁平状の粉体の厚みと粒径と密度とは、金属ないしは合金の材質によって変わる。粉体の厚みは、フレーク状、鱗片状ないしは扁平状の加工のし易さで決まるため、硬度が高い粉体は加工し難く、厚みが厚い。最も厚みが厚い粉体は、20段落に記載した還元鉄粉からなる扁平粉であり、扁平粉の厚みは、10-20μmと厚い。これに対し、20段落に記載した鉄を除く4種類の合金は、扁平処理をし易くするために、合金の組成を変え、硬度を低下させ、扁平粉の厚みは1-1.5μmの範囲内に入る。さらに、26段落に記載した金属のフレーク紛ないしは鱗片粉は硬度が低く、粉体の厚みは、0.15-1.0μmと薄い。また、粉体の粒径は、粉体に処理する前のアトマイズ粒子ないしは還元粒子の構造と形状とに依存し、粒子を粉体に処理する条件に依存する。このため、粉体の材質が同じであっても、用いる粉体によって粒径は変わる。
ところで、17段落に記載したペーストを用いて、塗布した塗膜が、粉体の平面同士が、粉体の厚みの3倍の厚みからなる有機化合物の溶解液を介して重なり合い、該粉体が4層を積層して塗膜が形成するとする。粉体の厚みが15μmである場合は、塗膜の厚みは285μmになる。これに対し、粉体の厚みが0.5μmである場合は、塗膜の厚みは僅かに9.5μmになる。いっぽう、有機化合物の溶解液の厚みは、粉体の厚みの3倍より厚い厚みを形成するため、粉体の厚みに応じて、有機化合物の溶解液の塗膜の厚みは変わる。さらに、異なる材質からなる粉体の厚みが同一の1μmであるが、粉体の密度が異なる場合は、粉体の重量が変わる。また、同一の材質からなる粉体の厚みが同一の1μmであるが、粉体の粒径が異なる場合は、粉体の重量が変わる。このため、相対的に重量が多い粉体は、有機化合物の溶解液の粘度を相対的に高め、溶解液が粉体に吸着する吸着力を相対的に増やし、また、溶解液を介して粉体の平面同士が重なり合って吸着する吸着力を相対的に増やす必要がある。従って、18段落に記載したように、粉体の平均の厚みと平均の粒径と密度に応じて、ペーストを構成する有機化合物の溶解液の粘度を設定する必要性がある。
実験の結果に依れば、厚みが300μmの塗膜を形成するには、有機化合物の溶解液は、1200mPa・sの粘度が必要になることが分かった。このため、10μmの塗膜を形成するには、有機化合物の溶解液は、40mPa・sの粘度になる。このように、形成する塗膜の厚みに応じて、有機化合物の溶解液の粘度を変える。
いっぽう、2価のアルコールは水に溶け、グリコール類より粘度が高い。2価のアルコールの中で1、5-ペンタンジオールは、2価のアルコールの中で最も粘度が高く、20℃で135mPa・sの粘度を持ち、水に容易に溶け、融点が-16℃で、沸点が238℃と低い。従って、1、5-ペンタンジオールの水溶液の粘度は、10-120mPa・sの範囲内での粘度の調整ができる。また、3価のアルコールであるグリセリンは、20℃で1499mPa・sの高い粘度を持ち、水に容易に溶け、融点が20℃で、沸点が290℃と低い。従って、グリセリンの水溶液の粘度は、120-1350mPa・sの範囲内での粘度の調整ができる。この結果、有機化合物の溶解液の粘度は、10-1350mPa・sの広い範囲の粘度の調整が可能になり、塗膜の厚みは、2.5-338μmの広い範囲で形成できる。これによって、粉体の厚みが、0.15-20μmに及ぶ偏差があっても、3層以上の粉体を有機化合物の溶解液を介して積層した塗膜が形成できる。このため、1、5-ペンタンジオールの水溶液とグリセリンの水溶液とを、17段落に記載したペーストを構成する有機化合物の溶解液として用い、粉体の厚みと粒径と粉体の密度に応じて、水溶液の濃度を調整することにした。これによって、1、5-ペンタンジオールの水溶液とグリセリンの水溶液とは、17段落に記載した有機化合物を溶媒で溶解した溶解液として用いることができる。
That is, 1,5-pentanediol belongs to a divalent alcohol, has a viscosity of 135 mPa · s at 20 ° C, is easily soluble in water, has a melting point of -16 ° C, and has a boiling point of 238 ° C. .. Further, it is a general-purpose organic compound used as a raw material for polyurethane for paints, polyester resin, and polycarbonate diol resin.
On the other hand, glycerin is a trihydric alcohol, has a viscosity of 1499 mPa · s at 20 ° C, is easily soluble in water, has a melting point of 20 ° C, and has a boiling point of 290 ° C. Also, pharmaceuticals, cosmetics, toiletries, foods, monoglycerides, capsules, alkyd resins, polyurethanes, cellophane, films, shavings, mouthwashes, inks, fragrances, tobacco, tobacco filters, explosives, antifreeze, soap, textiles, paper, It is a general-purpose organic compound widely used as a raw material for solvents and condensers.
By the way, in the solution of the organic compound constituting the paste described in paragraph 17, as described in paragraph 18, the solution adsorbs to the powder with an adsorptive force according to the viscosity of the solution, and the solution is also adsorbed. The planes of the powder overlap each other and are adsorbed. Further, as described in paragraph 18, the volume ratio of the organic compound solution to the paste is more than 3 times the volume ratio of the powder collection to the paste, and 3 times the thickness of the flat surface of the powder. The paste has fluidity as a liquid when the planes of the powder are overlapped with each other through a solution of an organic compound having a thick thickness. Therefore, the paste described in paragraph 17 is composed of a collection of powders in which the planes of the powders are overlapped with each other via a solution of an organic compound having a thickness of more than 3 times the thickness of the powders.
On the other hand, the thickness, particle size and density of the flake-like, scaly or flat powder made of the metal or alloy described in paragraph 17 vary depending on the material of the metal or alloy. Since the thickness of the powder is determined by the ease of processing flakes, scales, or flats, powders with high hardness are difficult to process and thick. The thickest powder is the flat powder made of the reduced iron powder described in paragraph 20, and the thickness of the flat powder is as thick as 10-20 μm. On the other hand, in the four types of alloys other than iron described in paragraph 20, the composition of the alloy was changed to reduce the hardness in order to facilitate the flattening treatment, and the thickness of the flat powder was in the range of 1-1.5 μm. Go inside. Further, the metal flake powder or scale powder described in paragraph 26 has a low hardness, and the thickness of the powder is as thin as 0.15-1.0 μm. Further, the particle size of the powder depends on the structure and shape of the atomized particles or the reduced particles before being processed into the powder, and depends on the conditions for processing the particles into the powder. Therefore, even if the powder material is the same, the particle size varies depending on the powder used.
By the way, in the coating film applied using the paste described in paragraph 17, the planes of the powder overlap each other via a solution of an organic compound having a thickness three times the thickness of the powder, and the powder is formed. It is assumed that four layers are laminated to form a coating film. When the thickness of the powder is 15 μm, the thickness of the coating film is 285 μm. On the other hand, when the thickness of the powder is 0.5 μm, the thickness of the coating film is only 9.5 μm. On the other hand, since the thickness of the solution of the organic compound is thicker than three times the thickness of the powder, the thickness of the coating film of the solution of the organic compound changes depending on the thickness of the powder. Further, when the thickness of the powder made of different materials is the same 1 μm, but the density of the powder is different, the weight of the powder changes. Further, although the thickness of the powder made of the same material is the same 1 μm, if the particle size of the powder is different, the weight of the powder changes. For this reason, the relatively heavy powder relatively increases the viscosity of the solution of the organic compound, relatively increases the adsorptive power that the solution adsorbs to the powder, and also the powder via the solution. It is necessary to relatively increase the adsorption force that the planes of the body overlap and adsorb. Therefore, as described in paragraph 18, it is necessary to set the viscosity of the solution of the organic compound constituting the paste according to the average thickness of the powder and the average particle size and density.
According to the results of the experiment, it was found that the solution of the organic compound needs to have a viscosity of 1200 mPa · s in order to form a coating film having a thickness of 300 μm. Therefore, in order to form a coating film of 10 μm, the solution of the organic compound has a viscosity of 40 mPa · s. In this way, the viscosity of the solution of the organic compound is changed according to the thickness of the coating film to be formed.
On the other hand, divalent alcohol is soluble in water and has a higher viscosity than glycols. Among divalent alcohols, 1,5-pentanediol has the highest viscosity among divalent alcohols, has a viscosity of 135 mPa · s at 20 ° C, is easily soluble in water, and has a melting point of -16 ° C. , The boiling point is as low as 238 ° C. Therefore, the viscosity of the aqueous solution of 1,5-pentanediol can be adjusted within the range of 10-120 mPa · s. Glycerin, which is a trihydric alcohol, has a high viscosity of 1499 mPa · s at 20 ° C, is easily dissolved in water, has a melting point of 20 ° C, and has a low boiling point of 290 ° C. Therefore, the viscosity of the aqueous solution of glycerin can be adjusted within the range of 120-1350 mPa · s. As a result, the viscosity of the solution of the organic compound can be adjusted in a wide range of 10-1350 mPa · s, and the thickness of the coating film can be formed in a wide range of 2.5-338 μm. As a result, even if the thickness of the powder has a deviation of 0.15-20 μm, a coating film in which three or more layers of powder are laminated via a solution of an organic compound can be formed. Therefore, an aqueous solution of 1,5-pentanediol and an aqueous solution of glycerin are used as the dissolution liquids of the organic compounds constituting the paste described in paragraph 17, depending on the thickness and particle size of the powder and the density of the powder. , I decided to adjust the concentration of the aqueous solution. Thereby, the aqueous solution of 1,5-pentanediol and the aqueous solution of glycerin can be used as a solution in which the organic compound described in paragraph 17 is dissolved in a solvent.

扁平鉄粉が偏面同士で直接接合した扁平鉄粉の集まりからなるシートの側面を模式的に示した説明図である。It is explanatory drawing which shows typically the side surface of the sheet which consists of the group of the flat iron powder which flat iron powder is directly bonded to each other.

実施例1
本実施例は、軟磁性の扁平粉として、還元鉄粉を扁平化処理した扁平鉄粉を用い、扁平鉄粉の扁平面同士がグリセリンの水溶液を介して重なり合った該扁平鉄粉の集まりからなるペーストを容器内に製造する。扁平鉄粉は、JFEスチール株式会社が製造する扁平鉄粉MG150Dを用いた。この扁平鉄粉は、平均粒径が100μmと大きいが、厚みが10-20μmと厚い。これは、還元鉄粉の粒子は比較的大きいが、還元鉄粉のビッカース硬度が160-200HVと高く、扁平しにくいことに依る。
最初に、グリセリン(例えば、阪本薬品工業株式会社の製品)を60%の体積割合で蒸留水に溶解させた溶解液を作成した。グリセリンの水溶液の粘度は900mPa・sである。グリセリンの水溶液の100ccを、10cm×10cm×3cm(深さ)の容器に充填し、扁平鉄粉の40gを容器に投入した。この後、容器内のグリセリンの水溶液に、超音波ホモジナイザー装置(例えば、ヤマト科学株式会社の製品LUH300)によって20kHzの超音波振動を2分間加えた。さらに、超音波ホモジナイザー装置を容器から取り出し、0.2Gからなる3方向の振動加速度を容器に繰り返し加え、容器内に扁平鉄粉の扁平面同士がグリセリンの水溶液を介して重なり合った該扁平鉄粉の集まりからなるペーストを作成した。
Example 1
In this embodiment, as the soft magnetic flat powder, flat iron powder obtained by flattening the reduced iron powder is used, and the flat iron powder is composed of a collection of the flat iron powder in which the flat surfaces of the flat iron powder are overlapped with each other via an aqueous solution of glycerin. Make the paste in a container. As the flat iron powder, the flat iron powder MG150D manufactured by JFE Steel Corporation was used. This flat iron powder has a large average particle size of 100 μm, but a thickness of 10-20 μm. This is because the particles of the reduced iron powder are relatively large, but the Vickers hardness of the reduced iron powder is as high as 160-200 HV, and it is difficult to flatten.
First, a solution was prepared by dissolving glycerin (for example, a product of Sakamoto Yakuhin Kogyo Co., Ltd.) in distilled water at a volume ratio of 60%. The viscosity of the aqueous solution of glycerin is 900 mPa · s. 100 cc of an aqueous solution of glycerin was filled in a container of 10 cm × 10 cm × 3 cm (depth), and 40 g of flat iron powder was put into the container. After that, 20 kHz ultrasonic vibration was applied to the aqueous solution of glycerin in the container by an ultrasonic homogenizer device (for example, LUH300 product of Yamato Scientific Co., Ltd.) for 2 minutes. Further, the ultrasonic homogenizer device was taken out of the container, and vibration acceleration in three directions consisting of 0.2 G was repeatedly applied to the container, and the flat iron powders in which the flat surfaces of the flat iron powders overlapped with each other via an aqueous solution of glycerin were placed in the container. I made a paste consisting of a collection of.

実施例2
本実施例は、実施例1で作成したペーストを用い、扁平鉄粉の扁平面同士が重なり合った部位を摩擦熱で接合し、該扁平面同士が接合した扁平鉄粉の集まりからなるシートを形成する。
実施例1で作成したペーストを、10cm×10cm×1cm(厚み)からなるFEP樹脂の板材に均一に塗布し、塗膜を形成した。この後、FEP樹脂の板材をグリセリンの沸点である290℃に昇温し、塗膜からグリセリンの水溶液を気化させた。この後、塗膜の上に、10cm×10cm×5mm(厚み)からなるFEP樹脂の板材を載せ、さらに、
FEP樹脂の板材の上に、120kgからなる重りを載せた。この後、塗膜から、重りとFEP樹脂の板材とを取り除き、塗膜が形成されたFEP樹脂の板材の側面に、0.5Gからなる衝撃加速度を繰り返し加え、FEP樹脂の板材から試料を引き剥がした。こうした方法で、5枚のシートを作成した。
次に、試料の表面と側面とを電子顕微鏡で観察した。電子顕微鏡は、JFEテクノリサーチ株式会社の極低加速電圧SEMを用いた。この装置は、100Vからの極低加速電圧による表面観察が可能で、試料に導電性の被膜を形成せずに直接試料の表面が観察できる特徴を持つ。
最初に、反射電子線の900-1000Vの間にある2次電子線を取り出して画像処理を行なった。10-20μmの大きさからなる扁平粉の扁平面同士が3枚積み重なって、45μm前後の厚みからなる10cm×10cmのシートを形成していた。さらに、反射電子線の900-1000Vの間にあるエネルギーを抽出して画像処理を行い、画像の濃淡によって材質を観察した。濃淡が認められなかったため、単一の元素から形成されていることが分かった。次に、特性エックス線のエネルギーとその強度を画像処理し元素を分析した。鉄原子であることが分かった。従って、扁平鉄粉が扁平面同士で直接接合し、扁平鉄粉の集まりがシートを形成した。なお、還元鉄粉の100kHzにおける電磁波の表皮の深さは50μmになるため、45μm前後の厚みからなるシートは、少ない量の還元鉄粉からなる扁平粉を用いて、効果的に100kHz付近の電磁波のノイズを吸収する。図1に、扁平鉄粉が偏面同士で直接接合した扁平鉄粉の集まりからなるシートの側面を、模式的に示した。1は扁平鉄粉である。
さらに、作成したシートの磁気シールド性能を評価した。比較のために、厚みが45μmの冷間圧延鋼板を用いた。一辺が100mmの直方体形状からなるシールドボックスを、シートと冷間圧延鋼板との双方で作成した。磁気シールドルーム内に置かれたヘルムホルツコイル内に、前記のシールドボックスを配置し、ヘルムホルツコイルから発生させた外部磁界およびシールドボックス中央位置での内部磁界を測定して、磁気シールドの性能Sを式2で評価した。磁界を測る磁気センサは、シールドボックスに設けた穴から、シールドボックス内に設置した。試料は、7dBの磁気シールド性能Sの値をもち、冷間圧延鋼板と比較して3dBほど良好な磁気シールド性能を持った。この結果、作成したシートは、優れた磁気シールド効果が得られることが分かった。
(数2)
S=20log((外部磁界)/(内部磁界))
次に、シートの電磁ノイズを吸収する性能を評価した。長さが140mm、幅が30mmで特性インピーダンスが50Ωに調整されたマイクロストリップラインを施工した基板に、マイクロストリップラインの長さ方向にシートの長さ方向を合わせ、それぞれの中心が一致するようにシートを配置し、ノイズを吸収する磁性シートとした。この後、マイクロストリップラインに接続したネットワークアナライザー(アジレント・テクノロジー(株)の製品N5230A)を用いてSパラメータを測定した。なお、反射によるSパラメータS11と透過によるSパラメータS12とから、下記の数式3により、マイクロストリップラインにおける伝送損失が、電磁波の吸収量となる。
測定結果は、100kHzにおいて吸収量が12%、800kHzにおいて吸収量が24%、10MHzで吸収量が13%であった。シートは、100kHzから10MHzの周波数帯域において12%以上の吸収量であった。
(数3)
反射量(dB)=20log|S11
透過量(dB)=20log|S12
吸収量(%)=(1-|S11-|S12)×100
Example 2
In this embodiment, the paste prepared in Example 1 is used to bond the overlapping portions of the flat iron powders to each other by frictional heat to form a sheet composed of a collection of flat iron powders to which the flat iron powders are joined. do.
The paste prepared in Example 1 was uniformly applied to a FEP resin plate having a thickness of 10 cm × 10 cm × 1 cm (thickness) to form a coating film. After that, the temperature of the FEP resin plate was raised to 290 ° C., which is the boiling point of glycerin, and the aqueous solution of glycerin was vaporized from the coating film. After that, a FEP resin plate material having a thickness of 10 cm × 10 cm × 5 mm (thickness) is placed on the coating film, and further.
A weight of 120 kg was placed on the FEP resin plate. After that, the weight and the FEP resin plate material are removed from the coating film, and an impact acceleration of 0.5 G is repeatedly applied to the side surface of the FEP resin plate material on which the coating film is formed, and a sample is pulled from the FEP resin plate material. I peeled it off. Five sheets were created in this way.
Next, the surface and sides of the sample were observed with an electron microscope. As the electron microscope, an extremely low acceleration voltage SEM manufactured by JFE Techno Research Co., Ltd. was used. This device is capable of observing the surface with an extremely low acceleration voltage from 100 V, and has the feature that the surface of the sample can be directly observed without forming a conductive film on the sample.
First, the secondary electron beam between 900 and 1000 V of the backscattered electron beam was taken out and image processing was performed. Three flat surfaces of flat powder having a size of 10-20 μm were stacked to form a 10 cm × 10 cm sheet having a thickness of about 45 μm. Further, the energy between 900 and 1000 V of the reflected electron beam was extracted and image processing was performed, and the material was observed by the shading of the image. No shading was observed, indicating that it was formed from a single element. Next, the energy of the characteristic X-ray and its intensity were image-processed and the elements were analyzed. It turned out to be an iron atom. Therefore, the flat iron powders were directly bonded to each other, and a collection of flat iron powders formed a sheet. Since the depth of the skin of the electromagnetic wave of the reduced iron powder at 100 kHz is 50 μm, the sheet having a thickness of about 45 μm uses a flat powder made of a small amount of the reduced iron powder, and the electromagnetic wave is effectively around 100 kHz. Absorbs the noise of. FIG. 1 schematically shows the side surface of a sheet composed of a collection of flat iron powder in which flat iron powder is directly bonded to each other. 1 is flat iron powder.
Furthermore, the magnetic shielding performance of the prepared sheet was evaluated. For comparison, a cold-rolled steel sheet with a thickness of 45 μm was used. A shield box having a rectangular parallelepiped shape with a side of 100 mm was made of both a sheet and a cold-rolled steel plate. The shield box is placed in the Helmholtz coil placed in the magnetic shield room, and the external magnetic field generated from the Helmholtz coil and the internal magnetic field at the center position of the shield box are measured to formulate the magnetic shield performance S. It was evaluated by 2. The magnetic sensor for measuring the magnetic field was installed in the shield box through the hole provided in the shield box. The sample had a magnetic shield performance S of 7 dB, and had a good magnetic shield performance of about 3 dB as compared with the cold-rolled steel sheet. As a result, it was found that the prepared sheet can obtain an excellent magnetic shielding effect.
(Number 2)
S = 20log ((external magnetic field) / (internal magnetic field))
Next, the performance of absorbing the electromagnetic noise of the sheet was evaluated. Align the length of the sheet with the length of the microstrip line on the board on which the microstrip line with a length of 140 mm, width of 30 mm and characteristic impedance adjusted to 50Ω is installed, so that the centers of the sheets match. A sheet was placed to make a magnetic sheet that absorbs noise. After that, the S parameter was measured using a network analyzer (product N5230A of Agilent Technologies, Ltd.) connected to the microstrip line. From the S parameter S 11 due to reflection and the S parameter S 12 due to transmission, the transmission loss in the microstrip line is the absorption amount of electromagnetic waves according to the following mathematical formula 3.
The measurement results showed that the absorption amount was 12% at 100 kHz, the absorption amount was 24% at 800 kHz, and the absorption amount was 13% at 10 MHz. The sheet had an absorption amount of 12% or more in the frequency band of 100 kHz to 10 MHz.
(Number 3)
Reflection amount (dB) = 20log | S 11 |
Permeation amount (dB) = 20log | S 12 |
Absorption amount (%) = (1- | S 11 | 2- | S 12 | 2 ) x 100

実施例3
本実施例は、軟磁性の扁平粉として、扁平パーマロイ粉を用い、扁平パーマロイ粉の扁平面同士が1、5-ペンタンジオールの水溶液を介して重なり合った該扁平パーマロイ粉の集まりからなるペーストを容器内に製造する。扁平パーマロイ粉は、ニッケルが50%からなるパーマロイの扁平粉(例えば、山陽特殊製鋼の開発品)を用いた。この扁平粉の扁平率は38で、平均粒径は14μmである。また、複素透磁率の虚部は、100MHz付近から鋭く立ち上がり、3.3GHzでピーク値の8.8をもち、4GHz付近から減少し、10GHzで3.5の値を持つ。従って、1-8GHzの周波数帯域で、複素透磁率の虚部が5以上の値を持つ。これに対し、直流磁場では、初比透磁率が1×10で、最大比透磁率は1.4×10と大きな値を持つ。
最初に、1、5-ペンタンジオール(例えば、富士フィルム和光純薬株式会社の製品)を64%の体積割合で蒸留水に溶解させた溶解液を作成した。1、5-ペンタンジオールの水溶液の粘度は86mPa・sである。1、5-ペンタンジオールの水溶液の100ccを、10cm×10cm×3cm(深さ)の容器に充填し、パーマロイの扁平粉の20gを容器に投入した。この後、容器内の1、5-ペンタンジオールの水溶液に、超音波ホモジナイザー装置によって20kHzの超音波振動を2分間加えた。さらに、超音波ホモジナイザー装置を容器から取り出し、0.2Gからなる3方向の振動加速度を容器に繰り返し加え、容器内にパーマロイの扁平粉の扁平面同士が1、5-ペンタンジオールの水溶液を介して重なり合ったパーマロイの扁平粉の集まりからなるペーストを作成した。
Example 3
In this embodiment, flat permalloy powder is used as the soft magnetic flat powder, and a paste consisting of a collection of the flat permalloy powder in which the flat surfaces of the flat permalloy powder are overlapped with each other via an aqueous solution of 1,5-pentanediol is placed in a container. Manufactured in. As the flat permalloy powder, a permalloy flat powder containing 50% nickel (for example, a product developed by Sanyo Special Steel) was used. The flat powder has a flattening ratio of 38 and an average particle size of 14 μm. Further, the imaginary part of the complex magnetic permeability rises sharply from around 100 MHz, has a peak value of 8.8 at 3.3 GHz, decreases from around 4 GHz, and has a value of 3.5 at 10 GHz. Therefore, in the frequency band of 1-8 GHz, the imaginary part of the complex magnetic permeability has a value of 5 or more. On the other hand, in the DC magnetic field, the initial relative permeability is 1 × 10 4 , and the maximum relative permeability is 1.4 × 105, which are large values.
First, a solution was prepared by dissolving 1,5-pentanediol (for example, a product of Fuji Film Wako Pure Chemical Industries, Ltd.) in distilled water at a volume ratio of 64%. The viscosity of the aqueous solution of 1,5-pentanediol is 86 mPa · s. 100 cc of an aqueous solution of 1,5-pentanediol was filled in a container of 10 cm × 10 cm × 3 cm (depth), and 20 g of permalloy flat powder was put into the container. Then, 20 kHz ultrasonic vibration was applied to the aqueous solution of 1,5-pentanediol in the container by an ultrasonic homogenizer for 2 minutes. Furthermore, the ultrasonic homogenizer device is taken out of the container, and vibration acceleration in three directions consisting of 0.2 G is repeatedly applied to the container, and the flat surfaces of the permalloy flat powder are placed in the container via an aqueous solution of 1,5-pentanediol. A paste consisting of a collection of overlapping permalloy flat powders was made.

実施例4
本実施例は、実施例3で作成したペーストを用い、パーマロイの扁平粉の扁平面同士が重なり合った部位を摩擦熱で接合し、該扁平面同士が接合したパーマロイの扁平粉の集まりからなるシートを形成する。
実施例3で作成したペーストを、10cm×10cm×1cm(厚み)からなるFEP樹脂の板材に均一に塗布し、塗膜を形成した。この後、FEP樹脂の板材を1、5-ペンタンジオールの沸点である238℃に昇温し、塗膜から1、5-ペンタンジオールの水溶液を気化させた。この後、塗膜の上に、10cm×10cm×5mm(厚み)からなるFEP樹脂の板材を載せ、さらに、FEP樹脂の板材の上に、80kgからなる重りを載せた。この後、塗膜から、重りとFEP樹脂の板材とを取り除き、塗膜が形成されたFEP樹脂の板材の側面に、0.5Gからなる衝撃加速度を繰り返し加え、FEP樹脂の板材から試料を引き剥がした。こうした方法で、5枚のシートを作成した。
次に、実施例2と同様に、シートの表面と側面とを電子顕微鏡で観察した。0.4-0.5μmの厚みの物質が10層に積層されていた。この物質は、ニッケル原子と鉄原子とで構成されていたため、パーマロイである。なお、パーマロイの1GHzにおける表皮の深さは5.0μmであるため、4-5μmの厚みからなるシートは、少ない量のパーマロイからなる扁平粉を用いて、効果的に1GHz付近の電磁波のノイズを吸収する。
さらに、実施例2と同様の方法で、シートの磁気シールド性能を評価した。比較のために、ニッケルが47%のパーマロイからなる厚みが5μmのシートを用いた。実施例2と同様に、一辺が100mmの直方体形状のシールドボックスを、シートとパーマロイのシートとの各々で作成した。試料は、40dBの磁気シールド性能Sの値をもち、47Niパーマロイのシートと比較して5dBほど良好な磁気シールド性能を持った。この結果、試料は、優れた磁気シールド効果をもたらす。
次に、シートが電磁ノイズを吸収する性能を、実施例2と同様の方法で評価した。1GHzにおいて吸収量が8%、3GHzで吸収量が10%、6.8GHzで吸収量が8%であった。従って、試料は、1GHzから7GHzの周波数帯域において8%以上の吸収量であった。しかし、電磁波の吸収量は少ない。これは、パーマロイの扁平粉の平均粒径が小さく、扁平率が低いことに依る。
Example 4
In this embodiment, the paste prepared in Example 3 is used to bond the overlapping portions of the flat powders of Permalloy with frictional heat, and a sheet composed of a collection of the flat powders of Permalloy bonded to each other. To form.
The paste prepared in Example 3 was uniformly applied to a FEP resin plate having a thickness of 10 cm × 10 cm × 1 cm (thickness) to form a coating film. After that, the temperature of the FEP resin plate was raised to 238 ° C., which is the boiling point of 1,5-pentanediol, and the aqueous solution of 1,5-pentanediol was vaporized from the coating film. After that, a FEP resin plate having a thickness of 10 cm × 10 cm × 5 mm (thickness) was placed on the coating film, and a weight of 80 kg was placed on the FEP resin plate. After that, the weight and the FEP resin plate material are removed from the coating film, and an impact acceleration of 0.5 G is repeatedly applied to the side surface of the FEP resin plate material on which the coating film is formed, and a sample is pulled from the FEP resin plate material. I peeled it off. Five sheets were created in this way.
Next, the surface and the side surface of the sheet were observed with an electron microscope in the same manner as in Example 2. A substance having a thickness of 0.4-0.5 μm was laminated in 10 layers. This material is permalloy because it was composed of nickel and iron atoms. Since the depth of the epidermis of permalloy at 1 GHz is 5.0 μm, the sheet having a thickness of 4-5 μm uses a small amount of flat powder made of permalloy to effectively reduce the noise of electromagnetic waves near 1 GHz. Absorb.
Further, the magnetic shielding performance of the sheet was evaluated by the same method as in Example 2. For comparison, a 5 μm thick sheet of permalloy with 47% nickel was used. Similar to Example 2, a rectangular parallelepiped shield box having a side of 100 mm was created for each of the sheet and the permalloy sheet. The sample had a magnetic shielding performance S of 40 dB, and had a good magnetic shield performance of about 5 dB as compared with the 47Ni permalloy sheet. As a result, the sample provides an excellent magnetic shielding effect.
Next, the performance of the sheet to absorb electromagnetic noise was evaluated by the same method as in Example 2. The absorption amount was 8% at 1 GHz, the absorption amount was 10% at 3 GHz, and the absorption amount was 8% at 6.8 GHz. Therefore, the sample had an absorption amount of 8% or more in the frequency band of 1 GHz to 7 GHz. However, the amount of electromagnetic waves absorbed is small. This is because the average particle size of the permalloy flat powder is small and the flatness is low.

実施例5
本実施例は、軟磁性の扁平粉として、扁平センダスト粉を用い、扁平センダスト粉の扁平面同士がグリセリンの水溶液を介して重なり合った該扁平センダストの集まりからなるペーストを容器内に製造する。
センダストの扁平粉は、山陽特殊鋼の高透磁率タイプAという製品で、平均粒径が50μm以下と大きく、厚みが約1μmで、扁平率が50に近い。この扁平粉は、従来のセンダストに比べ、微量のニッケルを添加するとともに、ケイ素の添加量を減らし、扁平処理を容易にさせるとともに、扁平粉の粒径を大きくし、合わせて、複素透磁率の特性を大幅に改善させた。複素透磁率の虚部は、10-70MHzの周波数帯域で60以上の値を持ち、3-100MHzの周波数帯域で30以上の値を持つ。実施例3で用いたパーマロイの扁平粉に比べると、扁平粉の粒径が大きいため、扁平率が大きく、複素透磁率の虚部の値が10倍を超える周波数帯域が3-100MHzに及ぶ。また、複素透磁率の実部は、1-3MHzで200と大きな値を持つ。従って、3MHz以上の周波数帯域での電磁波のノイズ対策に有効である。これに対し、直流磁場での透磁率は、実施例3で用いたパーマロイより2桁以上小さいため、磁気シールドの効果は低い。なお、3MHzにおける扁平センダスト粉の表皮深さは20μmである。
最初に、実施例1で用いたグリセリンを22%の体積割合で蒸留水に溶解させた溶解液を作成した。グリセリンの水溶液の粘度は330mPa・sである。グリセリンの水溶液の100ccを、10cm×10cm×3cm(深さ)の容器に充填し、センダストの扁平粉の40gを容器に投入した。この後、容器内のグリセリンの水溶液に、超音波ホモジナイザー装置によって20kHzの超音波振動を2分間加えた。さらに、超音波ホモジナイザー装置を容器から取り出し、0.2Gからなる3方向の振動加速度を容器に繰り返し加え、容器内にセンダストの扁平粉の扁平面同士がグリセリンの水溶液を介して重なり合った該センダストの扁平粉の集まりからなるペーストを作成した。
Example 5
In this embodiment, flat sendust powder is used as the soft magnetic flat powder, and a paste consisting of a collection of the flat sendust in which the flat surfaces of the flat sendust powder are overlapped with each other via an aqueous solution of glycerin is produced in a container.
Sendust's flat powder is a product called high magnetic permeability type A of Sanyo Special Steel, which has a large average particle size of 50 μm or less, a thickness of about 1 μm, and a flatness close to 50. Compared to conventional sendust, this flat powder has a small amount of nickel added, the amount of silicon added is reduced, flattening is facilitated, and the particle size of the flat powder is increased, and the complex magnetic permeability is increased. The characteristics have been greatly improved. The imaginary part of the complex magnetic permeability has a value of 60 or more in the frequency band of 10-70 MHz and a value of 30 or more in the frequency band of 3-100 MHz. Compared with the permalloy flat powder used in Example 3, since the flat powder has a large particle size, the flatness is large, and the frequency band in which the value of the imaginary portion of the complex magnetic permeability exceeds 10 times extends to 3-100 MHz. Further, the real part of the complex magnetic permeability has a large value of 200 at 1-3 MHz. Therefore, it is effective as a noise countermeasure for electromagnetic waves in a frequency band of 3 MHz or higher. On the other hand, the magnetic permeability in the DC magnetic field is two orders of magnitude smaller than that of the permalloy used in Example 3, so that the effect of the magnetic shield is low. The skin depth of the flat sendust powder at 3 MHz is 20 μm.
First, a solution was prepared by dissolving the glycerin used in Example 1 in distilled water at a volume ratio of 22%. The viscosity of the aqueous solution of glycerin is 330 mPa · s. 100 cc of an aqueous solution of glycerin was filled in a container of 10 cm × 10 cm × 3 cm (depth), and 40 g of flat powder of Sendust was put into the container. After that, 20 kHz ultrasonic vibration was applied to the aqueous solution of glycerin in the container by an ultrasonic homogenizer for 2 minutes. Further, the ultrasonic homogenizer device was taken out of the container, vibration acceleration in three directions consisting of 0.2 G was repeatedly applied to the container, and the flat surfaces of the flat powder of sendust overlapped with each other via the aqueous solution of glycerin in the container. A paste consisting of a collection of flat powder was prepared.

実施例6
本実施例は、実施例5で作成したペーストを用い、センダストの扁平粉の扁平面同士が重なり合った部位を摩擦熱で接合し、該扁平面同士が接合したセンダストの扁平粉の集まりからなるシートを形成する。
実施例5で作成したペーストを、10cm×10cm×1cm(厚み)からなるFEP樹脂の板材に均一に塗布し、塗膜を形成した。この後、FEP樹脂の板材をグリセリンの沸点である290℃に昇温し、塗膜からグリセリンの水溶液を気化させた。この後、塗膜の上に、10cm×10cm×5mm(厚み)からなるFEP樹脂の板材を載せ、さらに、FEP樹脂の板材の上に、100kgからなる重りを載せた。この後、塗膜から、重りとFEP樹脂の板材とを取り除き、塗膜が形成されたFEP樹脂の板材の側面に、0.5Gからなる衝撃加速度を繰り返し加え、FEP樹脂の板材から試料を引き剥がした。こうした方法で、5枚のシートを作成した。
次に、実施例2と同様に、シートの表面と側面とを電子顕微鏡で観察した。1μmの厚みの物質が20層に積層されていた。この物質は、鉄原子が大半を占め、次いでケイ素原子が多く、さらにアルミニウム原子が続き、僅かなニッケル原子が認められたため、センダストよりスーパーセンダストに近い物質である。なお、3MHzにおける扁平センダスト粉の表皮深さは20μmであるため、20μmの厚みからなるシートは、少ない量のセンダストの扁平粉を用いて、効果的に3MHz付近の電磁波のノイズを吸収する。
さらに、作成したシートが電磁ノイズを吸収する性能を、実施例2と同様の方法で評価した。3MHzにおいて吸収量が28%で、10MHzにおいて吸収量が38%で、20MHzで吸収量が42%、50MHzで吸収量が38%で、100MHzにおいて吸収量が28%あった。従って、作成したシートは、3-100MHzの周波数帯域において28%以上の吸収量であった。実施例4に比べると、電磁波の吸収量が格段に増大した。これは、パーマロイの扁平粉に比べると、センダストの扁平粉の粒径が大きく、扁平率が大きいことに依る。
Example 6
In this embodiment, the paste prepared in Example 5 is used, and the portions where the flat powders of Sendust overlap each other are joined by frictional heat, and the sheet consisting of a collection of the flat powders of Sendust joined by the flat surfaces is joined. To form.
The paste prepared in Example 5 was uniformly applied to a FEP resin plate having a thickness of 10 cm × 10 cm × 1 cm (thickness) to form a coating film. After that, the temperature of the FEP resin plate was raised to 290 ° C., which is the boiling point of glycerin, and the aqueous solution of glycerin was vaporized from the coating film. After that, a FEP resin plate having a thickness of 10 cm × 10 cm × 5 mm (thickness) was placed on the coating film, and a weight of 100 kg was placed on the FEP resin plate. After that, the weight and the FEP resin plate material are removed from the coating film, and an impact acceleration of 0.5 G is repeatedly applied to the side surface of the FEP resin plate material on which the coating film is formed, and a sample is pulled from the FEP resin plate material. I peeled it off. Five sheets were created in this way.
Next, the surface and the side surface of the sheet were observed with an electron microscope in the same manner as in Example 2. A substance having a thickness of 1 μm was laminated in 20 layers. This substance is closer to super-sendust than sendust because iron atoms occupy the majority, followed by silicon atoms, followed by aluminum atoms, and a few nickel atoms are observed. Since the skin depth of the flat Sendust powder at 3 MHz is 20 μm, the sheet having a thickness of 20 μm effectively absorbs the noise of the electromagnetic wave near 3 MHz by using a small amount of the flat powder of Sendust.
Further, the performance of the prepared sheet to absorb electromagnetic noise was evaluated by the same method as in Example 2. The absorption amount was 28% at 3 MHz, the absorption amount was 38% at 10 MHz, the absorption amount was 42% at 20 MHz, the absorption amount was 38% at 50 MHz, and the absorption amount was 28% at 100 MHz. Therefore, the prepared sheet had an absorption amount of 28% or more in the frequency band of 3-100 MHz. Compared with Example 4, the amount of electromagnetic wave absorption was significantly increased. This is because the grain size of the sendust flat powder is larger and the flattening ratio is larger than that of the permalloy flat powder.

実施例7
本実施例は、複素透磁率の虚部が、互いに異なる周波数帯域でピーク値を持つ3種類の合金からなる扁平粉を用い、3種類の扁平粉の扁平面同士が1、5-ペンタンジオールの水溶液を介して重なり合った該扁平粉の集まりからなるペーストを容器内に製造する。
3種類の合金の扁平粉は、実施例3で用いたパーマロイの扁平粉に、ケイ素が3%のケイ素鋼の扁平粉と、電磁ステンレス鋼の扁平粉を加えた。
ケイ素が3%のケイ素鋼からなる扁平粉(例えば、山陽特殊製鋼の開発品)は、扁平率は34で、平均粒径は9μmである。また、複素透磁率の虚数部は、実施例2のパーマロイの扁平粉とは対照的に高周波数帯域で必要な大きさを持つ。すなわち、10MHz付近から緩やかに増大し、1GHzで2.3の値を持ち、4.7GHzでパーマロイの複素透磁率の虚数部の値と交差し、5.9GHzでピーク値の8.7を示し、6.3GHz付近からなだらかに減少し、10GHzでも5.9の値を持ち、12GHzで3.7の値を持つ。このため、4.7GHz以上では、パーマロイの扁平粉より複素透磁率の虚数部の値が大きい。
鉄に7%のクロムと1%のケイ素と1.6%のアルミニウムとを加えた電磁ステンレス鋼からなる扁平粉(例えば、山陽特殊製鋼の開発品)は、扁平率は29で平均粒径は12μmである。また、複素透磁率の虚部は、10MHz付近から急激に増大し、1GHzで3.4の値を持ち、4.2GHzでケイ素が3%のケイ素鋼の虚部と交差し、4.8GHzでピーク値の7.5を示し、5.5GHz付近からなだらかに減少し、10GHzでも4.8の値を持ち、12GHzで3.1の値を持つ。
従って、パーマロイの扁平粉とケイ素が3%のケイ素鋼の扁平粉と電磁ステンレス鋼の扁平粉からなる3種類の扁平粉を用い、3種類の扁平粉の扁平面同士をランダムに重ね合わせたシートを形成すると、シートの複素透磁率の虚部の特性は、3種類の扁平粉の複素透磁率の虚部の特性が加算された特性になり、2-8GHzに至る中間の周波数帯域の電磁ノイズを吸収する性能が向上する。特に、パーマロイの複素透磁率の虚数部がピーク値を示す3.3GHzから、ケイ素が3%のケイ素鋼の複素透磁率の虚数部がピーク値を示す4.8GHzまでの周波数帯域における電磁ノイズを吸収する性能が向上する。
最初に、1、5-ペンタンジオールを64%の体積割合で蒸留水に溶解させた溶解液を作成した。1、5-ペンタンジオールの水溶液の粘度は86mPa・sである。1、5-ペンタンジオールの水溶液の100ccを、10cm×10cm×3cm(深さ)の容器に充填した。次に、パーマロイの扁平粉の8gと、ケイ素鋼の扁平粉の7gと、電磁ステンレス鋼の扁平粉の15gを容器に投入し、容器内の1、5-ペンタンジオールの水溶液を攪拌した。この後、容器内の1、5-ペンタンジオールの水溶液に、超音波ホモジナイザー装置によって20kHzの超音波振動を2分間加えた。さらに、超音波ホモジナイザー装置を容器から取り出し、0.2Gからなる3方向の振動加速度を容器に繰り返し加え、容器内に3種類の合金からなる扁平粉の扁平面同士が1、5-ペンタンジオールの水溶液を介して重なり合った3種類の扁平粉の集まりからなるペーストを作成した。
Example 7
In this embodiment, a flat powder composed of three types of alloys in which the imaginary part of the complex magnetic permeability has peak values in different frequency bands is used, and the flat surfaces of the three types of flat powder are 1,5-pentanediol. A paste consisting of a collection of the flat powders overlapped with each other via an aqueous solution is produced in a container.
As the flat powders of the three types of alloys, the flat powders of silicon steel having 3% silicon and the flat powders of electromagnetic stainless steel were added to the flat powders of permalloy used in Example 3.
A flat powder made of silicon steel containing 3% silicon (for example, a product developed by Sanyo Special Steel) has a flatness of 34 and an average particle size of 9 μm. Further, the imaginary part of the complex magnetic permeability has a required size in the high frequency band in contrast to the flat powder of Permalloy of Example 2. That is, it gradually increases from around 10 MHz, has a value of 2.3 at 1 GHz, intersects with the value of the imaginary part of Permalloy's complex magnetic permeability at 4.7 GHz, and shows a peak value of 8.7 at 5.9 GHz. , It gradually decreases from around 6.3 GHz, has a value of 5.9 even at 10 GHz, and has a value of 3.7 at 12 GHz. Therefore, at 4.7 GHz or higher, the value of the imaginary part of the complex magnetic permeability is larger than that of the flat powder of permalloy.
A flat powder made of electromagnetic stainless steel obtained by adding 7% chromium, 1% silicon and 1.6% aluminum to iron (for example, a product developed by Sanyo Special Steel) has a flatness of 29 and an average particle size of 29. It is 12 μm. In addition, the imaginary part of complex magnetic permeability increases sharply from around 10 MHz and has a value of 3.4 at 1 GHz, and at 4.2 GHz, silicon intersects with the imaginary part of 3% silicon steel, and at 4.8 GHz. It shows a peak value of 7.5, gradually decreases from around 5.5 GHz, has a value of 4.8 even at 10 GHz, and has a value of 3.1 at 12 GHz.
Therefore, a sheet in which the flat powders of the three types of flat powders are randomly superposed with each other using three types of flat powders consisting of permalloy flat powder, silicon steel flat powder having 3% silicon, and electromagnetic stainless steel flat powder. When, the characteristic of the imaginary part of the complex magnetic permeability of the sheet becomes the characteristic that the characteristic of the imaginary part of the complex magnetic permeability of the three types of flat powder is added, and the electromagnetic noise in the middle frequency band up to 2-8 GHz. Performance to absorb is improved. In particular, electromagnetic noise in the frequency band from 3.3 GHz where the imaginary part of the complex magnetic permeability of Permalloy shows the peak value to 4.8 GHz where the imaginary part of the complex magnetic permeability of silicon steel with 3% silicon shows the peak value. The absorption performance is improved.
First, a solution was prepared by dissolving 1,5-pentanediol in distilled water at a volume ratio of 64%. The viscosity of the aqueous solution of 1,5-pentanediol is 86 mPa · s. A container of 10 cm × 10 cm × 3 cm (depth) was filled with 100 cc of an aqueous solution of 1,5-pentanediol. Next, 8 g of permalloy flat powder, 7 g of silicon steel flat powder, and 15 g of electromagnetic stainless steel flat powder were put into a container, and the aqueous solution of 1,5-pentanediol in the container was stirred. Then, 20 kHz ultrasonic vibration was applied to the aqueous solution of 1,5-pentanediol in the container by an ultrasonic homogenizer for 2 minutes. Furthermore, the ultrasonic homogenizer device is taken out of the container, and vibration acceleration in three directions consisting of 0.2 G is repeatedly applied to the container. A paste consisting of a collection of three types of flat powders overlapped with each other via an aqueous solution was prepared.

実施例8
本実施例は、実施例7で作成したペーストを用い、3種類の合金からなる扁平粉の扁平面同士が重なり合った部位を摩擦熱で接合し、該扁平面同士が接合した3種類の扁平粉の集まりからなるシートを形成する。
実施例7で作成したペーストを、10cm×10cm×1cm(厚み)からなるFEP樹脂の板材に均一に塗布し、塗膜を形成した。この後、FEP樹脂の板材を1、5-ペンタンジオールの沸点である238℃に昇温し、塗膜から1、5-ペンタンジオールの水溶液を気化させた。この後、塗膜の上に、10cm×10cm×5mm(厚み)からなるFEP樹脂の板材を載せ、さらに、FEP樹脂の板材の上に、100kgからなる重りを載せた。この後、塗膜から、重りとFEP樹脂の板材とを取り除き、塗膜が形成されたFEP樹脂の板材の側面に、0.5Gからなる衝撃加速度を繰り返し加え、FEP樹脂の板材から試料を引き剥がした。こうした方法で、5枚のシートを作成した。
次に、実施例2と同様に、シートの表面と側面とを電子顕微鏡で観察した。0.4-0.6μmの厚みの物質が10層に積層されていた。
さらに、作成したシートが電磁ノイズを吸収する性能を、実施例2と同様の方法で評価した。1GHzにおいて吸収量が8%、3.3GHzにおいて吸収量が10%、4.7GHzにおいて吸収量が9%、5.9GHzにおいて吸収量が10%、10GHzにおいて吸収量が8%であった。この結果、1-10GHzの広い周波数帯域において8%以上の吸収量であった。しかし、電磁波の吸収量は少ない。これは、実施例6で用いたセンダストの扁平粉に比べると、3種類の合金の平均粒径が小さく、扁平率が低いことに依る。
なお、複数種類の合金からなる軟磁性の扁平粉を組み合わせる事例は、実施例7に限らない。つまり、複素透磁率の虚数部が広い周波数帯域で一定の値を持つように、扁平粉を組み合わると、扁平面同士が重なり合って結合した扁平粉の集まりは、各々の扁平粉の複素透磁率の虚数部の特性が加算された複素透磁率の虚数部の特性を示し、この結果、広い周波数帯域において、電磁ノイズを吸収するシートが実現できる。
Example 8
In this example, using the paste prepared in Example 7, the portions where the flat surfaces of the flat powders made of three types of alloys overlap each other are bonded by frictional heat, and the flat powders of the three types bonded to each other are bonded by frictional heat. Form a sheet consisting of a collection of.
The paste prepared in Example 7 was uniformly applied to a FEP resin plate having a thickness of 10 cm × 10 cm × 1 cm (thickness) to form a coating film. After that, the temperature of the FEP resin plate was raised to 238 ° C., which is the boiling point of 1,5-pentanediol, and the aqueous solution of 1,5-pentanediol was vaporized from the coating film. After that, a FEP resin plate having a thickness of 10 cm × 10 cm × 5 mm (thickness) was placed on the coating film, and a weight of 100 kg was placed on the FEP resin plate. After that, the weight and the FEP resin plate material are removed from the coating film, and an impact acceleration of 0.5 G is repeatedly applied to the side surface of the FEP resin plate material on which the coating film is formed, and a sample is pulled from the FEP resin plate material. I peeled it off. Five sheets were created in this way.
Next, the surface and the side surface of the sheet were observed with an electron microscope in the same manner as in Example 2. A substance having a thickness of 0.4-0.6 μm was laminated in 10 layers.
Further, the performance of the prepared sheet to absorb electromagnetic noise was evaluated by the same method as in Example 2. The absorption amount was 8% at 1 GHz, the absorption amount was 10% at 3.3 GHz, the absorption amount was 9% at 4.7 GHz, the absorption amount was 10% at 5.9 GHz, and the absorption amount was 8% at 10 GHz. As a result, the absorption amount was 8% or more in a wide frequency band of 1-10 GHz. However, the amount of electromagnetic waves absorbed is small. This is because the average particle size of the three types of alloys is smaller and the flatness is lower than that of the sendust flat powder used in Example 6.
The example of combining soft magnetic flat powder made of a plurality of types of alloys is not limited to Example 7. In other words, when the flat powders are combined so that the imaginary part of the complex magnetic permeability has a constant value in a wide frequency band, the collection of flat powders in which the flat surfaces are overlapped and bonded is the complex magnetic permeability of each flat powder. The characteristics of the imaginary part of the complex magnetic permeability to which the characteristics of the imaginary part of the above are added are shown, and as a result, a sheet that absorbs electromagnetic noise can be realized in a wide frequency band.

実施例9
本実施例は、フレーク銅紛を用い、フレーク銅紛の平面同士が1、5-ペンタンジオールの水溶液を介して重なり合った該フレーク粉の集まりからなるペーストを容器内に製造する。フレーク銅粉は、福田金属箔粉工業株式会社が製造する品番MS-800を用いた。このフレーク銅粉は、粒度分布は、75μmより大きいフレーク紛が4%より多く、45μmより大きいフレーク紛が25%より多く、45μmより小さいフレーク紛が75%より多くを占める。厚みは0.5μm前後であるため、アスペクト比が大きい。また、見かけ密度が0.6-1.0g/cmと低い。
最初に、1、5-ペンタンジオールを28%の体積割合で蒸留水に溶解させた溶解液を作成した。1、5-ペンタンジオールの水溶液の粘度は38mPa・sである。1、5-ペンタンジオールの水溶液の100ccを、10cm×10cm×3cm(深さ)の容器に充填し、フレーク銅紛の扁平粉の10gを容器に投入した。この後、容器内の1、5-ペンタンジオールの水溶液に、超音波ホモジナイザー装置によって20kHzの超音波振動を2分間加えた。さらに、超音波ホモジナイザー装置を容器から取り出し、0.2Gからなる3方向の振動加速度を容器に繰り返し加え、容器内にフレーク銅紛の平面同士が1、5-ペンタンジオールの水溶液を介して重なり合ったフレーク銅紛の集まりからなるペーストを作成した。
Example 9
In this embodiment, flake copper powder is used to produce a paste consisting of a collection of the flake powder in which the planes of the flake copper powder are overlapped with each other via an aqueous solution of 1,5-pentanediol in a container. As the flake copper powder, the product number MS-800 manufactured by Fukuda Metal Foil Powder Industry Co., Ltd. was used. The particle size distribution of this flake copper powder is such that flake powder larger than 75 μm accounts for more than 4%, flake powder larger than 45 μm accounts for more than 25%, and flake powder smaller than 45 μm accounts for more than 75%. Since the thickness is around 0.5 μm, the aspect ratio is large. In addition, the apparent density is as low as 0.6-1.0 g / cm 3 .
First, a solution was prepared by dissolving 1,5-pentanediol in distilled water at a volume ratio of 28%. The viscosity of the aqueous solution of 1,5-pentanediol is 38 mPa · s. 100 cc of an aqueous solution of 1,5-pentanediol was filled in a container of 10 cm × 10 cm × 3 cm (depth), and 10 g of flat powder of flake copper powder was put into the container. Then, 20 kHz ultrasonic vibration was applied to the aqueous solution of 1,5-pentanediol in the container by an ultrasonic homogenizer for 2 minutes. Furthermore, the ultrasonic homogenizer device was taken out of the container, and vibration acceleration in three directions consisting of 0.2 G was repeatedly applied to the container, and the planes of the flake copper powder overlapped with each other in the container via an aqueous solution of 1,5-pentanediol. A paste consisting of a collection of flake copper powder was created.

実施例10
本実施例は、実施例9で作成したペーストを用い、フレーク銅紛の平面同士が重なり合った部位を摩擦熱で接合し、該平面同士が接合したフレーク銅紛の集まりからなるシートを形成する。
実施例9で作成したペーストを、10cm×10cm×1cm(厚み)からなるFEP樹脂の板材に均一に塗布し、塗膜を形成した。この後、FEP樹脂の板材を1、5-ペンタンジオールの沸点である238℃に昇温し、塗膜から1、5-ペンタンジオールの水溶液を気化させた。この後、塗膜の上に、10cm×10cm×5mm(厚み)からなるFEP樹脂の板材を載せ、さらに、FEP樹脂の板材の上に、50kgからなる重りを載せた。この後、塗膜から、重りとFEP樹脂の板材とを取り除き、塗膜が形成されたFEP樹脂の板材の側面に、0.4Gからなる衝撃加速度を繰り返し加え、FEP樹脂の板材から試料を引き剥がした。こうした方法で、5枚のシートを作成した。
次に、実施例2と同様に、シートの表面と側面とを電子顕微鏡で観察した。0.5μm前後の厚みの物質が4層に積層されていた。この物質は、銅原子のみで構成されていたため、銅紛である。
さらに、直流抵抗計(例えば、鶴賀電気株式会社の直流抵抗計モデル356H)を用いて、シートの電気抵抗を測定した。シートの4か所に端子をかませ、シートに異なる方向に直流電流を流して、内側の2つの端子で電圧を2回測り、これら2つの電圧値の差を、外側の2つの端子で測った電流値で割った値から求めた抵抗値は、銅に近い体積固有抵抗を示した。
また、複数のシートの複数の表面の摩擦係数を、測定装置(島津製作所の卓上形精密万能試験器オートグラフAGS-Xからなる摩擦係数測定装置)によって、静止摩擦係数と動摩擦係数を測定した。静止摩擦係数が0.15±0.05で、動摩擦係数が0.12±0.03であった。いずれの摩擦係数も小さい。
このため、作成したシートは、導電性と熱導電性を兼備するシートや、潤滑性と導電性とを兼備するシートや、電磁波を遮蔽するシートとして用いることができる。
Example 10
In this embodiment, using the paste prepared in Example 9, the portions where the planes of the flake copper powder overlap each other are joined by frictional heat to form a sheet composed of a collection of flake copper powder in which the planes are joined.
The paste prepared in Example 9 was uniformly applied to a FEP resin plate having a thickness of 10 cm × 10 cm × 1 cm (thickness) to form a coating film. After that, the temperature of the FEP resin plate was raised to 238 ° C., which is the boiling point of 1,5-pentanediol, and the aqueous solution of 1,5-pentanediol was vaporized from the coating film. After that, a FEP resin plate having a thickness of 10 cm × 10 cm × 5 mm (thickness) was placed on the coating film, and a weight of 50 kg was placed on the FEP resin plate. After that, the weight and the FEP resin plate material are removed from the coating film, and an impact acceleration of 0.4 G is repeatedly applied to the side surface of the FEP resin plate material on which the coating film is formed, and a sample is pulled from the FEP resin plate material. I peeled it off. Five sheets were created in this way.
Next, the surface and the side surface of the sheet were observed with an electron microscope in the same manner as in Example 2. A substance having a thickness of about 0.5 μm was laminated in four layers. This substance is a copper powder because it was composed only of copper atoms.
Further, a DC resistance meter (for example, a DC resistance meter model 356H manufactured by Tsuruga Electric Co., Ltd.) was used to measure the electrical resistance of the sheet. Bite the terminals at four points on the sheet, apply direct current to the sheet in different directions, measure the voltage twice with the two inner terminals, and measure the difference between these two voltage values with the two outer terminals. The resistance value obtained by dividing by the current value showed a volume resistivity close to that of copper.
In addition, the coefficient of friction of a plurality of surfaces of a plurality of sheets was measured by a measuring device (a friction coefficient measuring device consisting of a tabletop precision universal tester Autograph AGS-X manufactured by Shimadzu Corporation). The coefficient of static friction was 0.15 ± 0.05 and the coefficient of dynamic friction was 0.12 ± 0.03. Both friction coefficients are small.
Therefore, the created sheet can be used as a sheet having both conductivity and thermal conductivity, a sheet having both lubricity and conductivity, and a sheet for shielding electromagnetic waves.

本発明におけるペーストに係る5つの実施例を説明し、ペーストを用いて作成したシートに係る5つの実施例を説明したが、実施例はこれらに限定されない。なぜなら、ペーストの製造方法は、有機化合物の溶解液と粉体の集まりとからなる混合物を作成し、混合物中でホモジナイザー装置を稼働させ、容器に3方向の振動加速度を繰り返し加える3つの処理からなる。このため、用いる粉体の材質、形状、粒度分布に制約はない。従って、ペーストの実施例は、5つの実施例に限定されない。また、ペーストを用いたシートの作成方法は、ペーストを基材に塗布して塗膜を形成するため、塗膜の面積と形状の制約はない。さらに、塗膜から有機化合物の溶解液を気化し、さらに、圧縮応力を加えることで、重なり合った平面同士を摩擦熱で接合し、粉体の集まりからなるシートを形成するため、平面を持つ粉体に対し、汎用性を持ってシートが形成できる。従って、シートの実施例は、5つの実施例に限定されない。 The five examples relating to the paste in the present invention have been described, and the five examples relating to the sheet prepared by using the paste have been described, but the examples are not limited thereto. This is because the method for producing a paste consists of three processes of preparing a mixture consisting of a solution of an organic compound and a collection of powders, operating a homogenizer device in the mixture, and repeatedly applying vibration acceleration in three directions to the container. .. Therefore, there are no restrictions on the material, shape, and particle size distribution of the powder used. Therefore, the paste examples are not limited to the five examples. Further, in the method of creating a sheet using a paste, since the paste is applied to the base material to form a coating film, there are no restrictions on the area and shape of the coating film. Furthermore, by vaporizing the solution of the organic compound from the coating film and further applying compressive stress, the overlapping planes are joined by frictional heat to form a sheet consisting of a collection of powders, so that the powder has a flat surface. A sheet can be formed with versatility for the body. Therefore, the examples of the sheet are not limited to the five examples.

1 扁平鉄粉
1 Flat iron powder

Claims (7)

金属ないしは合金からなるフレーク状、鱗片状ないしは扁平状の粉体の平面同士が有機化合物の溶解液を介して重なり合った該粉体の集まりからなるペーストを製造する方法は、
有機化合物を溶媒で溶解した該有機化合物の溶解液の粘度を、金属ないしは合金からなるフレーク状、鱗片状ないしは扁平状の粉体の平均の厚みと平均の粒径と密度とから設定し、該粘度を有する有機化合物の溶解液の体積が、前記粉体の集まりが占める体積の3倍より多い体積になるように秤量して該有機化合物の溶解液を作成し、該有機化合物の溶解液と前記粉体の集まりを容器に充填する、この後、該容器中でホモジナイザー装置を稼働させ、前記有機化合物の溶解液を介して前記粉体の集まりに衝撃を繰り返し加え、該粉体の集まりを、前記有機化合物の溶解液を介して1枚1枚の粉体に分離させ、該粉体を前記有機化合物の溶解液で覆う、この後、前記ホモジナイザー装置を前記容器から取り出す、さらに、前記容器に前後、左右、上下の3方向の振動加速度を繰り返し加え、前記粉体の平面同士が前記有機化合物の溶解液を介して重なり合った該粉体の集まりからなるペーストを前記容器内に製造する、金属ないしは合金からなるフレーク状、鱗片状ないしは扁平状の粉体の平面同士が有機化合物の溶解液を介して重なり合った該粉体の集まりからなるペーストを製造する方法。
A method for producing a paste consisting of a collection of flakes, scaly or flat powders made of a metal or an alloy in which planes of the powders are overlapped with each other via a solution of an organic compound is described.
The viscosity of the solution of the organic compound in which the organic compound is dissolved with a solvent is set from the average thickness, the average particle size and the density of the flake-like, scaly or flat powder made of a metal or an alloy, and the like. The volume of the solution of the organic compound having viscosity is weighed so that the volume is more than three times the volume occupied by the collection of the powders to prepare the solution of the organic compound, and the solution of the organic compound is combined with the solution of the organic compound. The container is filled with the aggregate of the powder, and then the homogenizer device is operated in the container, and the impact is repeatedly applied to the aggregate of the powder via the solution of the organic compound to form the aggregate of the powder. , The powder is separated into individual powders via the solution of the organic compound, the powder is covered with the solution of the organic compound, and then the homogenizer device is taken out from the container, and further, the container is further removed. A paste consisting of a collection of the powders in which the planes of the powders are overlapped with each other via the solution of the organic compound is produced in the container by repeatedly applying vibration accelerations in three directions of front-back, left-right, and up-down. A method for producing a paste consisting of a collection of flakes, scaly or flat powders made of a metal or an alloy in which planes of the powder are overlapped with each other via a solution of an organic compound.
請求項1に記載したペーストを製造する方法は、請求項1に記載した金属ないしは合金からなる扁平状の粉体が、鉄、パーマロイ、ケイ素鋼、センダストないしは電磁ステンレス鋼のいずれかの材質からなる軟磁性の扁平粉であり、該軟磁性の扁平粉を、請求項1に記載した金属ないしは合金からなる扁平状の粉体として用い、請求項1に記載したペーストを製造する方法に従ってペーストを製造する、請求項1に記載したペーストを製造する方法。 In the method for producing the paste according to claim 1, the flat powder made of the metal or alloy according to claim 1 is made of any one of iron, permalloy, silicon steel, sentust or electromagnetic stainless steel. It is a soft magnetic flat powder, and the soft magnetic flat powder is used as a flat powder made of the metal or alloy according to claim 1, and a paste is produced according to the method for producing a paste according to claim 1. The method for producing the paste according to claim 1. 請求項2に記載したペーストを製造する方法は、請求項2に記載した軟磁性の扁平粉が、還元鉄粉の扁平粉を除く複数種類の合金からなる扁平粉であり、該複数種類の合金からなる扁平粉の複素透磁率の虚部の周波数特性が互いに異なり、かつ、各々の扁平粉の複素透磁率の虚部の周波数特性が、異なる周波数範囲を互い補完し合う複素透磁率の虚部の周波数特性であり、該複素透磁率の虚部の周波数特性を持つ複数種類の合金からなる扁平粉を、請求項2に記載した軟磁性の扁平粉として用い、請求項2に記載した方法に従ってペーストを製造する、請求項2に記載したペーストを製造する方法。 The method for producing the paste according to claim 2 is that the soft magnetic flat powder according to claim 2 is a flat powder composed of a plurality of types of alloys excluding the flat powder of reduced iron powder, and the plurality of types of alloys. The frequency characteristics of the imaginary part of the complex magnetic permeability of the flat powder are different from each other, and the frequency characteristics of the imaginary part of the complex magnetic permeability of each flat powder complement each other in different frequency ranges. The flat powder made of a plurality of types of alloys having the frequency characteristics of the imaginary portion of the complex magnetic permeability is used as the soft magnetic flat powder according to claim 2, and according to the method according to claim 2. The method for producing a paste according to claim 2, wherein the paste is produced. 請求項2に記載した製造方法で製造したペーストを用い、軟磁性の扁平粉の扁平面同士を接合し、該軟磁性の扁平粉の集まりからなるシートを形成する方法は、ないしは、請求項3に記載した製造方法で製造したペーストを用い、複数種類の合金の扁平粉の扁平面同士を接合し、該複数種類の合金の扁平粉の集まりからなるシートを形成する方法は、
請求項2ないしは請求項3に記載した方法で製造したペーストを基材に塗布し、該基材に前記ペーストからなる塗膜を形成し、この後、該塗膜から前記有機化合物の溶解液を気化させる、これによって、軟磁性の扁平粉の扁平面同士が重なり合った該扁平粉の集まりからなる被膜を前記基材に形成する、ないしは、複数種類の合金の扁平粉の扁平面同士が重なり合った該複数種類の合金の扁平粉の集まりからなる被膜を前記基材に形成する、この後、該被膜の上方の平面を均等に圧縮する、これによって、前記軟磁性の扁平粉の扁平面同士が重なり合った部位に摩擦熱が発生し、該摩擦熱によって前記重なり合った扁平粉同士が接合され、該接合した軟磁性の扁平粉の集まりからなるシートが前記基材に形成される、ないしは、前記複数種類の合金の扁平粉の扁平面同士が重なり合った部位に摩擦熱が発生し、該摩擦熱によって前記重なり合った扁平粉同士が接合され、該接合した複数種類の合金の扁平粉の集まりからなるシートが前記基材に形成される、この後、前記基材の側面に繰り返し衝撃加速度を加え、該基材に形成された前記シートを該基材から引き剥がし、該シートを取り出す、請求項2に記載した製造方法で製造したペーストを用い、軟磁性の扁平粉の扁平面同士を接合し、該軟磁性の扁平粉の集まりからなるシートを形成する方法、ないしは、請求項3に記載した製造方法で製造したペーストを用い、複数種類の合金の扁平粉の扁平面同士を接合し、該複数種類の合金の扁平粉の集まりからなるシートを形成する方法。
A method of joining the flat surfaces of soft magnetic flat powders to each other using the paste produced by the production method according to claim 2 to form a sheet composed of a collection of the soft magnetic flat powders, or claim 3. The method of joining the flat surfaces of the flat powders of a plurality of types of alloys to each other using the paste produced by the production method described in the above method to form a sheet composed of a collection of the flat powders of the plurality of types of alloys is described.
The paste produced by the method according to claim 2 or 3 is applied to a substrate to form a coating film composed of the paste on the substrate, and then a solution of the organic compound is applied from the coating film. It is vaporized, whereby a film consisting of a collection of the flat powders in which the flat powders of the soft magnetic powder are overlapped is formed on the base material, or the flat powders of a plurality of types of alloys are overlapped with each other. A film composed of a collection of flat powders of the plurality of types of alloys is formed on the base material, and then the flat surface above the film is evenly compressed, whereby the flat surfaces of the soft magnetic flat powders are brought together. Friction heat is generated at the overlapping portions, and the overlapping flat powders are bonded to each other by the friction heat, and a sheet composed of a collection of the bonded soft magnetic flat powders is formed on the base material, or the plurality. Friction heat is generated at the portion where the flat powders of the different types of alloys overlap each other, and the overlapping flat powders are joined by the frictional heat, and the sheet is composed of a collection of the flat powders of the plurality of types of the bonded pieces. Is formed on the base material, and then the side surface of the base material is repeatedly subjected to impact acceleration, the sheet formed on the base material is peeled off from the base material, and the sheet is taken out. A method of joining flat surfaces of soft magnetic flat powders to each other using a paste produced by the production method described to form a sheet composed of a collection of the soft magnetic flat powders, or the production method according to claim 3. A method of joining flat surfaces of flat powders of a plurality of types of alloys to each other using the paste produced in the above method to form a sheet composed of a collection of flat powders of the plurality of types of alloys.
請求項1に記載したペーストを製造する方法は、請求項1に記載した金属ないしは合金からなるフレーク状ないしは鱗片状の粉体が、銀、銅、真鍮、ニッケル、亜鉛ないしはアルミニウムのいずれかの材質からなるフレーク粉ないしは鱗片粉であり、該フレーク粉ないしは該鱗片粉を請求項1に記載した金属ないしは合金からなるフレーク状ないしは鱗片状の粉体として用い、請求項1に記載したペーストを製造する方法に従ってペーストを製造する、請求項1に記載したペーストを製造する方法。 In the method for producing the paste according to claim 1, the flake-like or scaly powder made of the metal or alloy according to claim 1 is made of any material of silver, copper, brass, nickel, zinc or aluminum. It is a flake powder or scale powder composed of, and the flake powder or scale powder is used as a flake-like or scale-like powder made of the metal or alloy according to claim 1 to produce the paste according to claim 1. The method for producing a paste according to claim 1, wherein the paste is produced according to the method. 請求項5に記載した方法で製造したペーストを用い、金属のフレーク粉ないしは鱗片粉の平面同士が重なり合った部位を摩擦熱で接合し、該平面同士が接合した金属のフレーク粉ないしは鱗片粉の集まりからなるシートを形成する方法は、
請求項5に記載した方法で製造したペーストを基材に塗布し、該基材に前記ペーストからなる塗膜を形成し、この後、該塗膜から前記有機化合物の溶解液を気化させ、金属のフレーク粉ないしは鱗片粉の平面同士が重なり合った該フレーク粉ないしは該鱗片粉の集まりからなる被膜を前記基材に形成する、この後、該被膜の上方の平面を均等に圧縮する、これによって、前記フレーク粉ないしは前記鱗片粉の平面同士が重なり合った部位に摩擦熱が発生し、該摩擦熱によって前記重なり合ったフレーク粉ないしは鱗片粉の平面同士が接合され、該平面同士が接合したフレーク粉ないしは鱗片粉の集まりからなるシートが前記基材に形成される、この後、前記基材の側面に繰り返し衝撃加速度を加え、該基材に形成された前記シートを該基材から引き剥がし、該シートを取り出す、請求項5に記載した方法で製造したペーストを用い、金属のフレーク粉ないしは鱗片粉の平面同士が重なり合った部位を摩擦熱で接合し、該平面同士が接合した金属のフレーク粉ないしは鱗片粉の集まりからなるシートを形成する方法。
Using the paste produced by the method according to claim 5, the portions where the planes of the metal flake powder or the scale powder overlap are joined by frictional heat, and the metal flake powder or the scale powder to which the planes are joined are collected. The method of forming a sheet consisting of
The paste produced by the method according to claim 5 is applied to a base material to form a coating film composed of the paste on the base material, and then the solution of the organic compound is vaporized from the coating film to form a metal. A coating consisting of a collection of the flake powder or the scale powder on which the planes of the flake powder or the scale powder are overlapped is formed on the substrate, and then the upper plane of the coating is evenly compressed. Friction heat is generated at the portion where the planes of the flake powder or the scale powder overlap each other, and the friction heat joins the planes of the overlapped flake powder or the scale powder to each other, and the flake powder or the scales to which the planes are joined are joined. A sheet composed of a collection of powders is formed on the base material, and then impact acceleration is repeatedly applied to the side surface of the base material to peel off the sheet formed on the base material from the base material, and the sheet is released. Using the paste produced by the method according to claim 5, the metal flake powder or scale powder is bonded to the portion where the planes of the metal flake powder or scale powder overlap with each other by frictional heat, and the metal flake powder or scale powder to which the planes are bonded is bonded. A method of forming a sheet consisting of a collection of powders.
請求項1に記載したペーストを製造する方法は、請求項1に記載した有機化合物の溶解液が、1、5-ペンタンジオールの水溶液ないしはグリセリンの水溶液であり、該1、5-ペンタンジオールの水溶液ないしは該グリセリンの水溶液を、請求項1に記載した有機化合物の溶解液として用い、請求項1に記載した方法に従ってペーストを製造する、請求項1に記載したペーストを製造する方法。
In the method for producing the paste according to claim 1, the solution of the organic compound according to claim 1 is an aqueous solution of 1,5-pentanediol or an aqueous solution of glycerin, and the aqueous solution of 1,5-pentanediol. The method for producing a paste according to claim 1, wherein the aqueous solution of glycerin is used as a solution for the organic compound according to claim 1 to produce a paste according to the method according to claim 1.
JP2020139002A 2020-08-19 2020-08-19 Method for producing paste in which planes of powder formed of metal or alloy are overlapped through solution of organic compound and producing sheet formed of aggregate of powder in which overlapped planes of the powder are jointed by frictional heat using the paste Pending JP2022035005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020139002A JP2022035005A (en) 2020-08-19 2020-08-19 Method for producing paste in which planes of powder formed of metal or alloy are overlapped through solution of organic compound and producing sheet formed of aggregate of powder in which overlapped planes of the powder are jointed by frictional heat using the paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020139002A JP2022035005A (en) 2020-08-19 2020-08-19 Method for producing paste in which planes of powder formed of metal or alloy are overlapped through solution of organic compound and producing sheet formed of aggregate of powder in which overlapped planes of the powder are jointed by frictional heat using the paste

Publications (1)

Publication Number Publication Date
JP2022035005A true JP2022035005A (en) 2022-03-04

Family

ID=80443246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020139002A Pending JP2022035005A (en) 2020-08-19 2020-08-19 Method for producing paste in which planes of powder formed of metal or alloy are overlapped through solution of organic compound and producing sheet formed of aggregate of powder in which overlapped planes of the powder are jointed by frictional heat using the paste

Country Status (1)

Country Link
JP (1) JP2022035005A (en)

Similar Documents

Publication Publication Date Title
Han et al. Core/shell structured C/ZnO nanoparticles composites for effective electromagnetic wave absorption
Shu et al. Enhanced electromagnetic wave absorption performance of silane coupling agent KH550@ Fe 3 O 4 hollow nanospheres/graphene composites
JP5574395B2 (en) Composite material and manufacturing method thereof
KR20090103951A (en) Composite magnetic body, its manufacturing method, circuit substrate using the same, and electronic device using the same
Feng et al. Enhancement of electromagnetic and microwave absorbing properties of gas atomized Fe-50 wt% Ni alloy by shape modification
Liu et al. One-pot synthesis of Ag@ Fe3O4/reduced graphene oxide composite with excellent electromagnetic absorption properties
Hekmatara et al. Synthesis and microwave absorption characterization of SiO 2 coated Fe 3 O 4–MWCNT composites
Shi et al. Achieving excellent metallic magnet-based absorbents by regulating the eddy current effect
JP5017637B2 (en) Insulator containing magnetic material, circuit board using the same, and electronic device
JP5177542B2 (en) Composite magnetic body, circuit board using the same, and electronic component using the same
CN111755199A (en) Composite magnetic body and inductor using the same
Stojak et al. Polymer nanocomposites exhibiting magnetically tunable microwave properties
Wang et al. Tuning layer thickness and layer arrangement in a GdMnO3 and GdMnO3-MoSe2 bi-layer absorber to cover the S, C, and X band frequency range
Ebrahimi-Tazangi et al. α-Fe2O3@ CoFe2O4/GO nanocomposites for broadband microwave absorption by surface/interface effects
JP2008311255A (en) Compound magnetic substance and its manufacturing method
JP2006179901A (en) Electromagnetic wave absorbing sheet
WO2011078044A1 (en) Magnetic material for high-frequency use, high-frequency device and magnetic particles
JP2022035005A (en) Method for producing paste in which planes of powder formed of metal or alloy are overlapped through solution of organic compound and producing sheet formed of aggregate of powder in which overlapped planes of the powder are jointed by frictional heat using the paste
JP6348694B2 (en) Insulation coating powder for magnetic materials
US11948715B2 (en) Magnetic composite
JP2007221064A (en) Electromagnetic wave countermeasure sheet, manufacturing method thereof, and electromagnetic wave countermeasure structure of electronic component
Lv et al. Mössbauer spectroscopy studies on the particle size distribution effect of Fe–B–P amorphous alloy on the microwave absorption properties
Huang et al. Dispersion of magnetic metals on expanded graphite for the shielding of electromagnetic radiations
JP6167560B2 (en) Insulating flat magnetic powder, composite magnetic body including the same, antenna and communication device including the same, and method for manufacturing composite magnetic body
Kim et al. Conduction noise attenuation by iron particles-rubber composites attached on microstrip line