JP2022031585A - Three-dimensional cell structure having valve function, manufacturing method thereof, and support body - Google Patents

Three-dimensional cell structure having valve function, manufacturing method thereof, and support body Download PDF

Info

Publication number
JP2022031585A
JP2022031585A JP2020135429A JP2020135429A JP2022031585A JP 2022031585 A JP2022031585 A JP 2022031585A JP 2020135429 A JP2020135429 A JP 2020135429A JP 2020135429 A JP2020135429 A JP 2020135429A JP 2022031585 A JP2022031585 A JP 2022031585A
Authority
JP
Japan
Prior art keywords
cell structure
dimensional cell
valve function
manufacturing
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020135429A
Other languages
Japanese (ja)
Other versions
JP6881798B1 (en
Inventor
大野次郎
Jiro Ono
博志 後藤
Hiroshi Goto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tissue Bynet Corp
Original Assignee
Tissue Bynet Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tissue Bynet Corp filed Critical Tissue Bynet Corp
Priority to JP2020135429A priority Critical patent/JP6881798B1/en
Application granted granted Critical
Publication of JP6881798B1 publication Critical patent/JP6881798B1/en
Publication of JP2022031585A publication Critical patent/JP2022031585A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Prostheses (AREA)

Abstract

To provide a method of manufacturing a three-dimensional cell structure having a valve function.SOLUTION: A representative configuration of a three-dimensional cell structure having a valve function includes the steps of: preparing a tubular three-dimensional cell structure formed with a through hole in the center; and applying pressure to an end part of the three-dimensional cell structure and giving the end part a valve function that can open and close the end part. By applying pressure to the end part of the tubular three-dimensional cell structure made only of cells in a culture solution, and opening and closing the end part repeatedly, an opening/closing motion of a valve shape is generated so that the tubular three-dimensional cell structure is cultivated to a shape having a valve function. The three-dimensional cell structure having a valve function made by the present invention can be made only of human cells, for example, and enables manufacturing of an artificial heart valve having characteristics such as elimination of risks of inflammation and immune-rejection, no need to inoculate an anticoagulant, and use for an extended period.SELECTED DRAWING: Figure 7

Description

本発明は、弁機能を有する立体細胞構造体、その作製方法及び支持体に関するものである。 The present invention relates to a three-dimensional cell structure having a valve function, a method for producing the same, and a support thereof.

現在主流となっている人工心臓弁は2種類の材料で作られたものがある。ウシ、ブタなどの生体の心臓弁を材料とする「生体弁」と、金属を材料とする「機械弁」の2種類である。
「生体弁」は血液の凝固が起こりにくいため、坑凝固剤を服用する必要はないが、耐用年数が10~20年と短く、若年者への移植後、再度置き換え手術が必要になる可能性がある。
「機械弁」は血液の凝固が起きやすいため、生涯の坑凝固剤を服用する必要がある。坑血液凝固剤は外傷時に止血しにくい、ほかの疾病にかかりやすくなるなどの副作用が指摘されている。
また、どちらも形状は固定的であるので体の成長とともに移植した弁が成長することはなく、乳幼児などは成長に応じて再手術が必要となる。
ヒトの細胞から心臓弁を形成することができれば上記課題を解決することができる。
Some of the artificial heart valves that are currently mainstream are made of two types of materials. There are two types, a "biological valve" made of a heart valve of a living body such as a cow or a pig, and a "mechanical valve" made of a metal.
Since blood coagulation is unlikely to occur in "biological valves," it is not necessary to take anticoagulants, but the service life is as short as 10 to 20 years, and replacement surgery may be required again after transplantation to young people. There is.
"Mechanical valves" are prone to blood coagulation, so it is necessary to take a lifelong anticoagulant. It has been pointed out that anticoagulants have side effects such as difficulty in stopping bleeding at the time of trauma and susceptibility to other diseases.
In addition, since the shape of both is fixed, the transplanted valve does not grow as the body grows, and infants and the like need to undergo reoperation according to their growth.
If a heart valve can be formed from human cells, the above problem can be solved.

細胞だけで管状細胞構造体を作製する手法が特許文献1(特許第6439223号)にて示されている。これによれば、細胞だけで作製された管状細胞構造体を得ることができる。これは単純な管状形状の細胞構造体を作製する手法であって、弁機能を有する立体細胞構造体形状を示すものではない。 Patent Document 1 (Patent No. 6439223) shows a method for producing a tubular cell structure using only cells. According to this, it is possible to obtain a tubular cell structure made only of cells. This is a method for producing a simple tubular cell structure, and does not indicate the shape of a three-dimensional cell structure having a valve function.

特許第6439223号Patent No. 6439223

この様に現在の使用されている人工心臓弁には2つの課題がある。坑血液凝固剤の服用、及び耐用年数 である。
本発明は、細胞を用いて弁機能を有する立体細胞構造体を作製することで、この課題を解決する手法を提供することを目的とする。
As described above, the artificial heart valve currently used has two problems. Taking anticoagulant and useful life.
An object of the present invention is to provide a method for solving this problem by producing a three-dimensional cell structure having a valve function using cells.

上記課題を解決するために弁機能を有する立体細胞構造体の代表的な構成は、細胞のみもしくは主として細胞で構成された立体細胞構造体であり、立体細胞構造体の少なくとも一部は有軟性を備え、血液等の流体の流路を遮る弁機能を備えていることを特徴とする。
弁機能を有する立体細胞構造体を作製するためには、管状細胞構造体を培養液内で培養時に、立体細胞構造体の特定部に任意の培地の流れを付与することによって、弁形状を作製していく。これを開閉培養と呼ぶ。
開閉培養を行うことで、立体細胞構造体の弁部位が開閉動作を行い、弁機能に必要な形状に自己成型していくとともに、弁機能のために必要な強度を得ていく。
In order to solve the above problems, a typical configuration of a three-dimensional cell structure having a valve function is a three-dimensional cell structure composed only of cells or mainly composed of cells, and at least a part of the three-dimensional cell structure is flexible. It is characterized by having a valve function of blocking the flow path of a fluid such as blood.
In order to prepare a three-dimensional cell structure having a valve function, a valve shape is prepared by imparting a flow of an arbitrary medium to a specific part of the three-dimensional cell structure when the tubular cell structure is cultured in a culture medium. I will do it. This is called open / closed culture.
By performing open / close culture, the valve site of the three-dimensional cell structure opens and closes, self-molding into the shape required for the valve function, and obtaining the strength required for the valve function.

本発明によれば、細胞だけで弁機能を有する立体細胞構造体を作製することが可能になり、長い耐用性を持ち、坑血液凝固剤の服用が不要で、体の成長とともに成長する弁を提供できることが可能となる。 According to the present invention, it is possible to produce a three-dimensional cell structure having a valve function only with cells, a valve having a long durability, no need to take an anticoagulant, and a valve that grows as the body grows. It will be possible to provide.

a:弁形状を付与する前の管状立体細胞構造体の一例の写真である。管状細胞構造体100の下部には構造体と融合された支持体110がある。支持体110は細胞が接着できる材質で作製されており、管状細胞構造体100作製時に細胞に接しながら培養されることで、細胞が支持体110に接着する。支持体110は不織布など隙間が多い形状でも、凹凸を付与した個体形状でも、平面でもよい。b:断面の略図である。a: It is a photograph of an example of a tubular three-dimensional cell structure before imparting a valve shape. Below the tubular cell structure 100 is a support 110 fused to the structure. The support 110 is made of a material to which cells can adhere, and when the tubular cell structure 100 is prepared, the cells are adhered to the support 110 by being cultured while in contact with the cells. The support 110 may have a shape having many gaps such as a non-woven fabric, an individual shape having irregularities, or a flat surface. b: It is a schematic of a cross section. a:弁開時の弁機能を有する立体細胞構造体102の断面略図である。弁部位に流路150が開放となっている。b:弁閉時の弁機能を有する立体細胞構造体103の断面略図である。弁部位が閉鎖されている。a: It is sectional drawing of the three-dimensional cell structure 102 which has a valve function at the time of valve opening. The flow path 150 is open at the valve site. b: FIG. 6 is a schematic cross-sectional view of a three-dimensional cell structure 103 having a valve function when the valve is closed. The valve site is closed. 開閉培養時の弁の動きを示した略図である。a:シリンダー200から押し出された培養液によって弁が開かれている。b:シリンダー200によって吸引された培養液によって弁がとじられている。It is a schematic diagram which showed the movement of a valve at the time of open-and-open culture. a: The valve is opened by the culture medium extruded from the cylinder 200. b: The valve is closed by the culture medium sucked by the cylinder 200. 硬性材質で作製された支持体120の一例を管状細胞構造体に組付けた写真である。It is a photograph of an example of a support 120 made of a rigid material assembled to a tubular cell structure. 硬性材質で作製された支持体120の一例を管状細胞構造体100に組付け、開閉時の写真である。a:弁開時、b:弁閉時An example of a support 120 made of a hard material is attached to a tubular cell structure 100, and is a photograph when the support is opened and closed. a: When the valve is open, b: When the valve is closed (a)軟性材質で作製された支持体130の一例を管状細胞構造体に組付けた断面略図である。軟性支持体130の両端は引っ張られて固定される。(b) 軟性材質で作製された支持体130の一例を管状細胞構造体に組付けた実例の写真である。(a) FIG. 3 is a schematic cross-sectional view in which an example of a support 130 made of a soft material is assembled to a tubular cell structure. Both ends of the flexible support 130 are pulled and fixed. (b) It is a photograph of an example of a support 130 made of a soft material assembled to a tubular cell structure. 培養後の弁機能を有する立体細胞構造体一例の全体の写真である。液外においても自立した形状を維持し、三尖弁の開放時形状を維持している。It is a whole photograph of an example of a three-dimensional cell structure having a valve function after culturing. It maintains its self-sustaining shape even outside the liquid, and maintains the shape of the tricuspid valve when it is open. 培養後の弁機能を有する立体細胞構造体の一例の染色画像である。構造体中央部まで細胞が存在している。先端部は他の弁葉と接する部位がきれいな曲線になっていることがわかる。It is a stained image of an example of a three-dimensional cell structure having a valve function after culturing. Cells are present up to the center of the structure. It can be seen that the tip of the tip has a clean curve at the part in contact with other leaflets.

弁機能を有する立体細胞構造体の作成方法を図を用いて説明する。 A method for creating a three-dimensional cell structure having a valve function will be described with reference to the drawings.

まず、細胞だけもしくは主として細胞を用いて作成された管状立体細胞構造体100を作製する。これは特許第6439223に示される手法などを用いて作製する。図1に示されるように、管状立体細胞構造体100は細胞が接着できる材質で作製された支持体110によって構成されている。支持体110は例えば不織布などの柔軟性に富む材料でもよいし、板状の材料でもよい。図1-bに示されるように細胞部分(開閉培養前)101と支持体110は融合している。この段階では弁機能は有していない。 First, a tubular three-dimensional cell structure 100 prepared using only cells or mainly using cells is prepared. This is produced by using the method shown in Japanese Patent No. 6439223 and the like. As shown in FIG. 1, the tubular three-dimensional cell structure 100 is composed of a support 110 made of a material to which cells can adhere. The support 110 may be made of a highly flexible material such as a non-woven fabric, or may be a plate-shaped material. As shown in FIG. 1-b, the cell portion (before open / closed culture) 101 and the support 110 are fused. It does not have a valve function at this stage.

図2は立体細胞構造体が弁形状に作製された後の断面図である。a:開時は 弁機能を持つ立体細胞構造体(開示)102の弁部位の先端部同士が離れており、流路150が出現している。b:閉時は弁機能をもつ立体細胞構造体(閉時)103同士が接して流路150が消滅し、弁機能を生じている。 FIG. 2 is a cross-sectional view after the three-dimensional cell structure is formed into a valve shape. a: At the time of opening, the tips of the valve sites of the three-dimensional cell structure (disclosure) 102 having a valve function are separated from each other, and the flow path 150 appears. b: When closed, the three-dimensional cell structures having a valve function (when closed) 103 are in contact with each other and the flow path 150 disappears, resulting in a valve function.

図3は開閉培養のシステム全体図である。
a:弁 開時 は コントローラー500にあらかじめプログラミングされた速度及び角度でステッピングモーター400を回転させ、ピストン310をシリンダ210に押し込んでいくと同時に培養液が吐出され、弁機能を持つ立体細胞構造体(開示)102が押し広げられて、弁が開放状態となる。
b:弁 閉時は逆の動きとなり、培養液が吸引されるとともに、弁機能をもつ立体細胞構造体(閉時)103が閉じられて、弁が閉鎖状態となる。
上記 a, b を繰り返すことで、立体細胞構造体100が弁機能に即した形状に整形されていくとともに、弁機能に必要な強度を得て弁機能を有する立体細胞構造体105となる。
FIG. 3 is an overall view of the open / closed culture system.
a: When the valve is opened, the stepping motor 400 is rotated at a speed and angle programmed in advance in the controller 500, the piston 310 is pushed into the cylinder 210, and at the same time, the culture medium is discharged, and the three-dimensional cell structure having a valve function ( Disclosure) 102 is pushed open and the valve is opened.
b: When the valve is closed, the movement is reversed, the culture medium is sucked, and the three-dimensional cell structure (when closed) 103 having a valve function is closed, and the valve is closed.
By repeating the above steps a and b, the three-dimensional cell structure 100 is shaped to match the valve function, and the strength required for the valve function is obtained to obtain the three-dimensional cell structure 105 having the valve function.

哺乳類の心臓弁の一形態が三尖弁と呼ばれる、弁葉が3つある形状である。この三尖弁に類似した形状を作製するために、管状細胞構造体の内腔内に動きを制限する支持体を挿入して培養する。図4は硬性支持体を内腔内に固定した写真である。
図5は図3に示される開閉培養中の a :弁開時、b:弁閉時 の写真である。
支持体120の材料は、当然であるが細胞毒性を有しないものに限定される。更に、生体適合性を持つ材料が望ましい。また、細胞が接着できる材質でもよいし、接着できない材質でもよい。細胞が接着する場合は不織布などの空間の多い材料が望ましいが、板材料の表面に凹凸を設けて接着しやすくすることでもよい。また、平滑な面でも細胞が接着できるような処理をしていればよい。支持体120に細胞非接着性の材料を用いた場合は、支持体120を立体細胞構造体105と分離し、立体細胞構造体105を心臓に移植することができる。支持体120に細胞接着性の材料を用いた場合は、支持体120は形状保持の機能を保持したまま心臓に移植することができる。
A form of mammalian heart valve is called the tricuspid valve, which has three leaflets. In order to create a shape similar to this tricuspid valve, a support that restricts movement is inserted into the lumen of the tubular cell structure and cultured. FIG. 4 is a photograph in which a rigid support is fixed in a lumen.
FIG. 5 is a photograph of a: when the valve is opened and b: when the valve is closed during the open / closed culture shown in FIG.
The material of the support 120 is, of course, limited to those that are not cytotoxic. Further, a material having biocompatibility is desirable. Further, it may be a material to which cells can adhere or a material to which cells cannot adhere. When cells adhere, a material with a large space such as a non-woven fabric is desirable, but it is also possible to provide irregularities on the surface of the plate material to facilitate adhesion. In addition, it suffices if the treatment is performed so that the cells can adhere even on a smooth surface. When a non-cellular material is used for the support 120, the support 120 can be separated from the three-dimensional cell structure 105 and the three-dimensional cell structure 105 can be transplanted into the heart. When a cell-adhesive material is used for the support 120, the support 120 can be transplanted into the heart while retaining the function of shape retention.

図6aは軟性の材料で作製された軟性支持体を管状細胞構造体の内腔内に設置した際のイメージ図である。軟性支持体130は下方は支持体110などに固定され、上方は何らかの保持部分に固定されることで概ね直線形状を保ったまま保持される。軟性支持体130は管状細胞構造体100と接触して培養されており、細胞接着性がある材料の場合は培養が進むにつれ細胞と融合接着していく。
軟性支持体130は例えば三尖弁を作製する場合は支持体は円周上3か所に設置される。支持体の上端及び下端は容器、土台などに固定される。上記にある手法で開閉繰り返すことで、立体細胞構造体100が弁機能に即した形状に整形されていくとともに、弁機能に必要な強度を得て弁機能を有する立体細胞構造体105となる。
支持体130に細胞非接着性の材料を用いた場合は、支持体130を立体細胞構造体105と分離し、立体細胞構造体105を心臓に移植することができる。支持体130に細胞接着性の材料を用いた場合は、支持体130は強度保持の機能を保持したまま心臓に移植することができる。また、支持体130は生体に吸収される材質でもよい。
bは一例の写真である。軟性支持体130が三方に設置され、管状細胞構造体100と融合している。
FIG. 6a is an image diagram of a soft support made of a soft material placed in the lumen of a tubular cell structure. The lower part of the flexible support 130 is fixed to the support 110 or the like, and the upper part is fixed to some kind of holding portion so that the flexible support 130 is held while maintaining a substantially linear shape. The flexible support 130 is cultured in contact with the tubular cell structure 100, and in the case of a cell-adhesive material, it fuses and adheres to cells as the culture progresses.
For the flexible support 130, for example, when making a tricuspid valve, the supports are installed at three places on the circumference. The upper and lower ends of the support are fixed to a container, a base, or the like. By repeating opening and closing by the above-mentioned method, the three-dimensional cell structure 100 is shaped into a shape suitable for the valve function, and at the same time, the strength required for the valve function is obtained to become the three-dimensional cell structure 105 having the valve function.
When a non-cellular material is used for the support 130, the support 130 can be separated from the three-dimensional cell structure 105 and the three-dimensional cell structure 105 can be transplanted into the heart. When a cell-adhesive material is used for the support 130, the support 130 can be transplanted into the heart while retaining the function of maintaining strength. Further, the support 130 may be made of a material that is absorbed by a living body.
b is an example photograph. Flexible supports 130 are placed on three sides and fused with tubular cell structure 100.

図7は開閉培養を行い硬性支持体120を除去した後の弁機能を有する立体細胞構造体の全体写真である。三尖弁に類似の形状となり、弁機能を有している。 FIG. 7 is an overall photograph of a three-dimensional cell structure having a valve function after opening and closing culture and removing the rigid support 120. It has a shape similar to that of a tricuspid valve and has a valve function.

図8は図7の細胞部分を5ミクロン厚にスライスして撮像したHE染色画像である。右頂部が他の弁葉と接する部分であるが、きれいに滑らかな曲線になっていることがわかる。また、内部まで細胞の核が存在していることがわかる。 FIG. 8 is an HE-stained image obtained by slicing the cell portion of FIG. 7 to a thickness of 5 microns. It can be seen that the right apex is the part in contact with the other leaflets, but the curve is clean and smooth. In addition, it can be seen that the nucleus of the cell exists inside.

本発明により、細胞だけで弁機能を有する立体細胞構造体を作製することができる。本発明は例えばヒトへの心臓弁移植に使われる。この場合の弁機能を有する立体細胞構造体はヒト細胞のみで作製されるため異種間から生じる炎症リスクをなくし、金属などを使わないことから血栓が生じることなく血液抗凝固剤を不要とする。また、患者自身の細胞を用いて作成すれば、免疫拒絶のリスクも無くすことができる。更に、乳幼児などへの移植は身体の成長とともに弁が大型化すると考えられるため、再手術の必要もなくなる。心臓以外にも、下肢などの弁機能を持つ血管などにも利用することができる。 INDUSTRIAL APPLICABILITY According to the present invention, a three-dimensional cell structure having a valve function can be produced only by cells. The present invention is used, for example, for heart valve transplantation in humans. In this case, the three-dimensional cell structure having a valve function is made only of human cells, so that there is no risk of inflammation caused by different species, and since no metal or the like is used, no blood clots occur and no blood anticoagulant is required. In addition, the risk of immune rejection can be eliminated if the cells are prepared using the patient's own cells. Furthermore, transplantation to infants and the like is thought to cause the valve to become larger as the body grows, eliminating the need for reoperation. In addition to the heart, it can also be used for blood vessels with valve functions such as lower limbs.

100 管状立体細胞構造体の一例の写真(直管形状で弁形状は有しない)。
101 管状立体細胞構造体の断面概略図。
102 弁機能をもつ立体細胞構造体が開放時の断面概略図。
103 弁機能をもつ立体細胞構造体が閉鎖時の断面概略図
105 弁機能をもつ立体細胞構造体の一例の写真
108 弁機能をもつ立体細胞構造体の染色画像の一例
109 弁機能をもつ立体細胞構造体の染色画像拡大の一例
110 立体細胞構造体に接続された支持体。
120 細胞構造体内部に設置された硬い材質で作製された支持体。
130 細胞構造体内部に設置された柔軟性をもつ材質で作製された支持体
200 培養液を保持するシリンダー。
300 ピストンが、培養液を吸引した状態。
310 ピストンが、培養液を吐出した状態。
400 ピストンを稼働させるステッピングモーター
500 ステッピングモーターを制御するコントローラー
100 Photograph of an example of a tubular three-dimensional cell structure (straight tube shape, no valve shape).
101 A schematic cross-sectional view of a tubular three-dimensional cell structure.
102 A schematic cross-sectional view of a three-dimensional cell structure having a valve function when it is open.
103 Schematic cross-section of a three-dimensional cell structure with a valve function when it is closed 105 Photograph of an example of a three-dimensional cell structure with a valve function 108 Example of a stained image of a three-dimensional cell structure with a valve function 109 Three-dimensional cell with a valve function An example of magnifying a stained image of a structure 110 A support connected to a three-dimensional cell structure.
120 A support made of a hard material placed inside a cell structure.
130 Support 200 made of flexible material placed inside the cell structure Cylinder holding the culture medium.
300 The piston sucks the culture solution.
310 The piston discharges the culture solution.
400 Stepping motor that operates the piston 500 Controller that controls the stepping motor

Claims (20)

立体細胞構造体の製造方法であって、
中央に貫通孔が形成された管状の立体細胞構造体を用意する工程と、
前記立体細胞構造体の端部に圧力を印加し、当該端部に、当該端部を開閉可能な弁機能を付与する工程と、
を有する製造方法。
It is a method for manufacturing a three-dimensional cell structure.
The process of preparing a tubular three-dimensional cell structure with a through hole formed in the center,
A step of applying pressure to the end of the three-dimensional cell structure to impart a valve function capable of opening and closing the end to the end.
Manufacturing method having.
前記弁機能を付与する工程は、印加する圧力により前記端部を繰り返し開閉させる、請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the step of imparting the valve function repeatedly opens and closes the end portion by applying pressure. 前記弁機能を付与する工程は、前記立体細胞構造体の貫通孔内に流体を印加することを含む、請求項1に記載の製造方法。 The production method according to claim 1, wherein the step of imparting the valve function includes applying a fluid into the through hole of the three-dimensional cell structure. 前記流体を印加する工程は、前記貫通孔内に方向の異なる圧力を繰り返し印加することを含む、請求項2に記載の製造方法。 The manufacturing method according to claim 2, wherein the step of applying the fluid includes repeatedly applying pressures in different directions into the through hole. 前記流体を印加する工程は、前記端部から流体を排出させることおよび前記端部から流体を吸い込むことを含む、請求項3に記載の製造方法。 The manufacturing method according to claim 3, wherein the step of applying the fluid includes discharging the fluid from the end portion and sucking the fluid from the end portion. 前記弁機能を付与する工程は、前記端部の予め決められた位置を固定することを含み、前記端部は、前記固定された位置を支点に開閉する、請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the step of imparting the valve function includes fixing a predetermined position of the end portion, and the end portion opens and closes with the fixed position as a fulcrum. 前記弁機能を付与する工程は、培養液を収容した容器内において実施される、請求項1ないし4いずれか1つに記載の製造方法。 The production method according to any one of claims 1 to 4, wherein the step of imparting the valve function is carried out in a container containing a culture solution. 前記弁機能を付与する工程は、前記端部の周方向に3つの弁機能を付与する、請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the step of imparting the valve function is to impart three valve functions in the circumferential direction of the end portion. 弁機能を有する立体細胞構造体の製造装置であって、
中央に貫通孔が形成された管状の立体細胞構造体の一方の端部を支持する支持手段と、
前記立体細胞構造体の貫通孔内に流体を印加し、前記立体細胞構造体の他方の端部に、当該他方の端部を開閉可能な弁機能を形成する形成手段と、
を有する製造装置。
A device for manufacturing a three-dimensional cell structure having a valve function.
A supporting means for supporting one end of a tubular three-dimensional cell structure having a through hole in the center,
A forming means for applying a fluid into the through hole of the three-dimensional cell structure to form a valve function at the other end of the three-dimensional cell structure so that the other end can be opened and closed.
Manufacturing equipment with.
前記形成手段は、印加する圧力により前記他方の端部を繰り返し開閉させる、請求項9に記載の製造装置。 The manufacturing apparatus according to claim 9, wherein the forming means repeatedly opens and closes the other end portion by applying pressure. 前記形成手段は、往復動が可能なシリンダーと、当該シリンダーを駆動する駆動部とを含み、
前記形成手段は、前記シリンダーの往復動に応答して前記貫通孔内に印加する圧力を変化させる、請求項9または10に記載の製造装置。
The forming means includes a cylinder capable of reciprocating movement and a drive unit for driving the cylinder.
The manufacturing apparatus according to claim 9 or 10, wherein the forming means changes the pressure applied into the through hole in response to the reciprocating motion of the cylinder.
前記形成手段は、培養液を収容した容器内において前記立体構造細胞体の貫通孔内に培養液を印加する、請求項9に記載の製造装置。 The manufacturing apparatus according to claim 9, wherein the forming means applies the culture solution into the through-holes of the three-dimensional structure cell body in a container containing the culture solution. 前記形成手段は、前記他方の端部の決められた位置を固定する固定部材を含み、前記他方の端部は、前記固定部材を支点に開閉する、請求項9に記載の製造装置。 The manufacturing apparatus according to claim 9, wherein the forming means includes a fixing member for fixing a fixed position of the other end portion, and the other end portion opens and closes with the fixing member as a fulcrum. 前記固定部材は、前記他方の端部の周方向の3つの位置を固定する、請求項13に記載の製造装置。 13. The manufacturing apparatus according to claim 13, wherein the fixing member fixes three positions in the circumferential direction of the other end portion. 前記固定部材は、生体適合性を持つ材料から構成される、請求項13または14に記載の製造装置。 The manufacturing apparatus according to claim 13, wherein the fixing member is made of a biocompatible material. 前記支持手段は、不織布から構成される、請求項10に記載の製造装置。 The manufacturing apparatus according to claim 10, wherein the supporting means is made of a non-woven fabric. 請求項1ないし9いずれか1つに記載の製造方法によって製造された弁機能を有する立体細胞構造体。 A three-dimensional cell structure having a valve function produced by the production method according to any one of claims 1 to 9. 前記立体細胞構造体は、心臓の弁機能を提供する、請求項17に記載の立体細胞構造体。 The three-dimensional cell structure according to claim 17, wherein the three-dimensional cell structure provides a valve function of the heart. 請求項10ないし16いずれか1つに記載の製造装置によって製造された弁機能を有する立体細胞構造体。 A three-dimensional cell structure having a valve function manufactured by the manufacturing apparatus according to any one of claims 10 to 16. 前記立体細胞構造体は、心臓の弁機能を提供する、請求項19に記載の立体細胞構造体。 The three-dimensional cell structure according to claim 19, wherein the three-dimensional cell structure provides a valve function of the heart.
JP2020135429A 2020-08-08 2020-08-08 A three-dimensional cell structure having a valve function, a method for producing the same, and a support Active JP6881798B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020135429A JP6881798B1 (en) 2020-08-08 2020-08-08 A three-dimensional cell structure having a valve function, a method for producing the same, and a support

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020135429A JP6881798B1 (en) 2020-08-08 2020-08-08 A three-dimensional cell structure having a valve function, a method for producing the same, and a support

Publications (2)

Publication Number Publication Date
JP6881798B1 JP6881798B1 (en) 2021-06-02
JP2022031585A true JP2022031585A (en) 2022-02-21

Family

ID=76083880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020135429A Active JP6881798B1 (en) 2020-08-08 2020-08-08 A three-dimensional cell structure having a valve function, a method for producing the same, and a support

Country Status (1)

Country Link
JP (1) JP6881798B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002500004A (en) * 1997-12-31 2002-01-08 アドバンスド ティシュー サイエンシズ,インコーポレーテッド Apparatus and method for simulating in vivo conditions during inoculation and culture of a three-dimensional tissue construct
JP2008532653A (en) * 2005-03-11 2008-08-21 ウエイク・フオレスト・ユニバーシテイ・ヘルス・サイエンシズ Manufacture of heart valves with engineered tissue

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002500004A (en) * 1997-12-31 2002-01-08 アドバンスド ティシュー サイエンシズ,インコーポレーテッド Apparatus and method for simulating in vivo conditions during inoculation and culture of a three-dimensional tissue construct
JP2008532653A (en) * 2005-03-11 2008-08-21 ウエイク・フオレスト・ユニバーシテイ・ヘルス・サイエンシズ Manufacture of heart valves with engineered tissue

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CIRCULATION, vol. 114, JPN7020003303, 2006, pages 152 - 158, ISSN: 0004369946 *

Also Published As

Publication number Publication date
JP6881798B1 (en) 2021-06-02

Similar Documents

Publication Publication Date Title
US9642940B2 (en) 3-dimensional parylene scaffold cage
KR101628275B1 (en) Mesh enclosed tissue constructs
US10783803B2 (en) Methods and devices for modeling the eye
JP4282905B2 (en) Corneal onlay
US9999500B2 (en) Anti thrombogenic heart valve and medical implements
EP1625832B1 (en) Method of removing cell
KR20050105480A (en) Method and device for the formation of biological cell material
US11773362B2 (en) Modular bioreactor, compliance chamber for a bioreactor, and cell seeding apparatus
CN105326581B (en) A kind of method for preparing polyethylene glycol protein fiber composite heart valve prosthesis
JP2009125068A (en) Multilayered culturing apparatus
US20140038221A1 (en) Bioengineered human trabecular meshwork for biological applications
WO2006105444A2 (en) Bioreactor for development of blood vessels
JP5731728B2 (en) Sealed cell culture vessel and cell culture method using the same
RU2476187C2 (en) Medical implant and method of its manufacturing
JP6881798B1 (en) A three-dimensional cell structure having a valve function, a method for producing the same, and a support
KR20210137842A (en) Membrane for forming biomaterial structure comprising artificial blood vessel, artificial biomaterial structure comprising the membrane and method for manufacturing the same
JP2007037764A (en) Prosthetic valve
Kobayashi et al. An artificial blood vessel with an endothelial-cell monolayer
JP5837530B2 (en) Sealed cell culture vessel and cell culture method using the same
WO2005113743A2 (en) Device for carrying out a liquid/air culture of epithelium
Kurniawan Perfusion 3D Bioprinting with Gelatin and Hydrogel for Vascular Tissue Engineering
CN108379663B (en) Device and method for trapping and enriching cells in porous regular body scaffold material
JP2006238987A (en) Substrate for forming connective tissue sheet (biosheet) and method for producing biosheet
KR101574585B1 (en) Mobile bio-scaffold controlled by magnetic field
Helms et al. A fibrin-based bioengineered tissue construct including a multi-scale vascular network

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200812

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200812

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200815

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201110

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20201111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210423

R150 Certificate of patent or registration of utility model

Ref document number: 6881798

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150