JP2022029912A - Conveyance system - Google Patents

Conveyance system Download PDF

Info

Publication number
JP2022029912A
JP2022029912A JP2020133512A JP2020133512A JP2022029912A JP 2022029912 A JP2022029912 A JP 2022029912A JP 2020133512 A JP2020133512 A JP 2020133512A JP 2020133512 A JP2020133512 A JP 2020133512A JP 2022029912 A JP2022029912 A JP 2022029912A
Authority
JP
Japan
Prior art keywords
posture
transported object
transport
image
confirmation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020133512A
Other languages
Japanese (ja)
Other versions
JP7302881B2 (en
Inventor
祐二 神戸
Yuji Kanbe
朋彦 吉田
Tomohiko Yoshida
貴大 佐々木
Takahiro Sasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daishin Inc
Original Assignee
Daishin Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daishin Inc filed Critical Daishin Inc
Priority to JP2020133512A priority Critical patent/JP7302881B2/en
Priority to CN202110761813.2A priority patent/CN114056899A/en
Priority to KR1020210092188A priority patent/KR20220018414A/en
Priority to TW110126089A priority patent/TWI843004B/en
Publication of JP2022029912A publication Critical patent/JP2022029912A/en
Application granted granted Critical
Publication of JP7302881B2 publication Critical patent/JP7302881B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G47/00Article or material-handling devices associated with conveyors; Methods employing such devices
    • B65G47/22Devices influencing the relative position or the attitude of articles during transit by conveyors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G47/00Article or material-handling devices associated with conveyors; Methods employing such devices
    • B65G47/22Devices influencing the relative position or the attitude of articles during transit by conveyors
    • B65G47/24Devices influencing the relative position or the attitude of articles during transit by conveyors orientating the articles
    • B65G47/248Devices influencing the relative position or the attitude of articles during transit by conveyors orientating the articles by turning over or inverting them
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G43/00Control devices, e.g. for safety, warning or fault-correcting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G43/00Control devices, e.g. for safety, warning or fault-correcting
    • B65G43/08Control devices operated by article or material being fed, conveyed or discharged
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2201/00Indexing codes relating to handling devices, e.g. conveyors, characterised by the type of product or load being conveyed or handled
    • B65G2201/02Articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2203/00Indexing code relating to control or detection of the articles or the load carriers during conveying
    • B65G2203/02Control or detection
    • B65G2203/0208Control or detection relating to the transported articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2203/00Indexing code relating to control or detection of the articles or the load carriers during conveying
    • B65G2203/04Detection means
    • B65G2203/041Camera
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Attitude Control For Articles On Conveyors (AREA)
  • Feeding Of Articles To Conveyors (AREA)
  • Image Processing (AREA)
  • Auxiliary Devices For And Details Of Packaging Control (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Baking, Grill, Roasting (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

To speed up and facilitate an adjusting work of an operation mode of conveyance object posture changing means in a conveyance system.SOLUTION: A conveyance system of the present invention includes: a conveyance device that conveys a conveyance object along a conveyance path and has a posture change location in which the posture of the conveyance object is changed in the middle of the conveyance path; image acquisition means for acquiring an image of the conveyance object; conveyance object discriminating means for obtaining an image processed image part of the conveyance object in a discrimination area set upstream of the posture change location to obtain conveyance object discrimination information regarding the posture of the conveyance object; conveyance object posture changing means for changing the posture of the conveyance object at the posture change location when the conveyance object discrimination information requires a posture change of the conveyance object; and conveyance confirmation means for obtaining conveyance object confirmation information regarding the posture of the conveyance object by performing image processing on the image part of the conveyance object after the posture is changed by the conveyance object posture changing means.SELECTED DRAWING: Figure 1

Description

本発明は搬送システムに関する。 The present invention relates to a transport system.

従来から、各種の搬送システムにおいて、搬送物を撮影して生成した画像を処理することにより、搬送物の計数、良否の判定、姿勢の判別、搬送状態(速度、密度、間隔等)の検出などが行われている。このような搬送システムの例としては、以下の特許文献1や特許文献2に記載された装置が挙げられる。また、上記搬送システムにおいては、搬送路上の搬送物の姿勢を変更するために、搬送物に気流を吹き付け、姿勢を変更させることで、搬送物の姿勢を揃えて供給する方法が以下の特許文献3や特許文献4に記載されている。 Conventionally, in various transport systems, by processing an image generated by photographing a transported object, counting of transported objects, judgment of quality, determination of posture, detection of transport state (speed, density, interval, etc.), etc. Is being done. Examples of such a transfer system include the devices described in Patent Document 1 and Patent Document 2 below. Further, in the above-mentioned transport system, in order to change the posture of the transported object on the transport path, a method of supplying the conveyed object in the same posture by blowing an air flow on the conveyed object and changing the posture is described in the following patent documents. 3 and Patent Document 4.

特開2017-121995号公報Japanese Unexamined Patent Publication No. 2017-121995 特開2019-169010号公報Japanese Unexamined Patent Publication No. 2019-169010 特開平11-240615号公報Japanese Unexamined Patent Publication No. 11-24615 特開2000-264430号公報Japanese Unexamined Patent Publication No. 2000-264430

ところで、上記の搬送システムでは、搬送物の姿勢を変更させる際に気流の吹付圧や吹付タイミングが適切でない場合には、変更後の姿勢が適切でなかったり、変更後の姿勢が不規則に変化したりすることがあった。このため、搬送物の種類ごとに気流の吹付圧や吹付タイミングを調整する必要があるので、搬送物を変更する度に調整作業に時間がかかり、また、適切な調整を行うためには熟練者が必要であるという問題があった。 By the way, in the above-mentioned transport system, if the blowing pressure and the blowing timing of the airflow are not appropriate when changing the posture of the transported object, the changed posture is not appropriate or the changed posture changes irregularly. There were times when I did. For this reason, it is necessary to adjust the blowing pressure and the blowing timing of the airflow for each type of the conveyed object, so that the adjustment work takes time every time the conveyed object is changed, and an expert is required to make an appropriate adjustment. There was a problem that was necessary.

そこで、本発明は上記問題を解決するものであり、その課題は、搬送システムにおいて、搬送物姿勢変更手段の作動態様の調整作業の迅速化や容易化を図ることにある。 Therefore, the present invention solves the above-mentioned problems, and an object thereof is to speed up and facilitate the work of adjusting the operation mode of the transported object posture changing means in the transport system.

上記課題を解決するために、本発明の搬送システムは、搬送物を搬送路に沿って搬送し、前記搬送路の途中に前記搬送物の姿勢が変更される姿勢変更箇所を有する搬送装置と、前記搬送物の画像を取得する画像取得手段と、前記姿勢変更箇所より上流側に設定された判別領域で前記搬送物の画像部分を画像処理して前記搬送物の姿勢に関する搬送物判別情報を得る搬送物判別手段と、前記搬送物判別情報が前記搬送物の姿勢変更を要するものである場合に前記姿勢変更箇所において前記搬送物の姿勢変更を実施する搬送物姿勢変更手段と、前記搬送物姿勢変更手段による姿勢変更後の前記搬送物の画像部分を画像処理して前記搬送物の姿勢に関する搬送物確認情報を得る搬送物確認手段と、を具備する。 In order to solve the above problems, the transport system of the present invention transports the transported material along the transport path, and has a transport device having a posture changing portion in which the posture of the transported object is changed in the middle of the transport path. The image portion of the transported object is image-processed in the image acquisition means for acquiring the image of the transported object and the discrimination area set upstream from the posture change location to obtain the transported object discrimination information regarding the posture of the transported object. The transported object discrimination means, the transported object posture changing means for changing the posture of the transported object at the posture change location when the transported object discrimination information requires the posture change of the transported object, and the transported object posture. It is provided with a transported object confirmation means for obtaining image-processed an image portion of the transported object after the posture is changed by the changing means to obtain the transported object confirmation information regarding the posture of the transported object.

本発明によれば、搬送物の姿勢に関する搬送物確認情報が得られることにより、搬送物姿勢変更手段の作動により生ずる搬送物の姿勢変更後の状態を確認することができるので、当該情報を確認しながら搬送物姿勢変更手段の作動態様の調整作業が容易化され、姿勢変更箇所における搬送物の姿勢変更態様が高精度化される。 According to the present invention, by obtaining the conveyed object confirmation information regarding the attitude of the conveyed object, it is possible to confirm the state after the changed attitude of the conveyed object caused by the operation of the conveyed object attitude changing means, so that the information can be confirmed. At the same time, the work of adjusting the operation mode of the transported object posture changing means is facilitated, and the posture changing mode of the transported object at the posture changing location is improved.

本発明において、前記搬送物判別情報と前記搬送物確認情報との関係を示す搬送物姿勢変更情報を求める搬送物姿勢変更判定手段をさらに具備することが好ましい。これによれば、搬送物の姿勢変更前の判別情報と、搬送物の姿勢変更後の確認情報との関係を示す搬送物姿勢変更情報が求められることにより、搬送物姿勢変更手段の作動態様と、これにより生ずる搬送物の姿勢変更状態との関係をさらに容易に確認することができる。 In the present invention, it is more preferable to further provide a transported object posture change determining means for obtaining the transported object posture changing information indicating the relationship between the transported object discrimination information and the transported object confirmation information. According to this, the operation mode of the transported object posture changing means is obtained by requesting the transported object posture changing information indicating the relationship between the discrimination information before the posture change of the transported object and the confirmation information after the posture change of the transported object. , It is possible to more easily confirm the relationship with the posture change state of the transported object caused by this.

本発明において、前記搬送物確認手段は、前記搬送物が前記姿勢変更箇所において前記搬送物姿勢変更手段により姿勢変更された後に配置される位置又は範囲に設定された確認領域の画像部分を画像処理することによって前記確認結果を求めることが好ましい。ここで、前記確認領域は、前記判別領域の画像部分を含む前記画像に対して既定の時間だけ経過した時点以降に撮影された別の前記画像において、前記姿勢変更箇所に対して既定の位置関係を有する画像部分に設定されることが望ましい。また、確認領域の位置又は範囲を前記画像ごと若しくは前記搬送物ごとに予測する確認領域予測手段をさらに具備することが望ましい。なお、前記確認領域は、予め設定された固定された位置又は範囲に設けられていてもよい。 In the present invention, the transported object confirmation means image-processes an image portion of a confirmation area set in a position or range to be arranged after the conveyed object is changed in posture by the conveyed object posture changing means at the posture changing portion. It is preferable to obtain the confirmation result by doing so. Here, the confirmation area has a default positional relationship with respect to the posture change portion in another image taken after a predetermined time elapses with respect to the image including the image portion of the discrimination area. It is desirable to set it in the image part having. Further, it is desirable to further provide a confirmation area prediction means for predicting the position or range of the confirmation area for each image or each conveyed object. The confirmation area may be provided at a preset fixed position or range.

本発明において、前記搬送物姿勢変更手段の作動態様を制御する姿勢変更制御部をさらに具備し、前記姿勢変更制御部は、前記搬送物確認情報又は前記搬送物姿勢変更判定手段によって出力される前記搬送物姿勢変更情報に応じて前記搬送物姿勢変更手段の作動態様を自動的に設定することが好ましい。これによれば、搬送物姿勢変更手段の作動態様を、搬送物確認情報又は搬送物姿勢変更情報に応じて自動的に調整することができるので、調整作業の手間を軽減できるとともに、姿勢変更の適格性を高めることができる。 In the present invention, the posture change control unit for controlling the operation mode of the transported object posture changing means is further provided, and the posture change control unit is output by the transported object confirmation information or the transported object posture change determining means. It is preferable to automatically set the operation mode of the transported object posture changing means according to the transported object posture changing information. According to this, the operation mode of the transported object posture changing means can be automatically adjusted according to the transported object confirmation information or the transported object posture changing information, so that the labor of the adjustment work can be reduced and the posture can be changed. Eligibility can be increased.

本発明において、前記搬送物姿勢変更手段は、前記搬送物に気流を吹き付けることによって姿勢を変更することが好ましい。ここで、前記作動態様は、前記気流の吹付タイミングと吹付圧の少なくとも一つであることが望ましい。なお、上記搬送物姿勢変更手段は、上記の気流によるものに限らず、アームなどの機械的なものであってもよく、或いは、搬送路の形状や構造に起因するもの、例えば、搬送路の一部に段差などを生じさせて搬送物を回動させるものなどであってもよい。 In the present invention, it is preferable that the transported object posture changing means changes the posture by blowing an air flow on the transported object. Here, it is desirable that the operating mode is at least one of the blowing timing and the blowing pressure of the air flow. The means for changing the posture of the conveyed object is not limited to the one by the above-mentioned air flow, but may be a mechanical one such as an arm, or one caused by the shape and structure of the conveyed path, for example, the conveyed path. It may be one that causes a step or the like in a part to rotate the conveyed object.

本発明において、前記判定領域及び前記確認領域は、いずれも、前記画像の内部に含まれる領域であることが好ましい。これによれば、搬送物判別処理と搬送物確認処理に用いる二つの領域を単一の画像内に設定することができるため、両領域の間の位置関係の設定が容易化されるとともに、カメラなどの撮像系の簡素化を図ることができる。 In the present invention, both the determination region and the confirmation region are preferably regions contained inside the image. According to this, since it is possible to set two areas used for the transported object discrimination process and the transported object confirmation process in a single image, it is easy to set the positional relationship between the two areas and the camera. It is possible to simplify the imaging system such as.

本発明によれば、搬送システムにおいて、搬送物姿勢変更手段の作動態様に対する調整作業の迅速化や容易化を図ることができる。 According to the present invention, in the transport system, it is possible to speed up or facilitate the adjustment work for the operation mode of the transport object posture changing means.

本発明に係る搬送システムの実施形態の搬送物姿勢変更制御処理部の手順の概略を示す概略フローチャートである。It is a schematic flowchart which shows the outline of the procedure of the transport object posture change control processing unit of embodiment of the transport system which concerns on this invention. 同実施形態の搬送物確認処理過程101の手順の概略を示す概略フローチャート(a)及び搬送物姿勢変更設定処理過程102の手順の概略を示す概略フローチャート(b)である。It is a schematic flowchart (a) which shows the outline of the procedure of the conveyed object confirmation processing process 101 of the same embodiment, and the schematic flowchart (b) which shows the outline of the procedure of the conveyed object posture change setting processing process 102. 同実施形態の搬送システムの全体構成を示す概略構成図である。It is a schematic block diagram which shows the whole structure of the transport system of the same embodiment. 同実施形態の搬送物姿勢変更制御において用いる搬送物判別処理の説明を行うための説明図(a)~(d)である。It is explanatory drawing (a)-(d) for demonstrating the conveyed object discriminating process used in the conveyed object attitude change control of the same embodiment. 同実施形態の搬送物姿勢変更制御において用いる搬送物確認処理の説明を行うための説明図(e)~(h)である。It is explanatory drawing (e)-(h) for demonstrating the conveyed object confirmation process used in the conveyed object attitude change control of the same embodiment. 同実施形態の搬送物判別情報と搬送物確認情報の対応関係の一例を示す説明図(a)及び(b)、並びに、他の例を示す説明図(c)及び(d)である。Explanatory diagrams (a) and (b) showing an example of the correspondence between the transported object discrimination information and the transported object confirmation information of the same embodiment, and explanatory views (c) and (d) showing another example. 同実施形態における搬送物姿勢変更設定手段の構成例を示す構成ブロック図(a)、並びに、搬送物判別情報Biと搬送物確認情報Ejの組み合わせと、これに対応する搬送物姿勢変更判定情報Gijの対応関係、これらと搬送物姿勢変更手段の作動態様の調整・設定の内容との関係を示す対応相関図表(b)、並びに、搬送物の複数の搬送姿勢CN1~Cn4を一つCN1に揃えるための複数の姿勢変更箇所の構成例を示す図(c)である。A configuration block diagram (a) showing a configuration example of the transported object posture change setting means in the same embodiment, a combination of the transported object discrimination information Bi and the transported object confirmation information Ej, and the corresponding transported object posture change determination information Gij. Correspondence correlation chart (b) showing the correspondence relationship between these and the contents of adjustment / setting of the operation mode of the conveyed object attitude changing means, and a plurality of conveyed object attitudes CN1 to Cn4 are arranged in one CN1. It is a figure (c) which shows the structural example of a plurality of posture change parts for this purpose. 同実施形態における動作プログラム10Pの一例の処理過程を示す概略フローチャートである。It is a schematic flowchart which shows the processing process of an example of the operation program 10P in the same embodiment.

次に、添付図面を参照して本発明に係る搬送システムの実施形態について詳細に説明する。最初に、図1乃至図3を参照して、本発明に係る搬送システムの実施形態の概要について説明する。図1は、本実施形態に係る搬送システム10のコンピュータによって実行される動作プログラム10Pの一部である搬送物姿勢変更制御処理部100の処理手順を示す概略フローチャートである。図2は、搬送物姿勢変更制御処理部100の一部である搬送物確認処理過程101の処理手順を示す概略フローチャート(a)及び搬送物姿勢変更設定処理過程102の処理手順を示す概略フローチャート(b)である。図3は、搬送システム10の実施形態の全体構成を模式的に示す概略構成図である。 Next, an embodiment of the transport system according to the present invention will be described in detail with reference to the accompanying drawings. First, the outline of the embodiment of the transport system according to the present invention will be described with reference to FIGS. 1 to 3. FIG. 1 is a schematic flowchart showing a processing procedure of a transported object posture change control processing unit 100 which is a part of an operation program 10P executed by a computer of the transport system 10 according to the present embodiment. FIG. 2 is a schematic flowchart (a) showing a processing procedure of a transported object confirmation processing process 101 which is a part of a transported object posture change control processing unit 100, and a schematic flowchart showing a processing procedure of a transported object posture change setting processing process 102 (a). b). FIG. 3 is a schematic configuration diagram schematically showing the overall configuration of the embodiment of the transport system 10.

最初に、図3を参照して、搬送システム10の全体構成について説明する。図3に示すように、この搬送システム10は、所定の搬送路に沿って搬送物CAを搬送する搬送システムである。この搬送システム10は、螺旋状の搬送路111を有するボウル型の搬送体110を備えたパーツフィーダ11と、このパーツフィーダ11の上記搬送路111の出口から搬送物を受け取るように構成された入口を備えた直線状の搬送路121を有する搬送体120を備えたリニアフィーダ12とを具備する振動式の搬送装置を構成する。また、この搬送装置は搬送管理機能を有し、この搬送管理機能は、リニアフィーダ12の搬送体120の搬送路121上の搬送物である搬送物CAを撮影画像GPXに基づいて検査、判定する。なお、本発明において、振動式の搬送装置に限られない構成については、搬送物CAが搬送路に沿って搬送される各種の搬送装置に用いることができる。また、振動式の搬送装置であっても、上記パーツフィーダ11とリニアフィーダ12の組み合せに限定されるものではなく、循環式パーツフィーダなどの他の形式の搬送装置に用いることが可能である。さらに、上記の組み合せにあっても、リニアフィーダ12の搬送路121上の搬送物である搬送物CAを検査するものに限らず、パーツフィーダ11の搬送路111上の搬送物CAを検査するものであっても構わない。 First, the overall configuration of the transport system 10 will be described with reference to FIG. As shown in FIG. 3, the transport system 10 is a transport system that transports the transported object CA along a predetermined transport path. The transport system 10 includes a parts feeder 11 having a bowl-shaped transport body 110 having a spiral transport path 111, and an inlet configured to receive the transported object from the outlet of the transport path 111 of the parts feeder 11. A oscillating transport device comprising a linear feeder 12 with a transport body 120 having a linear transport path 121 with the above. Further, this transport device has a transport management function, and the transport management function inspects and determines the transport CA, which is the transport on the transport path 121 of the transport body 120 of the linear feeder 12, based on the captured image GPX. .. In the present invention, the configuration not limited to the vibration type transfer device can be used for various transfer devices in which the conveyed object CA is conveyed along the transfer path. Further, the vibration type transfer device is not limited to the combination of the parts feeder 11 and the linear feeder 12, and can be used for other types of transfer devices such as a circulation type parts feeder. Further, even in the above combination, it is not limited to inspecting the conveyed object CA which is the conveyed object on the conveyed path 121 of the linear feeder 12, but also inspecting the conveyed object CA on the conveyed path 111 of the parts feeder 11. It doesn't matter.

パーツフィーダ11はコントローラCL11によって駆動、制御される。また、リニアフィーダ12はコントローラCL12によって駆動、制御される。これらのコントローラCL11、CL12はパーツフィーダ11やリニアフィーダ12の加振機構(電磁駆動体や圧電駆動体などを含む。)を交流駆動し、搬送体110,120を搬送路111,121上の搬送物(搬送物CA)が所定の搬送方向Fに移動する態様となるように振動させる。また、コントローラCL11、CL12は、搬送管理システムの主体となる画像処理機能を有する検査処理ユニットDTUに入出力回路(I/O)を介して接続されている。 The parts feeder 11 is driven and controlled by the controller CL11. Further, the linear feeder 12 is driven and controlled by the controller CL12. These controllers CL11 and CL12 AC drive the vibration mechanism (including the electromagnetic drive body and the piezoelectric drive body) of the parts feeder 11 and the linear feeder 12, and transport the transport bodies 110 and 120 on the transport paths 111 and 121. The object (transported object CA) is vibrated so as to move in a predetermined transport direction F. Further, the controllers CL11 and CL12 are connected to the inspection processing unit DTU having an image processing function, which is the main body of the transport management system, via an input / output circuit (I / O).

また、コントローラCL11,CL12は、上記搬送物姿勢変更制御処理部100を実行する演算処理装置MPUに対して、マウスなどの後述する操作入力装置SP1,SP2などを介して所定の操作入力(デバッグ操作)が行われると、上記の動作プログラム10Pに従って搬送システム10の搬送装置の駆動を停止する。このとき、上記の動作プログラム10Pに従って、例えば、検査処理ユニットDTUにおける画像計測処理も停止される。このデバッグ操作及び当該操作に応じた各所の動作については後に詳述する。 Further, the controllers CL11 and CL12 input predetermined operations (debug operation) to the arithmetic processing unit MPU that executes the conveyed object attitude change control processing unit 100 via operation input devices SP1 and SP2 described later such as a mouse. ) Is performed, the drive of the transfer device of the transfer system 10 is stopped according to the above operation program 10P. At this time, for example, the image measurement processing in the inspection processing unit DTU is also stopped according to the above operation program 10P. This debugging operation and the operation of each part corresponding to the operation will be described in detail later.

検査処理ユニットDTUは、パーソナルコンピュータ等の演算処理装置MPU(マイクロプロセシングユニット)を中核構成とする。図示例では、上記演算処理装置MPUは、中央処理ユニットCPU1,CPU2、キャッシュメモリCCM、メモリコントローラMCL、チップセットCHSなどから構成される。また、この検査処理ユニットDTUには、撮像手段であるカメラCM1,CM2にそれぞれ接続された画像処理を行うための画像処理回路GP1,GP2が設けられている。これらの画像処理回路GP1,GP2はそれぞれ画像処理メモリGM1,GM2に接続されている。画像処理回路GP1,GP2の出力は上記演算処理装置MPUにも接続され、カメラCM1,CM2から取り込んだ撮影画像GPXの画像データを処理し、適宜の処理画像(例えば後述する画像エリアGPY内の画像データ)を演算処理装置MPUに転送する。主記憶装置MMには予め搬送管理システムの動作プログラム10Pが格納されている。検査処理ユニットDTUが起動されると、演算処理装置MPUにより上記動作プログラム10Pが読み出されて実行される。また、この主記憶装置MMには、演算処理装置MPUにより、後述する画像計測処理を実行した対象となる撮影画像GPX若しくは画像エリアGPYの画像データが保存される。 The inspection processing unit DTU has a core configuration of an arithmetic processing unit MPU (micro processing unit) such as a personal computer. In the illustrated example, the arithmetic processing unit MPU is composed of a central processing unit CPU1, CPU2, a cache memory CCM, a memory controller MCL, a chipset CHS, and the like. Further, the inspection processing unit DTU is provided with image processing circuits GP1 and GP2 for performing image processing connected to the cameras CM1 and CM2, which are image pickup means, respectively. These image processing circuits GP1 and GP2 are connected to the image processing memories GM1 and GM2, respectively. The outputs of the image processing circuits GP1 and GP2 are also connected to the arithmetic processing apparatus MPU, process the image data of the captured image GPX captured from the cameras CM1 and CM2, and appropriately process the processed image (for example, the image in the image area GPY described later). Data) is transferred to the arithmetic processing device MPU. The operation program 10P of the transport management system is stored in the main storage device MM in advance. When the inspection processing unit DTU is started, the operation program 10P is read out and executed by the arithmetic processing unit MPU. Further, in the main storage device MM, the image data of the captured image GPX or the image area GPY to be the target for which the image measurement process described later is executed is stored by the arithmetic processing device MPU.

また、検査処理ユニットDTUは、入出力回路(I/O)を介して液晶モニタ等の表示装置DP1,DP2や操作入力装置SP1,SP2に接続される。表示装置DP1,DP2は、上記演算処理装置MPUによって処理された撮影画像GPX若しくは画像エリアGPYの画像データ、画像計測処理の結果、すなわち、搬送物判別処理や搬送挙動検出処理の結果などが、所定の表示態様で表示される。なお、この表示機能は、実際に搬送物CAが搬送されている場合に限らず、後述するように、過去のデータを読みだして再生している場合にも機能する。また、表示装置DP1,DP2の画面を見ながら操作入力装置SP1,SP2を操作することにより、各種の操作指令、設定値などの処理条件を上記演算処理装置MPUに入力することができる。 Further, the inspection processing unit DTU is connected to display devices DP1 and DP2 such as a liquid crystal monitor and operation input devices SP1 and SP2 via an input / output circuit (I / O). In the display devices DP1 and DP2, the image data of the captured image GPX or the image area GPY processed by the arithmetic processing unit MPU, the result of the image measurement processing, that is, the result of the conveyed object discrimination process and the conveyed behavior detection process, etc. are predetermined. It is displayed in the display mode of. It should be noted that this display function is not limited to the case where the transported object CA is actually transported, but also functions when the past data is read out and reproduced as described later. Further, by operating the operation input devices SP1 and SP2 while looking at the screens of the display devices DP1 and DP2, processing conditions such as various operation commands and set values can be input to the arithmetic processing unit MPU.

本実施形態では、カメラCM1,CM2が既定の撮影間隔で連続して撮影するとともに、搬送物の搬送速度Vsと撮影間隔Tsとの関係により搬送路を通過する全ての搬送物CAの少なくとも判別対象部分が常にいずれかの画像において含まれるように予め設定された搬送方向Fの範囲を有する計測エリア内の画像データに対して画像計測処理を施すようにしている。これにより、全ての搬送物CAをいずれかの計測エリアの撮影画像において必ず検出することができるため、従来技術のように個々の搬送物の位置を検知するためのトリガ信号を生成する必要がなくなる。また、この画像に含まれる搬送物CAの画像データを処理することで搬送物判別処理、搬送物検出処理、搬送挙動検出処理などに必要な情報を確実に抽出することができる。なお、本発明の搬送システムでは、上記のようなトリガレス撮影法を採用することなしに、通常のセンサ等による搬送物の検知タイミングに対応する撮影タイミングで画像を取得しても構わない。なお、本実施形態では、上記判別対象部分は、搬送物CAの全体としているが、搬送物CAの一部、例えば、搬送物CAの側面に示される判別マークなどが表わされた部分を上記判別対象部分としてもよい。 In the present embodiment, the cameras CM1 and CM2 continuously shoot at a predetermined shooting interval, and at least a discrimination target of all the transported objects CA passing through the transport path due to the relationship between the transport speed Vs and the shooting interval Ts of the transported objects. The image measurement process is performed on the image data in the measurement area having the range of the transport direction F preset so that the portion is always included in any of the images. As a result, all the conveyed objects CA can be always detected in the captured image of any of the measurement areas, so that it is not necessary to generate a trigger signal for detecting the position of each conveyed object as in the prior art. .. Further, by processing the image data of the transported object CA included in this image, it is possible to reliably extract information necessary for the transported object discrimination process, the transported object detection process, the transported object detection process, and the like. In the transport system of the present invention, the image may be acquired at a shooting timing corresponding to the detection timing of the transported object by a normal sensor or the like without adopting the triggerless shooting method as described above. In the present embodiment, the discrimination target portion is the entire transported object CA, but a part of the transported object CA, for example, a portion showing a discrimination mark or the like shown on the side surface of the transported object CA is described above. It may be a discrimination target part.

搬送システム10においては、上記演算処理装置MPUによって実行される後述する動作プログラム10P(図8参照)に含まれる図1に示す搬送物姿勢変更制御処理部100の実行によって、搬送途中の搬送物判別処理が行われ、この処理による判別結果に従って、上記搬送装置が制御される。この搬送物姿勢変更制御処理部100では、一般に、上記画像の計測エリア内において搬送物CAが画像処理を受け、その結果、搬送物CAが判別される。搬送物CAが適正であれば、そのまま搬送路上を搬送させていくことができるので、特に何も対処する必要はないが、搬送物CAが適正ではないことが判明した場合には、搬送路上から排除したり、搬送路上で姿勢を変更させたり、上流側へ戻したりするなどの各種の処理が行われることとなる。本実施形態では、上記搬送物姿勢変更制御処理部100において、搬送物CAの姿勢を判別する処理(搬送物判別処理)を実行する部分が含まれるとともに、当該部分による姿勢の判別結果Ciに応じて、搬送物CAの姿勢変更処理が実施される。 In the transport system 10, the transport object is discriminated during transport by the execution of the transport object posture change control processing unit 100 shown in FIG. 1 included in the operation program 10P (see FIG. 8) to be described later, which is executed by the arithmetic processing unit MPU. A process is performed, and the transfer device is controlled according to the determination result of this process. In the conveyed object posture change control processing unit 100, the conveyed object CA is generally subjected to image processing in the measurement area of the image, and as a result, the conveyed object CA is determined. If the transported object CA is appropriate, it can be transported on the transport path as it is, so no particular action is required. However, if it is found that the transported object CA is not appropriate, it can be transported from the transport path. Various processes such as exclusion, change of posture on the transport path, and return to the upstream side will be performed. In the present embodiment, the transported object posture change control processing unit 100 includes a portion that executes a process of discriminating the posture of the transported object CA (conveyed object discrimination process), and also responds to the posture discrimination result Ci by the portion. Then, the attitude change process of the transported object CA is carried out.

ここで、本明細書においては、搬送物CAの反転は、搬送物CAの姿勢を変更する各種の態様のうちの一つとして含まれる。また、「姿勢変更」は、搬送物CAの上下を逆様にする意味で用いられる反転だけでなく、搬送物CAを、任意の軸周りに任意の角度だけ回動させること(90度回転させる場合、180度回転させる場合、270度回転させる等)など、結果的に搬送物CAの姿勢が変化する各種の態様が広く包含される。なお、本実施形態の搬送物姿勢変更制御処理部100においても、搬送物CAの姿勢を判別する処理以外に、搬送物CAの良否を判別する処理などの他の判別処理を実行するようにしてもよく、また、搬送物CAの姿勢を変更する搬送処理以外の、搬送物CAを排除する処理などの他の搬送処理を実行してもよい。また、以下の説明では、図8に示す搬送物選別処理を除き、上記の他の判別処理や他の搬送処理についての説明は省略する。 Here, in the present specification, the reversal of the transported object CA is included as one of various aspects of changing the posture of the transported object CA. Further, "posture change" is not only an inversion used to mean that the conveyed object CA is turned upside down, but also the conveyed object CA is rotated by an arbitrary angle around an arbitrary axis (rotated by 90 degrees). In the case of rotating 180 degrees, rotating 270 degrees, etc.), various aspects in which the posture of the conveyed object CA changes as a result are broadly included. In addition to the process of determining the posture of the transported object CA, the transported object posture change control processing unit 100 of the present embodiment also executes other discrimination processes such as a process of determining the quality of the transported object CA. Alternatively, other transport processes such as a process of eliminating the transport CA may be executed other than the transport process of changing the posture of the transport CA. Further, in the following description, the description of the other discrimination process and the other transport process described above will be omitted except for the transport material sorting process shown in FIG.

搬送物姿勢変更制御処理部100では、図1に示すように、最初に、初期値等の各種設定値の読み出しが行われた後、上記検査処理ユニットDTUによって構成される画像取得手段Aにより、複数の画像Aiが順次に取得される。これらの画像Aiは、基本的には、上記検査処理ユニットDTUによって生成された上記撮影画像GPX若しくは画像エリアGPYの画像データそのものであってもよく、或いは、これらの画像データの一部によって構成されるものであってもよい。これらの画像Aiが取得されると、この画像Ai内に設定された判定領域DAの画像処理と、確認領域DBの画像処理とが行われる。 As shown in FIG. 1, the transported object posture change control processing unit 100 first reads out various set values such as initial values, and then uses the image acquisition means A configured by the inspection processing unit DTU. A plurality of images Ai are sequentially acquired. These images Ai may basically be the image data itself of the captured image GPX or the image area GPY generated by the inspection processing unit DTU, or are composed of a part of these image data. It may be one. When these images Ai are acquired, image processing of the determination area DA set in the image Ai and image processing of the confirmation area DB are performed.

図4(a)-(d)及び図5(e)-(h)は、搬送システム10の搬送路121上の搬送物の搬送態様の例を示す説明図である。搬送物CAは搬送路121を搬送方向Fに沿って前進していく。このとき、画像取得手段Aによって取得される画像Aiには、上記計測エリアとして形成された判定領域DAが設けられる。この判定領域DAは、搬送路121上において噴気口OPを備えた姿勢変更箇所の上流側に限定された領域として設けられる。 4 (a)-(d) and 5 (e)-(h) are explanatory views showing an example of a transport mode of the transported object on the transport path 121 of the transport system 10. The transported object CA advances along the transport path 121 along the transport direction F. At this time, the image Ai acquired by the image acquisition means A is provided with a determination area DA formed as the measurement area. This determination region DA is provided as a region limited to the upstream side of the posture change portion provided with the fumarole OP on the transport path 121.

図1に示すように、上記搬送物姿勢変更制御処理部100は、搬送物CAが存在し得る計測エリアを包含する複数の画像Aiを順次に取得する画像取得手段Aと、これらの画像Ai内の判定領域DAの画像処理を行う搬送物判別処理手段Bと、この搬送物判別処理手段Bによって求められた搬送物判別情報Biに基づいて得られる搬送物CAの判別結果Ciに応じて上記姿勢変更箇所において作動することにより、搬送物CAの搬送姿勢の変更を行う搬送物姿勢変更手段Cと、上記搬送物姿勢変更手段Cにより姿勢が変更された搬送物CAの姿勢を確認し、搬送物確認情報Ejを求める搬送物確認手段Eと、を具備する。ここで、iは自然数であり、1~n(nは2以上の自然数)の複数の数を示す。また、或る搬送物CAに対する搬送物判別結果Ciと搬送物確認結果Ejとに基づいて、搬送物姿勢変更情報Gijを求める搬送物姿勢変更判定手段Gを有することが好ましい。なお、搬送物確認手段Eでは、特に限定されるものではないが、図4及び図5に示すように、確認領域DBの画像処理を行うことによって、姿勢変更がなされた搬送物CAの姿勢が確認される。本実施形態の場合には、確認領域DBは、上記判定領域DAよりも下流側であって、搬送路121とは別の搬送路122上に設定される。 As shown in FIG. 1, the transported object posture change control processing unit 100 sequentially acquires a plurality of image Ai including a measurement area in which the transported object CA may exist, and the image acquisition means A and the inside of these image Ai. The above posture according to the discrimination result Ci of the transported object CA obtained based on the conveyed object discrimination processing means B that performs image processing of the determination area DA and the conveyed object discrimination information Bi obtained by the conveyed object discrimination processing means B. By operating at the changed location, the postures of the transported object posture changing means C that changes the transporting posture of the transported object CA and the transported object CA whose posture has been changed by the transported object posture changing means C are confirmed, and the transported object is confirmed. It is provided with a transported object confirmation means E for obtaining confirmation information Ej. Here, i is a natural number, and indicates a plurality of numbers from 1 to n (n is a natural number of 2 or more). Further, it is preferable to have the transported object posture change determining means G for obtaining the transported object posture change information Gij based on the transported object discrimination result Ci and the transported object confirmation result Ej for a certain transported object CA. The transported object confirmation means E is not particularly limited, but as shown in FIGS. 4 and 5, the posture of the transported object CA whose posture has been changed by performing image processing of the confirmation area DB can be changed. It is confirmed. In the case of the present embodiment, the confirmation area DB is set on the transport path 122 which is on the downstream side of the determination area DA and is different from the transport path 121.

搬送物判別情報Biは、搬送物CAの姿勢と相関のある情報を少なくとも含む。また、搬送物CAの配置を示す搬送物検出範囲(位置情報)を含むことが好ましい。さらに、搬送物CAの種類、外観、欠陥の有無や種類、搬送物の良否に関する情報なども含むことができる。ここで、搬送物判別情報Biとして、搬送物CAの姿勢と相関のある情報を良好に取得するためには、例えば、搬送物CAが立方体状である場合、画像Aiにおいて搬送物CAの少なくとも2面が撮影されるように構成されることが望ましい。画像データに搬送物CAの6面のうちのなるべく多くの面の情報が含まれる方が、搬送物CAの姿勢を判別するのに適しているからである。したがって、図4及び図5に示すように立方体状の少なくとも2面が撮影されることが好ましい。なお、本実施形態では、説明に用いる姿勢変更箇所において、搬送物CAの前後両端面(図示で電極が設けられている部分)を除く4つの側面の搬送方向Fに沿った軸周りの4つの搬送姿勢(後述するCN1~CN4)だけを説明の対象としているが、これに前後の向きが逆転した態様を加えた合計8つの搬送姿勢を対象としてもよく、さらには、前後両端面が搬送方向Fと直交する側方を向いたさらに8つの搬送姿勢を加えた合計16の搬送姿勢を対象としてもよい。 The transported object discrimination information Bi includes at least information that correlates with the posture of the transported object CA. Further, it is preferable to include a transported object detection range (position information) indicating the arrangement of the transported object CA. Further, it can include information on the type, appearance, presence / absence and type of defects, and the quality of the transported object CA. Here, in order to satisfactorily acquire information correlating with the posture of the transported object CA as the transported object discrimination information Bi, for example, when the transported object CA is cubic, at least 2 of the transported object CA is shown in the image Ai. It is desirable that the surface is configured to be photographed. This is because it is more suitable to determine the posture of the transported object CA if the image data includes information on as many surfaces as possible among the six surfaces of the transported object CA. Therefore, it is preferable that at least two cubic surfaces are photographed as shown in FIGS. 4 and 5. In this embodiment, at the posture change location used in the description, four sides around the axis along the transport direction F on the four side surfaces excluding the front and rear end faces (the portion where the electrodes are provided in the figure) of the transport object CA. Although only the transport postures (CN1 to CN4, which will be described later) are the subject of explanation, a total of eight transport postures including the mode in which the front-back orientations are reversed may be targeted, and further, the front-rear and front-end surfaces are the transport directions. A total of 16 transport postures may be targeted, including eight further transport postures facing sideways orthogonal to F.

また、上記搬送物判別結果Ciは、今回の画像Ai内の判定領域DAの画像処理によって得られた搬送物CAの姿勢に関する判別結果であり、予め設定された姿勢基準に応じて、例えば、当該姿勢が良好であるか(OK)、良好でないか(NG)を示すものである。もちろん、上記搬送物判別情報Biとしての搬送物CAの複数の姿勢を判別する情報に基づいて、搬送物判別結果Ciとして3以上の判別結果を得るようにしてもよい。例えば、搬送物CAの複数種類の搬送姿勢それぞれを判別可能な結果であってもよい。 Further, the conveyed object discrimination result Ci is a discrimination result regarding the posture of the conveyed object CA obtained by the image processing of the determination area DA in the image Ai this time, and is, for example, the said, according to a preset attitude reference. It indicates whether the posture is good (OK) or not (NG). Of course, based on the information for discriminating a plurality of postures of the transported object CA as the transported object discrimination information Bi, 3 or more discrimination results may be obtained as the transported object discrimination result Ci. For example, the result may be such that each of a plurality of types of transport postures of the transported object CA can be discriminated.

搬送物確認手段Eは、図2(a)に示すように、一例として、確認領域DBを予測する確認領域予測手段Dを含んでいてもよい。一般的には、確認領域DBは、図4及び図5に示すように画像Ai(Aj)内の定位置に設定されていてもよく、この場合には、確認領域予測手段Dは不要である。確認領域予測手段Dを用いる場合には、搬送物確認情報Ejを導出するための画像Ajの確認領域DBjの位置及び範囲を、搬送物CAの搬送状況に基づいて予測する。この場合には、搬送状況としては、搬送物CAの搬送速度、過去の搬送物の姿勢変更後の搬送路122上の位置、姿勢変更箇所における噴気口OPから与えられる気流の吹付タイミングや吹付圧などの情報が挙げられる。この確認領域予測手段Dによって、確認領域DBjの画像Ajにおける位置及び範囲(撮影範囲)と、確認領域DBjが設定される画像Aj(或いは、画像Ajに相当する撮影タイミング(撮影時間))とが導出され、これによって設定された確認領域DBjに対して搬送物確認手段Eの画像処理が行われる。確認領域DBの予測は、画像Ajごと、或いは、姿勢変更された搬送物CAごとに行われる。 As shown in FIG. 2A, the transported object confirmation means E may include the confirmation area prediction means D for predicting the confirmation area DB as an example. Generally, the confirmation area DB may be set at a fixed position in the image Ai (Aj) as shown in FIGS. 4 and 5, and in this case, the confirmation area prediction means D is unnecessary. .. When the confirmation area prediction means D is used, the position and range of the confirmation area DBj of the image Aj for deriving the transportation confirmation information Ej are predicted based on the transportation status of the transportation CA. In this case, the transport status includes the transport speed of the transport CA, the position on the transport path 122 after the posture change of the past transport, the spray timing and the spray pressure of the airflow given from the fumarole OP at the posture change location. Information such as. By this confirmation area prediction means D, the position and range (shooting range) of the confirmation area DBj in the image Aj and the image Aj (or the shooting timing (shooting time) corresponding to the image Aj) in which the confirmation area DBj is set are set. Image processing of the transported object confirmation means E is performed on the confirmation area DBj derived and set by this. The prediction of the confirmation area DB is performed for each image Aj or for each carrier CA whose posture has been changed.

なお、図4及び図5に示す例では、確認領域DBを定位置で一定の範囲としているが、この場合でも、図1に示すように、取得した画像Aiごとに確認領域DBにおいて搬送物確認処理を要するか否かを判別し、必要な画像Ajに対してのみ確認領域DBで画像処理を行うことができる。この搬送物確認処理の要否は、それ以前の画像Aiにおいて搬送物判別結果Ciが姿勢変更を要することとなり、その結果、搬送物姿勢変更手段Cによって搬送物CAが姿勢変更を受けたか否かによって決せられる。そのような姿勢変更がなければ、搬送物確認処理を行う必要性もないからである。また、それ以前の画像Aiにおける搬送物判別処理により上記姿勢変更が行われた場合には、当該画像Aj(j>i、ただし、単一の画像である場合や複数の画像である場合がある。)において確認領域DBを画像処理し、搬送物CAが検出されるか否かを確認すればよく、搬送物CAが検出され、当該搬送物CAの姿勢に関する搬送物確認情報Ejが求められれば、上記姿勢変更の事実はリセットされ、上記姿勢変更はなかったとされる。 In the examples shown in FIGS. 4 and 5, the confirmation area DB is set to a fixed range at a fixed position, but even in this case, as shown in FIG. 1, the transported object is confirmed in the confirmation area DB for each acquired image Ai. It is possible to determine whether or not processing is required, and perform image processing in the confirmation area DB only for the necessary image Aj. Whether or not the conveyed object confirmation process is necessary is whether or not the conveyed object CA has undergone the attitude change by the conveyed object attitude changing means C as a result of the fact that the conveyed object discrimination result Ci needs to change the posture in the image Ai before that. It is decided by. This is because if there is no such change in posture, there is no need to perform the transported object confirmation process. Further, when the posture change is performed by the conveyed object discrimination process in the image Ai before that, the image Aj (j> i, however, may be a single image or a plurality of images. In), the confirmation area DB may be image-processed to confirm whether or not the conveyed object CA is detected, and if the conveyed object CA is detected and the conveyed object confirmation information Ej regarding the posture of the conveyed object CA is obtained. , The fact of the above posture change is reset, and it is said that the above attitude change was not made.

なお、確認領域予測手段Dは、確認領域DBj位置及び範囲と撮影時間を予測するので、画像Ajが確認を要する画像であるかどうかは、予測内容に応じて判断すればよい。ただし、予測精度を考慮して、一又は複数の画像Ajが確認を要する画像であるかどうかの判断は、予測内容とは別に、搬送物確認手段Eの画像処理の結果をみて、搬送物CAが確認領域DBj内で検出されるか否かによって判断してもよい。すなわち、この場合には、確認領域DBjの位置及び範囲を用いるが、予測撮影時間に対応する画像Ajの予測結果は実際には用いないこととなる。いずれの場合においても、いずれかの画像Ajで搬送物CAが検出されれば、当該搬送物CAの姿勢に関する情報が上記搬送物確認情報Ejとなる。なお、後述するように、搬送物CAの戻り動作等により、確認領域DB(DBj)において搬送物CAが確認されない場合(存在しない場合)もありうるので、或る姿勢変更に対応する搬送物確認情報が存在しうる画像Aj(複数の画像Ajの場合には全ての画像)において搬送物CAが検出されない場合には、搬送物確認情報は「検出なし」という結果を含むことになり、この場合でも、上記リセットが行われる。 Since the confirmation area prediction means D predicts the position and range of the confirmation area DBj and the shooting time, it may be determined whether or not the image Aj is an image that requires confirmation according to the prediction content. However, in consideration of the prediction accuracy, whether or not one or more images Aj are images that require confirmation is determined by looking at the result of the image processing of the transported object confirmation means E, separately from the predicted content, and the transported object CA. May be determined depending on whether or not is detected in the confirmation area DBj. That is, in this case, the position and range of the confirmation area DBj are used, but the prediction result of the image Aj corresponding to the predicted shooting time is not actually used. In any case, if the transported object CA is detected in any of the images Aj, the information regarding the posture of the transported object CA becomes the transported object confirmation information Ej. As will be described later, there may be a case where the transported object CA is not confirmed (when it does not exist) in the confirmation area DB (DBj) due to the return operation of the transported object CA, so that the transported object confirmation corresponding to a certain attitude change is performed. If the transported object CA is not detected in the image Aj (all images in the case of a plurality of images Aj) in which the information may exist, the transported object confirmation information will include the result of "no detection", in this case. However, the above reset is performed.

確認領域DB,DBjを、上記判定領域DAと同様に、上記計測エリアとして設定するようにしてもよい。これは、搬送路122上を搬送される姿勢変更後の搬送物CAも、基本的には、搬送路121上を搬送されてきた際と同様の搬送速度を有する場合が多いからである。この場合、確認領域DBは、姿勢変更後の搬送物CAが配置され得る位置よりも下流側に設定されていればよい。なお、図示例では、搬送路122は搬送路121と並行して下流側へ延在し、やがて搬送路121と合流するように構成される。ここで、一般的には、搬送路122上の搬送物CAが搬送路121に合流したときに、搬送路121上で正規の搬送姿勢となるように構成される。ここで、確認領域DB,DBjが設定される場所は搬送路121とは別の搬送路122上とは限らず、姿勢変更後の搬送物CAが搬送路121上に配置されるように構成されていてもよい。 The confirmation areas DB and DBj may be set as the measurement area in the same manner as the determination area DA. This is because the transported object CA after the posture change, which is transported on the transport path 122, basically has the same transport speed as when it is transported on the transport path 121 in many cases. In this case, the confirmation area DB may be set on the downstream side of the position where the transported object CA after the posture change can be arranged. In the illustrated example, the transport path 122 extends to the downstream side in parallel with the transport path 121, and is configured to eventually merge with the transport path 121. Here, in general, when the transported object CA on the transport path 122 joins the transport path 121, it is configured to have a normal transport posture on the transport path 121. Here, the place where the confirmation areas DB and DBj are set is not limited to the transport path 122 different from the transport path 121, and the transported object CA after the posture change is arranged on the transport path 121. May be.

また、確認領域DB、DBjは、限定された領域として設定される。しかし、この領域は、搬送物CAの少なくとも判別対象部分(或いは全体)よりも広い範囲を備えるように、余裕を持った範囲に設定されることが好ましい。これにより、搬送物確認処理をより確実に行うことができるようになる。確認領域DB,DBjの範囲は、姿勢変更後の搬送物CAを確実に検出することができる点では大きい方が好ましいが、範囲が大きくなるほど画像処理の負荷も大きくなる。そこで、確認領域DB,DBjの拡大率は、その搬送装置における搬送物CAの移動特性に応じて定めることが好ましい。例えば、搬送物CAの姿勢変更後の位置のばらつきが大きい場合には、上記拡大率を大きくする必要があり、ばらつきが小さい場合には、上記拡大率を小さくすることができる。過去の実際の搬送物CAの姿勢変更後の移動態様が複数得られている場合には、これらの移動態様の集合のばらつき(例えば、標準偏差)に応じて(当該ばらつきと正の相関を備えるように)、上記拡大率を増減することが望ましい。このようにすることにより、画像処理の負担を軽減しつつ、確認領域DB、DBjにおける画像処理によって搬送物CAの姿勢変更後の確認処理を確実に実行することができる。 Further, the confirmation areas DB and DBj are set as limited areas. However, it is preferable that this region is set to a range having a margin so as to have a wider range than at least a discrimination target portion (or the whole) of the transported object CA. As a result, the transported object confirmation process can be performed more reliably. The range of the confirmation areas DB and DBj is preferably large in that the transported object CA after the posture change can be reliably detected, but the larger the range, the larger the load of image processing. Therefore, it is preferable that the expansion ratios of the confirmation areas DB and DBj are determined according to the movement characteristics of the transported object CA in the transport device. For example, if the variation in the position of the transported object CA after the posture change is large, the enlargement ratio needs to be increased, and if the variation is small, the enlargement ratio can be decreased. When a plurality of movement modes after changing the posture of the actual transported object CA in the past are obtained, a positive correlation is provided with the variation (for example, standard deviation) of the set of these movement modes. As such), it is desirable to increase or decrease the above expansion rate. By doing so, it is possible to reliably execute the confirmation process after the posture of the transported object CA is changed by the image processing in the confirmation area DB and the DBj while reducing the burden of the image processing.

次に、図4及び図5を図1及び図2とともに参照して、本実施形態の搬送態様について説明する。図4(a)に示すように、搬送物CAは搬送路121上を搬送方向Fに搬送される。ここで、搬送路121の図示上方(実際には側方)にはもう一つの補助的な搬送路122が並行して形成される。搬送路121の途中には、搬送面上に噴気口OPが開口する姿勢変更箇所が設定される。また、この姿勢変更箇所の上流側に隣接した範囲には判定領域DAが設定される。この判定領域DAは、上記画像Aiに含まれるようになっている。図1に示すように、複数の画像Aiは順次に取得されていく。図示例では、最初の画像A1では搬送物CAは検出されておらず、次の画像A2でも同様である。さらに次の画像A3になって判定領域DA内に搬送物CAが検出される。なお、判定領域DAは、前述のように、搬送路121上を通過する全ての搬送物CA(の少なくとも判別対象部分)がいずれかの画像Aiにおいて必ず検出されるように、搬送方向Fに沿った長さ範囲Ldaが、搬送物CAの搬送速度Vsと撮影間隔Tsとの関係により、Lda>Vs・Tsが成立するように設定される。ただし、実際には、Lda≧Vs・Ts+ΔLとして、余裕ΔLを設けることが好ましく、できれば、Lda≧2Vs・Tsであることが望ましい。また、上記範囲Ldaの上限は2Vs・Ts以上、3Vs・Ts以下であることが好ましい。判定領域DAの搬送方向Fと直交する方向の幅は、搬送物CAの少なくとも判別対象部分の幅より大きいことが望ましいが、本実施形態では、搬送物CAが振動により搬送されるために或る程度幅方向にも揺動することから、当該幅方向にも、搬送物CAの判別対象部分(或いは全体)の幅の10~80%程度の余裕Δwを設けることが望ましい。 Next, the transport mode of the present embodiment will be described with reference to FIGS. 4 and 5 together with FIGS. 1 and 2. As shown in FIG. 4A, the transported object CA is transported on the transport path 121 in the transport direction F. Here, another auxiliary transport path 122 is formed in parallel above the illustrated transport path 121 (actually laterally). In the middle of the transport path 121, a posture change location where the fumarole OP opens on the transport surface is set. Further, the determination area DA is set in the range adjacent to the upstream side of the posture change location. This determination area DA is included in the image Ai. As shown in FIG. 1, a plurality of images Ai are sequentially acquired. In the illustrated example, the conveyed object CA is not detected in the first image A1, and the same applies to the next image A2. Further, in the next image A3, the conveyed object CA is detected in the determination area DA. As described above, the determination region DA is along the transport direction F so that all the transport objects CA (at least the discrimination target portion) passing on the transport path 121 are always detected in any of the images Ai. The length range Lda is set so that Lda> Vs · Ts is established depending on the relationship between the transport speed Vs of the transport object CA and the imaging interval Ts. However, in practice, it is preferable to provide a margin ΔL such that Lda ≧ Vs · Ts + ΔL, and if possible, it is desirable that Lda ≧ 2Vs · Ts. Further, the upper limit of the above range Lda is preferably 2 Vs · Ts or more and 3 Vs · Ts or less. It is desirable that the width of the determination region DA in the direction orthogonal to the transport direction F is larger than the width of at least the discrimination target portion of the transported object CA, but in the present embodiment, the conveyed object CA is conveyed by vibration. Since it swings in the width direction as well, it is desirable to provide a margin Δw of about 10 to 80% of the width of the discrimination target portion (or the whole) of the conveyed object CA also in the width direction.

搬送物CAは、図示例では立方体状に構成されており、長手方向を搬送方向Fに向けて搬送される態様で示してある。この場合において、搬送物CAの前後端面を除く4つの側面の一部に形成されたマークMにより、搬送物CAの姿勢を検出できるようになっている。図示例では、マークMは、一つの側面の幅方向全体にわたるとともに、長さ方向の半分にわたって形成される(図中のハッチング部分)。また、上記一つの側面に隣接する二つの側面の境界部分(稜線近傍)には、マークMの端部が表れるようになっており、これにより、4つの側面のうちの一面だけ詳細に確認できれば、搬送物CAの搬送方向Fに沿った軸線周りの搬送姿勢を特定できるようになっている。ただし、図示例では、搬送物CAの少なくとも隣接する二つの側面を同時に画像Ai中において見ることができるようにカメラCM1,CM2の撮影方向が設定されている。すなわち、カメラの撮影方向の搬送路121の搬送面121a,121b(相互にほぼ直交する面となっている。)との間の角度設定により、搬送物CAの一つの稜線が見える態様で、当該稜線の両側の隣接する二つの側面が同時に画像中に含まれる。なお、図示例では、マークMが搬送物CAの右上に配置される場合を正規の搬送姿勢としている場合を示す。 In the illustrated example, the transported object CA is configured in a cubic shape, and is shown in a mode in which the transported object CA is transported in the longitudinal direction toward the transport direction F. In this case, the posture of the transported object CA can be detected by the marks M formed on a part of the four side surfaces excluding the front and rear end faces of the transported object CA. In the illustrated example, the mark M is formed over the entire width direction of one side surface and half over the length direction (hatched portion in the figure). Further, the end portion of the mark M appears at the boundary portion (near the ridge line) of the two side surfaces adjacent to the one side surface, so that only one of the four side surfaces can be confirmed in detail. , It is possible to specify the transport posture around the axis along the transport direction F of the transport object CA. However, in the illustrated example, the shooting directions of the cameras CM1 and CM2 are set so that at least two adjacent sides of the conveyed object CA can be viewed simultaneously in the image Ai. That is, one ridgeline of the transported object CA can be seen by setting the angle between the transport surfaces 121a and 121b (the planes are substantially orthogonal to each other) of the transport path 121 in the shooting direction of the camera. Two adjacent sides of the ridge are included in the image at the same time. In the illustrated example, the case where the mark M is arranged at the upper right of the transported object CA is the case where the normal transport posture is set.

本実施形態では、図4(c)に示すように、画像A3の判定領域DAにおいて搬送物CAが検出されると、判定領域DAの画像処理により実行される搬送物判別処理により搬送物判別情報B3が導出される。この搬送物判別情報B3に基づいて、マークMの位置に応じた搬送物CAの搬送姿勢が判定され、搬送物判別結果C3として、正規の搬送姿勢でないとする判定「NG」が得られる。その結果、図5(e)のように当該搬送物CAが姿勢変更箇所に到達すると、図5(f)に示すように噴気口OPから気流が吹き付けられ、当該搬送物CAは回動しながら、搬送路121上から搬送路122上へ移動する。なお、噴気口OPは、搬送路121上の搬送物CAの上部の偏った範囲に圧力を印加可能となるように開口しているため、搬送物CAを単に搬送路121上から排除するだけでなく、搬送物CAを搬送方向Fに沿った軸周りに回動させる。これにより、図5(f)及び(g)のように搬送物CAは徐々に姿勢を変えながら、やがて、図5(h)に示すように、搬送路122上に配置されたときに、搬送路121上の搬送姿勢とは異なる所定の搬送姿勢に変更される。図示例の場合には、搬送路122上に配置されたときの搬送物CAの搬送姿勢は、上記の正規の搬送姿勢となっている。この姿勢変更箇所における搬送物CAの姿勢の変更は、図示例の場合、搬送方向Fに沿った軸周り(長手方向の軸周り)に180度回転することによってなされる。 In the present embodiment, as shown in FIG. 4C, when the conveyed object CA is detected in the determination area DA of the image A3, the conveyed object discrimination information is executed by the image processing of the determination area DA. B3 is derived. Based on this transported object discrimination information B3, the transport posture of the transported object CA according to the position of the mark M is determined, and as the transported object discrimination result C3, a determination "NG" that the posture is not the normal transport posture is obtained. As a result, when the transported object CA reaches the posture change location as shown in FIG. 5 (e), an air flow is blown from the fumarole OP as shown in FIG. 5 (f), and the conveyed object CA rotates while rotating. , Move from the transport path 121 onto the transport path 122. Since the fumarole OP is opened so that pressure can be applied to the biased range of the upper part of the conveyed object CA on the conveyed object CA, the conveyed object CA is simply removed from the conveyed object CA. Instead, the transported object CA is rotated about an axis along the transport direction F. As a result, as shown in FIGS. 5 (f) and 5 (g), the transported object CA gradually changes its posture, and when it is arranged on the transport path 122 as shown in FIG. 5 (h), it is transported. It is changed to a predetermined transport posture different from the transport posture on the road 121. In the case of the illustrated example, the transport posture of the transported object CA when arranged on the transport path 122 is the above-mentioned regular transport posture. In the case of the illustrated example, the posture of the transported object CA is changed at the posture changing position by rotating 180 degrees around the axis along the transport direction F (around the axis in the longitudinal direction).

本実施形態では、画像Ai内に搬送路122上の搬送物CAを確認する確認領域DBが設定される。図示例の場合には、確認領域DBは、予め画像Aiの中の既定の位置及び範囲を有する固定領域となっている。ただし、前述のように、搬送物確認処理を実施する画像Ajごとに、或いは、搬送物CAごとに、確認領域DBjを予測し、設定するようにしても構わない。この確認領域DBでも画像処理が実行され、搬送物確認情報Ejが出力される。なお、図1では、画像Aiの判定領域DAにおいて搬送物判別処理が実行されて得られた搬送物判別情報Biに基づく判定結果Ciに応じて搬送物CAに姿勢変更処理が実施され、その姿勢変更後の搬送物CAが画像Ajの確認領域DB(DBj)において搬送物確認処理が実行されて搬送物確認情報Ejが得られる場合について示してある。前述のように、図4及び図5では、搬送物確認情報Ejとして、姿勢変更後の搬送物CAの搬送姿勢が正規の搬送姿勢になっている場合について示している。これに対して、図6(b)、図6(d)には、図6(a)及び図6(c)に示すように画像Aiの判定領域DAに対する画像処理により導出された搬送物判別情報Biに基づいて、搬送物CAの姿勢が変更された結果、姿勢変更後の搬送物CAの搬送姿勢が正規の搬送姿勢以外の姿勢である場合を示している。ここで、図6(b)では、図6(a)に示す搬送姿勢から、搬送物CAが搬送方向Fに沿った軸周り(長手方向の軸周り)に270度回転した搬送姿勢となり、過剰な回転により正規の搬送姿勢を越えて正規でない搬送姿勢になってしまった場合を示している。また、図6(d)では、図6(c)に示す搬送姿勢から、搬送物CAが搬送方向Fに沿った軸周り(長手方向の軸周り)に90度回転した搬送姿勢となり、回転の不足により正規の搬送姿勢に到達せずに正規でない搬送姿勢になってしまった場合を示している。 In the present embodiment, a confirmation area DB for confirming the transported object CA on the transport path 122 is set in the image Ai. In the case of the illustrated example, the confirmation area DB is a fixed area having a predetermined position and range in the image Ai in advance. However, as described above, the confirmation area DBj may be predicted and set for each image Aj for which the transported object confirmation process is performed or for each transported object CA. Image processing is also executed in this confirmation area DB, and the transported object confirmation information Ej is output. In FIG. 1, the posture of the transported object CA is changed according to the determination result Ci based on the transported object discrimination information Bi obtained by executing the transported object discrimination process in the determination area DA of the image Ai. The case where the transported object CA after the change is executed in the confirmed area DB (DBj) of the image Aj and the transported object confirmation information Ej is obtained is shown. As described above, FIGS. 4 and 5 show a case where the transported object CA after the posture is changed to the normal transported posture as the transported object confirmation information Ej. On the other hand, in FIGS. 6 (b) and 6 (d), as shown in FIGS. 6 (a) and 6 (c), the conveyed object discrimination derived by image processing for the determination area DA of the image Ai As a result of changing the posture of the transported object CA based on the information Bi, the case where the transported posture of the transported object CA after the posture change is a posture other than the normal transport posture is shown. Here, in FIG. 6 (b), from the transport posture shown in FIG. 6 (a), the transport posture is changed to a transport posture in which the transport material CA is rotated 270 degrees around the axis along the transport direction F (around the axis in the longitudinal direction), which is excessive. It shows the case where the normal transport posture is exceeded and the non-regular transport posture is changed due to the normal rotation. Further, in FIG. 6 (d), from the transport posture shown in FIG. 6 (c), the transport object CA is rotated 90 degrees around the axis along the transport direction F (around the axis in the longitudinal direction), and the rotation is changed. It shows the case where the normal transport posture is not reached due to the shortage and the transport posture is not regular.

上記のようにして搬送物確認情報Ejが得られると、次に、図1に示す搬送物姿勢変更判定手段Gにより、図2(b)に示すように、搬送物判別情報Biと、搬送物確認情報Ejとを用いて、搬送物姿勢変更判定情報Gijを求める。この搬送物姿勢変更判定情報Gijは、搬送物CAの判定領域DAにおける姿勢変更前の搬送姿勢(図4(c)、図6(a)、図6(c)参照)と、搬送物CAの姿勢変更後の確認領域DBにおける搬送姿勢(図5(h)、図6(b)、図6(d)参照)との関係を示す情報である。この搬送物姿勢変更判定情報Gijとしては、搬送物CAの判定領域DAにおける姿勢変更前の搬送姿勢を示す情報部分と、搬送物CAの姿勢変更後の確認領域DBにおける搬送姿勢を示す情報部分との双方を単に含むだけであってもよく、或いは、両情報部分の関係を示す情報のみを含むものであってもよい。また、姿勢変更前後の搬送姿勢に対応する種別を示す記号や文字、例えば、図4及び図5の例では、姿勢変更前の搬送姿勢が正規の搬送姿勢でなく(NG)、姿勢変更後の搬送姿勢が正規の搬送姿勢である(OK)といった情報であってもよい。 When the transported object confirmation information Ej is obtained as described above, then, as shown in FIG. Using the confirmation information Ej, the transported object attitude change determination information Gij is obtained. The transport posture change determination information Gij is the transport posture (see FIGS. 4 (c), 6 (a), 6 (c)) before the posture change in the determination region DA of the transport object CA, and the transport object CA. Information showing the relationship with the transport posture (see FIGS. 5 (h), 6 (b), and 6 (d)) in the confirmation area DB after the posture change. The conveyed object attitude change determination information Gij includes an information portion indicating the conveyed attitude before the attitude change in the determination area DA of the conveyed object CA, and an information portion indicating the conveyed attitude in the confirmation area DB after the attitude change of the conveyed object CA. It may simply include both of the above, or it may include only the information indicating the relationship between the two information portions. Further, in the symbols and characters indicating the types corresponding to the transport postures before and after the posture change, for example, in the examples of FIGS. 4 and 5, the transport posture before the posture change is not the normal transport posture (NG), and after the posture change. The information may be such that the transport posture is a normal transport posture (OK).

上記のようにして、搬送物姿勢変更判定情報Gijが導出されると、これに基づいて、図1に示す搬送物姿勢変更設定手段Hにより図2(b)に示すように、搬送物姿勢変更設定処理が行われる。この搬送物姿勢変更設定処理は、搬送物確認情報Ej又は搬送物姿勢変更判定情報Gijに応じて、上記姿勢変更箇所の噴気口OPから搬送物CAに吹き付けられる気流の吹付タイミングや吹付圧を調整し、設定する。図示例では搬送物姿勢変更判定情報Gijに基づいて姿勢変更制御部を設定するが、状況によっては、搬送物確認情報Ejのみに基づいて設定しても構わない。例えば、図4及び図5に示すように、搬送物確認処理によって得られた搬送物確認情報Ejが正規の搬送姿勢に対応するものである場合には、その吹付タイミングや吹付圧が適正であるとして、従来の設定値を維持する。一方、図6(a)及び(b)並びに(c)及び(d)に示すように、搬送物CAが正規の搬送姿勢とは異なり、その結果、搬送物確認情報Ejが正規の搬送姿勢に対応する情報でないときには、上記気流の吹付タイミングや吹付圧等の姿勢変更箇所の作動態様を変更し、搬送物CAに対する姿勢変更の作用を調整する。このときには、搬送物確認情報Ejとしては、具体的な搬送姿勢の種類のいずれであるかを示す詳細な情報が含まれることが好ましく、これにより、具体的な搬送姿勢の種類ごとに、上記作動態様の調整方法を変更することが望ましい。例えば、図6(b)のように搬送物CAの姿勢変更時の回動角度が過大である場合には、上記吹付圧を低下させ、図6(d)のように搬送物CAの姿勢変更時の回動角度が過少である場合には、上記吹付圧を増大させる。また、特に図示は省略するが、搬送物確認情報Ejが、図5(f)に示すような吹付タイミングが遅すぎる場合に表れる搬送姿勢B6′である場合には、吹付タイミングを早める。逆に、図5(g)に示すような吹付タイミングが早すぎる場合に表れる搬送姿勢B7′である場合には、吹付タイミングを遅くする。 When the transported object posture change determination information Gij is derived as described above, the transported object posture change setting means H shown in FIG. 1 changes the posture of the transported object as shown in FIG. 2 (b). The setting process is performed. The transported object attitude change setting process adjusts the blowing timing and the blowing pressure of the airflow blown from the fumarole OP at the posture change location to the transported object CA according to the transported object confirmation information Ej or the transported object attitude change determination information Gij. And set. In the illustrated example, the posture change control unit is set based on the conveyed object attitude change determination information Gij, but depending on the situation, it may be set based only on the conveyed object confirmation information Ej. For example, as shown in FIGS. 4 and 5, when the transported object confirmation information Ej obtained by the transported object confirmation process corresponds to the normal transport posture, the spraying timing and the spraying pressure are appropriate. As a result, the conventional setting value is maintained. On the other hand, as shown in FIGS. 6 (a) and 6 (b) and (c) and (d), the transported object CA is different from the normal transport posture, and as a result, the transported product confirmation information Ej is in the regular transport posture. When it is not the corresponding information, the operation mode of the posture change portion such as the blowing timing and the blowing pressure of the airflow is changed, and the action of the posture change on the conveyed object CA is adjusted. At this time, it is preferable that the transported object confirmation information Ej includes detailed information indicating which of the specific transport posture types is used, whereby the above operation is performed for each specific transport posture type. It is desirable to change the method of adjusting the aspect. For example, when the rotation angle at the time of changing the posture of the conveyed object CA is excessive as shown in FIG. 6 (b), the spray pressure is reduced and the attitude of the conveyed object CA is changed as shown in FIG. 6 (d). If the rotation angle at the time is too small, the spray pressure is increased. Further, although not shown in particular, when the transported object confirmation information Ej is the transport posture B6'appearing when the spray timing is too late as shown in FIG. 5 (f), the spray timing is advanced. On the contrary, when the transport posture B7'appears when the spraying timing is too early as shown in FIG. 5 (g), the spraying timing is delayed.

図7(a)は、本実施形態の上記姿勢変更箇所において搬送物CAの姿勢を変更するための作動態様を実現する姿勢変更制御系の構成を示す概略構成図である。例えば、上記コントローラCL12の一部により構成される姿勢変更制御部103は、コンプレッサなどの圧縮ガス源123から供給される圧縮ガス(空気等)の圧力を調整するレギュレータ124の圧力設定部124aを制御し、ガスの供給圧を調整可能に設定するとともに、レギュレータ124の下流側に接続される電磁弁等よりなる供給弁125の開閉駆動部125aを制御し、供給弁125の開閉動作タイミングを設定する。ここで、上記搬送物姿勢変更制御部103は、上記搬送物姿勢変更設定手段Hにより、上記供給圧や開閉動作タイミングを調整し、変更することができる。 FIG. 7A is a schematic configuration diagram showing a configuration of a posture change control system that realizes an operation mode for changing the posture of the transported object CA at the posture change location of the present embodiment. For example, the attitude change control unit 103 composed of a part of the controller CL12 controls the pressure setting unit 124a of the regulator 124 that adjusts the pressure of the compressed gas (air or the like) supplied from the compressed gas source 123 such as a compressor. Then, the gas supply pressure is set to be adjustable, and the opening / closing drive unit 125a of the supply valve 125 including the solenoid valve connected to the downstream side of the regulator 124 is controlled to set the opening / closing operation timing of the supply valve 125. .. Here, the transport object posture change control unit 103 can adjust and change the supply pressure and the opening / closing operation timing by the transport object posture change setting means H.

図7(b)は、本実施形態の搬送物判別情報Biと搬送物確認情報Ejの組み合わせによって表わされる搬送物姿勢変更判定情報Gijと、姿勢変更箇所における搬送物姿勢変更手段Cの作動態様の調整内容との関係を示す対応相関図である。これによれば、搬送物確認情報Ejが「OK」である場合には、上記作動態様の調整は行われないが、搬送物確認情報Ejが「NG」で、搬送物CAの姿勢変更時の回動角度が過大である場合(図6(b)に示す場合)、すなわち「NG+」場合には、気流の吹付圧を所定圧だけ低下させる(-Δp)。一方、搬送物確認情報Ejが「NG」で、搬送物CAの姿勢変更時の回動角度が過小である場合(図6(d)に示す場合)、すなわち「NG-」の場合には、気流の吹付圧を所定圧だけ増大させる(+Δp)。また、上記確認領域DB(DBj)において搬送物CAそのものが検出されない場合、例えば、一般的には、一の画像Ajにおいて、或いは、複数の画像Ajのいずれにおいても、確認領域DB(DBj)における搬送物CAの検出がない場合には、噴気口OPから吹き付けられる気流の吹付圧が不足しているために搬送物CAが搬送路121上から搬送路122上へ移動せずに戻ってしまったか、上記吹付圧が過剰であるため、搬送物CAが搬送路122に移動した後に、勢い余って搬送路121に戻ってしまったことなどが考えられるので、そのときの姿勢変更の作動態様の設定値(上記吹付圧)が所定の閾値を上回っていれば、気流の吹付圧を所定圧だけ低下させる(-Δp)。一方、同設定値が所定の閾値以下であれば、気流の吹付圧を所定圧だけ増大させる(+Δp)。なお、上記Δpは、いずれの状況によっても同じものとして説明しているが、Δpは状況に応じて種々に変更してもよく、或いは、姿勢変更時の作動態様が適正な値から外れている程度に応じた比例制御によってΔpを増減させるようにしてもよい。 FIG. 7B shows an operation mode of the transported object posture change determination information Gij represented by the combination of the transported object discrimination information Bi and the transported object confirmation information Ej of the present embodiment, and the transported object posture changing means C at the posture changing location. It is a correspondence correlation diagram which shows the relationship with the adjustment content. According to this, when the transported object confirmation information Ej is "OK", the above operation mode is not adjusted, but when the transported object confirmation information Ej is "NG" and the posture of the transported object CA is changed. When the rotation angle is excessive (when shown in FIG. 6B), that is, when "NG +", the blowing pressure of the airflow is reduced by a predetermined pressure (−Δp). On the other hand, when the transported object confirmation information Ej is "NG" and the rotation angle when the posture of the transported object CA is changed is too small (when shown in FIG. 6 (d)), that is, when it is "NG-". The blowing pressure of the airflow is increased by a predetermined pressure (+ Δp). Further, when the transported object CA itself is not detected in the confirmation area DB (DBj), for example, in general, in one image Aj or in any of a plurality of image Aj, in the confirmation area DB (DBj). If the conveyed object CA is not detected, has the conveyed object CA returned without moving from the transfer path 121 to the transfer path 122 because the blowing pressure of the airflow blown from the air jet port OP is insufficient? Since the spray pressure is excessive, it is possible that the transported object CA has moved to the transport path 122 and then returned to the transport path 121 with excessive momentum. Therefore, the operation mode of the attitude change at that time is set. If the value (the spray pressure) exceeds a predetermined threshold value, the spray pressure of the airflow is reduced by a predetermined pressure (−Δp). On the other hand, if the set value is equal to or less than a predetermined threshold value, the blowing pressure of the airflow is increased by a predetermined pressure (+ Δp). Although the above Δp is described as being the same depending on any situation, Δp may be changed in various ways depending on the situation, or the operation mode at the time of changing the posture is out of the proper value. Δp may be increased or decreased by proportional control according to the degree.

これに対して、搬送物確認情報Ejや搬送物姿勢変更情報Gijの如何に拘わらず、姿勢変更箇所における搬送物CAの姿勢変更時の姿勢が図5(f)のB6′のように搬送方向Fに対して負の傾斜角を備える場合や、図5(g)のB7′のように搬送方向Fに対して正の傾斜角を備える場合には、以下のようにする。まず、その傾斜角が所定の基準角度θ未満、例えば、±10度未満の場合には、作動態様の調整としては何も行わない。また、正の傾斜角が上記基準角度θ(10度)を越える場合には、気流の吹付タイミングをΔtだけ早める。負の傾斜角が上記基準角度θ(10度)を下回る場合には、気流の吹付タイミングをΔtだけ遅延させる。なお、上記Δtは、いずれの状況によっても同じものとして説明しているが、Δtは状況に応じて種々に変更してもよく、或いは、姿勢変更時の作動態様が適正な値(0度)から外れている程度に応じた比例制御によってΔtを増減させるようにしてもよい。以上のように、複数の搬送姿勢を備える場合でも、搬送物CAは、搬送物確認手段Eにより得られる搬送物確認情報Ejとから、或いは、搬送物姿勢変更情報Gijから、搬送物姿勢変更手段Cの作動態様を調整、設定することにより、搬送物姿勢変更手段Cによる搬送物CAの姿勢変更を好適に実行することができ、その結果、搬送物CAの搬送姿勢を効率的に揃える(制御する)ことが可能になる。 On the other hand, regardless of whether the transported object confirmation information Ej or the transported object attitude change information Gij, the attitude of the transported object CA at the posture change location when the attitude is changed is the transport direction as shown in B6'in FIG. 5 (f). When a negative tilt angle is provided with respect to F, or when a positive tilt angle is provided with respect to the transport direction F as in B7'in FIG. 5 (g), the procedure is as follows. First, when the inclination angle is less than a predetermined reference angle θ, for example, less than ± 10 degrees, nothing is performed as an adjustment of the operation mode. When the positive inclination angle exceeds the reference angle θ (10 degrees), the airflow blowing timing is advanced by Δt. When the negative inclination angle is less than the reference angle θ (10 degrees), the airflow blowing timing is delayed by Δt. Although the above Δt is described as being the same depending on the situation, Δt may be changed in various ways depending on the situation, or the operation mode at the time of changing the posture is an appropriate value (0 degree). Δt may be increased or decreased by proportional control according to the degree of deviation from. As described above, even when a plurality of transport postures are provided, the transport material CA can be used from the transport material confirmation information Ej obtained by the transport material confirmation means E or from the transport material posture change information Gij. By adjusting and setting the operation mode of C, it is possible to suitably execute the posture change of the transported object CA by the transported object posture changing means C, and as a result, the transport posture of the transported object CA is efficiently aligned (control). ) Will be possible.

図7(c)の図は、上記のようにして調整され、最適化された姿勢変更制御部103によって、搬送物CAの複数の搬送姿勢CN1~CN4をCN1に揃える場合の一例として、搬送路121の搬送方向Fに配列された3箇所の姿勢変更箇所を設ける場合について示してある。ここで、揃えるべき搬送姿勢CN1を基準(0度)とすれば、例えば、搬送物CAの搬送方向Fに沿った軸周りの回転角度が、姿勢変更時の回動角度を+90度とした場合、CN2は-90度、CN3は-180度、CN4は-270度になる例が挙げられる。この例では、第1の姿勢変更箇所において、搬送姿勢CN1の搬送物CAはそのまま下流側へ通過し、搬送姿勢CN2の搬送物CAは、姿勢変更箇所において噴気口OPから吹き付けられる気流により搬送姿勢CN1となり、搬送姿勢CN3の搬送物CAは、姿勢変更箇所において噴気口OPから吹き付けられる気流により搬送姿勢CN2となり、搬送姿勢CN4の搬送物CAは、姿勢変更箇所において噴気口OPから吹き付けられる気流により搬送姿勢CN3となる。次に、第2の姿勢変更箇所において、搬送姿勢CN1の搬送物CAはそのまま下流側へ通過し、搬送姿勢CN2の搬送物CAは、姿勢変更箇所において噴気口OPから吹き付けられる気流により搬送姿勢CN1となり、搬送姿勢CN3の搬送物CAは、姿勢変更箇所において噴気口OPから吹き付けられる気流により搬送姿勢CN2となる。また、第3の姿勢変更箇所において、搬送姿勢CN1の搬送物CAはそのまま下流側へ通過し、搬送姿勢CN2の搬送物CAは、姿勢変更箇所において噴気口OPから吹き付けられる気流により搬送姿勢CN1となる。以上のような複数の姿勢変更箇所を備える搬送装置においては、上記の効率的な搬送姿勢の変更はさらに有効となり、搬送姿勢の揃った搬送物CAを高い搬送効率で確実に供給することが可能になる。これらの複数の姿勢変更箇所のそれぞれにおいて、本実施形態に記述した上記各構成を採用することが有効であり、好ましくは、全ての姿勢変更箇所において採用すことが効果的である。 The figure of FIG. 7C is an example of a case where a plurality of transport postures CN1 to CN4 of the transport object CA are aligned with CN1 by the posture change control unit 103 adjusted and optimized as described above. A case is shown in which three posture change points arranged in the transport direction F of 121 are provided. Here, if the transport posture CN1 to be aligned is used as a reference (0 degree), for example, when the rotation angle around the axis of the transport object CA along the transport direction F is +90 degrees when the posture is changed. , CN2 is -90 degrees, CN3 is -180 degrees, and CN4 is -270 degrees. In this example, at the first attitude change point, the conveyed object CA of the conveyed attitude CN1 passes downstream as it is, and the conveyed object CA of the conveyed attitude CN2 is the conveyed attitude due to the air flow blown from the jet port OP at the attitude change point. It becomes CN1, and the transported object CA of the transport posture CN3 becomes the transport posture CN2 due to the airflow blown from the air outlet OP at the posture change location, and the transport material CA of the transport posture CN4 becomes the transport posture CN2 due to the air flow blown from the air outlet OP at the posture change location. The transport posture is CN3. Next, at the second attitude change location, the conveyed object CA of the conveyed attitude CN1 passes downstream as it is, and the conveyed object CA of the conveyed attitude CN2 is conveyed at the attitude change location due to the air flow blown from the air jet OP. Therefore, the transported object CA in the transport posture CN3 becomes the transport posture CN2 due to the air flow blown from the air jet port OP at the posture change location. Further, at the third attitude change point, the conveyed object CA of the conveyed attitude CN1 passes to the downstream side as it is, and the conveyed object CA of the conveyed attitude CN2 becomes the conveyed attitude CN1 by the air flow blown from the fumarole OP at the attitude changed point. Become. In the transport device provided with a plurality of posture change points as described above, the above-mentioned efficient change of the transport posture becomes more effective, and it is possible to reliably supply the transported object CA having the same transport posture with high transport efficiency. become. It is effective to adopt each of the above configurations described in the present embodiment at each of these plurality of posture change points, and preferably it is effective to adopt them at all the posture change points.

<動作プログラム10Pの構成>
次に、図8を参照して、本発明に係る各実施形態の全体の動作プログラム10Pの流れについて説明する。図8は、上記検査処理ユニットDTUの演算処理装置MPUにより、動作プログラム10Pに従って実行される搬送管理のための各種処理過程を示す概略フローチャートである。この動作プログラム10Pを起動すると、まず、上記の画像撮影及び画像計測処理が開始されるとともに、コントローラCL11、CL12により搬送装置(パーツフィーダ11及びリニアフィーダ12)の駆動が開始される。そして、前述のデバッグ操作に応じたデバッグ設定がOFFであれば、撮影画像GPX又は画像エリアGPYに対して画像計測処理が実行され、搬送物選別処理や搬送物姿勢変更制御処理(上記搬送物判別処理や上記搬送物確認処理を含む。)などが行われる。ここで、当該搬送物選別処理や上記搬送物判別処理の最終の判定結果が「OK」判定であれば、デバッグ操作が行われない限り、そのまま次の撮影画像GPX又は画像エリアGPYの画像計測処理が実施される。例えば、上記搬送物選別処理のための搬送物排除箇所では、常時は噴気口OPの気流が停止されているが、判定結果が「NG」(不良品)であれば、噴気口OPから気流が流れる。これにより、不良の搬送物CAを搬送路上から排除する。また、上記姿勢変更箇所では、常時は噴気口OPからの気流は停止されているが、判定結果が「NG」(不良姿勢)であれば、噴気口OPから気流を噴出させて搬送路121から122へ搬送物CAを移動させる過程でその姿勢を変更し、反転等を実行する。なお、上記とは逆に、常時は気流を流しているが、判定結果が「OK」(良姿勢)であれば、気流を停止するようにしてもよい。
<Structure of operation program 10P>
Next, with reference to FIG. 8, the flow of the entire operation program 10P of each embodiment according to the present invention will be described. FIG. 8 is a schematic flowchart showing various processing processes for transport management executed according to the operation program 10P by the arithmetic processing unit MPU of the inspection processing unit DTU. When this operation program 10P is started, first, the above-mentioned image shooting and image measurement processing are started, and at the same time, the transfer devices (parts feeder 11 and linear feeder 12) are started to be driven by the controllers CL11 and CL12. If the debug setting corresponding to the above-mentioned debug operation is OFF, the image measurement process is executed for the captured image GPX or the image area GPY, and the conveyed object selection process and the conveyed object posture change control process (the above-mentioned conveyed object discrimination). Processing and the above-mentioned transportation confirmation processing are included.) And the like are performed. Here, if the final determination result of the transported object sorting process or the transported object discrimination process is an "OK" determination, the image measurement process of the next captured image GPX or the image area GPY is performed as it is unless the debug operation is performed. Is carried out. For example, at the transported object exclusion point for the transported object sorting process, the airflow of the fumarole OP is always stopped, but if the determination result is "NG" (defective product), the airflow is emitted from the fumarole OP. It flows. As a result, the defective transported object CA is excluded from the transport path. Further, at the above-mentioned attitude change location, the airflow from the fumarole OP is always stopped, but if the determination result is "NG" (poor attitude), the airflow is ejected from the fumarole OP and from the transport path 121. In the process of moving the transported object CA to 122, its posture is changed and reversal or the like is executed. Contrary to the above, the airflow is always flowing, but if the determination result is "OK" (good posture), the airflow may be stopped.

このようにして、搬送路上で搬送物である搬送物CAが判別され、その判別結果に応じて処理されることにより、下流側へは良品や良姿勢の搬送物CAのみが整列した状態で供給されていく。この場合にも、その後、デバッグ操作が行われない限り、そのまま次の撮影画像GPX又は画像エリアGPYの計測エリア内で画像計測処理と搬送物判別処理が実施される。ここで、搬送物姿勢変更制御処理部100による搬送物判別処理では、或る搬送物CAに対する処理が上述のように行われるが、通常、次々と計測エリアである判別領域DA内に搬送されてくる複数の搬送物CAに対して、それぞれ、搬送物CAごとに同様の搬送物判別処理が並行して行われる。また、この判別結果Ciに応じて姿勢変更が行われた搬送物CAのみに対して上記搬送物確認処理が行われる。さらに、上記の画像計測処理や搬送物判別処理と並行して、例えば、搬送路上において搬送方向Fに沿って搬送されていくときの搬送物CAの搬送挙動を検出するために、搬送路上の搬送物CAを追跡する搬送挙動検出処理が行われるようになっていてもよい。そして、この搬送挙動検出処理の検出結果により搬送態様を調整するために搬送装置の駆動の制御を行うようにしてもよい。この搬送駆動の制御は、例えば、搬送装置の加振機構の加振要素の駆動条件、例えば、圧電駆動体の周波数や電圧を制御し、適正な搬送態様となるように調整する。なお、上記搬送挙動検出処理は、上記搬送物姿勢変更制御処理部100の搬送物判別処理過程と並行して実行されてもよく、或いは、上記搬送物判別処理過程とは無関係に、全く別の画像処理によって実行されても構わない。例えば、搬送路121上を搬送方向Fに移動していくときの搬送物CAの搬送方向Fとは直交する方向の位置の変動の大小に応じて、振動の周波数や振幅を制御することによって、搬送物CAが搬送路121上で無駄に暴れることを防止することができる。 In this way, the transported object CA, which is the transported object, is discriminated on the transport path, and by processing according to the discrimination result, only the non-defective product and the transported object CA in a good posture are supplied to the downstream side in an aligned state. Will be done. Also in this case, unless the debugging operation is performed thereafter, the image measurement process and the conveyed object discrimination process are performed as they are in the measurement area of the next captured image GPX or the image area GPY. Here, in the transported object discriminating process by the transported object posture change control processing unit 100, the process for a certain transported object CA is performed as described above, but it is usually transported one after another into the discrimination area DA which is the measurement area. For each of the plurality of transported object CAs, the same transported object discrimination process is performed in parallel for each transported object CA. Further, the above-mentioned conveyed object confirmation process is performed only on the conveyed object CA whose posture has been changed according to the determination result Ci. Further, in parallel with the above-mentioned image measurement processing and transport object discrimination process, for example, in order to detect the transport behavior of the transport object CA when being transported along the transport direction F on the transport path, the transport on the transport path is performed. The transport behavior detection process for tracking the object CA may be performed. Then, the drive of the transport device may be controlled in order to adjust the transport mode based on the detection result of the transport behavior detection process. The control of the transfer drive controls, for example, the drive conditions of the vibration element of the vibration mechanism of the transfer device, for example, the frequency and the voltage of the piezoelectric drive body, and adjusts them so as to have an appropriate transfer mode. The transport behavior detection process may be executed in parallel with the transport object discrimination processing process of the transport object attitude change control processing unit 100, or may be completely different regardless of the transport object discrimination processing process. It may be executed by image processing. For example, by controlling the frequency and amplitude of the vibration according to the magnitude of the fluctuation of the position in the direction orthogonal to the transport direction F of the transport object CA when moving in the transport direction F on the transport path 121. It is possible to prevent the transported object CA from unnecessarily rampaging on the transport path 121.

上記の途中でデバッグ操作が行われ、デバッグ設定が「ON」になると、上記ルーチン(運転モード)から抜け出して、搬送装置の駆動が停止され、画像計測処理や搬送物選別処理、搬送物姿勢変更制御処理、搬送挙動検出処理も停止される。そして、この状態において適宜の操作を行うと、過去の画像ファイルを選択可能な状態となる。このとき、選択表示される画像ファイルは、直前の運転モードにおいて記録していた複数の撮影画像GPX又は画像エリアGPYを含む画像ファイルである。これをそのまま選択して適宜の操作をすると、再実行モードに移行する。このモードでは、上述のようにすでに実行された画像計測処理、搬送物選別処理、搬送物姿勢変更制御処理や上記搬送挙動検出処理等の結果を記録した画像ファイルに基づいて、画像の表示や、各種処理や制御等を再実行することができる。すなわち、搬送装置の搬送物である搬送物CAの制御(排除や反転等)に不具合が生じた場合には、この不具合を解消するために、まず、過去の画像データに基づいて画像処理を再実行することによって、各処理や制御等の問題箇所を探る。当該問題箇所が判明すれば、それに応じて各処理や制御の設定内容(設定値)を変更、調整し、再び過去の画像データに対して画像計測処理等を再実行することで調整、改善作業の結果を確認することができる。その後、適宜の復帰操作を行うと、デバッグ設定がOFFに戻され、画像計測処理が再開されるとともに、搬送装置の駆動が再開される。 When the debug operation is performed in the middle of the above and the debug setting is set to "ON", the routine (operation mode) is exited, the drive of the transport device is stopped, the image measurement process, the transport object selection process, and the transport object attitude change. The control process and the transport behavior detection process are also stopped. Then, if an appropriate operation is performed in this state, the past image file can be selected. At this time, the image file selected and displayed is an image file including a plurality of captured image GPX or image area GPY recorded in the immediately preceding operation mode. If you select this as it is and perform an appropriate operation, it shifts to the re-execution mode. In this mode, an image is displayed or displayed based on an image file that records the results of the image measurement processing, the transported object selection process, the transported object posture change control process, the transported object behavior detection process, etc. that have already been executed as described above. Various processes and controls can be re-executed. That is, if a problem occurs in the control (exclusion, inversion, etc.) of the transported object CA, which is the transported object of the transport device, in order to solve this problem, first, the image processing is repeated based on the past image data. By executing it, search for problems such as each process and control. If the problem is found, the setting contents (setting values) of each process and control are changed and adjusted accordingly, and the image measurement process etc. is re-executed for the past image data to make adjustments and improvement work. You can check the result of. After that, when an appropriate return operation is performed, the debug setting is returned to OFF, the image measurement process is restarted, and the drive of the transport device is restarted.

なお、上記のデバック操作時においては、上記搬送物確認情報Ejや搬送物姿勢変更情報Gijに基づいて、上記搬送物姿勢変更設定手段H(搬送物姿勢変更処理)の代わりに、手動で上記姿勢変更箇所の作動態様を調整してもよい。例えば、図7(a)に示す姿勢変更制御部103の制御態様を調整するようにしてもよい。 At the time of the debugging operation, based on the transported object confirmation information Ej and the transported object posture change information Gij, instead of the transported object posture changing setting means H (conveyed object posture changing process), the posture is manually described. The operation mode of the changed part may be adjusted. For example, the control mode of the posture change control unit 103 shown in FIG. 7A may be adjusted.

本実施形態では、搬送物確認情報Ejが得られることにより、搬送物姿勢変更手段Cの作動により生ずる搬送物CAの姿勢変更状態を確認することができるので、当該情報を確認しながら搬送物姿勢変更手段Cの作動態様の調整を行うことで、調整作業が容易化され、姿勢変更箇所における搬送物の姿勢変更態様が高精度化される。 In the present embodiment, by obtaining the transported object confirmation information Ej, it is possible to confirm the posture change state of the transported object CA caused by the operation of the transported object posture changing means C, so that the transported object posture can be confirmed while confirming the information. By adjusting the operating mode of the changing means C, the adjusting work is facilitated, and the posture changing mode of the transported object at the posture changing location is improved.

特に、搬送物判別情報Biと搬送物確認情報Ejとの関係を示す搬送物姿勢変更情報Gijを求める搬送物姿勢変更判定手段Gをさらに具備することにより、搬送物姿勢変更手段Cの作動態様と、これにより生ずる搬送物CAの姿勢変更状態との関係をさらに容易に確認することができる。 In particular, by further providing the transported object posture change determining means G for obtaining the transported object posture change information Gij indicating the relationship between the transported object discrimination information Bi and the transported object confirmation information Ej, the operation mode of the transported object posture changing means C can be obtained. , It is possible to more easily confirm the relationship with the posture change state of the transported object CA caused by this.

本実施形態では、搬送物確認手段Eは、判別結果Ciが得られた搬送物CAが上記姿勢変更箇所において搬送物姿勢変更手段Cにより姿勢変更された後に配置される確認領域DAの画像部分を画像処理することによって前記搬送物確認情報Ejを求めることにより、画像処理の負荷を抑制しつつ、姿勢変更後の搬送物CAの姿勢の確認を確実かつ迅速に行うことができる。特に、確認領域DBは、判別領域DAの画像部分を含む画像Aiに対して既定の時間だけ経過した時点以降で撮影された別の画像Aj(j>i)において、前記姿勢変更箇所に対して既定の位置関係を有する画像部分に設定されることにより、画像処理の負荷や処理時間と、姿勢確認の確実性や精度との両立をさらに高い次元で実現できる。 In the present embodiment, the transported object confirmation means E displays an image portion of the confirmation area DA arranged after the transported object CA from which the discrimination result Ci is obtained is changed in posture by the transported object posture changing means C at the posture changing position. By obtaining the transported object confirmation information Ej by image processing, it is possible to reliably and quickly confirm the posture of the transported object CA after changing the posture while suppressing the load of image processing. In particular, the confirmation area DB is used for the posture change portion in another image Aj (j> i) taken after a predetermined time elapses with respect to the image Ai including the image portion of the discrimination area DA. By setting the image portion having a predetermined positional relationship, it is possible to achieve both the load and processing time of image processing and the certainty and accuracy of posture confirmation at a higher level.

本実施形態では、搬送物姿勢変更手段Cの作動態様を制御する姿勢変更制御部103をさらに具備し、姿勢変更制御部103は、搬送物確認情報Ej又は搬送物姿勢変更判定手段Gによって出力される搬送物姿勢変更情報Gijに応じて搬送物姿勢変更手段Cの作動態様を自動的に設定することにより、搬送物姿勢変更手段Cの作動態様を、搬送物確認情報Ej、又は、搬送物判別情報Biと搬送物確認情報Ejとの関係を示す搬送物姿勢変更情報Gijに応じて自動的に調整することができるので、調整作業の手間を軽減できるとともに、姿勢変更の適格性を高めることができる。 In the present embodiment, the posture change control unit 103 for controlling the operation mode of the transported object posture changing means C is further provided, and the posture change control unit 103 is output by the transported object confirmation information Ej or the transported object posture change determining means G. By automatically setting the operating mode of the transported object posture changing means C according to the transported object posture changing information Gij, the operating mode of the transported object posture changing means C can be determined by the transported object confirmation information Ej or the transported object. Since it can be automatically adjusted according to the transported object posture change information Gij indicating the relationship between the information Bi and the transported object confirmation information Ej, it is possible to reduce the labor of the adjustment work and improve the suitability for the posture change. can.

本実施形態では、前記搬送物姿勢変更手段Cは、前記搬送物に気流を吹き付けることによって姿勢を変更するが、前記搬送物姿勢変更設定手段Hは、前記作動態様として、前記気流の吹付タイミングと吹付圧の少なくとも一つを設定することが望ましい。これにより、微細な搬送物CAの姿勢変更時の作動態様を迅速かつ適正に変更することが可能になる。 In the present embodiment, the transported object posture changing means C changes the posture by blowing an air flow on the transported object, but the transported object posture changing setting means H has, as the operating mode, the blowing timing of the air flow. It is desirable to set at least one of the spray pressures. This makes it possible to quickly and appropriately change the operation mode when the posture of the minute conveyed object CA is changed.

本実施形態では、確認領域DBの位置又は範囲を画像Ajごと若しくは搬送物CAごとに予測する確認領域予測手段Dをさらに具備することにより、搬送物CAの姿勢変更後の姿勢に関する情報の取得の確実性と、画像処理の負担の軽減との両立を図ることができる。 In the present embodiment, by further providing the confirmation area prediction means D that predicts the position or range of the confirmation area DB for each image Aj or for each transported object CA, information on the posture of the transported object CA after the posture is changed can be acquired. It is possible to achieve both certainty and reduction of the burden of image processing.

本実施形態では、前記判定領域DA及び前記確認領域DBは、いずれも、上記画像Ai,Ajの内部に含まれる領域であることにより、搬送物判別処理と搬送物確認処理に用いる二つの領域を単一の画像内に設定することができるため、両領域の間の位置関係の設定が容易化されるとともに、カメラなどの撮像系の簡素化を図ることができる。 In the present embodiment, the determination area DA and the confirmation area DB are both areas included inside the images Ai and Aj, so that two areas used for the transported object discrimination process and the transported object confirmation process are used. Since it can be set in a single image, it is easy to set the positional relationship between both regions, and it is possible to simplify the imaging system such as a camera.

なお、本発明の搬送システムは、上述の図示例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。例えば、上記実施形態では、同じ画像Ai,Ajの内部に判定領域DAと確認領域DBを設定し、これらを画像処理しているが、本発明は、このような態様に限らず、判定領域DAを備える画像と、確認領域DBを備える画像とを別々に取得するようにしてもよく、別々のカメラ(撮像装置)にて撮像するようにしてもよい。また、上記実施形態では、搬送路121上の搬送物CAに対して搬送物姿勢変更手段Cを作動させることにより、姿勢変更後の搬送物CAを搬送路122上に配置しているが、同じ搬送路121上で搬送物CAの搬送姿勢を変化させるようにしてもよい。 It should be noted that the transport system of the present invention is not limited to the above-mentioned illustrated examples, and it is needless to say that various modifications can be made without departing from the gist of the present invention. For example, in the above embodiment, the determination area DA and the confirmation area DB are set inside the same images Ai and Aj, and these are image-processed. However, the present invention is not limited to such an embodiment, and the determination area DA is not limited to this. The image provided with the above and the image provided with the confirmation area DB may be acquired separately, or may be captured by different cameras (imaging devices). Further, in the above embodiment, the transported object CA after the attitude change is arranged on the transport path 122 by operating the transported object posture changing means C with respect to the transported object CA on the transport path 121, but the same. The transport posture of the transport object CA may be changed on the transport path 121.

10…搬送システム、10P…動作プログラム、11…パーツフィーダ、110…搬送体、111…搬送路、12…リニアフィーダ、120…搬送体、121…搬送路、OP…噴気口、CA…搬送物、CN1~CN4…搬送姿勢、CM1,CM2…カメラ、CL11,CL12…コントローラ、DTU…検査処理ユニット、DP1,DP2…表示装置、GP1,GP2…画像処理装置、GM1,GM2…画像処理メモリ、GPX…撮影画像、GPY…画像エリア、MPU…演算処理装置、MM…主記憶装置、SP1,SP2…操作入力装置、RAM…演算処理用メモリ、θ…基準傾斜角、100…搬送物判別処理部、101…搬送物確認処理過程、102…搬送物姿勢変更判定処理過程、A…画像取得手段、Ai…画像、B…搬送物判別処理手段、Bi…搬送物判別情報、C…搬送物姿勢変更手段、Ci…搬送物判別結果、D…確認領域予測手段、DA…判定領域、DB…確認領域、E…搬送物確認手段、Ej…搬送物確認情報、G…搬送物姿勢変更判定手段、Gij…搬送物姿勢変更判定情報、H…搬送物姿勢変更設定手段 10 ... Transport system, 10P ... Operation program, 11 ... Parts feeder, 110 ... Transport body, 111 ... Transport path, 12 ... Linear feeder, 120 ... Transport body, 121 ... Transport path, OP ... Air outlet, CA ... Transport, CN1 to CN4 ... Transfer posture, CM1, CM2 ... Camera, CL11, CL12 ... Controller, DTU ... Inspection processing unit, DP1, DP2 ... Display device, GP1, GP2 ... Image processing device, GM1, GM2 ... Image processing memory, GPX ... Captured image, GPY ... image area, MPU ... arithmetic processing device, MM ... main storage device, SP1, SP2 ... operation input device, RAM ... arithmetic processing memory, θ ... reference tilt angle, 100 ... transported object discrimination processing unit, 101 ... Transported object confirmation processing process, 102 ... Transported object posture change determination process, A ... Image acquisition means, Ai ... Image, B ... Transported object discrimination processing means, Bi ... Transported object discrimination information, C ... Transported object posture changing means, Ci ... Transported object discrimination result, D ... Confirmation area prediction means, DA ... Judgment area, DB ... Confirmation area, E ... Transported object confirmation means, Ej ... Transported object confirmation information, G ... Transported object posture change determination means, Gij ... Transport Object attitude change determination information, H ... Transported object attitude change setting means

Claims (9)

搬送物を搬送路に沿って搬送し、前記搬送路の途中に前記搬送物の姿勢が変更される姿勢変更箇所を有する搬送装置と、
前記搬送物の画像を取得する画像取得手段と、
前記姿勢変更箇所より上流側に設定された判別領域で前記搬送物の画像部分を画像処理して前記搬送物の姿勢に関する搬送物判別情報を得る搬送物判別手段と、
前記搬送物判別情報が前記搬送物の姿勢変更を要するものである場合に前記姿勢変更箇所において前記搬送物の姿勢変更を実施する搬送物姿勢変更手段と、
前記搬送物姿勢変更手段による姿勢変更後の前記搬送物の画像部分を画像処理して前記搬送物の姿勢に関する搬送物確認情報を得る搬送物確認手段と、
を具備する搬送システム。
A transport device that transports a transported object along a transport path and has a posture changing portion in which the posture of the transported object is changed in the middle of the transport path.
An image acquisition means for acquiring an image of the transported object, and
A carrier discriminating means that obtains transport discrimination information regarding the posture of the transport by performing image processing on an image portion of the transport in a discrimination region set upstream from the posture change location.
When the conveyed object discrimination information requires the attitude change of the conveyed object, the conveyed object attitude changing means for changing the posture of the conveyed object at the posture change location, and the conveyed object attitude changing means.
The conveyed object confirmation means for obtaining the conveyed object confirmation information regarding the attitude of the conveyed object by performing image processing on the image portion of the conveyed object after the attitude is changed by the conveyed object attitude changing means.
A transport system equipped with.
前記搬送物判別情報と前記搬送物確認情報との関係を示す搬送物姿勢変更情報を求める搬送物姿勢変更判定手段をさらに具備する、
請求項1に記載の搬送システム。
Further provided with a transported object posture change determining means for obtaining the transported object posture change information indicating the relationship between the transported object discrimination information and the transported object confirmation information.
The transport system according to claim 1.
前記搬送物確認手段は、前記搬送物が前記姿勢変更箇所において前記搬送物姿勢変更手段により姿勢変更された後に配置される位置又は範囲に設定された確認領域の画像部分を画像処理することによって前記搬送物確認情報を求める、
請求項1又は2に記載の搬送システム。
The conveyed object confirmation means said by performing image processing on an image portion of a confirmation area set in a position or range to be arranged after the conveyed object is changed in posture by the conveyed object posture changing means at the posture changing portion. Request information for confirmation of goods to be transported,
The transport system according to claim 1 or 2.
前記確認領域は、前記判別領域の画像部分を含む前記画像に対して既定の時間だけ経過した時点以降に撮影された別の前記画像において、前記姿勢変更箇所に対して既定の位置関係を有する画像部分に設定される、
請求項3に記載の搬送システム。
The confirmation area is an image having a predetermined positional relationship with respect to the posture change portion in another image taken after a predetermined time elapses with respect to the image including the image portion of the discrimination area. Set in the part,
The transport system according to claim 3.
前記確認領域の位置又は範囲を前記画像ごと若しくは前記搬送物ごとに予測する確認領域予測手段をさらに具備する、
請求項3又は4に記載の搬送システム。
Further provided with a confirmation area prediction means for predicting the position or range of the confirmation area for each image or each transported object.
The transport system according to claim 3 or 4.
前記搬送物姿勢変更手段の作動態様を制御する姿勢変更制御部をさらに具備し、
前記姿勢変更制御部は、前記搬送物確認情報に応じて前記搬送物姿勢変更手段の作動態様を自動的に設定する、
請求項1-5の何れか一項に記載の搬送システム。
Further, a posture change control unit for controlling the operation mode of the transported object posture change means is provided.
The posture change control unit automatically sets the operation mode of the transported object posture changing means according to the transported object confirmation information.
The transport system according to any one of claims 1-5.
前記搬送物姿勢変更手段は、前記搬送物に気流を吹き付けることによって姿勢を変更する、
請求項6のいずれか一項に記載の搬送システム。
The transported object posture changing means changes the posture by blowing an air flow on the transported object.
The transport system according to any one of claims 6.
前記作動態様は、前記気流の吹付タイミングと吹付圧の少なくとも一つである、
請求項7に記載の搬送システム。
The operating mode is at least one of the blowing timing and the blowing pressure of the air flow.
The transport system according to claim 7.
前記判定領域及び前記確認領域は、いずれも、前記画像の内部に含まれる領域である、
請求項3-5のいずれか一項に記載の搬送システム。
Both the determination area and the confirmation area are areas included inside the image.
The transport system according to any one of claims 3-5.
JP2020133512A 2020-08-06 2020-08-06 Conveyor system Active JP7302881B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020133512A JP7302881B2 (en) 2020-08-06 2020-08-06 Conveyor system
CN202110761813.2A CN114056899A (en) 2020-08-06 2021-07-06 Conveying system
KR1020210092188A KR20220018414A (en) 2020-08-06 2021-07-14 Conveying system
TW110126089A TWI843004B (en) 2020-08-06 2021-07-15 Conveying system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020133512A JP7302881B2 (en) 2020-08-06 2020-08-06 Conveyor system

Publications (2)

Publication Number Publication Date
JP2022029912A true JP2022029912A (en) 2022-02-18
JP7302881B2 JP7302881B2 (en) 2023-07-04

Family

ID=80233288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020133512A Active JP7302881B2 (en) 2020-08-06 2020-08-06 Conveyor system

Country Status (3)

Country Link
JP (1) JP7302881B2 (en)
KR (1) KR20220018414A (en)
CN (1) CN114056899A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013173611A (en) * 2012-02-27 2013-09-05 Sinfonia Technology Co Ltd Workpiece feeding device
JP2017121995A (en) * 2016-01-08 2017-07-13 株式会社ダイシン Conveyance object discrimination control system and conveyance device
JP2019018974A (en) * 2017-07-19 2019-02-07 ファナック株式会社 Feeder circulating workpiece, and carrier device comprising feeder
JP2020161776A (en) * 2019-03-28 2020-10-01 株式会社村田製作所 Electrostatic induction attraction type carrier of visual inspection apparatus and visual inspection apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3463585B2 (en) 1998-12-07 2003-11-05 神鋼電機株式会社 Parts feeder
JP3922827B2 (en) 1999-03-18 2007-05-30 Ntn株式会社 Vibrating parts feeder
JP6884398B2 (en) 2018-03-24 2021-06-09 株式会社ダイシン Judgment device for transported objects and transport system using this

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013173611A (en) * 2012-02-27 2013-09-05 Sinfonia Technology Co Ltd Workpiece feeding device
JP2017121995A (en) * 2016-01-08 2017-07-13 株式会社ダイシン Conveyance object discrimination control system and conveyance device
JP2019018974A (en) * 2017-07-19 2019-02-07 ファナック株式会社 Feeder circulating workpiece, and carrier device comprising feeder
JP2020161776A (en) * 2019-03-28 2020-10-01 株式会社村田製作所 Electrostatic induction attraction type carrier of visual inspection apparatus and visual inspection apparatus

Also Published As

Publication number Publication date
KR20220018414A (en) 2022-02-15
TW202222665A (en) 2022-06-16
CN114056899A (en) 2022-02-18
JP7302881B2 (en) 2023-07-04

Similar Documents

Publication Publication Date Title
JP6189978B2 (en) Conveyed object discrimination control system and conveying apparatus
KR102633645B1 (en) Conveying control system and conveying apparatus
JP6154406B2 (en) Conveyed object inspection system and conveying apparatus
JP6884398B2 (en) Judgment device for transported objects and transport system using this
JP2005233730A (en) Component inspection device
JP2022029912A (en) Conveyance system
JP2005172608A (en) Appearance inspecting apparatus
TWI843004B (en) Conveying system
TWI834046B (en) Conveyor system
JP2022014615A (en) Conveyance system
JP7333546B2 (en) Object recognition device and object transport system using the same
JP7171313B2 (en) Control method for imaging device, imaging device, control program, recording medium, and manufacturing method for parts
JP7481046B2 (en) Method and system for controlling the attitude of transported objects
JP7343186B2 (en) Conveyed object detection processing system and conveyance device
JP2022085842A (en) Attitude control method of conveyance object, and conveying system
JP7470926B2 (en) IMAGE PROCESSING METHOD, PROGRAM, AND IMAGE PROCESSING SYSTEM
JP2022059301A (en) Conveyance control system and conveying device
JP2022118292A (en) Defective determination system, defective determination method by defective determination system, and program
CN117781952A (en) Method and device for detecting concentricity of fish-eye needle and method for detecting defective products
JPH07196130A (en) Device for and method of checking article with the use of image processing
JP2017072529A (en) Inspection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220412

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230615

R150 Certificate of patent or registration of utility model

Ref document number: 7302881

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150