JP2022029562A - Gate valve device - Google Patents

Gate valve device Download PDF

Info

Publication number
JP2022029562A
JP2022029562A JP2020132893A JP2020132893A JP2022029562A JP 2022029562 A JP2022029562 A JP 2022029562A JP 2020132893 A JP2020132893 A JP 2020132893A JP 2020132893 A JP2020132893 A JP 2020132893A JP 2022029562 A JP2022029562 A JP 2022029562A
Authority
JP
Japan
Prior art keywords
fluid
pipe
pressurizing chamber
valve
support member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020132893A
Other languages
Japanese (ja)
Other versions
JP7490229B2 (en
Inventor
喜久雄 斎藤
Kikuo Saito
昭人 戸継
Akito Totsugi
充弘 森
Mitsuhiro Mori
将人 津崎
Masato Tsuzaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Waterworks Technology Development Organization Co Ltd
Original Assignee
Waterworks Technology Development Organization Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Waterworks Technology Development Organization Co Ltd filed Critical Waterworks Technology Development Organization Co Ltd
Priority to JP2020132893A priority Critical patent/JP7490229B2/en
Publication of JP2022029562A publication Critical patent/JP2022029562A/en
Application granted granted Critical
Publication of JP7490229B2 publication Critical patent/JP7490229B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fluid-Driven Valves (AREA)

Abstract

To provide a gate valve device which can attain a high fluid blocking performance and enables a user to grasp a closing operation state intuitively.SOLUTION: A gate valve device includes: a valve body V having an elastic seal member 3 which can adhere to a pipe inner wall surface 1a of a fluid pipe 1 to block a pipe inner passage; and a valve support member 53 which sends the valve body V into the pipe through a through hole 4 formed at a pipe peripheral wall 1A of the fluid pipe 1 and may reciprocate. The valve body V includes: a fluid compression chamber 7 in which a pressure of the fluid increases in conjunction with sending motion of the valve support member 53 in a state that a part of the valve body V contacts with a bottom part of the pipe inner wall surface 1a; and adhesion operation means 8 which causes the elastic seal member 3 to adhere to the pipe inner wall surface 1a in a passage blocking state with fluid having the pressure increased in the fluid compression chamber 7.SELECTED DRAWING: Figure 1

Description

本発明は、流体管の管内壁面に密着して管内流路を遮断可能な弾性シール部材を有する弁体と、前記弁体を前記流体管の管周壁に形成された貫通孔から管内に送り込む往復移動自在な弁支持部材と、が備えられている仕切弁装置に関する。 The present invention reciprocates a valve body having an elastic sealing member that is in close contact with the inner wall surface of the fluid tube and can block the flow path in the tube, and the valve body is sent into the tube through a through hole formed in the peripheral wall of the fluid tube. The present invention relates to a sluice valve device provided with a movable valve support member.

上述の仕切弁装置として、特許文献1に示す遮断栓が存在する。この遮断栓では、弁体の弾性シール部材が、水等の充填材の供給によって拡張する袋状の栓本体から構成されている。栓本体の口部には、弁支持部材である棒状体が移動自在に挿通される筒状体が設けられ、棒状体の上端部には、ポンプに接続された供給管が螺合接続されている。棒状体には、ポンプから供給管を介して送給される充填材を栓本体内に供給するための供給路が形成されている。棒状体の下端部には、流体管の頂部の貫通孔(挿着孔)と対向して流体管(管体)の底部に穿設された挿通孔に嵌入可能な小径部が形成されている。
そして、ポンプから供給管を介して送給される充填材を栓本体内に供給するすると、栓本体は拡張して管内壁面と密着し、流体の下流側への流出及び貫通孔(挿着孔)等からの漏洩が阻止され、管内流路が遮断される。
As the above-mentioned sluice valve device, there is a shutoff plug shown in Patent Document 1. In this blocking plug, the elastic sealing member of the valve body is composed of a bag-shaped plug body that expands by supplying a filler such as water. A cylindrical body through which a rod-shaped body, which is a valve support member, is movably inserted is provided at the mouth of the plug body, and a supply pipe connected to the pump is screwed and connected to the upper end of the rod-shaped body. There is. The rod-shaped body is formed with a supply path for supplying the filler supplied from the pump via the supply pipe into the plug body. At the lower end of the rod-shaped body, a small diameter portion that can be fitted into the insertion hole formed in the bottom of the fluid tube (tube body) facing the through hole (insertion hole) at the top of the fluid tube is formed. ..
Then, when the filler supplied from the pump via the supply pipe is supplied into the plug body, the plug body expands and comes into close contact with the inner wall surface of the pipe, and the fluid flows out to the downstream side and the through hole (insertion hole). ) Etc. are prevented from leaking, and the flow path in the pipe is blocked.

特開平10-311488号公報Japanese Unexamined Patent Publication No. 10-31488

上述の遮断栓では、水等の充填材を栓本体内に供給するためのポンプや供給管等の充填材供給設備を準備する必要がある。また、栓本体内に既設管内の水道水を供給することが考えられるが、既設管内の水圧だけでは栓本体の止水形態の保持力が弱く、止水不良を招来する可能性がある。さらに、水道水を充填した栓本体を弁棒の回転操作で管内に送り込む構造の場合では、締め切り操作時の弁棒の操作トルクが低いため、締め切り時の手応えがなく、締め切り不足もしくは締め切り過剰を招来する可能性がある。 In the above-mentioned shutoff plug, it is necessary to prepare a filler supply facility such as a pump or a supply pipe for supplying a filler such as water into the stopper body. Further, it is conceivable to supply tap water in the existing pipe to the inside of the plug body, but the holding power of the water stop form of the plug body is weak only by the water pressure in the existing pipe, which may lead to poor water stoppage. Furthermore, in the case of a structure in which the tap body filled with tap water is sent into the pipe by rotating the valve stem, the operating torque of the valve stem at the time of the deadline operation is low, so there is no response at the time of the deadline, and the deadline is insufficient or the deadline is excessive. May be invited.

この実情に鑑み、本発明の主たる課題は、弁支持部材の送り込みによる加圧を利用した合理的な改造により、高い流体遮断性能(止水性能)を得ることができ、しかも、締め切り操作状態を感覚的に把握することのできる仕切弁装置を提供する点にある。 In view of this situation, the main problem of the present invention is that high fluid shutoff performance (water stoppage performance) can be obtained by rational modification using pressurization by feeding the valve support member, and the deadline operation state can be determined. The point is to provide a sluice valve device that can be grasped intuitively.

本発明の第1特徴構成は、流体管の管内壁面に密着して管内流路を遮断可能な弾性シール部材を有する弁体と、前記弁体を前記流体管の管周壁に形成された貫通孔から管内に送り込む往復移動自在な弁支持部材と、が備えられている仕切弁装置であって、
前記弁体には、それの一部が前記管内壁面の底部に当接した状態での前記弁支持部材の送り込み移動に伴って流体の圧力が上昇する流体加圧室と、前記流体加圧室内で上昇した圧力流体で前記弾性シール部材を前記管内壁面に対して流路遮断状態に密着作動させる密着作動手段と、が備えられている点にある。
The first characteristic configuration of the present invention is a valve body having an elastic sealing member that is in close contact with the inner wall surface of the fluid pipe and can block the flow path in the pipe, and a through hole formed in the peripheral wall of the fluid pipe. It is a sluice valve device equipped with a valve support member that can be reciprocated and moved into the pipe.
The valve body includes a fluid pressurizing chamber in which the fluid pressure rises as the valve support member is fed and moved in a state where a part of the valve body is in contact with the bottom of the inner wall surface of the pipe, and the fluid pressurizing chamber. The point is that a contact operating means for causing the elastic sealing member to be in close contact with the inner wall surface of the pipe in a flow path blocking state with the pressure fluid increased in the above is provided.

本構成によれば、流体加圧室及び密着作動手段を備えた弁体を流体管の貫通孔から管内に送り込み、弁体の一部を管内壁面の底部に当接させる。この当接状態から弁支持部材を送り込むと、弁支持部材の送り込み移動に伴って弁体の流体加圧室内の流体圧力が上昇する。これによって密着作動手段が作動し、流体加圧室内で上昇した圧力流体で弾性シール部材が管内壁面に対して流路遮断状態に密着する。
したがって、従来装置のように、弁体内に加圧流体を供給するためのポンプや供給管等の圧力流体供給設備を準備する必要がなく、圧力流体を利用した流体遮断構造(止水構造)の簡素化を図ることができる。しかも、弁支持部材の送り込み移動に伴う流体加圧室内の流体加圧によって、締め切り時における弁支持部材の操作トルクが高くなる。これにより、締め切り操作状態を感覚的に把握し易く、締め切り操作を過不足なく的確に行うことができる。
According to this configuration, a valve body provided with a fluid pressurizing chamber and a close contact operating means is sent into the pipe through a through hole of the fluid pipe, and a part of the valve body is brought into contact with the bottom of the inner wall surface of the pipe. When the valve support member is fed from this contact state, the fluid pressure in the fluid pressurizing chamber of the valve body rises as the valve support member is fed and moved. As a result, the close contact operating means is activated, and the elastic sealing member is brought into close contact with the inner wall surface of the pipe in a flow path blocking state by the pressure fluid rising in the fluid pressurizing chamber.
Therefore, unlike the conventional device, it is not necessary to prepare a pressure fluid supply facility such as a pump or a supply pipe for supplying the pressurized fluid into the valve body, and the fluid shutoff structure (water stop structure) using the pressure fluid is used. It can be simplified. Moreover, the operating torque of the valve support member at the time of deadline increases due to the fluid pressurization in the fluid pressurization chamber accompanying the feeding movement of the valve support member. As a result, it is easy to intuitively grasp the deadline operation state, and the deadline operation can be accurately performed without excess or deficiency.

本発明の第2特徴構成は、前記流体加圧室には、前記流体管内の流体を導入する流体導入口が形成され、前記弁支持部材には、前記流体加圧室の内面に沿った移動によって前記流体導入口を開閉自在で、且つ、前記流体導入口を密閉した状態での送り込み側への移動によって前記流体加圧室内の流体を加圧する流体加圧部が設けられ、前記密着作動手段は、前記弾性シール部材の構成部材で、前記圧力流体の供給・排出によって膨縮自在なバッグと、前記流体加圧室と前記バッグとを接続する給排接続部と、が備えられている点にある。 The second characteristic configuration of the present invention is that the fluid pressurizing chamber is formed with a fluid introduction port for introducing the fluid in the fluid pipe, and the valve support member is moved along the inner surface of the fluid pressurizing chamber. A fluid pressurizing unit is provided that can open and close the fluid introduction port and pressurizes the fluid in the fluid pressurization chamber by moving to the feeding side in a state where the fluid introduction port is closed. Is a constituent member of the elastic seal member, and includes a bag that can be expanded and contracted by supplying and discharging the pressure fluid, and a supply / discharge connection portion that connects the fluid pressurizing chamber and the bag. It is in.

本構成によれば、流体加圧室及び密着作動手段を備えた弁体を流体管の貫通孔から管内に送り込み、弁体の一部を管内壁面の底部に当接させる。この当接状態では、弁支持部材の流体加圧部は、流体加圧室の流体導入口から退避した開放状態にある。そのため、流体加圧室の流体導入口は流体管内と連通し、流体管内の圧力流体が流体加圧室内に流入する。この流入した圧力流体は給排接続部からバッグ内に供給され、バッグは流体管内の流体圧で膨張する。この時のバッグの流体遮断形態(止水形態)の保持力は十分ではない。
さらに、弁支持部材の流体加圧部を流体加圧室の内面に沿って送り込み側へ移動させると、その移動途中で流体導入口は弁支持部材の流体加圧部で密閉される。流体導入口が密閉された状態での弁支持部材の流体加圧部の移動により、流体加圧室内の流体が加圧される。この加圧された流体は給排接続部からバッグ内に供給され、バッグはより高い流体圧で膨張して管内壁面に強く密着する。
したがって、流体管内の流体を用いながらも、弁支持部材の送り込みによる流体加圧を利用した高い流体圧でバッグを膨張させることができるので、バッグを流体遮断形態(止水形態)に確実、強力に維持することができる。
According to this configuration, a valve body provided with a fluid pressurizing chamber and a close contact operating means is sent into the pipe through a through hole of the fluid pipe, and a part of the valve body is brought into contact with the bottom of the inner wall surface of the pipe. In this contact state, the fluid pressurizing portion of the valve support member is in an open state retracted from the fluid introduction port of the fluid pressurization chamber. Therefore, the fluid inlet of the fluid pressurizing chamber communicates with the inside of the fluid pipe, and the pressure fluid in the fluid pipe flows into the fluid pressurizing chamber. This inflowing pressure fluid is supplied into the bag from the supply / discharge connection portion, and the bag expands due to the fluid pressure in the fluid pipe. At this time, the holding power of the fluid blocking form (water blocking form) of the bag is not sufficient.
Further, when the fluid pressurizing portion of the valve support member is moved to the feeding side along the inner surface of the fluid pressurizing chamber, the fluid introduction port is sealed by the fluid pressurizing portion of the valve support member during the movement. The fluid in the fluid pressurizing chamber is pressurized by the movement of the fluid pressurizing portion of the valve support member in a state where the fluid inlet is closed. This pressurized fluid is supplied into the bag from the supply / discharge connection portion, and the bag expands at a higher fluid pressure and strongly adheres to the inner wall surface of the pipe.
Therefore, while using the fluid in the fluid pipe, the bag can be inflated with a high fluid pressure using the fluid pressurization by feeding the valve support member, so that the bag can be reliably and strongly in the fluid shutoff form (water stop form). Can be maintained at.

本発明の第3特徴構成は、前記流体加圧室内には非圧縮性流体が充填され、前記弁支持部材には、前記弾性シール部材が前記管内壁面の底部に当接した状態での送り込み移動に伴って前記流体加圧室内の流体を加圧する流体加圧部が設けられ、前記密着作動手段は、前記流体加圧室内で上昇した流体圧の受圧面を有し、且つ、前記受圧面に作用する流体圧で前記弾性シール部材を送り込み方向に対して交差した交差方向の前記管内壁面の側面部に対して圧接させる可動片を備える点にある。 The third characteristic configuration of the present invention is that the fluid pressurizing chamber is filled with a non-compressible fluid, and the valve support member is fed and moved in a state where the elastic sealing member is in contact with the bottom of the inner wall surface of the pipe. A fluid pressurizing section for pressurizing the fluid in the fluid pressurizing chamber is provided, and the close contact operating means has a pressure receiving surface of the fluid pressure increased in the fluid pressurizing chamber, and the pressure receiving surface has a pressure receiving surface. The point is that the elastic sealing member is provided with a movable piece that is pressed against the side surface portion of the inner wall surface of the pipe in the crossing direction intersecting the feeding direction by the acting fluid pressure.

本構成によれば、流体加圧室及び可動片を備える弁体を流体管の貫通孔から管内に送り込み、弁体の弾性シール部材を管内壁面の底部に当接させる。この当接状態で弁支持部材を送り込み移動させると、流体加圧室内に充填された非圧縮性流体が弁支持部材の流体加圧部によって加圧される。この加圧された流体圧が可動片の受圧面に作用し、可動片は送り込み方向に対して交差方向に離間移動し、弾性シール部材を管内壁面の側面部に強く圧接させる。
したがって、弁支持部材の送り込みによる流体加圧を利用した高い流体圧で可動片を押圧作動させることができるので、弾性シール部材を流体遮断形態(止水形態)に確実、強力に維持することができる。
According to this configuration, the valve body provided with the fluid pressurizing chamber and the movable piece is sent into the pipe through the through hole of the fluid pipe, and the elastic sealing member of the valve body is brought into contact with the bottom of the inner wall surface of the pipe. When the valve support member is sent and moved in this contact state, the incompressible fluid filled in the fluid pressurizing chamber is pressurized by the fluid pressurizing portion of the valve support member. This pressurized fluid pressure acts on the pressure receiving surface of the movable piece, and the movable piece moves apart in the crossing direction with respect to the feeding direction, and the elastic sealing member is strongly pressed against the side surface of the inner wall surface of the pipe.
Therefore, since the movable piece can be pressed and operated with a high fluid pressure using the fluid pressurization by feeding the valve support member, the elastic sealing member can be reliably and strongly maintained in the fluid shutoff form (water stop form). can.

本発明の第4特徴構成は、前記弁体には、前記バッグを支持し、且つ、前記弁支持部材に対して送り込み方向の一定範囲内で相対移動自在に接合される芯金が備えられ、前記芯金には、前記弁支持部材の前記流体加圧部が送り込み方向に沿って移動自在な前記流体加圧室を形成する加圧室形成筒部が設けられ、前記芯金には、前記加圧室形成筒部に形成された前記流体導入口と前記流体管内とを連通する連通路が形成されている点にある。 The fourth characteristic configuration of the present invention is that the valve body is provided with a core metal that supports the bag and is joined to the valve support member so as to be relatively movable within a certain range in the feeding direction. The core metal is provided with a pressure chamber forming cylinder portion that forms the fluid pressure chamber in which the fluid pressurizing portion of the valve support member is movable along the feeding direction, and the core metal is provided with the pressure chamber forming cylinder portion. The point is that a communication passage is formed to communicate the fluid introduction port formed in the pressurizing chamber forming cylinder portion and the inside of the fluid pipe.

本構成によれば、流体加圧室及び密着作動手段を備えた弁体を流体管の貫通孔から管内に送り込み、弁体の一部を管内壁面の底部に当接させる。この当接状態では、弁支持部材の流体加圧部は、流体加圧室を形成する加圧室形成筒部の流体導入口から退避した開放状態にある。そのため、流体加圧室の流体導入口は、芯金の連通路を経由して流体管内と連通し、流体管内の圧力流体が加圧室形成筒部内の流体加圧室に流入する。この流入した圧力流体は給排接続部からバッグ内に供給され、バッグは流体管内の流体圧で膨張する。この時のバッグの流体遮断形態(止水形態)の保持力は十分ではない。
さらに、芯金に対して弁支持部材の流体加圧部を加圧室形成筒部の内面に沿って送り込み側へ移動させると、その移動途中で流体導入口は弁支持部材の流体加圧部で密閉される。流体導入口が密閉された状態での弁支持部材の流体加圧部の移動により、流体加圧室内の流体が加圧される。この加圧された流体が給排接続部からバッグ内に供給され、バッグはより高い流体圧で膨張して管内壁面に強く密着する。
したがって、弁体の芯金に、流体導入口及び流体加圧室を備えた加圧室形成筒部を設けるだけであるから、弁体構造の簡素化を図ることができる。しかも、芯金に流体加圧室を直接形成する場合に比較して、弁支持部材の流体加圧部が移動する加圧室形成筒部の内周面の加工をコスト面で有利に実行することができる。
According to this configuration, a valve body provided with a fluid pressurizing chamber and a close contact operating means is sent into the pipe through a through hole of the fluid pipe, and a part of the valve body is brought into contact with the bottom of the inner wall surface of the pipe. In this contact state, the fluid pressurizing portion of the valve support member is in an open state retracted from the fluid introduction port of the pressurizing chamber forming cylinder portion forming the fluid pressurizing chamber. Therefore, the fluid introduction port of the fluid pressurizing chamber communicates with the inside of the fluid pipe via the communication passage of the core metal, and the pressure fluid in the fluid pipe flows into the fluid pressurizing chamber in the pressurizing chamber forming cylinder portion. This inflowing pressure fluid is supplied into the bag from the supply / discharge connection portion, and the bag expands due to the fluid pressure in the fluid pipe. At this time, the holding power of the fluid blocking form (water blocking form) of the bag is not sufficient.
Further, when the fluid pressurizing portion of the valve support member is moved to the feeding side along the inner surface of the pressurizing chamber forming cylinder portion with respect to the core metal, the fluid introduction port becomes the fluid pressurizing portion of the valve support member during the movement. It is sealed with. The fluid in the fluid pressurizing chamber is pressurized by the movement of the fluid pressurizing portion of the valve support member in a state where the fluid inlet is closed. This pressurized fluid is supplied into the bag from the supply / discharge connection portion, and the bag expands at a higher fluid pressure and strongly adheres to the inner wall surface of the pipe.
Therefore, since the core metal of the valve body is only provided with the pressurizing chamber forming cylinder portion provided with the fluid introduction port and the fluid pressurizing chamber, the valve body structure can be simplified. Moreover, compared to the case where the fluid pressurizing chamber is directly formed on the core metal, the processing of the inner peripheral surface of the pressurizing chamber forming cylinder portion to which the fluid pressurizing portion of the valve support member moves is executed advantageously in terms of cost. be able to.

本発明の第5特徴構成は、前記密着作動手段には、管内側に送り込み移動される前記弁支持部材との当接により、前記受圧面に流体圧が作用している前記可動片を前記交差方向に強制的に離間移動させる強制離間移動手段が備えられている点にある。 The fifth characteristic configuration of the present invention is that the close contact operating means intersects the movable piece on which the fluid pressure acts on the pressure receiving surface due to the contact with the valve support member that is sent and moved inside the pipe. The point is that a forced separation moving means for forcibly moving the distance in the direction is provided.

本構成によれば、弁体の弾性シール部材を管内壁面の底部に当接させた状態で弁支持部材を送り込み移動させ、流体加圧室内に充填された非圧縮性流体を弁支持部材の流体加圧部で加圧する。この加圧された流体圧は可動片の受圧面に作用し、可動片は送り込み方向に対して交差方向に離間移動する。この状態から弁支持部材がさらに送り込み移動されると、この弁支持部材との当接によって強制離間移動手段が作動する。これにより、可動片に対して交差方向の強制離間移動力が付与される。そのため、弾性シール部材は、加圧された流体圧と強制離間移動力との協働で管内壁面の側面部に強力に圧接され、高い流体遮断状態(止水状態)が維持される。
したがって、弁支持部材の送り込みによる流体加圧を利用した高い流体圧と、弁支持部材との当接に伴う強制離間移動力との協働により、可動片を交差方向に離間移動させることができるので、弾性シール部材を流体遮断形態(止水形態)に一層確実、強力に維持することができる。しかも。弁支持部材の送り込み移動による流体加圧及び強制離間移動力の付与により、締め切り操作状態をより感覚的に把握し易く、締め切り操作を過不足なく的確に行うことができる。
According to this configuration, the valve support member is sent and moved in a state where the elastic seal member of the valve body is in contact with the bottom of the inner wall surface of the pipe, and the incompressible fluid filled in the fluid pressurizing chamber is transferred to the fluid of the valve support member. Pressurize with the pressurizing part. This pressurized fluid pressure acts on the pressure receiving surface of the movable piece, and the movable piece moves apart in the crossing direction with respect to the feeding direction. When the valve support member is further sent and moved from this state, the forced separation moving means is activated by the contact with the valve support member. As a result, a forced separation moving force in the crossing direction is applied to the movable piece. Therefore, the elastic seal member is strongly pressed against the side surface of the inner wall surface of the pipe by the cooperation of the pressurized fluid pressure and the forced separation moving force, and a high fluid shutoff state (water stop state) is maintained.
Therefore, the movable piece can be separated and moved in the crossing direction by the cooperation of the high fluid pressure utilizing the fluid pressurization by feeding the valve support member and the forced separation moving force accompanying the contact with the valve support member. Therefore, the elastic sealing member can be more reliably and strongly maintained in the fluid blocking form (water blocking form). Moreover. By applying fluid pressurization and forced separation movement force by feeding and moving the valve support member, it is easier to grasp the deadline operation state more intuitively, and the deadline operation can be performed accurately without excess or deficiency.

本発明の第6特徴構成は、前記弁体には、前記弾性シール部材を支持し、且つ、前記弁支持部材に対して送り込み方向の一定範囲内で相対移動自在に接合される芯金が備えられ、前記芯金には、前記弁支持部材の前記流体加圧部が送り込み方向に沿って移動自在な前記流体加圧室と、前記可動片をそれの前記受圧面が前記流体加圧室に臨む状態で前記交差方向に移動自在に支承する支承部と、が設けられている点にある。 In the sixth characteristic configuration of the present invention, the valve body is provided with a core metal that supports the elastic sealing member and is joined to the valve support member so as to be relatively movable within a certain range in the feeding direction. The core metal has a fluid pressurizing chamber in which the fluid pressurizing portion of the valve support member can move along a feeding direction, and a movable piece having a pressure receiving surface thereof in the fluid pressurizing chamber. The point is that a support portion that is movably supported in the crossing direction while facing the surface is provided.

本構成によれば、流体加圧室及び可動片を備える弁体を流体管の貫通孔から管内に送り込み、弁体の弾性シール部材を管内壁面の底部に当接させる。この当接状態で弁支持部材を芯金に対して送り込み移動させると、芯金の流体加圧室内に充填された非圧縮性流体が弁支持部材の流体加圧部によって加圧される。この加圧された流体圧は芯金の支承部に支承されている可動片の受圧面に作用する。可動片は、芯金の支承部に対して交差方向に離間移動し、弾性シール部材を管内壁面の側面部に強く圧接させる。
したがって、弁体の芯金に、流体加圧室及び可動片の支承部を設けるだけであるから、弾性シール部材を流体遮断形態(止水形態)に確実、強力に維持することのできる弁体構造の簡素化を図ることができる。
According to this configuration, the valve body provided with the fluid pressurizing chamber and the movable piece is sent into the pipe through the through hole of the fluid pipe, and the elastic sealing member of the valve body is brought into contact with the bottom of the inner wall surface of the pipe. When the valve support member is sent and moved with respect to the core metal in this contact state, the incompressible fluid filled in the fluid pressure chamber of the core metal is pressurized by the fluid pressure portion of the valve support member. This pressurized fluid pressure acts on the pressure receiving surface of the movable piece supported by the bearing portion of the core metal. The movable piece moves away from the bearing portion of the core metal in the crossing direction, and the elastic sealing member is strongly pressed against the side surface portion of the inner wall surface of the pipe.
Therefore, since the core metal of the valve body is only provided with the fluid pressurizing chamber and the support portion of the movable piece, the elastic sealing member can be reliably and strongly maintained in the fluid blocking form (water blocking form). The structure can be simplified.

本発明の第7特徴構成は、前記強制離間移動手段は、前記弁支持部材の前記流体加圧部に設けられた第1傾斜部と、当該第1傾斜部と当接可能な状態で前記可動片に形成され第2傾斜部と、を備え、前記第1傾斜部と前記第2傾斜部との当接により、前記弁支持部材の送り込み方向の移動力を前記可動片の強制離間移動力に変換する構成にしてある点にある。 The seventh characteristic configuration of the present invention is that the forced separation moving means is movable in a state where it can come into contact with the first inclined portion provided in the fluid pressurizing portion of the valve support member and the first inclined portion. A second inclined portion formed on the piece is provided, and the moving force in the feeding direction of the valve support member is converted into the forced separation moving force of the movable piece by the contact between the first inclined portion and the second inclined portion. The point is that it is configured to be converted.

本構成によれば、弁体の弾性シール部材を管内壁面の底部に当接させた状態で弁支持部材を送り込み移動させ、流体加圧室内に充填された非圧縮性流体を弁支持部材の流体加圧部で加圧する。この加圧された流体圧は可動片の受圧面に作用し、可動片は送り込み方向に対して交差方向に離間移動する。この状態では弁支持部材の第1傾斜部と可動片の第2傾斜部とは非接触状態にある。この状態から弁支持部材がさらに送り込み移動されると、弁支持部材の第1傾斜部と可動片の第2傾斜部との当接によって、弁支持部材の送り込み方向の移動力が可動片の交差方向での強制離間移動力に変換される。そのため、弾性シール部材は、加圧された流体圧と強制離間移動力との協働で管内壁面の側面部に強力に圧接され、高い流体遮断状態(止水状態)が維持される。
したがって、弁支持部材の流体加圧部に第1傾斜部を設け、可動片に第2傾斜部を設けるだけであるから、弾性シール部材を流体遮断形態(止水形態)に確実、強力に維持することのできる弁体構造の簡素化を図ることができる。
According to this configuration, the valve support member is sent and moved in a state where the elastic seal member of the valve body is in contact with the bottom of the inner wall surface of the pipe, and the incompressible fluid filled in the fluid pressurizing chamber is transferred to the fluid of the valve support member. Pressurize with the pressurizing part. This pressurized fluid pressure acts on the pressure receiving surface of the movable piece, and the movable piece moves apart in the crossing direction with respect to the feeding direction. In this state, the first inclined portion of the valve support member and the second inclined portion of the movable piece are in a non-contact state. When the valve support member is further fed and moved from this state, the moving force in the feeding direction of the valve support member intersects the movable pieces due to the contact between the first inclined portion of the valve support member and the second inclined portion of the movable piece. It is converted into a forced separation movement force in the direction. Therefore, the elastic seal member is strongly pressed against the side surface of the inner wall surface of the pipe by the cooperation of the pressurized fluid pressure and the forced separation moving force, and a high fluid shutoff state (water stop state) is maintained.
Therefore, since the first inclined portion is provided in the fluid pressure portion of the valve support member and the second inclined portion is provided in the movable piece, the elastic seal member is reliably and strongly maintained in the fluid blocking form (water blocking form). It is possible to simplify the valve body structure that can be used.

第1実施形態の仕切弁装置の管底当たり状態の全体断面図Overall sectional view of the sluice valve device of the first embodiment in a state of contact with the bottom of the pipe. 管底当たり状態にある弁体の正面視での拡大半断面図Enlarged half-section view of the valve body in front of the pipe bottom 管底当たり状態にある弁体の側面視での拡大断面図Enlarged cross-sectional view of the valve body in the state of hitting the bottom of the pipe 締め切り時の全体断面図Overall sectional view at the time of deadline 締め切り時の弁体の正面視での拡大断面図Enlarged cross-sectional view of the valve body at the time of deadline when viewed from the front 締め切り時の弁体の側面視での拡大断面図Enlarged cross-sectional view of the valve body at the time of deadline 第2実施形態の仕切弁装置の管底当たり状態の全体断面図Overall sectional view of the sluice valve device of the second embodiment in a state of contact with the bottom of the pipe. 管内への送り込み途中にある弁体の正面視での拡大断面図Enlarged cross-sectional view of the valve body in the middle of feeding into the pipe in front view 管底当たり状態にある弁体の正面視での拡大断面図Enlarged cross-sectional view of the valve body in front of the pipe bottom 締め切り時の弁体の正面視での拡大半断面図Enlarged half-section view of the valve body in front view at the deadline 第3実施形態の仕切弁装置における最上昇位置(最大開弁操作位置)での全体断面図Overall sectional view at the highest position (maximum valve opening operation position) in the sluice valve device of the third embodiment. 管底当たり状態にある弁体の正面視での拡大断面図Enlarged cross-sectional view of the valve body in front of the pipe bottom 締め切り途中における第1段階の止水状態での弁体の正面視での拡大断面図Enlarged cross-sectional view of the valve body in front view in the first stage of water stoppage during the deadline 締め切り途中における第2段階の止水状態での弁体の正面視での拡大断面図Enlarged cross-sectional view of the valve body in front view in the second stage water stop state during the deadline 締め切り時の弁体の正面視での拡大断面図Enlarged cross-sectional view of the valve body at the time of deadline when viewed from the front 最上昇位置(最大開弁操作位置)直前での全体断面図Overall cross-sectional view just before the highest rising position (maximum valve opening operation position)

本発明の実施形態について図面に基づいて説明する。
[第1実施形態]
流体管の一例である水道管1に設置した仕切弁装置を示す。この仕切弁装置は、水道管1に水密状態で取付けられる分割構造の筐体2と、水道管1の管内壁面1aに密着して管内流路を遮断可能な弾性シール部材3を有する弁体Vと、筐体2内の密閉された弁作動空間20において、弁体Vを水道管1の管周壁1Aの上部に不断水状態で穿設された貫通孔4から上下方向に沿って管内に送り込む弁送込機構5と、を備える。
An embodiment of the present invention will be described with reference to the drawings.
[First Embodiment]
The sluice valve device installed in the water pipe 1 which is an example of a fluid pipe is shown. This sluice valve device has a valve body V having a divided housing 2 attached to the water pipe 1 in a watertight state and an elastic sealing member 3 capable of being in close contact with the inner wall surface 1a of the water pipe 1 and blocking the in-pipe flow path. In the closed valve operating space 20 in the housing 2, the valve body V is sent into the pipe along the vertical direction from the through hole 4 formed in the upper part of the pipe peripheral wall 1A of the water pipe 1 in a continuous water state. It is provided with a valve feeding mechanism 5.

管周壁1Aの貫通孔4の直径は、図1、図2に示すように、水道管1の内径よりも小径に設定されている。弁体Vの弾性シール部材3は、図1~図3に示すように、管内壁面1aに管周方向に沿って圧接可能な管軸方向視で略U字状の管周方向シール部3Aと、この管周方向シール部3Aの両上端に連続し、且つ、貫通孔4を密封可能な平面視円形状の円環状シール部3Bと、を備える。
図2に示すように、管周方向シール部3Aにおける送り込み方向に対して管径方向で水平に交差(直交)する交差方向の幅は、貫通孔4の直径よりも小なる寸法に設定されている。また、図3に示すように、円環状シール部3Bの外径は、貫通孔4の直径よりも小なる寸法に設定されている。
As shown in FIGS. 1 and 2, the diameter of the through hole 4 of the pipe peripheral wall 1A is set to be smaller than the inner diameter of the water pipe 1. As shown in FIGS. 1 to 3, the elastic seal member 3 of the valve body V has a substantially U-shaped pipe circumferential seal portion 3A that can be pressure-contacted with the pipe inner wall surface 1a along the pipe circumferential direction. An annular seal portion 3B having a circular shape in a plan view, which is continuous with both upper ends of the pipe circumferential direction seal portion 3A and can seal the through hole 4, is provided.
As shown in FIG. 2, the width of the crossing direction that intersects (orthogonally) horizontally in the pipe radial direction with respect to the feeding direction in the pipe circumferential direction seal portion 3A is set to a dimension smaller than the diameter of the through hole 4. There is. Further, as shown in FIG. 3, the outer diameter of the annular seal portion 3B is set to a dimension smaller than the diameter of the through hole 4.

筐体2は、図1に示すように、交差方向で相対向する左右一対の下部筐体部材21と、弁作動空間20の下半側を形成する中間筐体部材22と、弁作動空間20の上半側を形成する上部筐体部材23と、弁送込機構5の弁棒51の操作軸部51Aを上方に突出する状態で回転のみ自在に支承する蓋部材24と、を備える。
一対の下部筐体部材21及び中間筐体部材22には、管周方向で相対向するフランジ部21A,22Aの分割面間及び水道管1の外周面との間を密封する弾性パッキン25を装着する。一対の下部筐体部材21と中間筐体部材22とは、管周方向で相対向するフランジ部21A,21A同士及びフランジ部21A,22A同士をそれぞれボルト・ナット26で締結することにより連結されている。
中間筐体部材22の上側フランジ部22Bと上部筐体部材23の下側フランジ部23Aとは、それらの接合面間を密封するOリング27を介装した状態でボルト28にて締結されている。上部筐体部材23の上側フランジ部23Bと蓋部材24とは、それらの接合面間を密封するOリング29を介装した状態でボルト30にて締結されている。
As shown in FIG. 1, the housing 2 includes a pair of left and right lower housing members 21 facing each other in the crossing direction, an intermediate housing member 22 forming the lower half side of the valve operating space 20, and a valve operating space 20. It includes an upper housing member 23 forming the upper half side, and a lid member 24 that freely rotates only the operation shaft portion 51A of the valve rod 51 of the valve feeding mechanism 5 so as to project upward.
The pair of lower housing members 21 and the intermediate housing member 22 are equipped with elastic packing 25 that seals between the divided surfaces of the flange portions 21A and 22A facing each other in the pipe circumferential direction and between the outer peripheral surfaces of the water pipe 1. do. The pair of lower housing members 21 and the intermediate housing member 22 are connected by fastening the flange portions 21A and 21A facing each other in the pipe circumferential direction and the flange portions 21A and 22A with bolts and nuts 26, respectively. There is.
The upper flange portion 22B of the intermediate housing member 22 and the lower flange portion 23A of the upper housing member 23 are fastened with bolts 28 in a state of interposing an O-ring 27 that seals between the joint surfaces thereof. .. The upper flange portion 23B of the upper housing member 23 and the lid member 24 are fastened with bolts 30 with an O-ring 29 that seals between the joint surfaces thereof.

蓋部材24には、図1に示すように、弁棒51の操作軸部51Aの外周面との間を密封するOリング31と、弁棒51の操作軸部51Aに設けた鍔部51Bが回転自在に入り込む凹部24Aが設けられている。操作軸部51Aの鍔部51Bの外径は、上部筐体部材23の上側壁に貫通形成された軸挿通孔23aの直径よりも大きい寸法に設定されている。そのため、蓋部材24の凹部24A内に配置された操作軸部51Aの鍔部51Bは、上部筐体部材23の軸挿通孔23aの開口周縁との当接により抜け止め保持されている。 As shown in FIG. 1, the lid member 24 has an O-ring 31 that seals between the valve rod 51 and the outer peripheral surface of the operation shaft portion 51A, and a flange portion 51B provided on the operation shaft portion 51A of the valve rod 51. A recess 24A that is rotatably inserted is provided. The outer diameter of the flange portion 51B of the operation shaft portion 51A is set to be larger than the diameter of the shaft insertion hole 23a formed through the upper side wall of the upper housing member 23. Therefore, the flange portion 51B of the operation shaft portion 51A arranged in the recess 24A of the lid member 24 is held in place by contact with the opening peripheral edge of the shaft insertion hole 23a of the upper housing member 23.

弁送込機構5は、図1~図3に示すように、水道管1の貫通孔4の中心を通る上下軸芯Y周りで回転自在な弁棒51と、この弁棒51に螺合されるネジコマ52と、ネジコマ52と一体的に弁棒51に沿って上下方向に往復移動自在な弁支持部材である金属製のスライドスピンドル53と、を備える。
スライドスピンドル53の上側筒部53Aには、ネジコマ52を相対回転不能な状態で側方から脱着自在に収納するコマ収納部54と、このコマ収納部54内のネジコマ52を貫通した弁棒51の下側ネジ軸部51Cが移動する下向き開口の軸移動空間55とが形成されている。
As shown in FIGS. 1 to 3, the valve feeding mechanism 5 is screwed into a valve rod 51 that is rotatable around the vertical axis Y passing through the center of the through hole 4 of the water pipe 1 and the valve rod 51. A screw piece 52 and a metal slide spindle 53 which is a valve support member that can move up and down along the valve stem 51 integrally with the screw piece 52 are provided.
In the upper cylinder portion 53A of the slide spindle 53, a top storage portion 54 for storing the screw top 52 in a state where the screw top 52 cannot be rotated relative to the side and a valve rod 51 penetrating the screw top 52 in the top storage portion 54. A shaft moving space 55 having a downward opening to which the lower screw shaft portion 51C moves is formed.

スライドスピンドル53の上側筒部53Aの外周面には、円環状の係合鍔部53Bが形成されている。この係合鍔部53Bは、弁体Vの芯金6を構成する後述の上側芯金体61の上面61aとこれに固定された筒状係合部材11の内面との間の移動規制空間12に配置されている。スライドスピンドル53の係合鍔部53Bは、筒状係合部材11の天井壁部11Aの内面との係合によって弁体Vの荷重を支持する。その荷重支持範囲は、弁作動空間20内での弁体Vの最上昇位置(最大開弁操作位置)から弁体Vが管内壁面1aの底部に当接した瞬間の管底当たり位置までの範囲となる。
管底当たり位置以降のスライドスピンドル53の送り込みに伴って係合鍔部53Bが筒状係合部材11の天井壁部11Aの内面から下方に離間する。そのため、筒状係合部材11の天井壁部11Aの内面と芯金6の上面61aとの間の上下間隔が、スライドスピンドル53と弁体Vの芯金6とを送り込み方向の一定範囲内で相対移動自在に構成する相対移動範囲となる。しかし、本実施形態では、図4に示すように、相対移動範囲の上下中央位置から芯金6の上面61a側に少し偏位した位置が最大送り込み位置に設定され、この最大送り込み位置が締め切り操作位置に構成されている。
An annular engaging collar 53B is formed on the outer peripheral surface of the upper tubular portion 53A of the slide spindle 53. The engaging flange portion 53B is a movement restricting space 12 between the upper surface 61a of the upper core metal body 61, which will be described later, which constitutes the core metal 6 of the valve body V, and the inner surface of the tubular engaging member 11 fixed to the upper surface 61a. Is located in. The engaging flange portion 53B of the slide spindle 53 supports the load of the valve body V by engaging with the inner surface of the ceiling wall portion 11A of the tubular engaging member 11. The load bearing range is the range from the highest rising position (maximum valve opening operation position) of the valve body V in the valve operating space 20 to the position where the valve body V hits the bottom of the pipe inner wall surface 1a at the moment when the valve body V abuts on the bottom of the pipe inner wall surface 1a. Will be.
The engaging flange portion 53B is separated downward from the inner surface of the ceiling wall portion 11A of the cylindrical engaging member 11 as the slide spindle 53 is fed after the position where the pipe bottom touches. Therefore, the vertical distance between the inner surface of the ceiling wall portion 11A of the tubular engaging member 11 and the upper surface 61a of the core metal 6 is within a certain range in the feeding direction of the slide spindle 53 and the core metal 6 of the valve body V. It is a relative movement range that is configured to be relatively movable. However, in the present embodiment, as shown in FIG. 4, a position slightly deviated from the vertical center position of the relative movement range toward the upper surface 61a side of the core metal 6 is set as the maximum feed position, and this maximum feed position is the deadline operation. It is configured in position.

芯金6の上面61aにおける交差方向の両端部には、中間筐体部材22の内面に形成された左右一対の昇降ガイドレール56に沿って移動案内される昇降ガイド部57が一体形成されている。 At both ends of the upper surface 61a of the core metal 6 in the crossing direction, elevating guide portions 57 that are moved and guided along a pair of left and right elevating guide rails 56 formed on the inner surface of the intermediate housing member 22 are integrally formed. ..

上述の如く構成された仕切弁装置の弁体Vには、図1~図6に示すように、それの一部が管内壁面1aの底部に当接した状態でのスライドスピンドル53の送り込み移動に伴って流体の圧力が上昇する流体加圧室7と、流体加圧室7内で上昇した圧力流体で弾性シール部材3を貫通孔4の内周面及び管内壁面1aに対して流路遮断状態に密着作動させる密着作動手段8と、が備えられている。
尚、本実施形態では、流体加圧室7内に供給される非圧縮性の流体として、水道管1内の上水を用いる。そして、図1~図6の各図において、流体加圧室7内の流体(上水)を点模様で表示する。
As shown in FIGS. 1 to 6, the valve body V of the sluice valve device configured as described above is used to feed and move the slide spindle 53 in a state where a part of the valve body V is in contact with the bottom of the inner wall surface 1a of the pipe. A fluid pressurizing chamber 7 in which the pressure of the fluid rises accordingly, and the elastic sealing member 3 is blocked by the pressure fluid rising in the fluid pressurizing chamber 7 with respect to the inner peripheral surface of the through hole 4 and the inner wall surface 1a of the pipe. The contact actuating means 8 and the contact actuating means 8 are provided.
In this embodiment, the clean water in the water pipe 1 is used as the incompressible fluid supplied in the fluid pressurizing chamber 7. Then, in each of FIGS. 1 to 6, the fluid (clean water) in the fluid pressurizing chamber 7 is displayed as a dot pattern.

そして、図1に示すように、流体加圧室7及び密着作動手段8を備えた弁体Vを水道管1の貫通孔4から管内に送り込み、弁体Vの一部を管内壁面1aの底部に当接させる。この当接状態からスライドスピンドル53を送り込むと、スライドスピンドル53の送り込み移動に伴って弁体Vの流体加圧室7内の流体圧力が上昇する。これによって密着作動手段8が作動し、流体加圧室7内で上昇した圧力流体で弾性シール部材3が管内壁面1aに対して流路遮断状態に密着する。
したがって、従来装置のように、弁体V内に加圧流体を供給するためのポンプや供給管等の圧力流体供給設備を準備する必要がなく、圧力流体を利用した流体遮断構造(止水構造)の簡素化を図ることができる。しかも、スライドスピンドル53の送り込み移動に伴う流体加圧室7内の流体加圧によって、締め切り時における弁送込機構5の弁棒51の操作トルクが高くなる。これにより、締め切り操作状態を感覚的に把握し易く、締め切り操作を過不足なく的確に行うことができる。
Then, as shown in FIG. 1, the valve body V provided with the fluid pressurizing chamber 7 and the close contact operating means 8 is sent into the pipe through the through hole 4 of the water pipe 1, and a part of the valve body V is provided at the bottom of the pipe inner wall surface 1a. To abut. When the slide spindle 53 is fed from this contact state, the fluid pressure in the fluid pressurizing chamber 7 of the valve body V rises as the slide spindle 53 is fed and moved. As a result, the close contact operating means 8 is activated, and the elastic sealing member 3 is brought into close contact with the inner wall surface 1a of the pipe in a flow path blocking state by the pressure fluid rising in the fluid pressurizing chamber 7.
Therefore, unlike the conventional device, it is not necessary to prepare a pressure fluid supply facility such as a pump or a supply pipe for supplying the pressurized fluid into the valve body V, and a fluid shutoff structure (water stop structure) using the pressure fluid is not required. ) Can be simplified. Moreover, the operating torque of the valve rod 51 of the valve feeding mechanism 5 at the time of deadline increases due to the fluid pressurization in the fluid pressurizing chamber 7 accompanying the feeding movement of the slide spindle 53. As a result, it is easy to intuitively grasp the deadline operation state, and the deadline operation can be accurately performed without excess or deficiency.

次に、流体加圧室7及び密着作動手段8を備えた弁体Vについて詳述する。
弁体Vの芯金6は、図1~図3に示すように、中空構造に構成されている。具体的には、一対の昇降ガイド部59を有する上側芯金体61の下面側に、管軸方向に間隔をおいて配置される一対の芯金側壁部62と、両芯金側壁部62の外周縁間を管周方向に沿って閉止する芯金周壁部63とを一体形成して構成されている。両芯金側壁部62の下半側は、管軸方向視において管内壁面1aに沿って円形状に湾曲形成され、且つ、交差方向視においては上下方向に沿う平行姿勢に構成されている。
Next, the valve body V provided with the fluid pressurizing chamber 7 and the close contact operating means 8 will be described in detail.
As shown in FIGS. 1 to 3, the core metal 6 of the valve body V has a hollow structure. Specifically, the pair of core metal side wall portions 62 arranged at intervals in the pipe axis direction and the double core metal side wall portions 62 on the lower surface side of the upper core metal body 61 having the pair of elevating guide portions 59. It is configured by integrally forming a core metal peripheral wall portion 63 that closes between the outer peripheral edges along the pipe circumferential direction. The lower half side of both core metal side wall portions 62 is formed to be curved in a circular shape along the inner wall surface 1a of the pipe in the direction of the pipe axis, and is configured in a parallel posture along the vertical direction in the direction of crossing.

両芯金側壁部62の外周縁間における芯金周壁部63の外面側には、弾性シール部材3の管周方向シール部3Aを装着する略U字状の周方向シール装着溝64が形成されている。両芯金側壁部62の上端部と上側芯金体61の下面との間には、周方向シール装着溝64の両上端部に連通する状態で弾性シール部材3の円環状シール部3Bを装着する円環状シール装着溝65が形成されている。 On the outer surface side of the core metal peripheral wall portion 63 between the outer peripheral edges of both core metal side wall portions 62, a substantially U-shaped circumferential seal mounting groove 64 for mounting the pipe circumferential seal portion 3A of the elastic seal member 3 is formed. ing. An annular seal portion 3B of the elastic seal member 3 is mounted between the upper end portion of the both core metal side wall portions 62 and the lower surface of the upper core metal body 61 in a state of communicating with both upper end portions of the circumferential seal mounting groove 64. An annular seal mounting groove 65 is formed.

弁体Vの芯金6の中心部には、貫通孔4の中心を通る上下軸芯Y上に同心円の流体加圧室7を形成する円筒状の樹脂製又は金属製の加圧室形成筒部71が設けられている。この加圧室形成筒部71の上端部は、上側芯金体61に形成された上側支承筒部66に嵌合固定されている。上側支承筒部66の内周面には、加圧室形成筒部71の上端部の外周面との間を密封するOリング67が設けられている。加圧室形成筒部71の下端部は、両芯金側壁部62及び芯金周壁部63の下端部に形成された下側支承筒部68に嵌合固定されている。下側支承筒部68の内周面には、加圧室形成筒部71の下端部の外周面との間を密封するOリング69が設けられている。 At the center of the core metal 6 of the valve body V, a cylindrical resin or metal pressure chamber forming cylinder that forms a concentric fluid pressure chamber 7 on the upper and lower axis Y passing through the center of the through hole 4. A section 71 is provided. The upper end portion of the pressurizing chamber forming cylinder portion 71 is fitted and fixed to the upper support cylinder portion 66 formed on the upper core metal body 61. An O-ring 67 is provided on the inner peripheral surface of the upper bearing cylinder portion 66 to seal between the inner peripheral surface and the outer peripheral surface of the upper end portion of the pressure chamber forming cylinder portion 71. The lower end portion of the pressurizing chamber forming cylinder portion 71 is fitted and fixed to the lower support cylinder portion 68 formed at the lower end portions of the both core metal side wall portions 62 and the core metal peripheral wall portion 63. An O-ring 69 is provided on the inner peripheral surface of the lower bearing cylinder portion 68 to seal between the inner peripheral surface and the outer peripheral surface of the lower end portion of the pressure chamber forming cylinder portion 71.

スライドスピンドル53の上側筒部53Aの下端部には、加圧室形成筒部71の内周面に沿って摺動自在で、且つ、流体加圧室7内の流体を加圧する流体加圧面72aを先端側(下端側)に備えた有底筒状の流体加圧部72が一体形成されている。流体加圧部72の先端側の外周面には、加圧室形成筒部71の内周面との間を密封するOリング73が設けられている。 At the lower end of the upper cylinder 53A of the slide spindle 53, a fluid pressurizing surface 72a that is slidable along the inner peripheral surface of the pressurizing chamber forming cylinder 71 and pressurizes the fluid in the fluid pressurizing chamber 7. A bottomed tubular fluid pressurizing portion 72 is integrally formed with the tip side (lower end side). An O-ring 73 is provided on the outer peripheral surface of the fluid pressurizing portion 72 on the distal end side to seal between the inner peripheral surface of the pressurizing chamber forming cylinder portion 71.

加圧室形成筒部71には、流体の一例である水道管1内の上水を導入する流体導入口74が形成されている。この流体導入口74は、スライドスピンドル53の係合鍔部53Bの上面が筒状係合部材11の天井壁部11Aの内面に係合する弁体Vの荷重支持状態において、流体加圧部72の流体加圧面72aの下方近傍位置に配置されている。そのため、流体導入口74は、加圧室形成筒部71の内周面に沿って摺動する流体加圧部72によって開閉自在に構成されている。具体的には、図2、図3に示すように、弁体Vの荷重支持状態では、流体導入口74は流体加圧室7に連通する開放状態にある。図5、図6に示すように、管底当たり位置以降のスライドスピンドル53の送り込みに伴って、流体導入口74は流体加圧部72で密閉される。この流体導入口74を密閉した状態での流体加圧部72の送り込み側への移動によって流体加圧室7内の上水が加圧される。
両芯金側壁部62には、加圧室形成筒部71の流体導入口74と水道管1内とを連通する連通路75が形成されている。
The pressurizing chamber forming cylinder portion 71 is formed with a fluid introduction port 74 for introducing tap water in the water pipe 1 which is an example of the fluid. The fluid introduction port 74 has a fluid pressurizing portion 72 in a load-supporting state of the valve body V in which the upper surface of the engaging flange portion 53B of the slide spindle 53 engages with the inner surface of the ceiling wall portion 11A of the tubular engaging member 11. It is arranged at a position near the lower side of the fluid pressure surface 72a. Therefore, the fluid introduction port 74 is configured to be openable and closable by the fluid pressurizing portion 72 that slides along the inner peripheral surface of the pressurizing chamber forming cylinder portion 71. Specifically, as shown in FIGS. 2 and 3, in the load supporting state of the valve body V, the fluid introduction port 74 is in an open state communicating with the fluid pressurizing chamber 7. As shown in FIGS. 5 and 6, the fluid introduction port 74 is sealed by the fluid pressurizing portion 72 as the slide spindle 53 is fed after the position where the pipe bottom touches. The clean water in the fluid pressurizing chamber 7 is pressurized by moving the fluid pressurizing unit 72 to the feeding side in a state where the fluid introduction port 74 is sealed.
A communication passage 75 that communicates the fluid introduction port 74 of the pressurizing chamber forming cylinder 71 with the inside of the water pipe 1 is formed in the both core metal side wall portions 62.

密着作動手段8は、弾性シール部材3の管周方向シール部3A及び円環状シール部3Bを構成する弾性チューブ状の部材で、且つ、圧力流体の供給・排出によって膨縮自在なバッグ81と、流体加圧室7とバッグ81とを接続する給排接続部82と、を備える。給排接続部82は、流体加圧室7に臨む芯金周壁部63の底部に、バッグ81の口金81Aを周方向シール装着溝64から流体加圧室7内に挿通する口金挿通孔83を形成する。この口金挿通孔83に挿通されたバッグ81の口金81Aは、口金挿通孔83の内周面との間を密封した状態で固定する。 The close contact operating means 8 is an elastic tubular member constituting the tube circumferential direction sealing portion 3A and the annular sealing portion 3B of the elastic sealing member 3, and is a bag 81 that can be expanded and contracted by supplying and discharging a pressure fluid. A supply / discharge connection portion 82 for connecting the fluid pressurizing chamber 7 and the bag 81 is provided. The supply / discharge connection portion 82 has a base insertion hole 83 for inserting the base 81A of the bag 81 into the fluid pressure chamber 7 from the circumferential seal mounting groove 64 at the bottom of the core metal peripheral wall portion 63 facing the fluid pressure chamber 7. Form. The mouthpiece 81A of the bag 81 inserted through the mouthpiece insertion hole 83 is fixed in a sealed state between the bag 81 and the inner peripheral surface of the mouthpiece insertion hole 83.

上述の如く構成された仕切弁装置では、図1~3に示すように、流体加圧室7及び密着作動手段8を備えた弁体Vを水道管1の貫通孔4から管内に送り込み、弁体Vの一部、つまり、両芯金側壁部62の円弧状下端面62aを管内壁面1aの底部に当接させる。この当接状態では、スライドスピンドル53の流体加圧部72の流体加圧面72aは、流体加圧室7の流体導入口74から僅かに上方に退避した開放状態にある。そのため、流体加圧室7の流体導入口74は、両芯金側壁部62の連通路75を経由して水道管1内と連通し、水道管1内の圧力上水が流体加圧室7内に流入する。この流入した圧力上水は給排接続部82を構成する口金81Aからバッグ81内に供給され、バッグ81は圧力上水の圧力で膨張する。この時のバッグ81の止水形態の保持力は十分ではない。
さらに、図4~6に示すように、スライドスピンドル53の流体加圧部72を加圧室形成筒部71の内周面に沿って送り込み側へ摺動させると、その摺動の初期段階で流体導入口74はスライドスピンドル53の流体加圧部72で密閉される。流体導入口74が密閉された状態でのスライドスピンドル53の流体加圧部72の摺動により、流体加圧室7内の上水が加圧される。この加圧された上水は給排接続部82を構成する口金81Aからバッグ81内に供給され、バッグ81はより高い水圧で膨張して管内壁面1a及び貫通孔4の内周面に強く密着する。
したがって、水道管1内の上水を用いながらも、スライドスピンドル53の送り込みによる上水加圧を利用した高い水圧でバッグ81を膨張させることができるので、バッグ81を止水形態に確実、強力に維持することができる。
In the sluice valve device configured as described above, as shown in FIGS. A part of the body V, that is, the arcuate lower end surface 62a of the double core metal side wall portion 62 is brought into contact with the bottom portion of the inner wall surface 1a of the pipe. In this contact state, the fluid pressurizing surface 72a of the fluid pressurizing portion 72 of the slide spindle 53 is in an open state slightly retracted upward from the fluid introduction port 74 of the fluid pressurizing chamber 7. Therefore, the fluid introduction port 74 of the fluid pressurizing chamber 7 communicates with the inside of the water pipe 1 via the communication passage 75 of the double core metal side wall portion 62, and the pressure tap water in the water pipe 1 is the fluid pressurizing chamber 7. It flows in. The inflowing pressure tap water is supplied into the bag 81 from the mouthpiece 81A constituting the supply / discharge connection portion 82, and the bag 81 expands under the pressure of the pressure tap water. At this time, the holding power of the water-stopping form of the bag 81 is not sufficient.
Further, as shown in FIGS. 4 to 6, when the fluid pressurizing portion 72 of the slide spindle 53 is slid to the feeding side along the inner peripheral surface of the pressurizing chamber forming cylinder portion 71, at the initial stage of the sliding. The fluid introduction port 74 is sealed by the fluid pressurizing portion 72 of the slide spindle 53. The clean water in the fluid pressurizing chamber 7 is pressurized by sliding the fluid pressurizing portion 72 of the slide spindle 53 with the fluid introduction port 74 sealed. This pressurized clean water is supplied into the bag 81 from the mouthpiece 81A constituting the supply / discharge connection portion 82, and the bag 81 expands with a higher water pressure and strongly adheres to the inner peripheral surface of the pipe inner wall surface 1a and the through hole 4. do.
Therefore, while using the clean water in the water pipe 1, the bag 81 can be inflated with a high water pressure using the tap water pressurization by the feed of the slide spindle 53, so that the bag 81 can be reliably and strongly stopped. Can be maintained at.

さらに、弁体Vの芯金6に、流体導入口74及び流体加圧室7を備えた加圧室形成筒部71を設けるだけであるから、弁体構造の簡素化を図ることができる。しかも、芯金6に流体加圧室7を直接形成する場合に比較して、スライドスピンドル53の流体加圧部72が移動する加圧室形成筒部71の内周面の加工をコスト面で有利に実行することができる。 Further, since the core metal 6 of the valve body V is only provided with the pressurizing chamber forming cylinder portion 71 provided with the fluid introduction port 74 and the fluid pressurizing chamber 7, the valve body structure can be simplified. Moreover, compared to the case where the fluid pressurizing chamber 7 is directly formed on the core metal 6, the processing of the inner peripheral surface of the pressurizing chamber forming cylinder portion 71 to which the fluid pressurizing portion 72 of the slide spindle 53 moves is cost effective. It can be done in an advantageous way.

[第2実施形態]
図8~図10は、別実施形態の仕切弁装置を示す。この仕切弁装置では、弁体Vの芯金6に形成される流体加圧室7内に、非圧縮性流体の一例である水が充填されている。弁支持部材である金属製のスライドスピンドル53には、弾性シール部材3が管内壁面1aの底部に当接した管底当たり位置からの送り込み移動に伴って流体加圧室7内の充填水を加圧する流体加圧部72が設けられている。また、密着作動手段8には、流体加圧室7内で上昇した圧力水の受圧面85bを有し、且つ、その受圧力で弾性シール部材3を送り込み方向に対して交差した交差方向の管内壁面1aの側面部に対して圧接させる一対の可動片85が備えられている。
尚、本実施形態でも、図8~図10の各図において、流体加圧室7内の流体(水)を点模様で表示する。
[Second Embodiment]
8 to 10 show a sluice valve device according to another embodiment. In this sluice valve device, the fluid pressurizing chamber 7 formed in the core metal 6 of the valve body V is filled with water, which is an example of an incompressible fluid. Filled water in the fluid pressurizing chamber 7 is added to the metal slide spindle 53, which is a valve support member, as the elastic seal member 3 is fed from the pipe bottom contact position where the elastic seal member 3 abuts on the bottom of the pipe inner wall surface 1a. A fluid pressurizing section 72 for pressing is provided. Further, the close contact operating means 8 has a pressure receiving surface 85b of the pressure water raised in the fluid pressurizing chamber 7, and the elastic sealing member 3 is fed by the receiving pressure in the pipe in the crossing direction intersecting the feeding direction. A pair of movable pieces 85 that are brought into pressure contact with the side surface portion of the wall surface 1a are provided.
Also in this embodiment, the fluid (water) in the fluid pressurizing chamber 7 is displayed as a dot pattern in each of FIGS. 8 to 10.

流体加圧室7及び密着作動手段8の一対の可動片85を備える弁体Vを水道管1の貫通孔4から管内に送り込み、弁体Vの弾性シール部材3を管内壁面1aの底部に当接させる。この当接状態でスライドスピンドル53を送り込み移動させると、流体加圧室7内に充填された水がスライドスピンドル53の流体加圧部72によって加圧される。この加圧された水圧が一対の可動片85の受圧面85bに作用する。これにより、一対の可動片85は送り込み方向に対して交差方向に離間移動し、弾性シール部材3を管内壁面1aの側面部に強く圧接させる。
したがって、スライドスピンドル53の送り込みによる充填水の加圧を利用した高い水圧で一対の可動片85を押圧作動させることができるので、弾性シール部材3を止水形態に確実、強力に維持することができる。しかも、スライドスピンドル53の送り込み移動に伴う流体加圧室7内の充填水の加圧によって、締め切り時における弁送込機構5の弁棒51の操作トルクが高くなる。これにより、締め切り操作状態を感覚的に把握し易く、締め切り操作を過不足なく的確に行うことができる。
A valve body V including a pair of movable pieces 85 of the fluid pressurizing chamber 7 and the close contact operating means 8 is sent into the pipe through the through hole 4 of the water pipe 1, and the elastic sealing member 3 of the valve body V is applied to the bottom of the pipe inner wall surface 1a. Get in touch. When the slide spindle 53 is sent and moved in this contact state, the water filled in the fluid pressurizing chamber 7 is pressurized by the fluid pressurizing portion 72 of the slide spindle 53. This pressurized water pressure acts on the pressure receiving surface 85b of the pair of movable pieces 85. As a result, the pair of movable pieces 85 move apart in the crossing direction with respect to the feeding direction, and the elastic sealing member 3 is strongly pressed against the side surface portion of the inner wall surface 1a of the pipe.
Therefore, since the pair of movable pieces 85 can be pressed and operated with a high water pressure utilizing the pressurization of the filling water by feeding the slide spindle 53, the elastic sealing member 3 can be reliably and strongly maintained in the water-stopping form. can. Moreover, the operation torque of the valve rod 51 of the valve feeding mechanism 5 at the time of deadline increases due to the pressurization of the filling water in the fluid pressurizing chamber 7 accompanying the feeding movement of the slide spindle 53. As a result, it is easy to intuitively grasp the deadline operation state, and the deadline operation can be accurately performed without excess or deficiency.

筐体2は、上述の第1実施形態では、左右一対の下部筐体部材21と中間筐体部材22との三分割構造に構成されている。第2実施形態では、図7に示すように、水道管1の下方から外装される下部筐体部材32と、水道管1の上方から外装される中間筐体部材33との二分割構造に構成されている。下部筐体部材32及び中間筐体部材33には、管周方向で相対向するフランジ部32A,33Aの分割面間及び水道管1の外周面との間を密封する弾性パッキン34を装着する。下部筐体部材32と中間筐体部材33は、管周方向で相対向するフランジ部32A,33A同士をボルト・ナット35で締結することにより連結されている。中間筐体部材33の上側フランジ部33Bと上部筐体部材23の下側フランジ部23Aとは、それらの接合面間を密封するOリング27を介装した状態でボルト28にて締結されている。
筐体2の他の構成は、上述の第1実施形態と同一であり、同一の構成箇所には、第1実施形態と同一の番号を付記してそれの説明は省略する。
In the first embodiment described above, the housing 2 is configured in a three-divided structure consisting of a pair of left and right lower housing members 21 and an intermediate housing member 22. In the second embodiment, as shown in FIG. 7, the structure is divided into two, a lower housing member 32 that is exteriorized from below the water pipe 1 and an intermediate housing member 33 that is exteriorized from above the water pipe 1. Has been done. The lower housing member 32 and the intermediate housing member 33 are equipped with an elastic packing 34 that seals between the divided surfaces of the flange portions 32A and 33A facing each other in the pipe circumferential direction and the outer peripheral surface of the water pipe 1. The lower housing member 32 and the intermediate housing member 33 are connected by fastening the flange portions 32A and 33A facing each other in the pipe circumferential direction with bolts and nuts 35. The upper flange portion 33B of the intermediate housing member 33 and the lower flange portion 23A of the upper housing member 23 are fastened with bolts 28 in a state of interposing an O-ring 27 that seals between the joint surfaces thereof. ..
The other configuration of the housing 2 is the same as that of the first embodiment described above, and the same number is added to the same configuration location as that of the first embodiment, and the description thereof will be omitted.

次に、流体加圧室7及び密着作動手段8を備えた弁体Vについて詳述する。
弁体Vの芯金6の中心部には、貫通孔4の中心を通る上下軸芯Yを中心とする円形状の流体加圧室7と、この流体加圧室7の内径よりも大径で、且つ、スライドスピンドル53の上側筒部53Aの外周面に突設された円環状の係合鍔部53Bが上下方向に移動する移動範囲規制室76と、が連続形成されている。
芯金6の上面には、スライドスピンドル53の係合鍔部53Bの上面と係合可能な筒状係合部材77が締結固定されている。この筒状係合部材77の底面とこれに上下方向で対面する芯金6の移動範囲規制室76における奥側段差面76aとの間が、スライドスピンドル53と芯金6とを送り込み方向の一定範囲内で相対移動自在に構成する相対移動範囲となる。
Next, the valve body V provided with the fluid pressurizing chamber 7 and the close contact operating means 8 will be described in detail.
At the center of the core metal 6 of the valve body V, there is a circular fluid pressurizing chamber 7 centered on the vertical axis Y passing through the center of the through hole 4, and a diameter larger than the inner diameter of the fluid pressurizing chamber 7. Further, a movement range limiting chamber 76 in which the annular engaging collar portion 53B projecting from the outer peripheral surface of the upper cylinder portion 53A of the slide spindle 53 moves in the vertical direction is continuously formed.
A cylindrical engaging member 77 that can be engaged with the upper surface of the engaging flange portion 53B of the slide spindle 53 is fastened and fixed to the upper surface of the core metal 6. The slide spindle 53 and the core metal 6 are fed in a constant direction between the bottom surface of the tubular engaging member 77 and the stepped surface 76a on the back side in the movement range regulating chamber 76 of the core metal 6 facing the bottom surface in the vertical direction. It is a relative movement range that is configured to be relatively movable within the range.

スライドスピンドル53の係合鍔部53Bは、筒状係合部材77の底面との係合によって弁体Vの荷重を支持する。その荷重支持範囲は、弁作動空間20内での弁体Vの最上昇位置(最大開弁操作位置)から、図9に示すように、弁体Vが管内壁面1aの底部に当接した瞬間の管底当たり位置までの範囲となる。
管底当たり位置以降のスライドスピンドル53の送り込みに伴って係合鍔部53Bが筒状係合部材77の底面から下方に離間移動する。図10に示すように、係合鍔部53Bの下面が芯金6の移動範囲規制室76における奥側段差面76aに当接した位置が最大送り込み位置に設定され、この最大送り込み位置が締め切り操作位置に構成されている。
The engaging flange portion 53B of the slide spindle 53 supports the load of the valve body V by engaging with the bottom surface of the tubular engaging member 77. The load bearing range is the moment when the valve body V abuts on the bottom of the pipe inner wall surface 1a from the highest rising position (maximum valve opening operation position) of the valve body V in the valve operating space 20 as shown in FIG. It is the range up to the position where the pipe bottom hits.
The engaging flange portion 53B moves downward from the bottom surface of the tubular engaging member 77 as the slide spindle 53 is fed after the position where the tube bottom touches. As shown in FIG. 10, the position where the lower surface of the engaging flange portion 53B abuts on the back side step surface 76a in the movement range regulating chamber 76 of the core metal 6 is set as the maximum feed position, and this maximum feed position is the deadline operation. It is configured in position.

芯金6の上端部には、貫通孔4の直径よりも大径の円形状のシール押圧部78が張り出し形成されている。このシール押圧部78の交差方向の両端部の上面側には、中間筐体部材33の内面に形成された左右一対の昇降ガイドレール56に沿って移動案内される昇降ガイド部57が一体形成されている。芯金6の外面には、シール押圧部78のシール押圧面78aよりも下方側の弁体構成領域の全周を囲繞するゴムライニングが施されている。このゴムライニングが弾性シール部材3として機能する。弾性シール部材3は、管内壁面1aに管周方向に沿って圧接可能な管軸方向視で略U字状の管周方向シール部3Aと、この管周方向シール部3Aの両上端部に連続し、且つ、貫通孔4を密封可能な平面視円形状の円環状シール部3Bと、を主要構成として備える。
芯金6の下側面は、管軸方向視において管内壁面1aに沿って円形状に形成された管底用シール押圧面6aに構成されている。この管底用シール押圧面6aは、管底当たり位置以降のスライドスピンドル53の送り込みに伴って、弾性シール部材3の管周方向シール部3Aにおける下側部位を管内壁面1aの底部側に強く圧接させて止水する。
A circular seal pressing portion 78 having a diameter larger than the diameter of the through hole 4 is formed so as to project from the upper end portion of the core metal 6. On the upper surface side of both ends of the seal pressing portion 78 in the crossing direction, an elevating guide portion 57 that is moved and guided along a pair of left and right elevating guide rails 56 formed on the inner surface of the intermediate housing member 33 is integrally formed. ing. The outer surface of the core metal 6 is provided with a rubber lining that surrounds the entire circumference of the valve body constituent region below the seal pressing surface 78a of the seal pressing portion 78. This rubber lining functions as the elastic sealing member 3. The elastic seal member 3 is continuously connected to the pipe circumferential seal portion 3A having a substantially U-shape in the pipe axial direction and the both upper ends of the pipe circumferential seal portion 3A which can be pressure-contacted to the pipe inner wall surface 1a along the pipe circumferential direction. In addition, the annular sealing portion 3B having a circular shape in a plan view capable of sealing the through hole 4 is provided as a main configuration.
The lower side surface of the core metal 6 is configured as a pipe bottom seal pressing surface 6a formed in a circular shape along the pipe inner wall surface 1a in the direction of the pipe axis. The pipe bottom seal pressing surface 6a strongly presses the lower portion of the elastic seal member 3 in the pipe circumferential direction seal portion 3A to the bottom side of the pipe inner wall surface 1a as the slide spindle 53 is fed after the pipe bottom contact position. Let it stop the water.

図8、図9に示すように、管周方向シール部3Aにおける送り込み方向に対して管径方向で水平に交差(直交)する交差方向の幅は、貫通孔4の直径よりも僅かに小なる寸法に設定されている。また、円環状シール部3Bの下側シール部分3Baの外径は、貫通孔4の直径よりも僅かに小なる寸法に設定され、下側シール部分3Baに連続して外方に鍔状に張り出す上側シール部分3Bbの外径は、貫通孔4の直径よりも少し大なる寸法に設定されている。
そのため、図9に示す管底当たり位置では、円環状シール部3Bの下側シール部分3Baと上側シール部分3Bbとの段差部位が貫通孔4の内周面及び外周面側開口周縁に接触する。図10に示す締め切り操作位置では、管底当たり位置以降のスライドスピンドル53の送り込みに伴って、シール押圧部78のシール押圧面78aが円環状シール部3Bの上面を押圧する。これにより、円環状シール部3Bが径方向外方に弾性変形して貫通孔4の内周面及び外周面側開口周縁に強く密着する。
As shown in FIGS. 8 and 9, the width of the crossing direction that intersects (orthogonally) horizontally in the pipe radial direction with respect to the feeding direction in the pipe peripheral direction seal portion 3A is slightly smaller than the diameter of the through hole 4. It is set to the dimension. Further, the outer diameter of the lower seal portion 3Ba of the annular seal portion 3B is set to a dimension slightly smaller than the diameter of the through hole 4, and the lower seal portion 3Ba is continuously stretched outward in a brim shape. The outer diameter of the upper seal portion 3Bb to be put out is set to a size slightly larger than the diameter of the through hole 4.
Therefore, at the pipe bottom contact position shown in FIG. 9, the stepped portion between the lower seal portion 3Ba and the upper seal portion 3Bb of the annular seal portion 3B comes into contact with the inner peripheral surface and the outer peripheral surface side opening peripheral edge of the through hole 4. At the deadline operation position shown in FIG. 10, the seal pressing surface 78a of the seal pressing portion 78 presses the upper surface of the annular seal portion 3B as the slide spindle 53 is fed after the pipe bottom contact position. As a result, the annular seal portion 3B elastically deforms outward in the radial direction and strongly adheres to the inner peripheral surface of the through hole 4 and the outer peripheral surface side opening peripheral edge.

スライドスピンドル53の上側筒部53Aの下端部には、図7~図10に示すように、流体加圧室7の内周面に沿って摺動自在で、且つ、流体加圧室7内の流体を加圧する流体加圧面72aを先端側(下端側)に備えた有底筒状の流体加圧部72が一体形成されている。流体加圧室7の内周面の上部側には、流体加圧部72の外周面との間を密封するOリング79が設けられている。 As shown in FIGS. 7 to 10, the lower end of the upper cylindrical portion 53A of the slide spindle 53 is slidable along the inner peripheral surface of the fluid pressurizing chamber 7 and is inside the fluid pressurizing chamber 7. A bottomed tubular fluid pressurizing portion 72 having a fluid pressurizing surface 72a for pressurizing the fluid on the tip end side (lower end side) is integrally formed. An O-ring 79 is provided on the upper side of the inner peripheral surface of the fluid pressurizing chamber 7 to seal between the inner peripheral surface and the outer peripheral surface of the fluid pressurizing portion 72.

密着作動手段8の両可動片85の各々は、図7~図10に示すように、管内壁面1aの管周方向に沿う円弧状のシール押圧面85aを備えたシール押圧ヘッド85Aと、このシール押圧ヘッド85Aの背面の中心又はその近くに突設された軸状の摺動支持部85Bと、を備える。
芯金6における流体加圧室7の下部相当位置で、且つ、管底当たり位置で管軸芯Xを水平に通る交差方向の両側部位には、各可動片85の摺動支持部85Bを交差方向に沿って摺動自在に挿通支持する支承部としての摺動案内孔86と、各可動片85のシール押圧ヘッド85Aを収納するヘッド収納凹部87と、が連通形成されている。流体加圧室7に臨む可動片85の摺動支持部85Bの端面は、流体加圧室7内の充填水の圧力が作用する受圧面85bに構成されている。
芯金6における各摺動案内孔86の内周面には、可動片85の摺動支持部85Bの外周面との間を密封するOリング88が設けられている。
As shown in FIGS. 7 to 10, each of the two movable pieces 85 of the close contact operating means 8 has a seal pressing head 85A provided with an arcuate seal pressing surface 85a along the pipe circumferential direction of the pipe inner wall surface 1a, and the seal. A shaft-shaped sliding support portion 85B projecting from or near the center of the back surface of the pressing head 85A is provided.
The sliding support portions 85B of each movable piece 85 intersect at both sides of the core metal 6 in the crossing direction that horizontally passes through the pipe axis X at the position corresponding to the lower part of the fluid pressurizing chamber 7 and at the position where the pipe bottom touches. A sliding guide hole 86 as a support portion slidably inserted and supported along a direction and a head storage recess 87 for accommodating a seal pressing head 85A of each movable piece 85 are formed in communication with each other. The end surface of the sliding support portion 85B of the movable piece 85 facing the fluid pressurizing chamber 7 is configured as a pressure receiving surface 85b on which the pressure of the filled water in the fluid pressurizing chamber 7 acts.
An O-ring 88 is provided on the inner peripheral surface of each sliding guide hole 86 in the core metal 6 to seal between the movable piece 85 and the outer peripheral surface of the sliding support portion 85B.

各摺動案内孔86に挿通された可動片85のシール押圧面85aは、弾性シール部材3の管周方向シール部3Aの内面に接触する。そのため、各可動片85のシール押圧ヘッド85Aは、管周方向シール部3Aの弾性復元力で初期位置に戻し付勢されている。初期位置では、シール押圧ヘッド85Aの背面は、芯金6のヘッド収納凹部87の底面に当接し、シール押圧ヘッド85Aがヘッド収納凹部87内に引退した状態にある。 The seal pressing surface 85a of the movable piece 85 inserted through each sliding guide hole 86 comes into contact with the inner surface of the tube circumferential direction seal portion 3A of the elastic seal member 3. Therefore, the seal pressing head 85A of each movable piece 85 is returned to the initial position and urged by the elastic restoring force of the pipe peripheral direction sealing portion 3A. In the initial position, the back surface of the seal pressing head 85A is in contact with the bottom surface of the head accommodating recess 87 of the core metal 6, and the seal pressing head 85A is in a state of being retired into the head accommodating recess 87.

[第3実施形態]
図11~図16に示す仕切弁装置は、上述の第2実施形態の改良構造を示す。この第3実施形態では、密着作動手段8に、管内側に送り込み移動されるスライドスピンドル53との当接により、受圧面85bに流体圧が作用している一対の可動片85を交差方向に強制的に離間移動させる強制離間移動手段9が備えられている。
尚、本実施形態では、弁体Vの芯金6に形成される流体加圧室7内に、非圧縮性流体の一例である水が充填されている。この充填水を、弁体Vが最上昇位置(最大開弁操作位置)から管底当たり位置までの範囲にあるとき、水道管1内の圧力上水と循環する加圧室流体循環手段が設けられている。
また、本実施形態でも、図11~図16の各図において、流体加圧室7内の流体(上水)を点模様で表示する。
[Third Embodiment]
The sluice valve device shown in FIGS. 11 to 16 shows an improved structure of the above-mentioned second embodiment. In the third embodiment, the close contact operating means 8 is forced into a pair of movable pieces 85 in which fluid pressure is acting on the pressure receiving surface 85b by abutting with the slide spindle 53 that is sent and moved inside the pipe in the crossing direction. A forced separation moving means 9 for moving the separation is provided.
In the present embodiment, the fluid pressurizing chamber 7 formed in the core metal 6 of the valve body V is filled with water, which is an example of an incompressible fluid. A pressurizing chamber fluid circulation means that circulates this filled water with the pressure tap water in the water pipe 1 when the valve body V is in the range from the highest rising position (maximum valve opening operation position) to the pipe bottom contact position is provided. Has been done.
Further, also in this embodiment, the fluid (clean water) in the fluid pressurizing chamber 7 is displayed as a dot pattern in each of FIGS. 11 to 16.

密着作動手段8の両可動片85の各々は、図11~図15に示すように、管内壁面1aの管周方向に沿う円弧状のシール押圧面85aを備えたシール押圧ヘッド85Aと、このシール押圧ヘッド85Aの背面に突設された板状の摺動支持部85Bと、を備える。
芯金6における流体加圧室7の下側部位で、且つ、管底当たり位置で管軸芯Xを水平に通る交差方向の両側部位には、各可動片85の摺動支持部85Bを交差方向に沿って摺動自在に挿通支持する支承部としての摺動案内孔86が形成されている。
各摺動案内孔86に挿通された可動片85のシール押圧面85aは、弾性シール部材3の管周方向シール部3Aの内面に接触する。そのため、各可動片85のシール押圧ヘッド85Aは、管周方向シール部3Aの弾性復元力で初期位置に戻し付勢されている。初期位置では、シール押圧ヘッド85Aの背面は、芯金6の外面における摺動案内孔86の開口周縁部に当接する。
As shown in FIGS. 11 to 15, each of the two movable pieces 85 of the close contact operating means 8 has a seal pressing head 85A provided with an arcuate seal pressing surface 85a along the pipe circumferential direction of the pipe inner wall surface 1a, and the seal. A plate-shaped sliding support portion 85B projecting from the back surface of the pressing head 85A is provided.
The sliding support portions 85B of each movable piece 85 intersect at the lower portion of the fluid pressurizing chamber 7 in the core metal 6 and at both side portions in the crossing direction horizontally passing through the pipe axis X at the position where the pipe bottom touches. A sliding guide hole 86 is formed as a support portion that is slidably inserted and supported along the direction.
The seal pressing surface 85a of the movable piece 85 inserted through each sliding guide hole 86 comes into contact with the inner surface of the tube circumferential direction seal portion 3A of the elastic seal member 3. Therefore, the seal pressing head 85A of each movable piece 85 is returned to the initial position and urged by the elastic restoring force of the pipe peripheral direction sealing portion 3A. In the initial position, the back surface of the seal pressing head 85A abuts on the opening peripheral edge of the sliding guide hole 86 on the outer surface of the core metal 6.

流体加圧室7に臨む可動片85の摺動支持部85Bの端面は、流体加圧室7内の充填水の圧力が作用する受圧面85bに構成されている。また、両可動片85の摺動支持部85Bの端部は、スライドスピンドル53の流体加圧部72の下部に形成された凹部72b内に入り込み配置されている。
流体加圧部72の凹部72bの内面のうち、各可動片85の摺動支持部85Bの端面に対向する部位の各々には、強制離間移動手段9の第1傾斜部91が形成されている。左右の第1傾斜部91の各々は、流体加圧部72の中心を通る上下軸芯Y側ほど下方に位置する斜め下向きの傾斜面に構成されている。
各可動片85の摺動支持部85Bの端面には、流体加圧部72の第1傾斜部91と当接可能な強制離間移動手段9の第2傾斜部92が形成されている。左右の第2傾斜部92の各々は、流体加圧部72の中心を通る上下軸芯Y側ほど下方に位置する斜め上向きの傾斜面に構成されている。第2傾斜部92の傾斜面は受圧面85bとしても機能する。
そして、スライドスピンドル53の流体加圧部72の両第1傾斜部91と各可動片85の摺動支持部85Bの第2傾斜部92との当接により、スライドスピンドル53の送り込み方向の移動力を両可動片85の強制離間移動力に変換する。
The end surface of the sliding support portion 85B of the movable piece 85 facing the fluid pressurizing chamber 7 is configured as a pressure receiving surface 85b on which the pressure of the filled water in the fluid pressurizing chamber 7 acts. Further, the end portion of the sliding support portion 85B of both movable pieces 85 is arranged so as to enter into the recess 72b formed in the lower portion of the fluid pressurizing portion 72 of the slide spindle 53.
A first inclined portion 91 of the forced separation moving means 9 is formed on each of the portions of the inner surface of the recess 72b of the fluid pressurizing portion 72 facing the end surface of the sliding support portion 85B of each movable piece 85. .. Each of the left and right first inclined portions 91 is configured as an obliquely downward inclined surface located downward toward the upper and lower axis Y side passing through the center of the fluid pressurizing portion 72.
A second inclined portion 92 of the forced separation moving means 9 capable of contacting the first inclined portion 91 of the fluid pressurizing portion 72 is formed on the end surface of the sliding support portion 85B of each movable piece 85. Each of the left and right second inclined portions 92 is configured as an obliquely upward inclined surface located downward toward the upper and lower axis Y side passing through the center of the fluid pressurizing portion 72. The inclined surface of the second inclined portion 92 also functions as a pressure receiving surface 85b.
Then, the moving force in the feeding direction of the slide spindle 53 is caused by the contact between both first inclined portions 91 of the fluid pressurizing portion 72 of the slide spindle 53 and the second inclined portion 92 of the sliding support portion 85B of each movable piece 85. Is converted into the forced separation moving force of both movable pieces 85.

図11、図12に示すように、芯金6の上面に締結固定されている筒状係合部材77の内周面には、上下方向に所定間隔をおいてシール装着溝77aが形成されている。各シール装着溝77aには、スライドスピンドル53の上側筒部53Aの外周面との間を密封するOリング80が装着されている。
スライドスピンドル53の係合鍔部53Bの上面が筒状係合部材77の底面に係合している状態において、両Oリング80の配置領域に相当する上側筒部53Aの外周面には、両Oリング80と非接触の環状溝部53aが形成されている。
As shown in FIGS. 11 and 12, seal mounting grooves 77a are formed on the inner peripheral surface of the tubular engaging member 77 fastened and fixed to the upper surface of the core metal 6 at predetermined intervals in the vertical direction. There is. Each seal mounting groove 77a is fitted with an O-ring 80 that seals between the slide spindle 53 and the outer peripheral surface of the upper cylinder portion 53A.
In a state where the upper surface of the engaging flange 53B of the slide spindle 53 is engaged with the bottom surface of the tubular engaging member 77, both are on the outer peripheral surface of the upper tubular portion 53A corresponding to the arrangement area of both O-rings 80. An annular groove portion 53a that is not in contact with the O-ring 80 is formed.

そして、図11、図12に示すように、弁体Vが最上昇位置(最大開弁操作位置)から管底当たり位置までの範囲にあるとき、スライドスピンドル53の係合鍔部53Bの上面が筒状係合部材77の底面に係合する。この係合状態では、図12に示すように、スライドスピンドル53の上側筒部53Aの環状溝部53a内に、筒状係合部材77の両Oリング80が非接触状態で配置され、両Oリング80の止水機能が喪失状態にある。また、環状溝部53aの内部空間53bの上側開口53cは、水道管1の管内流路に連通形成されている。環状溝部53aの内部空間53bの下側開口53dは、スライドスピンドル53の係合鍔部53Bに形成されている連通溝53eを介して流体加圧室7に連通形成されている。 Then, as shown in FIGS. 11 and 12, when the valve body V is in the range from the highest rising position (maximum valve opening operation position) to the pipe bottom contact position, the upper surface of the engaging flange portion 53B of the slide spindle 53 is formed. Engage with the bottom surface of the tubular engaging member 77. In this engaged state, as shown in FIG. 12, both O-rings 80 of the tubular engaging member 77 are arranged in a non-contact state in the annular groove portion 53a of the upper cylindrical portion 53A of the slide spindle 53, and both O-rings. The water stop function of 80 is in a lost state. Further, the upper opening 53c of the internal space 53b of the annular groove portion 53a is formed to communicate with the in-pipe flow path of the water pipe 1. The lower opening 53d of the internal space 53b of the annular groove portion 53a is formed to communicate with the fluid pressurizing chamber 7 via the communication groove 53e formed in the engaging flange portion 53B of the slide spindle 53.

そして、スライドスピンドル53の上側筒部53Aの環状溝部53aと、上側開口53c及び下側開口53dを備えた環状溝部53aの内部空間53bと、スライドスピンドル53の係合鍔部53Bに形成された連通溝53eとをもって、弁体Vが最上昇位置(最大開弁操作位置)から管底当たり位置までの範囲にあるとき、流体加圧室7内の充填水を水道管1内の圧力上水と循環させる加圧室流体循環手段が構成されている。 Then, the communication formed in the annular groove portion 53a of the upper tubular portion 53A of the slide spindle 53, the internal space 53b of the annular groove portion 53a provided with the upper opening 53c and the lower opening 53d, and the engaging flange portion 53B of the slide spindle 53. When the valve body V is in the range from the highest rising position (maximum valve opening operation position) to the pipe bottom contact position with the groove 53e, the filled water in the fluid pressurizing chamber 7 is used as the pressure tap water in the water pipe 1. A pressurizing chamber fluid circulation means for circulation is configured.

上述の加圧室流体循環手段により、水道管1内の圧力上水が芯金6の流体加圧室7内に流入し、流体加圧室7内の充填水が水道管1内の圧力上水と循環する。これにより、流体加圧室7内の充填水が新しい上水に置き換えられているので、万が一、弁体Vが破裂した際に、流体加圧室7内の充填水が管内に流出しても、水道水としての水質に問題が生じることはない。 By the above-mentioned pressurizing chamber fluid circulation means, the pressure tap water in the water pipe 1 flows into the fluid pressurizing chamber 7 of the core metal 6, and the filled water in the fluid pressurizing chamber 7 rises in the pressure in the water pipe 1. Circulates with water. As a result, the filled water in the fluid pressurizing chamber 7 is replaced with new tap water, so that if the valve body V bursts, the filled water in the fluid pressurizing chamber 7 may flow out into the pipe. , There is no problem with the quality of tap water.

図11、図12に示すように、スライドスピンドル53の係合鍔部53Bの上面が筒状係合部材77の底面に係合している状態では、流体加圧部72の両第1傾斜部91と各可動片85の第2傾斜部92との対向面間に隙間がある。そのため、弁体Vが最上昇位置から管底当たり位置に送り込まれても、強制離間移動手段9は非作動状態ある。 As shown in FIGS. 11 and 12, when the upper surface of the engaging flange portion 53B of the slide spindle 53 is engaged with the bottom surface of the tubular engaging member 77, both first inclined portions of the fluid pressurizing portion 72 are engaged. There is a gap between the 91 and the facing surface of each movable piece 85 with the second inclined portion 92. Therefore, even if the valve body V is sent from the highest rising position to the pipe bottom contact position, the forced separation moving means 9 is in a non-operating state.

図12は、弁体Vの管周方向シール部3Aが管内壁面1aの底部に当接した瞬間の管底当たり位置を示している。この管底当たり位置からスライドスピンドル53が送り込まれると、図13に示すように、上側筒部53Aにおける環状溝部53aの上方側の外周面部分が、上方のOリング80を水密状態に圧縮する。これが第1段階の止水状態になる。この第1段階の止水状態においても、流体加圧部72の両第1傾斜部91と各可動片85の第2傾斜部92との対向面間に隙間があり、強制離間移動手段9は非作動状態に維持されている。
管底当たり位置から第1段階の止水状態までのスライドスピンドル53の送り込みに伴って、流体加圧室7内の充填水が流体加圧部72の流体加圧面72aによって加圧される。この加圧された水圧が一対の可動片85の受圧面85bに作用する。
FIG. 12 shows the pipe bottom contact position at the moment when the pipe circumferential seal portion 3A of the valve body V abuts on the bottom portion of the pipe inner wall surface 1a. When the slide spindle 53 is fed from the pipe bottom contact position, as shown in FIG. 13, the outer peripheral surface portion on the upper side of the annular groove portion 53a in the upper cylinder portion 53A compresses the upper O-ring 80 into a watertight state. This is the first stage of water stoppage. Even in this first stage of water stop state, there is a gap between the facing surfaces of both first inclined portions 91 of the fluid pressurizing portion 72 and the second inclined portion 92 of each movable piece 85, and the forced separation moving means 9 is provided. It is maintained in a non-operating state.
The filled water in the fluid pressurizing chamber 7 is pressurized by the fluid pressurizing surface 72a of the fluid pressurizing section 72 as the slide spindle 53 is fed from the pipe bottom contact position to the first stage water stop state. This pressurized water pressure acts on the pressure receiving surface 85b of the pair of movable pieces 85.

図14に示すように、第1段階の止水状態からスライドスピンドル53が送り込まれ、上側筒部53Aにおける環状溝部53aの上方側の外周面部分が、下方のOリング80を水密状態に圧縮する。これが第2段階の止水状態になる。この第2段階の止水状態では、流体加圧部72の両第1傾斜部91と各可動片85の第2傾斜部92とが当接する。しかし、流体加圧部72の両第1傾斜部91から各可動片85の第2傾斜部92に押圧力が加わらないため、強制離間移動手段9は非作動状態に維持されている。
第1段階の止水状態から第2段階の止水状態へのスライドスピンドル53の送り込みに伴って、流体加圧室7内の充填水が流体加圧部72の流体加圧面72aによってさらに加圧される。この加圧された水圧が一対の可動片85の受圧面85bに作用する。これにより、一対の可動片85は送り込み方向に対して交差方向に離間移動し、各可動片85のシール押圧面85aで弾性シール部材3の管周方向シール部3Aを管内壁面1aの側面部側に押圧する。
As shown in FIG. 14, the slide spindle 53 is fed from the water stop state of the first stage, and the outer peripheral surface portion on the upper side of the annular groove portion 53a in the upper cylinder portion 53A compresses the lower O-ring 80 into a watertight state. .. This is the second stage of water stoppage. In this second stage of water stop state, both first inclined portions 91 of the fluid pressurizing portion 72 and the second inclined portion 92 of each movable piece 85 come into contact with each other. However, since no pressing force is applied from both first inclined portions 91 of the fluid pressurizing portion 72 to the second inclined portion 92 of each movable piece 85, the forced separation moving means 9 is maintained in a non-operating state.
With the feeding of the slide spindle 53 from the water stop state of the first stage to the water stop state of the second stage, the filled water in the fluid pressurizing chamber 7 is further pressurized by the fluid pressurizing surface 72a of the fluid pressurizing section 72. Will be done. This pressurized water pressure acts on the pressure receiving surface 85b of the pair of movable pieces 85. As a result, the pair of movable pieces 85 move apart from each other in the crossing direction with respect to the feeding direction, and the seal pressing surface 85a of each movable piece 85 causes the pipe circumferential sealing portion 3A of the elastic sealing member 3 to be on the side surface side of the pipe inner wall surface 1a. Press on.

図15に示すように、流体加圧部72の両第1傾斜部91と各可動片85の第2傾斜部92とが当接した瞬間の当接状態からスライドスピンドル53が更に送り込まれると、流体加圧室7内の充填水が流体加圧部72の流体加圧面72aによってさらに加圧される。同時に、流体加圧部72の両第1傾斜部91で各可動片85の第2傾斜部92が押圧される。この押圧及び加圧された水圧によって各可動片85が交差方向に離間移動し、各可動片85のシール押圧面85aで弾性シール部材3の管周方向シール部3Aを管内壁面1aの側面部側に強く押圧する。 As shown in FIG. 15, when the slide spindle 53 is further fed from the contact state at the moment when both first inclined portions 91 of the fluid pressurizing portion 72 and the second inclined portion 92 of each movable piece 85 come into contact with each other. The filled water in the fluid pressurizing chamber 7 is further pressurized by the fluid pressurizing surface 72a of the fluid pressurizing section 72. At the same time, the second inclined portion 92 of each movable piece 85 is pressed by both first inclined portions 91 of the fluid pressurizing portion 72. Due to this pressing and the pressurized water pressure, the movable pieces 85 move apart in the crossing direction, and the sealing portion 3A of the elastic sealing member 3 in the pipe circumferential direction is placed on the side surface side of the pipe inner wall surface 1a on the sealing pressing surface 85a of each movable piece 85. Press strongly on.

そのため、弾性シール部材3の管周方向シール部3Aは、流体加圧室7内で加圧された水圧と強制離間移動手段9による強制離間移動力との協働で管内壁面1aの側面部に強力に圧接され、高い止水状態(流体遮断状態)が維持される。
したがって、スライドスピンドル53の流体加圧部72に第1傾斜部91を設け、一対の可動片85に第2傾斜部92を設けるだけであるから、弾性シール部材3を高い止水状態(流体遮断状態)に確実、強力に維持することのできる弁体構造の簡素化をも図ることができる。
Therefore, the pipe circumferential sealing portion 3A of the elastic sealing member 3 is attached to the side surface portion of the pipe inner wall surface 1a in cooperation with the water pressure pressurized in the fluid pressurizing chamber 7 and the forced separation moving force by the forced separation moving means 9. It is strongly pressure-welded and a high water stop state (fluid cutoff state) is maintained.
Therefore, since the first inclined portion 91 is provided in the fluid pressurizing portion 72 of the slide spindle 53 and the second inclined portion 92 is provided in the pair of movable pieces 85, the elastic seal member 3 is kept in a highly watertight state (fluid cutoff). It is also possible to simplify the valve body structure that can be reliably and strongly maintained in the state).

図11に示すように、弁体Vが最上昇位置(最大開弁操作位置)に開弁操作されたとき、通常、スライドスピンドル53は、芯金6に対して設定最大上昇位置に復帰している。この設定最大上昇位置では、スライドスピンドル53の上側筒部53Aの環状溝部53a内に、芯金6側の筒状係合部材77の両Oリング80が非接触状態で位置する。しかし、図16に示すように、芯金6に対してスライドスピンドル53が設定最大上昇位置に復帰していない事態が発生する可能性が考えられる。この場合、流体加圧室7内の充填水と水道管1内の圧力上水との循環機能が阻止された状態にある。 As shown in FIG. 11, when the valve body V is opened to the maximum rising position (maximum valve opening operation position), the slide spindle 53 normally returns to the set maximum rising position with respect to the core metal 6. There is. In this set maximum ascending position, both O-rings 80 of the tubular engaging member 77 on the core metal 6 side are located in the annular groove portion 53a of the upper tubular portion 53A of the slide spindle 53 in a non-contact state. However, as shown in FIG. 16, it is conceivable that the slide spindle 53 may not return to the set maximum rising position with respect to the core metal 6. In this case, the circulation function between the filled water in the fluid pressurizing chamber 7 and the pressure tap water in the water pipe 1 is blocked.

そこで、本実施形態では、図16に示すように、弁体Vが最上昇位置(最大開弁操作位置)に到達する手前において、芯金6に対してスライドスピンドル53を設定最大上昇位置に復帰させる復帰手段が設けられている。この復帰手段は、芯金6の両昇降ガイド部57の上端面57aを、弁体Vが最上昇位置(最大開弁操作位置)に到達する直前において、筐体2の上部筐体部材23における肩壁部23Dの内面23dと上下方向から当接可能な位置にまで上方に延出して構成されている。
そして、芯金6の両昇降ガイド部57の上端面57aと上部筐体部材23における肩壁部23Dの内面23dとの当接により、芯金6に対してスライドスピンドル53を設定最大上昇位置に復帰させるように構成してある。
尚、その他の構成は、第1実施形態又は第2実施形態で説明した構成と同一であるから、同一の構成箇所には、第1実施形態又は第2実施形態と同一の番号を付記してそれの説明は省略する。
Therefore, in the present embodiment, as shown in FIG. 16, the slide spindle 53 is set with respect to the core metal 6 and returns to the maximum rising position before the valve body V reaches the maximum rising position (maximum valve opening operation position). There is a return means to make it. This returning means is provided on the upper housing member 23 of the housing 2 immediately before the valve body V reaches the maximum rising position (maximum valve opening operation position) on the upper end surface 57a of both elevating guide portions 57 of the core metal 6. It is configured to extend upward from the vertical direction to a position where it can come into contact with the inner surface 23d of the shoulder wall portion 23D.
Then, the slide spindle 53 is set to the maximum rising position with respect to the core metal 6 by the contact between the upper end surface 57a of both the elevating guide portions 57 of the core metal 6 and the inner surface 23d of the shoulder wall portion 23D in the upper housing member 23. It is configured to be restored.
Since the other configurations are the same as the configurations described in the first embodiment or the second embodiment, the same number as that of the first embodiment or the second embodiment is added to the same configuration location. The explanation of it is omitted.

〔別実施形態〕
(1)上述の第1実施形態では、弁体Vの芯金6の中心部に、流体加圧室7を形成する円筒状の加圧室形成筒部71を設けたが、芯金6の中心部に流体加圧室7を直接形成してもよい。
[Another Embodiment]
(1) In the above-mentioned first embodiment, the cylindrical pressure chamber forming cylinder portion 71 for forming the fluid pressure chamber 7 is provided at the center of the core metal 6 of the valve body V. The fluid pressurizing chamber 7 may be directly formed in the central portion.

(2)上述の第1実施形態では、弾性シール部材3の管周方向シール部3A及び円環状シール部3Bを、圧力流体の供給・排出によって膨縮自在なバッグ81から構成した。しかし、円環状シール部3Bが、弁体Vに施されたゴムライニングから構成されている場合には、管周方向シール部3Aのみを、圧力流体の供給・排出によって膨縮自在なバッグ81から構成してもよい。 (2) In the above-mentioned first embodiment, the tube peripheral direction sealing portion 3A and the annular sealing portion 3B of the elastic sealing member 3 are composed of a bag 81 that can be expanded and contracted by supplying and discharging a pressure fluid. However, when the annular seal portion 3B is composed of the rubber lining provided on the valve body V, only the pipe circumferential seal portion 3A is expanded and contracted from the bag 81 that can be expanded and contracted by supplying and discharging the pressure fluid. It may be configured.

(3)上述の各実施形態では、流体管として、流体の一例である上水を輸送するための水道管1を例示したが、工業用水やガス等の他の流体を輸送する流体管であってもよい。 (3) In each of the above-described embodiments, the water pipe 1 for transporting tap water, which is an example of a fluid, is exemplified as the fluid pipe, but it is a fluid pipe for transporting other fluids such as industrial water and gas. You may.

1 流体管(水道管)
1A 管周壁
1a 管内壁面
3 弾性シール部材
4 貫通孔
6 芯金
7 流体加圧室
8 密着作動手段
9 強制離間移動手段
53 弁支持部材(スライドスピンドル)
71 加圧室形成筒部
72 流体加圧部
74 流体導入口
75 連通路
81 バッグ
82 給排接続部
85 可動片
85b 受圧面
86 支承部(摺動案内孔)
91 第1傾斜部
92 第2傾斜部
V 弁体
1 Fluid pipe (water pipe)
1A Pipe peripheral wall 1a Pipe inner wall surface 3 Elastic seal member 4 Through hole 6 Core metal 7 Fluid pressurizing chamber 8 Adhesion operating means 9 Forced separation moving means 53 Valve support member (slide spindle)
71 Pressurizing chamber forming cylinder 72 Fluid pressurizing part 74 Fluid introduction port 75 Continuous passage 81 Bag 82 Supply / discharge connection part 85 Movable piece 85b Pressure receiving surface 86 Support part (sliding guide hole)
91 1st inclined part 92 2nd inclined part V valve body

Claims (7)

流体管の管内壁面に密着して管内流路を遮断可能な弾性シール部材を有する弁体と、前記弁体を前記流体管の管周壁に形成された貫通孔から管内に送り込む往復移動自在な弁支持部材と、が備えられている仕切弁装置であって、
前記弁体には、それの一部が前記管内壁面の底部に当接した状態での前記弁支持部材の送り込み移動に伴って流体の圧力が上昇する流体加圧室と、前記流体加圧室内で上昇した圧力流体で前記弾性シール部材を前記管内壁面に対して流路遮断状態に密着作動させる密着作動手段と、が備えられている仕切弁装置。
A valve body having an elastic sealing member that is in close contact with the inner wall surface of the fluid pipe and can block the flow path in the pipe, and a reciprocating movable valve that sends the valve body into the pipe through a through hole formed in the peripheral wall of the fluid pipe. A sluice valve device provided with a support member,
The valve body includes a fluid pressurizing chamber in which the fluid pressure rises as the valve support member is fed and moved in a state where a part of the valve body is in contact with the bottom of the inner wall surface of the pipe, and the fluid pressurizing chamber. A sluice valve device provided with a contact actuating means for closely operating the elastic seal member with respect to the inner wall surface of the pipe in a flow path cutoff state with the pressure fluid increased in.
前記流体加圧室には、前記流体管内の流体を導入する流体導入口が形成され、前記弁支持部材には、前記流体加圧室の内面に沿った移動によって前記流体導入口を開閉自在で、且つ、前記流体導入口を密閉した状態での送り込み側への移動によって前記流体加圧室内の流体を加圧する流体加圧部が設けられ、前記密着作動手段は、前記弾性シール部材の構成部材で、前記圧力流体の供給・排出によって膨縮自在なバッグと、前記流体加圧室と前記バッグとを接続する給排接続部と、が備えられている請求項1記載の仕切弁装置。 The fluid pressurizing chamber is formed with a fluid introduction port for introducing the fluid in the fluid pipe, and the valve support member can open and close the fluid introduction port by moving along the inner surface of the fluid pressurizing chamber. In addition, a fluid pressurizing unit that pressurizes the fluid in the fluid pressurizing chamber by moving the fluid inlet to the feeding side in a sealed state is provided, and the close contact operating means is a constituent member of the elastic sealing member. The sluice valve device according to claim 1, further comprising a bag that can be expanded and contracted by supplying and discharging the pressure fluid, and a supply / discharge connection portion that connects the fluid pressurizing chamber and the bag. 前記流体加圧室内には非圧縮性流体が充填され、前記弁支持部材には、前記弾性シール部材が前記管内壁面の底部に当接した状態での送り込み移動に伴って前記流体加圧室内の流体を加圧する流体加圧部が設けられ、前記密着作動手段は、前記流体加圧室内で上昇した流体圧の受圧面を有し、且つ、前記受圧面に作用する流体圧で前記弾性シール部材を送り込み方向に対して交差した交差方向の前記管内壁面の側面部に対して圧接させる可動片を備える請求項1記載の仕切弁装置。 The fluid pressurizing chamber is filled with a non-compressible fluid, and the valve support member is fed into the valve support member in a state where the elastic sealing member is in contact with the bottom of the inner wall surface of the pipe. A fluid pressurizing portion for pressurizing the fluid is provided, and the close contact operating means has a pressure receiving surface of the fluid pressure increased in the fluid pressurizing chamber, and the elastic sealing member is provided with the fluid pressure acting on the pressure receiving surface. The sluice valve device according to claim 1, further comprising a movable piece for pressure contacting the side surface portion of the inner wall surface of the pipe in the crossing direction intersecting the feeding direction. 前記弁体には、前記バッグを支持し、且つ、前記弁支持部材に対して送り込み方向の一定範囲内で相対移動自在に接合される芯金が備えられ、前記芯金には、前記弁支持部材の前記流体加圧部が送り込み方向に沿って移動自在な前記流体加圧室を形成する加圧室形成筒部が設けられ、前記芯金には、前記加圧室形成筒部に形成された前記流体導入口と前記流体管内とを連通する連通路が形成されている請求項2記載の仕切弁装置。 The valve body is provided with a core metal that supports the bag and is joined to the valve support member so as to be relatively movable within a certain range in the feeding direction, and the core metal is provided with the valve support. A pressurizing chamber forming cylinder portion is provided to form the fluid pressurizing chamber in which the fluid pressurizing portion of the member is movable along the feeding direction, and the core metal is formed in the pressurizing chamber forming cylinder portion. The sluice valve device according to claim 2, wherein a communication passage connecting the fluid introduction port and the inside of the fluid pipe is formed. 前記密着作動手段には、管内側に送り込み移動される前記弁支持部材との当接により、前記受圧面に流体圧が作用している前記可動片を前記交差方向に強制的に離間移動させる強制離間移動手段が備えられている請求項3記載の仕切弁装置。 The close contact operating means is forced to forcibly move the movable piece on which the fluid pressure is acting on the pressure receiving surface in the crossing direction by abutting with the valve support member that is sent and moved inside the pipe. The sluice valve device according to claim 3, further comprising a separation moving means. 前記弁体には、前記弾性シール部材を支持し、且つ、前記弁支持部材に対して送り込み方向の一定範囲内で相対移動自在に接合される芯金が備えられ、前記芯金には、前記弁支持部材の前記流体加圧部が送り込み方向に沿って移動自在な前記流体加圧室と、前記可動片をそれの前記受圧面が前記流体加圧室に臨む状態で前記交差方向に移動自在に支承する支承部と、が設けられている請求項3又は5記載の仕切弁装置。 The valve body is provided with a core metal that supports the elastic sealing member and is joined to the valve support member so as to be relatively movable within a certain range in the feeding direction. The fluid pressurizing chamber of the valve support member is movable along the feeding direction, and the movable piece is movable in the crossing direction with the pressure receiving surface of the movable piece facing the fluid pressurizing chamber. The sluice valve device according to claim 3 or 5, wherein the support portion is provided. 前記強制離間移動手段は、前記弁支持部材の前記流体加圧部に設けられた第1傾斜部と、当該第1傾斜部と当接可能な状態で前記可動片に形成され第2傾斜部と、を備え、前記第1傾斜部と前記第2傾斜部との当接により、前記弁支持部材の送り込み方向の移動力を前記可動片の強制離間移動力に変換する構成にしてある請求項5記載の仕切弁装置。
The forced separation moving means includes a first inclined portion provided in the fluid pressurizing portion of the valve support member, and a second inclined portion formed on the movable piece so as to be in contact with the first inclined portion. 5. The configuration is such that the moving force in the feeding direction of the valve support member is converted into the forced separation moving force of the movable piece by the contact between the first inclined portion and the second inclined portion. The sluice valve device described.
JP2020132893A 2020-08-05 2020-08-05 Gate valve device Active JP7490229B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020132893A JP7490229B2 (en) 2020-08-05 2020-08-05 Gate valve device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020132893A JP7490229B2 (en) 2020-08-05 2020-08-05 Gate valve device

Publications (2)

Publication Number Publication Date
JP2022029562A true JP2022029562A (en) 2022-02-18
JP7490229B2 JP7490229B2 (en) 2024-05-27

Family

ID=80325023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020132893A Active JP7490229B2 (en) 2020-08-05 2020-08-05 Gate valve device

Country Status (1)

Country Link
JP (1) JP7490229B2 (en)

Also Published As

Publication number Publication date
JP7490229B2 (en) 2024-05-27

Similar Documents

Publication Publication Date Title
KR101224998B1 (en) Check valve type coupling apparatus
US20080023661A1 (en) Fast-acting pneumatic diaphragm valve
US20130020519A1 (en) Dual piston actuator and method of use
JP2004528980A5 (en)
EP1421304B1 (en) Non-refillable valve for a gas cylinder
JP2005507836A (en) Valve unit for filling equipment
US9133943B2 (en) Flow path switching valve and discharge control apparatus for fluid material using the same
JP4579406B2 (en) Fluid control valve
AU2002346715A8 (en) Dispensing faucet
US20210341079A1 (en) Fluid End Valve Having Dual Inserts
JP6444108B2 (en) Fluid coupling
JP2018200044A (en) Push type nozzle assembly
WO2022123856A1 (en) Weir valve
JP2022029562A (en) Gate valve device
US20070215217A1 (en) Outlet check valve
JP4822675B2 (en) Manifold with integrated pressure relief valve
JP4925936B2 (en) Suck back valve
US6691746B2 (en) Method and apparatus for filling containers
JP2018030639A (en) Beverage supply device
JP7458019B2 (en) On-off valve device
US2184439A (en) Dispensing valve
JP3394196B2 (en) Dispense head
JP6780820B2 (en) Air cylinder
JP2007145336A (en) Filling device and method for fluid
US6820658B2 (en) Method and apparatus for filling containers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240508

R150 Certificate of patent or registration of utility model

Ref document number: 7490229

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150