JP2022027996A - Heat radiation fin and heat exchanger including the same - Google Patents

Heat radiation fin and heat exchanger including the same Download PDF

Info

Publication number
JP2022027996A
JP2022027996A JP2021206209A JP2021206209A JP2022027996A JP 2022027996 A JP2022027996 A JP 2022027996A JP 2021206209 A JP2021206209 A JP 2021206209A JP 2021206209 A JP2021206209 A JP 2021206209A JP 2022027996 A JP2022027996 A JP 2022027996A
Authority
JP
Japan
Prior art keywords
heat
heat transfer
fin
joint portion
transfer tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021206209A
Other languages
Japanese (ja)
Other versions
JP7338095B2 (en
Inventor
直樹 西村
Naoki Nishimura
悟志 前田
Satoshi Maeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakaigawa Industry Co Ltd
Original Assignee
Sakaigawa Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019126270A external-priority patent/JP2021011977A/en
Application filed by Sakaigawa Industry Co Ltd filed Critical Sakaigawa Industry Co Ltd
Priority to JP2021206209A priority Critical patent/JP7338095B2/en
Publication of JP2022027996A publication Critical patent/JP2022027996A/en
Application granted granted Critical
Publication of JP7338095B2 publication Critical patent/JP7338095B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a heat radiation fin which can achieve higher heat exchange efficiency, and to provide a heat exchanger including the heat radiation fins.
SOLUTION: A heat radiation fin used in a heat exchanger includes: a plate-like fin body; through holes which are formed in the fin body and through which heat transmission pipes included in the heat exchanger with the fins respectively penetrate; and joint parts each of which is formed protruding from a peripheral edge of the through hole in a vertical direction relative to one surface of the fin body at one surface side of the fin body and has a short cylinder shape. In an entire area of an inner peripheral surface in the joint part having the short cylinder shape, its diameter does not change along an axial direction of the joint part and has the same dimension. Thus, the inner peripheral surface is formed as a straight surface which slidably fits in an outer peripheral surface of the heat transmission pipe.
SELECTED DRAWING: Figure 4
COPYRIGHT: (C)2022,JPO&INPIT

Description

本発明は、放熱フィン、及び、放熱フィンを備える熱交換器に関する。 The present invention relates to a heat dissipation fin and a heat exchanger provided with the heat dissipation fin.

従来、フィン付き熱交換器として、所定間隔をあけて配置される複数枚の放熱フィンに、複数本の伝熱管を貫通させて構成されるものが知られている。また、図13の説明図に示すように、各放熱フィン3に設けられる貫通孔32の周縁には、貫通方向に沿って突設した短筒状の接合部33が設けられており、当該接合部33で伝熱管2を外嵌するように構成されている。このような熱交換器においては、伝熱管2内を流れる流体の熱が、放熱フィン3を介して、放熱フィン表面を流れる気体へと伝わることにより熱の移動が行われる。 Conventionally, as a heat exchanger with fins, a heat exchanger having a plurality of heat transfer tubes penetrating through a plurality of heat radiation fins arranged at predetermined intervals is known. Further, as shown in the explanatory view of FIG. 13, a short cylindrical joint portion 33 projecting along the penetration direction is provided on the peripheral edge of the through hole 32 provided in each heat radiation fin 3, and the joint portion 33 is provided. The heat transfer tube 2 is configured to be fitted externally to the portion 33. In such a heat exchanger, heat is transferred by transferring the heat of the fluid flowing in the heat transfer tube 2 to the gas flowing on the surface of the heat radiation fins via the heat radiation fins 3.

熱交換器による熱交換効率を高めるためには、伝熱管2と放熱フィン3との間での熱伝達損失をできるだけ少なくする必要があるが、従来の熱交換器においては、放熱フィン3が有する接合部33と伝熱管2との密着度が低く、熱伝達損失を効果的に低減することが難しいという問題があった。具体的に説明すると、伝熱管2の表面に外嵌される接合部33の形態が、図13に示すように、貫通孔32の周縁から突設方向に向かって縮径するテーパ―状に形成されているため、実質的に伝熱管2の表面と密着している接合部33の部分は、接合部33における突設方向先端部分となっており、熱伝達損失が大きいものとなっている。 In order to improve the heat exchange efficiency by the heat exchanger, it is necessary to reduce the heat transfer loss between the heat transfer tube 2 and the heat radiation fin 3 as much as possible. However, in the conventional heat exchanger, the heat radiation fin 3 has. There is a problem that the degree of adhesion between the joint portion 33 and the heat transfer tube 2 is low, and it is difficult to effectively reduce the heat transfer loss. Specifically, as shown in FIG. 13, the form of the joint portion 33 externally fitted to the surface of the heat transfer tube 2 is formed in a tapered shape that reduces the diameter from the peripheral edge of the through hole 32 toward the protrusion direction. Therefore, the portion of the joint portion 33 that is substantially in close contact with the surface of the heat transfer tube 2 is the tip portion of the joint portion 33 in the projecting direction, and the heat transfer loss is large.

本発明は、上述の問題を解決すべくなされたものであって、より一層高い熱交換効率を発揮できる放熱フィン、及び、放熱フィンを備える熱交換器を提供することを目的とする。 The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a heat dissipation fin capable of exhibiting even higher heat exchange efficiency and a heat exchanger provided with the heat radiation fin.

本発明の上記目的は、熱交換器に用いられる放熱フィンであって、板状のフィン本体と、前記フィン本体に形成され前記フィン付き熱交換器が備える伝熱管が貫通する貫通孔と、前記フィン本体の一方面側において前記貫通孔の周縁から前記フィン本体の一方面に対して垂直方向に突設して形成される短筒状の接合部とを備えており、前記短筒状の接合部における内周面の全域は、前記接合部の軸線方向に沿って、その直径が変化せず、同一寸法を有するように構成され、前記伝熱管の外周面と摺動可能に嵌合するストレート面として形成されていることを特徴とする放熱フィンにより達成される。 The object of the present invention is a heat radiation fin used in a heat exchanger, which is a plate-shaped fin body, a through hole formed in the fin body and through which a heat transfer tube included in the finned heat exchanger penetrates, and the above. A short tubular joint formed by projecting from the peripheral edge of the through hole on one surface side of the fin body in a direction perpendicular to one surface of the fin body is provided, and the short tubular joint is provided. The entire area of the inner peripheral surface of the portion is configured to have the same dimensions without changing its diameter along the axial direction of the joint portion, and is a straight that slidably fits with the outer peripheral surface of the heat transfer tube. Achieved by heat dissipation fins characterized by being formed as a surface.

また、本発明の上記目的は、上記記載の放熱フィンを複数備える熱交換器であって、複数本の伝熱管と、所定間隔をあけて配置される複数枚の前記放熱フィンとを備えており、前記各放熱フィンは、前記接合部を介して前記伝熱管に貫通させて配置されている熱交換器により達成される。 Further, the above object of the present invention is a heat exchanger provided with a plurality of the heat radiation fins described above, and includes a plurality of heat transfer tubes and a plurality of the heat radiation fins arranged at predetermined intervals. Each of the heat dissipation fins is achieved by a heat exchanger arranged so as to penetrate the heat transfer tube through the joint portion.

また、上記熱交換器において、前記伝熱管の外径に対する前記接合部の内径の比率(前記接合部の内径/前記伝熱管の外径)は、0.970以上であることが好ましい。 Further, in the heat exchanger, the ratio of the inner diameter of the joint portion to the outer diameter of the heat transfer tube (inner diameter of the joint portion / outer diameter of the heat transfer tube) is preferably 0.970 or more.

本発明によれば、より一層高い熱交換効率を発揮できる放熱フィン、及び、放熱フィンを備える熱交換器を提供することができる。 According to the present invention, it is possible to provide a heat radiation fin capable of exhibiting even higher heat exchange efficiency and a heat exchanger provided with the heat radiation fin.

本発明に係る熱交換器の概略構成平面図である。It is a schematic block diagram of the heat exchanger which concerns on this invention. 図1の要部拡大断面図である。It is an enlarged sectional view of the main part of FIG. 本発明に係る熱交換器が備える放熱フィンの要部平面図である。It is a main part plan view of the heat dissipation fin provided in the heat exchanger which concerns on this invention. 図3の要部拡大断面図である。FIG. 3 is an enlarged cross-sectional view of a main part of FIG. 放熱フィンが備える接合部の構成を説明するための説明図である。It is explanatory drawing for demonstrating the structure of the joint part provided with the radiating fin. 本発明に係る熱交換器の効果を説明するための説明図である。It is explanatory drawing for demonstrating the effect of the heat exchanger which concerns on this invention. 本発明に係る熱交換器が有する放熱フィンの変形例を示す要部平面図である。It is a main part plan view which shows the modification of the heat radiation fin which the heat exchanger which concerns on this invention have. 本発明に係る熱交換器が有する放熱フィンの変形例を示す要部平面図である。It is a main part plan view which shows the modification of the heat radiation fin which the heat exchanger which concerns on this invention have. 図8に示す放熱フィンの構造を説明するための説明図である。It is explanatory drawing for demonstrating the structure of the radiating fin shown in FIG. 伝熱特性評価試験に使用した本発明に係る熱交換器の断面に関するX線画像である。It is an X-ray image about the cross section of the heat exchanger which concerns on this invention used for the heat transfer characteristic evaluation test. 伝熱特性評価試験に使用した従来の熱交換器の断面に関するX線画像である。It is an X-ray image about the cross section of the conventional heat exchanger used for the heat transfer characteristic evaluation test. 発明者が行った伝熱特性試験結果を示すグラフである。It is a graph which shows the heat transfer property test result performed by the inventor. 従来の熱交換器が有する放熱フィン構造を説明するための説明図である。It is explanatory drawing for demonstrating the radiating fin structure which a conventional heat exchanger has.

以下、本発明に係る熱交換器について、添付図面を参照して説明する。なお、各図は、構成の理解を容易ならしめるために部分的に拡大・縮小している。図1は、本発明に係る熱交換器1の概略構成平面図であり、図2は、図1の要部拡大断面図である。また、図3は、熱交換器1が備える放熱フィン3の要部平面図であり、図4は、図3の要部拡大断面図である。この熱交換器1は、図1、図2に示すように、複数本の伝熱管2と、所定間隔をあけて配置される複数枚の放熱フィン3とを備えて構成されている。複数枚の放熱フィン3は、複数本の伝熱管2に貫通させて配置されている。 Hereinafter, the heat exchanger according to the present invention will be described with reference to the accompanying drawings. Each figure is partially enlarged or reduced to facilitate understanding of the configuration. FIG. 1 is a schematic configuration plan view of the heat exchanger 1 according to the present invention, and FIG. 2 is an enlarged sectional view of a main part of FIG. Further, FIG. 3 is a plan view of a main part of the heat radiation fin 3 included in the heat exchanger 1, and FIG. 4 is an enlarged cross-sectional view of the main part of FIG. As shown in FIGS. 1 and 2, the heat exchanger 1 includes a plurality of heat transfer tubes 2 and a plurality of heat radiation fins 3 arranged at predetermined intervals. The plurality of heat radiation fins 3 are arranged so as to penetrate through the plurality of heat transfer tubes 2.

伝熱管2は、内部に流体が流通するパイプ状部材であり、例えば、ステンレススチール管や銅管、アルミニウム管等から構成されている、 The heat transfer tube 2 is a pipe-shaped member through which a fluid flows, and is composed of, for example, a stainless steel tube, a copper tube, an aluminum tube, or the like.

放熱フィン3は、板状部材から形成されており、フィン本体31と、当該フィン本体31に形成される貫通孔32と、貫通孔32の周縁から突設して形成される接合部33とを備えている。 The heat radiation fin 3 is formed of a plate-shaped member, and has a fin main body 31, a through hole 32 formed in the fin main body 31, and a joint portion 33 formed so as to project from the peripheral edge of the through hole 32. I have.

放熱フィン3を形成する板状部材としては、例えば、板厚みが0.1mm~0.5mm程度のステンレススチール板やアルミニウム板を好適に使用することができる。貫通孔32は、伝熱管2が貫通される孔であり、フィン本体31において所定間隔をあけて複数形成されている。貫通孔32は丸孔として形成されており、その直径は、伝熱管2の外径よりも僅かに小さい寸法として形成されている。接合部33は、伝熱管2に外嵌される部材であり、フィン本体31の一方面に対して略垂直方向に突設して形成されている。 As the plate-shaped member forming the heat radiation fin 3, for example, a stainless steel plate or an aluminum plate having a plate thickness of about 0.1 mm to 0.5 mm can be preferably used. The through holes 32 are holes through which the heat transfer tube 2 is penetrated, and a plurality of through holes 32 are formed in the fin main body 31 at predetermined intervals. The through hole 32 is formed as a round hole, and its diameter is formed to be slightly smaller than the outer diameter of the heat transfer tube 2. The joint portion 33 is a member that is externally fitted to the heat transfer tube 2, and is formed so as to project in a direction substantially perpendicular to one surface of the fin main body 31.

また、接合部33は、図3及び図4に示すように、短筒状に形成されており、当該接合部33の内径は、貫通孔32の直径と同一寸法となるように構成されている。つまり、この接合部33の内周面は、伝熱管2の外周面と摺動可能に嵌合するストレート面として形成されている。より詳細には、短筒状に形成される接合部33の内周面は、接合部33の軸線方向(接合部33の突設方向)に沿って、その直径が変化せず、同一寸法を有するように構成されている、このような接合部33は、フィン本体31に形成された孔の周縁部(フィン本体31の一部分)を立ち上げ加工することにより、貫通孔32と共に形成することができる。なお、立ち上げ加工に際しては、短筒状の接合部33が、先細のテーパ状とならないように、金型等にて、接合部33と貫通孔32との境界部分を含めた接合部33の外周面側をホールドする。 Further, as shown in FIGS. 3 and 4, the joint portion 33 is formed in a short cylindrical shape, and the inner diameter of the joint portion 33 is configured to have the same size as the diameter of the through hole 32. .. That is, the inner peripheral surface of the joint portion 33 is formed as a straight surface that slidably fits with the outer peripheral surface of the heat transfer tube 2. More specifically, the inner peripheral surface of the joint portion 33 formed in the shape of a short cylinder has the same dimensions along the axial direction of the joint portion 33 (protrusion direction of the joint portion 33) without changing its diameter. Such a joint portion 33, which is configured to have such a joint portion 33, can be formed together with the through hole 32 by raising and processing the peripheral edge portion (a part of the fin main body 31) of the hole formed in the fin main body 31. can. At the time of start-up processing, the joint portion 33 including the boundary portion between the joint portion 33 and the through hole 32 is provided with a mold or the like so that the short tubular joint portion 33 does not have a tapered shape. Hold the outer peripheral surface side.

また、一の放熱フィン3が有する接合部33の突出方向側の先端の厚みTLは、図5の説明図に示すように、該一の放熱フィン3に隣接する他の放熱フィン3が有するフィン本体31の他方面側において貫通する貫通孔32の孔周縁角部における曲率半径寸法Rよりも大きくなるように構成されている。また、一の放熱フィン3の接合部33の先端が、他の放熱フィン3が有するフィン本体31の他方面側における貫通孔32の周縁に当接するように、各放熱フィン3は配設されて構成されている。 Further, as shown in the explanatory view of FIG. 5, the thickness TL of the tip of the joint portion 33 of the one heat radiation fin 3 on the protruding direction side is the fin of another heat radiation fin 3 adjacent to the one heat radiation fin 3. It is configured to be larger than the radius of curvature dimension R at the hole peripheral edge corner of the through hole 32 penetrating on the other surface side of the main body 31. Further, each heat radiation fin 3 is arranged so that the tip of the joint portion 33 of one heat radiation fin 3 abuts on the peripheral edge of the through hole 32 on the other surface side of the fin main body 31 of the other heat radiation fin 3. It is configured.

このように、本発明に係る熱交換器1は、放熱フィン3が備える接合部33の内周面をストレート面として構成することにより、接合部33の内周面の全域が伝熱管2の表面と密着させることが可能となるため、伝熱管2から放熱フィン3への熱伝達性能が大きく向上し、高い熱交換効率を発揮することが可能となる。特に、放熱フィン3の接合部33の先端が、他の放熱フィン3が有するフィン本体31の他方面側における貫通孔32の周縁に当接するように各フィンを配設することにより、複数の放熱フィン3が配置される伝熱管2上の所定領域において、伝熱管2の外表面の全域が接合部33と密着した状態で被覆されることになるため、伝熱管2から放熱フィン3へ熱の移動が効率良く行われるため、より一層高い熱交換効率を発揮することが可能となる。 As described above, in the heat exchanger 1 according to the present invention, the inner peripheral surface of the joint portion 33 provided in the heat radiation fin 3 is configured as a straight surface, so that the entire inner peripheral surface of the joint portion 33 is the surface of the heat transfer tube 2. The heat transfer performance from the heat transfer tube 2 to the heat radiation fin 3 is greatly improved, and high heat exchange efficiency can be exhibited. In particular, by disposing each fin so that the tip of the joint portion 33 of the heat radiation fin 3 abuts on the peripheral edge of the through hole 32 on the other surface side of the fin body 31 of the other heat radiation fin 3, a plurality of heat radiation is dissipated. In a predetermined region on the heat transfer tube 2 where the fins 3 are arranged, the entire outer surface of the heat transfer tube 2 is covered in a state of being in close contact with the joint portion 33, so that heat is transferred from the heat transfer tube 2 to the heat radiation fin 3. Since the movement is performed efficiently, it is possible to exhibit even higher heat exchange efficiency.

また、内周面がストレート面となる接合部33を有することにより、伝熱管2表面が接合部33によって被覆され、露出しない状態とすることが可能となる。これによって、伝熱管2表面が酸化等の腐食によって損傷することを効果的に防止することが可能となる。特に、放熱フィン3の接合部33の先端が、他の放熱フィン3が有するフィン本体31の他方面側における貫通孔32の周縁に当接するように各フィンを配設することにより、複数の放熱フィン3が配置される伝熱管2上の所定領域において、伝熱管2の外表面が冷却用の空気との接触が効果的に遮断されるため、伝熱管2表面での高い腐食防止効果を得ることが可能となる。 Further, by having the joint portion 33 whose inner peripheral surface is a straight surface, it is possible to cover the surface of the heat transfer tube 2 with the joint portion 33 so that it is not exposed. This makes it possible to effectively prevent the surface of the heat transfer tube 2 from being damaged by corrosion such as oxidation. In particular, by disposing each fin so that the tip of the joint portion 33 of the heat radiation fin 3 abuts on the peripheral edge of the through hole 32 on the other surface side of the fin main body 31 of the other heat radiation fin 3, a plurality of heat radiation is dissipated. In a predetermined region on the heat transfer tube 2 where the fins 3 are arranged, the outer surface of the heat transfer tube 2 is effectively blocked from contact with the cooling air, so that a high corrosion prevention effect on the surface of the heat transfer tube 2 can be obtained. It becomes possible.

また、一の放熱フィン3が有する接合部33の突出方向側の先端の厚みTLが、該一の放熱フィン3に隣接する他の放熱フィン3が有するフィン本体31の他方面側において貫通する貫通孔32の孔周縁角部における曲率半径寸法Rよりも大きくなるように構成されることにより、一の放熱フィン3が有する接合部33の突出方向側の先端が、隣接配置される他の放熱フィン3が有する貫通孔32の内側に配置されることを効果的に防止することができる。接合部33の突出方向側の先端の厚みTLが、他の放熱フィン3が有するフィン本体31の他方面側において貫通する貫通孔32の孔周縁角部における曲率半径寸法Rよりも小さいと、例えば、熱交換器1の使用時において、各放熱フィン3の間を通過する気体に押されて放熱フィン3が移動することにより、図6に示すように、接合部33の突出方向側の先端が、隣接配置される放熱フィン3における貫通孔32の内側に配置されてしまう事態が発生してしまう。この結果、放熱フィン3同士の間隔が狭くなり過ぎてしまい、放熱フィン3同士の間を通過する気体流量が低減してしまうため、熱交換効率が低下することになる。更には、接合部33の突出方向側の先端部分と重なった状態となってしまう貫通孔32の内側部分は、伝熱管2に面しないことになるため、伝熱管2から放熱される熱を直接的に受けることができなくなるため、より一層、熱交換効率の低下を招くこととなる。これに対して、本発明のように、一の放熱フィン3が有する接合部33の突出方向側の先端が、隣接する他の放熱フィン3が有するフィン本体31の他方面側において貫通する貫通孔32の孔周縁角部における曲率半径寸法よりも大きくなるように構成することにより、接合部33の突出方向側の先端が、隣接配置される放熱フィン3における貫通孔32の内側に配置されてしまうような事態が発生することを効果的に防止することができ、高い熱交換効率を維持することが可能となる。 Further, the thickness TL of the tip of the joint portion 33 of the one radiating fin 3 on the protruding direction side penetrates on the other surface side of the fin body 31 of the other radiating fin 3 adjacent to the one radiating fin 3. By being configured to be larger than the radius of curvature dimension R at the hole peripheral edge corner of the hole 32, the tip of one heat radiation fin 3 on the protruding direction side of the joint portion 33 is adjacent to another heat radiation fin. It is possible to effectively prevent the third from being arranged inside the through hole 32. When the thickness TL of the tip of the joint portion 33 on the protruding direction side is smaller than the radius of curvature dimension R at the hole peripheral edge corner of the through hole 32 penetrating on the other surface side of the fin body 31 of the other heat radiation fin 3, for example. When the heat exchanger 1 is used, the radiating fins 3 are pushed by the gas passing between the radiating fins 3 to move, so that the tip of the joint portion 33 on the protruding direction side is as shown in FIG. , A situation occurs in which the heat radiation fins 3 arranged adjacent to each other are arranged inside the through hole 32. As a result, the distance between the heat radiation fins 3 becomes too narrow, and the gas flow rate passing between the heat radiation fins 3 is reduced, so that the heat exchange efficiency is lowered. Further, since the inner portion of the through hole 32 that overlaps with the tip portion of the joint portion 33 on the protruding direction side does not face the heat transfer tube 2, the heat radiated from the heat transfer tube 2 is directly applied. Since it cannot be received, the heat exchange efficiency will be further reduced. On the other hand, as in the present invention, a through hole through which the tip of the joint portion 33 of one heat radiation fin 3 on the protruding direction side penetrates on the other surface side of the fin body 31 of another adjacent heat radiation fin 3. By configuring the joint portion 33 to be larger than the radius of curvature dimension at the hole peripheral edge corner portion 32, the tip of the joint portion 33 on the protruding direction side is arranged inside the through hole 32 in the heat radiation fin 3 arranged adjacently. It is possible to effectively prevent such a situation from occurring, and it is possible to maintain high heat exchange efficiency.

また、一の放熱フィン3が有する接合部33の突出方向側の先端の厚みTLが、該一の放熱フィン3に隣接する他の放熱フィン3が有するフィン本体31の他方面側において貫通する貫通孔32の孔周縁角部における曲率半径寸法Rよりも大きくなるように構成することにより、複数の放熱フィン3を伝熱管2に挿通させて所定位置に配置する過程において、接合部33の突出方向側の先端を、隣接する他の放熱フィン3が有するフィン本体31の他方面側における貫通孔32の周縁に当接させることができるため、容易に高い位置決め精度で各放熱フィン3を伝熱管2上に配置することが可能となる。 Further, the thickness TL of the tip of the joint portion 33 of the one radiating fin 3 on the protruding direction side penetrates through the other surface side of the fin body 31 of the other radiating fin 3 adjacent to the one radiating fin 3. In the process of inserting a plurality of heat radiation fins 3 into the heat transfer tube 2 and arranging them at predetermined positions by configuring the holes 32 to be larger than the radius of curvature dimension R at the hole peripheral edge corners, the protrusion direction of the joint portion 33. Since the tip on the side can be brought into contact with the peripheral edge of the through hole 32 on the other side of the fin body 31 of the other adjacent heat radiation fins 3, each heat radiation fin 3 can be easily transferred to the heat transfer tube 2 with high positioning accuracy. It can be placed on top.

具体的に説明すると、放熱フィン3同士の間隔は、フィン本体31の厚みと接合部33の長さとの合計寸法によって決定されることになる為、一の放熱フィン3が有する接合部33の先端部が、他の放熱フィン3が有する貫通孔32の孔周縁に当接するまで、一の放熱フィン3を移動させるだけで、所定間隔に維持された放熱フィン3の配列状態を得ることが可能となる。 Specifically, since the distance between the heat radiation fins 3 is determined by the total dimension of the thickness of the fin main body 31 and the length of the joint portion 33, the tip of the joint portion 33 possessed by one heat radiation fin 3 It is possible to obtain an arrangement state of the heat radiation fins 3 maintained at a predetermined interval only by moving one heat radiation fin 3 until the portion abuts on the peripheral edge of the through hole 32 of the other heat radiation fins 3. Become.

また、従来のように、突設方向に向かって縮径するテーパ状に形成される接合部33の場合、接合部33に伝熱管2を挿通させて所定位置に放熱フィン3を設置する際に、テーパ―状の接合部33の先端部が、伝熱管2表面を削ってしまい、該伝熱管2表面に傷をつけてしまうという問題があった。このような傷が発生すると、酸化等の腐食の進行がはやまることになってしまうが、本願のように、内周面がストレート面である接合部33の場合、接合部33に伝熱管2を挿通させて所定位置に放熱フィン3を設置する際に、伝熱管2の表面を削ってしまうことを効果的に抑制することができる。 Further, in the case of the joint portion 33 formed in a tapered shape whose diameter is reduced in the projecting direction as in the conventional case, when the heat transfer tube 2 is inserted through the joint portion 33 and the heat radiation fin 3 is installed at a predetermined position. There is a problem that the tip portion of the tapered joint portion 33 scrapes the surface of the heat transfer tube 2 and damages the surface of the heat transfer tube 2. When such scratches occur, the progress of corrosion such as oxidation stops, but in the case of the joint portion 33 whose inner peripheral surface is a straight surface as in the present application, the heat transfer tube 2 is attached to the joint portion 33. It is possible to effectively prevent the surface of the heat transfer tube 2 from being scraped when the heat radiation fins 3 are inserted and installed at predetermined positions.

具体的に説明すると、従来の内周面が突設方向に向かって縮径するテーパ状に形成される接合部33の場合、伝熱管2の表面と接触する部分は、テーパ―状の接合部33の先端部であり、接合部33と伝熱管2表面との接触箇所は線状となる。このような場合、放熱フィン3を伝熱管2に貫通移動させる際に放熱フィン3が僅かに傾いた場合であっても、接合部33の先端部が、伝熱管2表面に食い込むような状態で、接合部33は伝熱管2表面上を摺動することになり、伝熱管2表面に傷を形成してしまうことになる。これに対し、ストレート面を内面に有する本発明に係る接合部33の場合、接合部33の内周面全域が伝熱管2の表面に当接しているため、放熱フィン3を伝熱管2に貫通させる際に放熱フィン3が傾いた場合であっても、接合部33の先端部が、伝熱管2表面に食い込むような状態にはならず、その結果、伝熱管2の表面に傷を形成してしまうことが効果的に抑制される。なお、ストレート面を内面に有する本発明に係る接合部33の場合、接合部33が伝熱管2表面上を摺動する際に、接合部33の内周面と伝熱管2とが広い面積で接触した状態で接合部33が摺動することになるため、伝熱管2の表面が磨かれることになる。これにより、伝熱管2の表面に形成されていた傷の一部や、汚れ等が除去されることになり、熱伝達効率の向上に寄与することになる。 Specifically, in the case of the conventional joint portion 33 formed in a tapered shape in which the inner peripheral surface is reduced in diameter toward the projecting direction, the portion in contact with the surface of the heat transfer tube 2 is a tapered joint portion. It is the tip portion of 33, and the contact portion between the joint portion 33 and the surface of the heat transfer tube 2 is linear. In such a case, even if the heat radiation fin 3 is slightly tilted when the heat radiation fin 3 is moved through the heat transfer tube 2, the tip portion of the joint portion 33 bites into the surface of the heat transfer tube 2. The joint portion 33 slides on the surface of the heat transfer tube 2, and causes scratches on the surface of the heat transfer tube 2. On the other hand, in the case of the joint portion 33 according to the present invention having a straight surface on the inner surface, since the entire inner peripheral surface of the joint portion 33 is in contact with the surface of the heat transfer tube 2, the heat radiation fin 3 penetrates the heat transfer tube 2. Even if the heat radiation fin 3 is tilted when the heat transfer fin 3 is tilted, the tip portion of the joint portion 33 does not bite into the surface of the heat transfer tube 2, and as a result, a scratch is formed on the surface of the heat transfer tube 2. It is effectively suppressed. In the case of the joint portion 33 according to the present invention having a straight surface on the inner surface, when the joint portion 33 slides on the surface of the heat transfer tube 2, the inner peripheral surface of the joint portion 33 and the heat transfer tube 2 have a wide area. Since the joint portion 33 slides in contact with the heat transfer tube 2, the surface of the heat transfer tube 2 is polished. As a result, a part of the scratches and dirt formed on the surface of the heat transfer tube 2 are removed, which contributes to the improvement of the heat transfer efficiency.

以上、本発明の一実施形態に係る熱交換器1について説明したが、熱交換器1の具体的構成は、上記実施形態に限定されない。例えば、図7の要部平面図に示すように、フィン本体31が、スリット4を備えるように構成してもよい、このようなスリット4は、貫通孔32同士の間に形成することが好ましい。当該スリット4を設けることにより、放熱フィン3に供給される空気とフィン本体31との接触表面積が増大することになるため、より一層熱交換効率を向上させることが可能となる。また、伝熱管2からの熱を受けたフィン本体31が、いわゆる熱伸びによって変形してしまうことを効果的に抑制することもできる。 Although the heat exchanger 1 according to the embodiment of the present invention has been described above, the specific configuration of the heat exchanger 1 is not limited to the above embodiment. For example, as shown in the plan view of the main part of FIG. 7, the fin main body 31 may be configured to include the slit 4. Such a slit 4 is preferably formed between the through holes 32. .. By providing the slit 4, the contact surface area between the air supplied to the heat radiation fin 3 and the fin main body 31 is increased, so that the heat exchange efficiency can be further improved. Further, it is possible to effectively prevent the fin body 31 that has received heat from the heat transfer tube 2 from being deformed by so-called heat elongation.

また、図8の要部拡大断面図に示すように、放熱フィン3が備える接合部33の先端部に、突出片5を設けるように構成してもよい。この突出片5は、接合部33の先端部開口縁から径方向外方に突出するように形成されている。また、突出片5の突出方向は、短筒状の接合部33の外表面に対して垂直方向に突出するように構成されることが好ましい。また、突出片5としては、例えば、図8のA-A断面を示す図9(a)に示すように、接合部33の先端部開口縁に沿って配設されるリング状の形態を有するように構成してもよく、或いは、図9(b)に示すように、舌片状であってもよい。また、突出片5の突出方向に沿う幅W(突出寸法)は、隣接する他の放熱フィン3が有するフィン本体31の他方面側において貫通する貫通孔32の孔周縁角部における曲率半径寸法Rよりも大きくなるように構成されている。なお、図9(b)においては、舌片状に形成される突出片5を4つ設ける構成を示しているが、この数については、特に限定されない。 Further, as shown in the enlarged cross-sectional view of the main part of FIG. 8, the protruding piece 5 may be provided at the tip of the joint portion 33 included in the heat radiation fin 3. The protruding piece 5 is formed so as to project radially outward from the opening edge of the tip portion of the joint portion 33. Further, it is preferable that the projecting piece 5 is configured to project in the direction perpendicular to the outer surface of the short cylindrical joint portion 33. Further, the projecting piece 5 has, for example, a ring-shaped form arranged along the opening edge of the tip portion of the joint portion 33, as shown in FIG. 9A showing the AA cross section of FIG. Or, as shown in FIG. 9 (b), it may be in the shape of a tongue piece. Further, the width W (protruding dimension) along the protruding direction of the protruding piece 5 is the radius of curvature dimension R at the hole peripheral edge corner of the through hole 32 penetrating on the other side of the fin main body 31 of the adjacent other heat radiation fins 3. Is configured to be larger than. Note that FIG. 9B shows a configuration in which four protruding pieces 5 formed in the shape of a tongue piece are provided, but the number is not particularly limited.

このような突出片5を備えるように構成することにより、接合部33の一部分が、隣接配置される他の放熱フィン3が有する貫通孔32の内側に配置されることを効果的に防止することができる。また、突出片5を介しても、伝熱管2を流下する液体の熱を、放熱フィン3に供給される空気側に移動させることができるため、熱交換器1の熱交換効率を向上させることが可能となる。 By configuring to include such a protruding piece 5, it is possible to effectively prevent a part of the joint portion 33 from being arranged inside the through hole 32 of the other heat radiation fins 3 arranged adjacent to the joint portion 33. Can be done. Further, the heat of the liquid flowing down the heat transfer tube 2 can be transferred to the air side supplied to the heat radiation fins 3 even through the projecting piece 5, so that the heat exchange efficiency of the heat exchanger 1 can be improved. Is possible.

次に、本発明の発明者らは、実際に本発明に係る熱交換器1、及び、従来の熱交換器を作製し、伝熱特性の評価を行ったので、以下説明する。 Next, the inventors of the present invention actually manufactured the heat exchanger 1 and the conventional heat exchanger according to the present invention, and evaluated the heat transfer characteristics, which will be described below.

まず、本発明に係る熱交換器1、及び、従来の熱交換器は、共に、外径17.3 mm、内径13.3mmのステンレススチール管(伝熱管)を64本備えるものであり、これらステンレススチール管を4本×16本に配列して構成されている。なお、ステンレススチール管同士の間隔(中心間距離)は、4.24cmとしている。また、放熱フィン3は、フィン本体31の大きさが7.6cm×30cmの矩形状を有しており、その厚みを0.2mmとし、各ステンレススチール管が貫通される貫通孔32、当該貫通孔32の周縁に突設される接合部33を備えるようにして構成した。なお、放熱フィン3の枚数は、800枚であり、各フィン本体31の積層間隔は3mmとしている。 First, the heat exchanger 1 and the conventional heat exchanger according to the present invention both include 64 stainless steel tubes (heat transfer tubes) having an outer diameter of 17.3 mm and an inner diameter of 13.3 mm. It is composed of 4 x 16 stainless steel tubes arranged. The distance between the stainless steel pipes (distance between the centers) is 4.24 cm. Further, the heat radiation fin 3 has a rectangular shape in which the size of the fin body 31 is 7.6 cm × 30 cm, the thickness thereof is 0.2 mm, and the through hole 32 through which each stainless steel tube is penetrated and the penetration thereof. It is configured to include a joint portion 33 projecting from the peripheral edge of the hole 32. The number of heat radiation fins 3 is 800, and the stacking interval of each fin body 31 is 3 mm.

また、本発明に係る熱交換器1の放熱フィン3が有する接合部33は、その外形が17.45mmであり、内径が17.05mm、長さ(貫通孔32の境界から先端部までの長さ)が3mmとなるように構成されている。なお、接合部33の内周面は、ストレート面である。一方、従来の熱交換器の放熱フィン3が有する接合部33は、突設方向に向かって縮径するテーパ―状に形成されており、長さ(貫通孔32の境界から先端部までの長さ)が2.9mmとなるように構成されている。また、貫通孔32の境界における外径が、17.7mmであり、突設方向先端部における外径が17.0mmである。貫通孔32の境界における内径は、17.3mmであり、突設方向先端部における内径は、16.6mmである。 Further, the joint portion 33 of the heat radiation fin 3 of the heat exchanger 1 according to the present invention has an outer shape of 17.45 mm, an inner diameter of 17.05 mm, and a length (the length from the boundary of the through hole 32 to the tip portion). S) is configured to be 3 mm. The inner peripheral surface of the joint portion 33 is a straight surface. On the other hand, the joint portion 33 of the heat radiation fin 3 of the conventional heat exchanger is formed in a tapered shape whose diameter decreases in the projecting direction, and has a length (the length from the boundary of the through hole 32 to the tip portion). It is configured so that the diameter is 2.9 mm. Further, the outer diameter at the boundary of the through hole 32 is 17.7 mm, and the outer diameter at the tip portion in the projecting direction is 17.0 mm. The inner diameter at the boundary of the through hole 32 is 17.3 mm, and the inner diameter at the tip portion in the projecting direction is 16.6 mm.

上述のような各熱交換器1において、伝熱管2内に温度143.7℃(圧力3.06 kg/cm(G) )の飽和蒸気を流通させると共に、放熱フィン3の間に温度15℃の空気を通過させ、熱貫流率を計測することにより伝熱特性の評価を行った。ここで、放熱フィン3の間を通過させ得る空気の風速を、1m/s、2m/s、3m/s、4m/s、5m/s、6m/sと変化させ、各風速時における熱貫流率を測定した。なお、放熱フィン3の間を通過させる空気は、テラル株式会社製のファン(型番CMF-NO.3-TH-L-OB-D)により供給した。 In each heat exchanger 1 as described above, saturated steam having a temperature of 143.7 ° C. (pressure 3.06 kg / cm 2 (G)) is circulated in the heat transfer tube 2, and the temperature is 15 between the heat radiation fins 3. The heat transfer characteristics were evaluated by passing air at ° C and measuring the thermal transmissivity. Here, the wind speed of the air that can pass between the radiating fins 3 is changed to 1 m / s, 2 m / s, 3 m / s, 4 m / s, 5 m / s, and 6 m / s, and thermal transmission at each wind speed is performed. The rate was measured. The air passing between the heat radiation fins 3 was supplied by a fan (model number CMF-NO.3-TH-L-OB-D) manufactured by Teral Inc.

ここで、実際に伝熱特性評価試験に使用した本発明に係る熱交換器1、及び、従来の熱交換器の断面に関するX線画像をそれぞれ図10、図11に示す。なお、図10、図11共に、ステンレススチール管(伝熱管)の軸線に沿った断面に関するX線画像である。図10より、本発明に係る熱交換器1においては、フィン本体31に形成される貫通孔32の周縁から突設して形成される接合部の内周面の全域が、ステンレススチール管(伝熱管)の表面と密接していることがわかる。一方、図11より、従来の熱交換器においては、実質的にステンレススチール管(伝熱管)の表面と密着している接合部の部分は、接合部の突設方向の半分程度の領域であることがかわる。 Here, X-ray images of the cross section of the heat exchanger 1 according to the present invention actually used in the heat transfer characteristic evaluation test and the conventional heat exchanger are shown in FIGS. 10 and 11, respectively. Both FIGS. 10 and 11 are X-ray images relating to a cross section of a stainless steel tube (heat transfer tube) along the axis. From FIG. 10, in the heat exchanger 1 according to the present invention, the entire inner peripheral surface of the joint formed by projecting from the peripheral edge of the through hole 32 formed in the fin main body 31 is covered with a stainless steel pipe (transmission). It can be seen that it is in close contact with the surface of the heat tube). On the other hand, from FIG. 11, in the conventional heat exchanger, the portion of the joint portion that is substantially in close contact with the surface of the stainless steel tube (heat transfer tube) is a region of about half of the protrusion direction of the joint portion. Things change.

表1に、本発明に係る熱交換器1、及び、従来の熱交換器における各風速での熱貫流率を示すと共に、図12に、横軸を風速、縦軸を熱貫流率としたグラフを示す。ここで、表1中における向上率(熱貫流率の向上率)は、下式により算出している。
式:[(本発明に係る熱交換器1における熱貫流率)-(従来の熱交換器における熱貫流率)]/(従来の熱交換器における熱貫流率)×100(%)
Table 1 shows the thermal flow rate at each wind speed in the heat exchanger 1 according to the present invention and the conventional heat exchanger, and FIG. 12 is a graph in which the horizontal axis is the wind speed and the vertical axis is the thermal flow rate. Is shown. Here, the improvement rate (improvement rate of thermal transmission rate) in Table 1 is calculated by the following formula.
Formula: [(Heat transmission rate in heat exchanger 1 according to the present invention)-(Heat transmission rate in conventional heat exchanger)] / (Heat transmission rate in conventional heat exchanger) × 100 (%)

Figure 2022027996000002
Figure 2022027996000002

この伝熱特性評価結果から、本発明に係る熱交換器1は、従来の熱交換器に比べて、熱伝達率を、約15%程度向上できるものであることが分かる。 From this heat transfer characteristic evaluation result, it can be seen that the heat exchanger 1 according to the present invention can improve the heat transfer coefficient by about 15% as compared with the conventional heat exchanger.

このように、熱伝達率が向上することにより、例えば、従来の熱交換器と同等の熱交換能力を発揮させる場合には、従来の熱交換器よりもコンパクトな形態とすることが可能となり、また、コンパクト化できる結果、放熱フィン3に送り込まれる気体の圧力損失を低下させることができるため、気体を放熱フィン3に送り込むためのファンを小さくすることが可能となり、熱交換器1自体のコストを下げることが可能となる。 As described above, by improving the heat transfer rate, for example, when the heat exchange capacity equivalent to that of the conventional heat exchanger is exhibited, the form can be made more compact than the conventional heat exchanger. Further, as a result of being able to be made compact, the pressure loss of the gas sent to the heat radiation fin 3 can be reduced, so that the fan for sending the gas to the heat radiation fin 3 can be made smaller, and the cost of the heat exchanger 1 itself can be reduced. Can be lowered.

また、従来の熱交換器と同等の大きさを有する熱交換器1の場合には、放熱フィン3に送り込まれる気体の温度差(熱交換器1に流入する気体温度と熱交換器1から流出する気体温度との差)を、従来の熱交換器よりも大きく設定することが可能となることから、従来の熱交換器と比べて熱交換性能を向上させることが可能となる。 Further, in the case of the heat exchanger 1 having the same size as the conventional heat exchanger, the temperature difference of the gas sent to the heat radiation fins 3 (the temperature of the gas flowing into the heat exchanger 1 and the outflow from the heat exchanger 1). Since it is possible to set the difference from the gas temperature to be larger than that of the conventional heat exchanger, it is possible to improve the heat exchange performance as compared with the conventional heat exchanger.

また、発明者らは、接合部33や貫通孔32が大きく歪むことなく伝熱管2に外嵌することができる接合部33の内径(或いは貫通孔32の内径)と伝熱管2の外径との関係を明らかにしたので、その内容について説明する。 Further, the inventors have determined the inner diameter of the joint portion 33 (or the inner diameter of the through hole 32) and the outer diameter of the heat transfer tube 2 so that the joint portion 33 and the through hole 32 can be fitted onto the heat transfer tube 2 without being significantly distorted. Now that we have clarified the relationship between, I will explain its contents.

接合部33や貫通孔32が大きく歪むことなく伝熱管2に外嵌することができる接合部33の内径(或いは貫通孔32の内径)と伝熱管2の外径との関係を明らかにする上で、以下のようなモデルについて検討した。つまり、放熱フィン3に関しては、フィン本体31の厚みをt1とし、接合部33(貫通孔32)の内径をd1、接合部33(貫通孔32)における歪をε1とし、伝熱管2に関しては、伝熱管2の肉厚をt2とし、伝熱管2の外径をd2とし、伝熱管2における歪をε2とすると、接合部33(貫通孔32)を伝熱管2に挿入した後の当該接合部33分の径Dは、以下の式Aにて表すことができる。
式A:D=d1・(1+ε1)=d2・(1+ε2)
To clarify the relationship between the inner diameter of the joint 33 (or the inner diameter of the through hole 32) and the outer diameter of the heat transfer tube 2 so that the joint 33 and the through hole 32 can be fitted onto the heat transfer tube 2 without being significantly distorted. So, I examined the following models. That is, for the heat radiation fin 3, the thickness of the fin body 31 is t1, the inner diameter of the joint 33 (through hole 32) is d1, the strain in the joint 33 (through hole 32) is ε1, and the heat transfer tube 2 is. Assuming that the wall thickness of the heat transfer tube 2 is t2, the outer diameter of the heat transfer tube 2 is d2, and the strain in the heat transfer tube 2 is ε2, the joint portion after the joint portion 33 (through hole 32) is inserted into the heat transfer tube 2 The diameter D of 33 minutes can be expressed by the following formula A.
Equation A: D = d1 · (1 + ε1) = d2 · (1 + ε2)

また、“放熱フィン3側に作用する引張荷重”と“伝熱管2側に作用する圧縮荷重”とは釣り合っていると考えられることから、
“放熱フィン3側に作用する引張荷重”=“伝熱管2側に作用する圧縮荷重”であり、フィン本体31を形成する材料のヤング率をE1とし、伝熱管2を形成する材料のヤング率をE2とすると、以下の式Bが成り立つ。
式B:E1・ε1・t1・(代表長さL)+E2・ε2・t2・(代表長さL)=0
Further, since it is considered that the "tensile load acting on the heat radiation fin 3 side" and the "compressive load acting on the heat transfer tube 2 side" are in equilibrium.
"Tension load acting on the heat radiation fin 3 side" = "compressive load acting on the heat transfer tube 2 side", and the Young's modulus of the material forming the fin body 31 is E1, and the Young's modulus of the material forming the heat transfer tube 2 is set. If E2, the following equation B holds.
Equation B: E1, ε1, t1, (representative length L) + E2, ε2, t2, (representative length L) = 0

式Aより、d2-d1=d1・ε1-d2・ε2が得られ、
式Bより、d2-d1=d1・ε1+d2・E1・ε1・t1/(E2・t2)=((d1・E2・t2+d2・E1・t1)/(E2・t2))・ε1が得られ、両式から、
ε1=E2・t2・(d2-d1)/(E2・d1・t2+E1・d2・t1)
が得られる(式C)。
From the formula A, d2-d1 = d1, ε1-d2, ε2 can be obtained.
From Equation B, d2-d1 = d1 · ε1 + d2 · E1 · ε1 · t1 / (E2 · t2) = ((d1 · E2 · t2 + d2 · E1 · t1) / (E2 · t2)) · ε1 are obtained, and both From the formula
ε1 = E2 ・ t2 ・ (d2-d1) / (E2 ・ d1 ・ t2 + E1 ・ d2 ・ t1)
Is obtained (Equation C).

上記式Cに、フィン本体31の厚みt1、接合部33(貫通孔32)の内径d1、伝熱管2の肉厚t2、伝熱管2の外径d2としての各値を代入することにより、放熱フィン3に生じる歪ε1を算出した。なお、フィン本体31を形成する材料と伝熱管2を形成する材料は同じ材料を想定したため、ヤング率E1、E2は、同じ数値として歪ε1を算出している。 By substituting the respective values of the thickness t1 of the fin body 31, the inner diameter d1 of the joint portion 33 (through hole 32), the wall thickness t2 of the heat transfer tube 2, and the outer diameter d2 of the heat transfer tube 2 into the above formula C, heat is dissipated. The strain ε1 generated in the fin 3 was calculated. Since the material forming the fin body 31 and the material forming the heat transfer tube 2 are assumed to be the same material, the Young's modulus E1 and E2 are calculated as the same numerical value as the strain ε1.

上記式Cに代入したフィン本体31の厚みt1、接合部33(貫通孔32)の内径d1、伝熱管2の肉厚t2、伝熱管2の外径d2の組み合わせを表2に示す。なお、表2においては、算出された歪ε1、及び、伝熱管2の外径d2に対する接合部33(貫通孔32)の内径d1の比率(d1/d2)も併せて記載している。また、表2中の組み合わせBは、組み合わせAにおける放熱フィンt1及び伝熱管2の肉厚t2の値を変更したものであり、組み合わせCは、組み合わせAにおける放熱フィン3の肉厚t1の値を変更したものとなる。また、組み合わせDは、組み合わせAにおける放熱フィン3の内径d1の値、及び、伝熱管2の外径d2を変更したものとなり、組み合わせEは、組み合わせDにおける伝熱管2の外径d2を変更したものとなる。更に、組み合わせFは、組み合わせEにおける放熱フィン3の肉厚t1を変更したものとなる。 Table 2 shows a combination of the thickness t1 of the fin body 31 substituted into the above formula C, the inner diameter d1 of the joint portion 33 (through hole 32), the wall thickness t2 of the heat transfer tube 2, and the outer diameter d2 of the heat transfer tube 2. In Table 2, the calculated strain ε1 and the ratio (d1 / d2) of the inner diameter d1 of the joint portion 33 (through hole 32) to the outer diameter d2 of the heat transfer tube 2 are also shown. Further, in the combination B in Table 2, the values of the heat radiation fin t1 and the wall thickness t2 of the heat transfer tube 2 in the combination A are changed, and in the combination C, the value of the wall thickness t1 of the heat radiation fin 3 in the combination A is changed. It will be changed. Further, in combination D, the value of the inner diameter d1 of the heat radiation fin 3 in combination A and the outer diameter d2 of the heat transfer tube 2 are changed, and in combination E, the outer diameter d2 of the heat transfer tube 2 in combination D is changed. It becomes a thing. Further, the combination F is obtained by changing the wall thickness t1 of the heat radiation fin 3 in the combination E.

Figure 2022027996000003
Figure 2022027996000003

上記表2から、歪みε1が、0.030よりも小さくなるときの伝熱管2の外径d2に対する接合部33(貫通孔32)の内径d1の比率(d1/d2)は、約0.970であることがわかる。このことから、伝熱管2の外径に対する伝熱管2に外嵌される前の接合部33の内径(貫通孔32の内径)の比率を0.970以上、より好ましくは、0.980以上とすることにより、接合部33や貫通孔32が大きく歪むことなく伝熱管2に外嵌することができると考えられる。 From Table 2 above, the ratio (d1 / d2) of the inner diameter d1 of the joint portion 33 (through hole 32) to the outer diameter d2 of the heat transfer tube 2 when the strain ε1 is smaller than 0.030 is about 0.970. It can be seen that it is. From this, the ratio of the inner diameter of the joint portion 33 (inner diameter of the through hole 32) before being fitted into the heat transfer tube 2 to the outer diameter of the heat transfer tube 2 is 0.970 or more, more preferably 0.980 or more. By doing so, it is considered that the joint portion 33 and the through hole 32 can be externally fitted to the heat transfer tube 2 without being significantly distorted.

1 熱交換器
2 伝熱管
3 放熱フィン
31 フィン本体
32 貫通孔
33 接合部
4 スリット
5 突出片
1 Heat exchanger 2 Heat transfer tube 3 Heat dissipation fin 31 Fin body 32 Through hole 33 Joint 4 Slit 5 Protruding piece

本発明の上記目的は、熱交換器に用いられる放熱フィンであって、板状のフィン本体と、前記フィン本体に形成され前記熱交換器が備える伝熱管が貫通する貫通孔と、前記フィン本体の一方面側において前記貫通孔の周縁から前記フィン本体の一方面に対して垂直方向に突設して形成される短筒状の接合部とを備えており、前記短筒状の接合部における内周面の全域は、前記接合部の軸線方向に沿って、その直径が変化せず、同一寸法を有するように構成され、前記伝熱管の外周面と摺動可能に嵌合するストレート面として形成されていることを特徴とする放熱フィンにより達成される。 The object of the present invention is a heat radiation fin used in a heat exchanger, which is a plate-shaped fin body, a through hole formed in the fin body through which a heat transfer tube included in the heat exchanger penetrates, and the fin. A short-cylindrical joint formed by projecting from the peripheral edge of the through hole on one side of the main body in a direction perpendicular to one surface of the fin main body is provided. The entire area of the inner peripheral surface of the heat transfer tube is configured to have the same dimensions without changing its diameter along the axial direction of the joint portion, and is a straight surface slidably fitted to the outer peripheral surface of the heat transfer tube. Achieved by heat dissipation fins characterized by being formed as.

Claims (3)

熱交換器に用いられる放熱フィンであって、
板状のフィン本体と、前記フィン本体に形成され前記フィン付き熱交換器が備える伝熱管が貫通する貫通孔と、前記フィン本体の一方面側において前記貫通孔の周縁から前記フィン本体の一方面に対して垂直方向に突設して形成される短筒状の接合部とを備えており、
前記短筒状の接合部における内周面の全域は、前記接合部の軸線方向に沿って、その直径が変化せず、同一寸法を有するように構成され、前記伝熱管の外周面と摺動可能に嵌合するストレート面として形成されていることを特徴とする放熱フィン。
A heat dissipation fin used in heat exchangers
A plate-shaped fin body, a through hole formed in the fin body through which a heat transfer tube provided in the finned heat exchanger penetrates, and one surface of the fin body from the peripheral edge of the through hole on one surface side of the fin body. It is equipped with a short cylindrical joint formed so as to project vertically with respect to the above.
The entire area of the inner peripheral surface of the short cylindrical joint portion is configured to have the same dimensions without changing its diameter along the axial direction of the joint portion, and slides on the outer peripheral surface of the heat transfer tube. A radiating fin characterized by being formed as a straight surface that fits nicely.
請求項1に記載の放熱フィンを複数備える熱交換器であって、
複数本の伝熱管と、所定間隔をあけて配置される複数枚の前記放熱フィンとを備えており、前記各放熱フィンは、前記接合部を介して前記伝熱管に貫通させて配置されている熱交換器。
A heat exchanger having a plurality of heat dissipation fins according to claim 1.
A plurality of heat transfer tubes and a plurality of the heat transfer fins arranged at predetermined intervals are provided, and each of the heat transfer fins is arranged so as to penetrate the heat transfer tube through the joint portion. Heat exchanger.
前記伝熱管の外径に対する前記接合部の内径の比率(前記接合部の内径/前記伝熱管の外径)は、0.970以上であることを特徴とする請求項2に記載の熱交換器。
The heat exchanger according to claim 2, wherein the ratio of the inner diameter of the joint portion to the outer diameter of the heat transfer tube (inner diameter of the joint portion / outer diameter of the heat transfer tube) is 0.970 or more. ..
JP2021206209A 2019-07-05 2021-12-20 Radiation fins and heat exchanger with radiation fins Active JP7338095B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021206209A JP7338095B2 (en) 2019-07-05 2021-12-20 Radiation fins and heat exchanger with radiation fins

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019126270A JP2021011977A (en) 2019-07-05 2019-07-05 Heat exchanger
JP2021206209A JP7338095B2 (en) 2019-07-05 2021-12-20 Radiation fins and heat exchanger with radiation fins

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019126270A Division JP2021011977A (en) 2019-07-05 2019-07-05 Heat exchanger

Publications (2)

Publication Number Publication Date
JP2022027996A true JP2022027996A (en) 2022-02-14
JP7338095B2 JP7338095B2 (en) 2023-09-05

Family

ID=87882233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021206209A Active JP7338095B2 (en) 2019-07-05 2021-12-20 Radiation fins and heat exchanger with radiation fins

Country Status (1)

Country Link
JP (1) JP7338095B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5497838U (en) * 1977-12-22 1979-07-10
JPS54167464U (en) * 1978-05-17 1979-11-26
JPS58181189U (en) * 1982-05-28 1983-12-03 東洋ラジエ−タ−株式会社 Heat sink of air-cooled heat exchanger
JPS63173692U (en) * 1987-04-30 1988-11-10
JPH0425980U (en) * 1990-06-12 1992-03-02
JPH10160376A (en) * 1996-11-28 1998-06-19 Hidaka Seiki Kk Fins for heat exchanger and manufacturing dies
JP2008232499A (en) * 2007-03-19 2008-10-02 Daikin Ind Ltd Fin for heat exchanger
US20140158333A1 (en) * 2012-12-10 2014-06-12 Juhyok Kim Heat exchanger and method of manufacturing the same
JP2015049013A (en) * 2013-09-03 2015-03-16 三桜工業株式会社 Heat transfer pipe, manufacturing method of heat transfer pipe, and heat exchanger

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5497838U (en) * 1977-12-22 1979-07-10
JPS54167464U (en) * 1978-05-17 1979-11-26
JPS58181189U (en) * 1982-05-28 1983-12-03 東洋ラジエ−タ−株式会社 Heat sink of air-cooled heat exchanger
JPS63173692U (en) * 1987-04-30 1988-11-10
JPH0425980U (en) * 1990-06-12 1992-03-02
JPH10160376A (en) * 1996-11-28 1998-06-19 Hidaka Seiki Kk Fins for heat exchanger and manufacturing dies
JP2008232499A (en) * 2007-03-19 2008-10-02 Daikin Ind Ltd Fin for heat exchanger
US20140158333A1 (en) * 2012-12-10 2014-06-12 Juhyok Kim Heat exchanger and method of manufacturing the same
JP2015049013A (en) * 2013-09-03 2015-03-16 三桜工業株式会社 Heat transfer pipe, manufacturing method of heat transfer pipe, and heat exchanger

Also Published As

Publication number Publication date
JP7338095B2 (en) 2023-09-05

Similar Documents

Publication Publication Date Title
JP5296990B2 (en) Brazed plate fin heat exchanger
KR950014055B1 (en) Heat exchanger tube
DK2394129T3 (en) Plate heat exchange
JP2011064403A (en) Heat exchanger, fin for heat exchanger and its manufacturing method
US11346608B2 (en) Heat exchanger with improved plugging resistance
US20100212876A1 (en) Heat Exchanger
JP2010223578A (en) Heat exchanger fin, and heat exchanger
JP2022027996A (en) Heat radiation fin and heat exchanger including the same
JP2016012616A (en) Heat exchanger
US20140332188A1 (en) Heat exchanger
JP2021011977A (en) Heat exchanger
CN102538544A (en) Compound heat pipe, method of manufacturing the same, heat exchanger and heat exchanger system using the same
JP7244440B2 (en) Header plateless heat exchanger
KR20170113980A (en) Radiation fins dimple structure for heat promotion has been applied
JP2010255864A (en) Flat tube and heat exchanger
JP3957021B2 (en) Heat exchanger
WO2017110474A1 (en) Heat exchanger
EP0020375A4 (en) Heat exchanger having inclined tubes.
EP2147274B1 (en) Indirect heat exchange device and method of exchanging heat
KR20210037099A (en) Heat pipe for heat exchanger
JPWO2019131569A1 (en) Header plateless heat exchanger
JP2001116475A (en) Heating radiator and method for manufacturing it
RU182729U1 (en) DIAGRAGED CURVED PIPE
JP7474788B2 (en) Tube sheet profiles, tube sheets and coolers for automotive air conditioning systems
JP2007232283A (en) Fin-tube type heat exchanger

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211228

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221026

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20221223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230622

R150 Certificate of patent or registration of utility model

Ref document number: 7338095

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150