JP2022027413A - Power storage device - Google Patents
Power storage device Download PDFInfo
- Publication number
- JP2022027413A JP2022027413A JP2021007368A JP2021007368A JP2022027413A JP 2022027413 A JP2022027413 A JP 2022027413A JP 2021007368 A JP2021007368 A JP 2021007368A JP 2021007368 A JP2021007368 A JP 2021007368A JP 2022027413 A JP2022027413 A JP 2022027413A
- Authority
- JP
- Japan
- Prior art keywords
- negative electrode
- active material
- current collector
- material layer
- positive electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000003860 storage Methods 0.000 title claims abstract description 45
- 239000007773 negative electrode material Substances 0.000 claims abstract description 142
- 239000007774 positive electrode material Substances 0.000 claims abstract description 46
- 239000011149 active material Substances 0.000 claims abstract description 12
- 229920002134 Carboxymethyl cellulose Polymers 0.000 claims description 89
- 235000010948 carboxy methyl cellulose Nutrition 0.000 claims description 89
- 229920003048 styrene butadiene rubber Polymers 0.000 claims description 63
- 238000006266 etherification reaction Methods 0.000 claims description 21
- 239000001768 carboxy methyl cellulose Substances 0.000 claims description 15
- 239000008112 carboxymethyl-cellulose Substances 0.000 claims description 15
- 230000037303 wrinkles Effects 0.000 abstract description 16
- 230000015572 biosynthetic process Effects 0.000 abstract description 7
- 238000010030 laminating Methods 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 167
- 239000000203 mixture Substances 0.000 description 52
- 239000002174 Styrene-butadiene Substances 0.000 description 50
- 210000000352 storage cell Anatomy 0.000 description 29
- 238000000034 method Methods 0.000 description 27
- 125000006850 spacer group Chemical group 0.000 description 27
- 239000000463 material Substances 0.000 description 25
- 229920006184 cellulose methylcellulose Polymers 0.000 description 22
- 239000002904 solvent Substances 0.000 description 21
- -1 nickel hydrogen Chemical class 0.000 description 20
- 210000004027 cell Anatomy 0.000 description 18
- 239000003792 electrolyte Substances 0.000 description 16
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 15
- 239000011888 foil Substances 0.000 description 15
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 14
- 229910001416 lithium ion Inorganic materials 0.000 description 14
- 229920005989 resin Polymers 0.000 description 14
- 239000011347 resin Substances 0.000 description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- 239000008151 electrolyte solution Substances 0.000 description 13
- 150000002500 ions Chemical class 0.000 description 11
- 230000002093 peripheral effect Effects 0.000 description 11
- 239000007787 solid Substances 0.000 description 10
- 238000003466 welding Methods 0.000 description 10
- 239000011230 binding agent Substances 0.000 description 9
- 230000014759 maintenance of location Effects 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- 239000004698 Polyethylene Substances 0.000 description 8
- 230000007423 decrease Effects 0.000 description 8
- 229920000573 polyethylene Polymers 0.000 description 8
- 230000001965 increasing effect Effects 0.000 description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 239000012752 auxiliary agent Substances 0.000 description 6
- 238000005452 bending Methods 0.000 description 6
- 229920001940 conductive polymer Polymers 0.000 description 6
- 239000010439 graphite Substances 0.000 description 6
- 229910002804 graphite Inorganic materials 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 239000004743 Polypropylene Substances 0.000 description 5
- 239000006230 acetylene black Substances 0.000 description 5
- 239000011889 copper foil Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 239000002033 PVDF binder Substances 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 230000002708 enhancing effect Effects 0.000 description 4
- 239000011244 liquid electrolyte Substances 0.000 description 4
- 239000007769 metal material Substances 0.000 description 4
- 239000002861 polymer material Substances 0.000 description 4
- 229920001155 polypropylene Polymers 0.000 description 4
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 238000007789 sealing Methods 0.000 description 4
- 235000002639 sodium chloride Nutrition 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 3
- 239000003125 aqueous solvent Substances 0.000 description 3
- 239000002800 charge carrier Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 238000005304 joining Methods 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- 229910003002 lithium salt Inorganic materials 0.000 description 3
- 159000000002 lithium salts Chemical class 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 238000007747 plating Methods 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 238000007711 solidification Methods 0.000 description 3
- 230000008023 solidification Effects 0.000 description 3
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 2
- 229910013870 LiPF 6 Inorganic materials 0.000 description 2
- 239000004962 Polyamide-imide Substances 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 229920001893 acrylonitrile styrene Polymers 0.000 description 2
- 125000005370 alkoxysilyl group Chemical group 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000728 ammonium alginate Substances 0.000 description 2
- 235000010407 ammonium alginate Nutrition 0.000 description 2
- KPGABFJTMYCRHJ-YZOKENDUSA-N ammonium alginate Chemical compound [NH4+].[NH4+].O1[C@@H](C([O-])=O)[C@@H](OC)[C@H](O)[C@H](O)[C@@H]1O[C@@H]1[C@@H](C([O-])=O)O[C@@H](O)[C@@H](O)[C@H]1O KPGABFJTMYCRHJ-YZOKENDUSA-N 0.000 description 2
- 229910021383 artificial graphite Inorganic materials 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000011231 conductive filler Substances 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000007606 doctor blade method Methods 0.000 description 2
- 229920001973 fluoroelastomer Polymers 0.000 description 2
- 229920000578 graft copolymer Polymers 0.000 description 2
- 150000003949 imides Chemical class 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 239000012046 mixed solvent Substances 0.000 description 2
- 239000012452 mother liquor Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920002312 polyamide-imide Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- SCUZVMOVTVSBLE-UHFFFAOYSA-N prop-2-enenitrile;styrene Chemical compound C=CC#N.C=CC1=CC=CC=C1 SCUZVMOVTVSBLE-UHFFFAOYSA-N 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 239000000661 sodium alginate Substances 0.000 description 2
- 235000010413 sodium alginate Nutrition 0.000 description 2
- 229940005550 sodium alginate Drugs 0.000 description 2
- 239000007784 solid electrolyte Substances 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 1
- SBLRHMKNNHXPHG-UHFFFAOYSA-N 4-fluoro-1,3-dioxolan-2-one Chemical compound FC1COC(=O)O1 SBLRHMKNNHXPHG-UHFFFAOYSA-N 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- RJUFJBKOKNCXHH-UHFFFAOYSA-N Methyl propionate Chemical compound CCC(=O)OC RJUFJBKOKNCXHH-UHFFFAOYSA-N 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical group [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 150000005678 chain carbonates Chemical class 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 150000005676 cyclic carbonates Chemical class 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011245 gel electrolyte Substances 0.000 description 1
- 229910021469 graphitizable carbon Inorganic materials 0.000 description 1
- 229910021385 hard carbon Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 239000010954 inorganic particle Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 239000002931 mesocarbon microbead Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 229940017219 methyl propionate Drugs 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910021470 non-graphitizable carbon Inorganic materials 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 239000005518 polymer electrolyte Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229910021384 soft carbon Inorganic materials 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- NDZWKTKXYOWZML-UHFFFAOYSA-N trilithium;difluoro oxalate;borate Chemical compound [Li+].[Li+].[Li+].[O-]B([O-])[O-].FOC(=O)C(=O)OF NDZWKTKXYOWZML-UHFFFAOYSA-N 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、蓄電装置に関する。 The present invention relates to a power storage device.
特許文献1及び特許文献2には、個々に作製された複数の蓄電セルを直列に積層することにより構成される扁平型の蓄電装置が開示されている。上記蓄電セルは、箔状の正極集電体の片面に正極活物質層が形成されてなる正極と、箔状の負極集電体の片面に負極活物質層が形成されてなり、負極活物質層が正極の正極活物質層と対向するように配置された負極と、正極と負極との間に配置されたセパレータとを備えている。上記蓄電装置は、複数の上記蓄電セルを正極集電体と負極集電体とを接触させるようにして積層すること、具体的には、正極集電体における正極活物質層が形成されていない表面と、負極集電体における負極活物質層が形成されていない表面とを接触させるように積層することにより形成されている。 Patent Document 1 and Patent Document 2 disclose a flat type power storage device configured by stacking a plurality of individually manufactured power storage cells in series. The storage cell has a positive electrode having a positive electrode active material layer formed on one side of a foil-shaped positive electrode current collector and a negative electrode active material layer formed on one side of a foil-shaped negative electrode current collector. It includes a negative electrode arranged so that the layer faces the positive electrode active material layer of the positive electrode, and a separator arranged between the positive electrode and the negative electrode. In the power storage device, a plurality of the power storage cells are laminated so that the positive electrode current collector and the negative electrode current collector are in contact with each other, specifically, the positive electrode active material layer in the positive electrode current collector is not formed. It is formed by laminating the surface and the surface of the negative electrode current collector on which the negative electrode active material layer is not formed so as to be in contact with each other.
蓄電セルのエネルギー密度を大きくする方法の一つとして、活物質層の目付量を増加させる方法が考えられる。しかしながら、上記構成の蓄電装置の活物質層の目付量を増加させた場合、以下に記載する問題が生じる。すなわち、箔状の集電体の表面に活物質層が設けられる構造の電極において、活物質層の目付量を増加させると、電極製造時における活物質層の収縮により集電体に皺が発生しやすくなる。上記構成の蓄電装置は、集電体における活物質層が設けられていない表面同士を接触させてなる導通部分を有している。そのため、集電体に皺が生じると、上記導通部分における集電体同士の密着性が低下して接触抵抗が増大してしまう。 As one of the methods for increasing the energy density of the storage cell, a method for increasing the basis weight of the active material layer can be considered. However, when the basis weight of the active material layer of the power storage device having the above configuration is increased, the problems described below occur. That is, in an electrode having a structure in which an active material layer is provided on the surface of a foil-shaped current collector, when the amount of the active material layer is increased, wrinkles are generated in the current collector due to shrinkage of the active material layer during electrode manufacturing. It will be easier to do. The power storage device having the above configuration has a conductive portion formed by bringing the surfaces of the current collector, which are not provided with the active material layer, into contact with each other. Therefore, when the current collector is wrinkled, the adhesion between the current collectors in the conductive portion is lowered and the contact resistance is increased.
この発明は、こうした実情に鑑みてなされたものであり、その目的は、箔状の集電体を用いた蓄電装置に関して、活物質層の収縮により集電体に生じる皺を抑制することにある。 The present invention has been made in view of such circumstances, and an object thereof is to suppress wrinkles generated in a current collector due to shrinkage of an active material layer in a power storage device using a foil-shaped current collector. ..
上記の目的を達成する蓄電装置は、厚さ1~100μmの箔状の負極集電体の第1面に負極活物質層が設けられた負極と、正極集電体の第1面に正極活物質層が設けられてなり、前記正極活物質層が前記負極の前記負極活物質層と対向するように配置された正極と、前記正極活物質層と前記負極活物質層との間に配置されたセパレータとが繰り返し積層されるとともに、前記負極集電体における前記第1面の反対側の第2面と、前記正極集電体における前記第1面の反対側の第2面とが接触するように前記負極及び前記正極が積層された構造を有する蓄電装置であって、前記負極活物質層が設けられた部分の反対側に位置する部分に重ね合わされた導電部分とを有する蓄電装置であって、前記負極活物質層は、負極活物質と、カルボキシメチルセルロースと、スチレン-ブタジエンゴムとを含有し、前記カルボキシメチルセルロースの含有量は、0.5質量%以上1.3質量%以下であり、前記スチレン-ブタジエンゴムの含有量は、2.2質量%以上5.0質量%以下である。 The power storage device that achieves the above object is a negative electrode having a negative electrode active material layer provided on the first surface of a foil-shaped negative electrode current collector having a thickness of 1 to 100 μm, and a positive electrode activity on the first surface of the positive electrode current collector. A material layer is provided, and the positive electrode active material layer is arranged between the positive electrode arranged so as to face the negative electrode active material layer of the negative electrode, and between the positive electrode active material layer and the negative electrode active material layer. The separators are repeatedly laminated, and the second surface of the negative electrode current collector on the opposite side of the first surface and the second surface of the positive electrode current collector on the opposite side of the first surface come into contact with each other. A power storage device having a structure in which the negative electrode and the positive electrode are laminated as described above, and having a conductive portion superimposed on a portion located on the opposite side of the portion provided with the negative electrode active material layer. The negative electrode active material layer contains a negative electrode active material, carboxymethyl cellulose, and styrene-butadiene rubber, and the content of the carboxymethyl cellulose is 0.5% by mass or more and 1.3% by mass or less. The content of the styrene-butadiene rubber is 2.2% by mass or more and 5.0% by mass or less.
上記蓄電装置において、前記カルボキシメチルセルロースのエーテル化度は、0.85以上1.1以下であることが好ましい。
上記蓄電装置において、前記負極活物質層の目付量は、17mg/cm2以上であることが好ましい。
In the power storage device, the degree of etherification of the carboxymethyl cellulose is preferably 0.85 or more and 1.1 or less.
In the power storage device, the basis weight of the negative electrode active material layer is preferably 17 mg / cm 2 or more.
上記蓄電装置において、前記負極と、正極集電体の第1面に正極活物質層が形成されるとともに、前記正極活物質層が前記負極の前記負極活物質層と対向するように配置された正極と、前記正極活物質層と前記負極活物質層との間に配置されたセパレータと、が繰り返し積層された構造を有し、前記導電部分は、前記正極の前記正極集電体であり、前記負極集電体の前記第2面と、前記正極集電体における前記第1面の反対側の第2面とが接触していることが好ましい。 In the power storage device, the positive electrode active material layer is formed on the negative electrode and the first surface of the positive electrode current collector, and the positive electrode active material layer is arranged so as to face the negative electrode active material layer of the negative electrode. It has a structure in which a positive electrode and a separator arranged between the positive electrode active material layer and the negative electrode active material layer are repeatedly laminated, and the conductive portion is the positive electrode current collector of the positive electrode. It is preferable that the second surface of the negative electrode current collector and the second surface of the positive electrode current collector on the opposite side of the first surface are in contact with each other.
上記蓄電装置において、前記カルボキシメチルセルロースに対する前記スチレン-ブタジエンゴムの質量比は、1.69以上3以下であることが好ましい。
上記の各構成によれば、負極活物質層に含有される結着剤成分として、カルボキシメチルセルロース及びスチレン-ブタジエンゴムを用いるとともに、それらの含有量を上記の特定範囲としたことにより、負極活物質層の製造時における負極活物質層の収縮が抑制される。これにより、負極活物質層の収縮に起因して箔状の負極集電体に皺が生じることを抑制できる。その結果、負極集電体及び正極集電体の第2面同士の接触部分の密着性の低下、及び密着性の低下に伴う接触抵抗の増大を抑制できる。負極集電体に皺を生じさせ難い負極活物質層を採用することにより、負極集電体に対する負極活物質層の目付量を増加させて、蓄電セルのエネルギー密度を大きくすることが容易になる。
In the power storage device, the mass ratio of the styrene-butadiene rubber to the carboxymethyl cellulose is preferably 1.69 or more and 3 or less.
According to each of the above configurations, carboxymethyl cellulose and styrene-butadiene rubber are used as the binder component contained in the negative electrode active material layer, and the content thereof is set within the above-mentioned specific range, whereby the negative electrode active material is used. Shrinkage of the negative electrode active material layer during layer production is suppressed. As a result, it is possible to suppress the occurrence of wrinkles in the foil-shaped negative electrode current collector due to the shrinkage of the negative electrode active material layer. As a result, it is possible to suppress a decrease in the adhesion of the contact portion between the second surfaces of the negative electrode current collector and the positive electrode current collector, and an increase in contact resistance due to the decrease in the adhesion. By adopting a negative electrode active material layer that does not easily cause wrinkles in the negative electrode current collector, it becomes easy to increase the amount of the negative electrode active material layer with respect to the negative electrode current collector and increase the energy density of the storage cell. ..
本発明によれば、箔状の集電体を用いた蓄電装置に関して、活物質層の収縮により集電体に生じる皺を抑制できる。 According to the present invention, with respect to a power storage device using a foil-shaped current collector, wrinkles generated in the current collector due to shrinkage of the active material layer can be suppressed.
以下、本発明を具体化した一実施形態を図面にしたがって説明する。
図1に示す蓄電装置10は、例えば、フォークリフト、ハイブリッド自動車、電気自動車等の各種車両のバッテリに用いられる蓄電モジュールである。蓄電装置10は、例えば、ニッケル水素二次電池又はリチウムイオン二次電池等の二次電池である。蓄電装置10は、電気二重層キャパシタであってもよいし、全固体電池であってもよい。本実施形態では、蓄電装置10がリチウムイオン二次電池である場合を例示する。
Hereinafter, an embodiment embodying the present invention will be described with reference to the drawings.
The
図1に示すように、蓄電装置10は、複数の蓄電セル20が積層方向にスタック(積層)されたセルスタック30(積層体)を含んで構成されている。以下では、複数の蓄電セル20の積層方向を単に積層方向という。各蓄電セル20は、正極21と、負極22と、セパレータ23と、スペーサ24とを備える。
As shown in FIG. 1, the
正極21は、正極集電体21aと、正極集電体21aの第1面21a1に設けられた正極活物質層21bとを備える。積層方向から見た平面視(以下、単に平面視という。)において、正極活物質層21bは、正極集電体21aの第1面21a1の中央部に形成されている。平面視における正極集電体21aの第1面21a1の周縁部は、正極活物質層21bが設けられていない正極未塗工部21cとなっている。正極未塗工部21cは、平面視において正極活物質層21bの周囲を囲むように配置されている。
The
負極22は、負極集電体22aと、負極集電体22aの第1面22a1に設けられた負極活物質層22bとを備える。平面視において、負極活物質層22bは、負極集電体22aの第1面22a1の中央部に形成されている。平面視における負極集電体22aの第1面22a1の周縁部は、負極活物質層22bが設けられていない負極未塗工部22cとなっている。負極未塗工部22cは、平面視において負極活物質層22bの周囲を囲むように配置されている。
The
正極21及び負極22は、正極活物質層21b及び負極活物質層22bが積層方向において互いに対向するように配置されている。つまり、正極21及び負極22の対向する方向は積層方向と一致している。負極活物質層22bは、正極活物質層21bよりも一回り大きく形成されており、平面視において、正極活物質層21bの形成領域の全体が負極活物質層22bの形成領域内に位置している。
The
正極集電体21aは、第1面21a1とは反対側の面である第2面21a2を有する。正極21は、正極集電体21aの第2面21a2に正極活物質層21b及び負極活物質層22bのいずれも形成されていないモノポーラ構造の電極である。負極集電体22aは、第1面22a1とは反対側の面である第2面22a2を有する。負極22は、負極集電体22aの第2面21a2に正極活物質層21b及び負極活物質層22bのいずれも形成されていないモノポーラ構造の電極である。正極21及び負極22を構成する材料などの具体的な構成については後述する。
The positive
セパレータ23は、正極21と負極22との間に配置されて、正極21と負極22とを隔離することで両極の接触による短絡を防止しつつ、リチウムイオン等の電荷担体を通過させる部材である。
The
セパレータ23は、例えば、電解質を吸収保持するポリマーを含む多孔性シート又は不織布である。セパレータ23を構成する材料としては、例えば、ポリプロピレン、ポリエチレン、ポリオレフィン、ポリエステルなどが挙げられる。セパレータ23は、単層構造又は多層構造を有してもよい。多層構造は、例えば、接着層、耐熱層としてのセラミック層等を有してもよい。
The
スペーサ24は、正極21の正極集電体21aの第1面22a1と、負極22の負極集電体22aの第1面22a1との間、かつ正極活物質層21b及び負極活物質層22bよりも外周側に配置され、正極集電体21a及び負極集電体22aの両方に接合されている。スペーサ24は、絶縁材料を含み、正極集電体21aと負極集電体22aとの間を絶縁することによって、集電体間の短絡を防止する。
The
スペーサ24を構成する材料としては、例えば、ポリエチレン(PE)、ポリスチレン、ABS樹脂、変性ポリプロピレン(変性PP)、アクリロニトリルスチレン(AS)樹脂などの種々の樹脂材料が挙げられる。
Examples of the material constituting the
スペーサ24は、平面視において、正極集電体21a及び負極集電体22aの周縁部に沿って延在するとともに、正極集電体21a及び負極集電体22aの周囲を取り囲む枠状に形成されている。スペーサ24は、積層方向において、正極集電体21aの第1面21a1の正極未塗工部21cと、負極集電体22aの第1面22a1の負極未塗工部22cとの間に配置されている。
The
蓄電セル20の内部には、枠状のスペーサ24、正極21及び負極22によって囲まれた空間Sが形成されている。空間Sには、セパレータ23及び電解質が収容されている。なお、セパレータ23の周縁部分は、スペーサ24に埋まった状態とされている。
Inside the
したがって、スペーサ24は、正極21及び負極22との間の空間Sを封止する封止部としても機能しており、空間Sに収容された電解質の外部への透過を抑制し得る。また、スペーサ24は、蓄電装置10の外部から空間S内への水分の侵入を抑制し得る。さらに、スペーサ24は、例えば、充放電反応等により正極21又は負極22から発生したガスが蓄電装置10の外部に漏れることを抑制し得る。
Therefore, the
空間Sに収容される電解質は、液体電解質(電解液)である。液体電解質としては、例えば、非水溶媒と非水溶媒に溶解した電解質塩とを含む液体電解質が挙げられる。電解質塩として、LiClO4、LiAsF6、LiPF6、LiBF4、LiCF3SO3、LiN(FSO2)2、LiN(CF3SO2)2等の公知のリチウム塩を使用できる。また、非水溶媒として、環状カーボネート類、環状エステル類、鎖状カーボネート類、鎖状エステル類、エーテル類等の公知の溶媒を使用できる。なお、これら公知の溶媒材料を二種以上組合せて用いてもよい。 The electrolyte housed in the space S is a liquid electrolyte (electrolyte solution). Examples of the liquid electrolyte include a liquid electrolyte containing a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent. As the electrolyte salt, known lithium salts such as LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (FSO 2 ) 2 , and LiN (CF 3 SO 2 ) 2 can be used. Further, as the non-aqueous solvent, known solvents such as cyclic carbonates, cyclic esters, chain carbonates, chain esters, ethers and the like can be used. In addition, you may use two or more kinds of these known solvent materials in combination.
セルスタック30は、複数の蓄電セル20が、正極集電体21aの第2面21a2と負極集電体22aの第2面22a2とが直接接触するように重ね合わされた構造を有する。これにより、セルスタック30を構成する複数の蓄電セル20が直列に接続されている。正極集電体21aの第2面21a2と負極集電体22aの第2面22a2との接触部分は、接触抵抗の増大を抑制する観点から、密着性を高くすること、例えば、面接触している範囲をより広く設けることが好ましい。
The
ここで、セルスタック30においては、積層方向に隣り合う二つの蓄電セル20により、互いに接する正極集電体21a及び負極集電体22aを一つの集電体とみなした疑似的なバイポーラ電極25が形成される。疑似的なバイポーラ電極25は、正極集電体21a及び負極集電体22aが重ね合わされた構造の集電体と、その集電体の一方側の面に形成された正極活物質層21bと、他方側の面に形成された負極活物質層22bとを含む。
Here, in the
各蓄電セル20のスペーサ24は、正極集電体21aと負極集電体22aの各縁部よりも外側に延びる外周部分24aを有している。外周部分24aは、積層方向から見て正極集電体21aと負極集電体22aの各縁部よりも積層方向に直交する方向に突出している。積層方向に隣り合う蓄電セル20は、それぞれのスペーサ24の外周部分24a同士が接合されることにより一体化している。隣り合うスペーサ24同士を接合する方法としては、例えば、熱溶着、超音波溶着又は赤外線溶着など、公知の溶着方法が挙げられる。
The
蓄電装置10は、セルスタック30の積層方向においてセルスタック30を挟むように配置された、正極通電板40及び負極通電板50からなる一対の通電体を備える。正極通電板40及び負極通電板50は、それぞれ、導電性に優れた材料で構成される。
The
正極通電板40は、積層方向の一端において最も外側に配置された正極21の正極集電体21aの第2面21a2に電気的に接続される。負極通電板50は、積層方向の他端において最も外側に配置された負極22の負極集電体22aの第2面22a2に電気的に接続される。負極通電板50は、負極集電体22aの第2面22a2に接触するように重ね合わされた状態となっている。正極集電体21aの第2面21a2と負極集電体22aの第2面22a2との接触部分と同様に、負極通電板50と、負極集電体22aの第2面22a2との接触部分も、接触抵抗の増大を抑制する観点から、密着性を高くすることが好ましい。
The positive
正極通電板40及び負極通電板50のそれぞれに設けられた端子を通じて蓄電装置10の充放電が行われる。正極通電板40を構成する材料としては、例えば、正極集電体21aを構成する材料と同じ材料を用いることができる。正極通電板40は、セルスタック30に用いられた正極集電体21aよりも厚い金属板で構成してもよい。
The
負極通電板50を構成する材料としては、例えば、負極集電体22aを構成する材料と同じ材料を用いることができる。負極通電板50は、セルスタック30に用いられた負極集電体22aよりも厚い金属板で構成してもよい。
As the material constituting the negative electrode current-carrying
本実施形態においては、負極集電体22aに電気的に接続される正極集電体21a及び負極通電板50が、負極集電体22aの第2面22a2に重ね合わされた導電部分に相当する。これら正極集電体21a及び負極通電板50は、負極集電体22aの第2面22a2における第1面22a1側の負極活物質層22bが設けられている部分の反対側に位置する部分に接する部分を有するように負極集電体22aに重ね合わされている。
In the present embodiment, the positive electrode
次に、正極21を構成する正極集電体21a及び正極活物質層21b、並びに負極22を構成する負極集電体22a及び負極活物質層22bの詳細について説明する。
<正極集電体>
正極集電体21aは、リチウムイオン二次電池の放電又は充電の間、正極活物質層21bに電流を流し続けるための化学的に不活性な電気伝導体である。本実施形態において、正極集電体21aはアルミニウム箔である。正極集電体21aを構成する材料としては、例えば、金属材料、導電性樹脂材料、導電性無機材料等を用いることができる。
Next, the details of the positive electrode
<Positive current collector>
The positive electrode
導電性樹脂材料としては、例えば、導電性高分子材料又は非導電性高分子材料に必要に応じて導電性フィラーが添加された樹脂等が挙げられる。正極集電体21aは、前述した金属材料又は導電性樹脂材料を含む1以上の層を含む複数層を備えてもよい。正極集電体21aの表面は、公知の保護層により被覆されてもよい。正極集電体21aの表面は、メッキ処理等の公知の方法により処理されてもよい。
Examples of the conductive resin material include a conductive polymer material and a resin obtained by adding a conductive filler to a non-conductive polymer material as needed. The positive electrode
正極集電体21aは、例えば箔、シート、フィルム、線、棒、メッシュ又はクラッド材等の形態を有してもよい。正極集電体21aは、アルミニウム箔以外に、例えば、銅箔、ニッケル箔、チタン箔又はステンレス鋼箔等の金属箔であってもよい。機械的強度を確保する観点から、集電体は、ステンレス鋼箔(例えばJIS G 4305:2015にて規定されるSUS304、SUS316、SUS301、SUS304等)であってもよい。
The positive electrode
正極集電体21aは、上記金属の合金箔であってもよい。正極集電体21aは、アルミニウム膜によって被覆された基材を含む箔であってもよい。箔状の正極集電体21aの場合、正極集電体21aの厚さは、例えば、1~100μmである。
The positive electrode
<正極活物質層>
正極活物質層21bは、リチウムイオン等の電荷担体を吸蔵及び放出し得る正極活物質を含む。正極活物質としては、層状岩塩構造を有するリチウム複合金属酸化物、スピネル構造の金属酸化物、ポリアニオン系化合物など、リチウムイオン二次電池の正極活物質として使用可能なものを採用すればよい。また、2種以上の正極活物質を併用してもよい。本実施形態において、正極活物質層21bはポリアニオン系化合物としてのオリビン型リン酸鉄リチウム(LiFePO4)を含む。
<Positive electrode active material layer>
The positive electrode
正極活物質層21bは、必要に応じて電気伝導性を高めるための導電助剤、結着剤、電解質(ポリマーマトリクス、イオン伝導性ポリマー、電解液等)、イオン伝導性を高めるための電解質支持塩(リチウム塩)等をさらに含み得る。正極活物質層21bに含まれる成分又は当該成分の配合比及び正極活物質層21bの厚さは特に限定されず、リチウムイオン二次電池についての従来公知の知見が適宜参照され得る。正極活物質層21bの厚さは、例えば2~150μmである。
The positive electrode
導電助剤は、正極21の導電性を高めるために添加される。導電助剤は、例えばアセチレンブラック、カーボンブラック、グラファイト等である。
結着剤としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂、ポリイミド、ポリアミドイミド等のイミド系樹脂、アルコキシシリル基含有樹脂、ポリ(メタ)アクリル酸等のアクリル系樹脂、スチレン-ブタジエンゴム、カルボキシメチルセルロース、アルギン酸ナトリウム、アルギン酸アンモニウム等のアルギン酸塩、水溶性セルロースエステル架橋体、デンプン-アクリル酸グラフト重合体を例示することができる。これらの結着剤は、単独で又は複数で用いられ得る。溶媒又は分散媒には、例えば、水、N-メチル-2-ピロリドン等が用いられる。
The conductive auxiliary agent is added to increase the conductivity of the
Examples of the binder include fluororesins such as polyvinylidene fluoride, polytetrafluoroethylene and fluororubber, thermoplastic resins such as polypropylene and polyethylene, imide-based resins such as polyimide and polyamideimide, resins containing an alkoxysilyl group, and poly (poly). Examples thereof include acrylic resins such as meta) acrylic acid, styrene-butadiene rubbers, carboxymethyl cellulose, arginates such as sodium alginate and ammonium alginate, water-soluble cellulose ester cross-linking products, and starch-acrylic acid graft polymers. These binders can be used alone or in combination. As the solvent or dispersion medium, for example, water, N-methyl-2-pyrrolidone and the like are used.
<負極集電体>
負極集電体22aは、厚さ1~100μmの箔状である。本実施形態において、負極集電体22aは銅箔である。負極集電体22aを構成する材料としては、例えば、金属材料、導電性樹脂材料、導電性無機材料等を用いることができる。
<Negative electrode current collector>
The negative electrode
導電性樹脂材料としては、例えば、導電性高分子材料又は非導電性高分子材料に必要に応じて導電性フィラーが添加された樹脂等が挙げられる。負極集電体22aは、前述した金属材料又は導電性樹脂材料を含む1以上の層を含む複数層を備えてもよい。負極集電体22aの表面は、公知の保護層により被覆されてもよい。負極集電体22aの表面は、メッキ処理等の公知の方法により処理されてもよい。
Examples of the conductive resin material include a conductive polymer material and a resin obtained by adding a conductive filler to a non-conductive polymer material as needed. The negative electrode
負極集電体22aは、銅箔以外に、例えば、アルミニウム箔、ニッケル箔、チタン箔又はステンレス鋼箔等の金属箔であってもよい。機械的強度を確保する観点から、負極集電体22aは、ステンレス鋼箔(例えばJIS G 4305:2015にて規定されるSUS304、SUS316、SUS301、SUS304等)であってもよい。負極集電体22aは、上記金属の合金箔であってもよい。負極集電体22aは、銅膜によって被覆された基材を含む箔であってもよい。
The negative electrode
<負極活物質層>
負極活物質層22bは、必須成分として、リチウムイオン等の電荷担体を吸蔵及び放出し得る負極活物質と、カルボキシメチルセルロース(以下、CMCと記載する。)と、スチレン-ブタジエンゴム(以下、SBRと記載する。)とを含有する。
<Negative electrode active material layer>
The negative electrode
負極活物質としては、例えば、Li、又は炭素、金属化合物、リチウムと合金化可能な元素もしくはその化合物等が挙げられる。炭素としては天然黒鉛、人造黒鉛、あるいはハードカーボン(難黒鉛化性炭素)又はソフトカーボン(易黒鉛化性炭素)を挙げることができる。人造黒鉛としては、高配向性グラファイト、メソカーボンマイクロビーズ等が挙げられる。リチウムと合金化可能な元素の例としては、シリコン(ケイ素)及びスズが挙げられる。 Examples of the negative electrode active material include Li, carbon, a metal compound, an element that can be alloyed with lithium, or a compound thereof. Examples of carbon include natural graphite, artificial graphite, hard carbon (non-graphitizable carbon) or soft carbon (easy graphitizable carbon). Examples of artificial graphite include highly oriented graphite and mesocarbon microbeads. Examples of elements that can be alloyed with lithium include silicon and tin.
負極活物質層22bにおける負極活物質の含有量は、例えば、94.0質量%以上97.3質量%以下である。
CMCのエーテル化度は、0.85以上1.1以下であることが好ましく、0.90以上1.05以下であることがより好ましい。負極活物質と、CMCと、SBRとを含有する負極活物質層22bの場合、CMCのエーテル化度と負極活物質層22bの屈曲度τとの間には、エーテル化度が第1の特定値未満の範囲では、エーテル化度が増加するにしたがって屈曲度τが減少し、第2の特定値を超える範囲ではエーテル化度が増加するにしたがって屈曲度τが増加するという関係がある。
The content of the negative electrode active material in the negative electrode
The degree of etherification of CMC is preferably 0.85 or more and 1.1 or less, and more preferably 0.90 or more and 1.05 or less. In the case of the negative electrode
したがって、CMCのエーテル化度を0.85以上1.1以下とすることにより、負極活物質層22bの屈曲度τを低下させることができる。負極活物質層22bの屈曲度τが低下することにより、電極細孔内をイオンが通過する際の抵抗であるイオン抵抗が低下し、蓄電装置10の電池特性が向上する。
Therefore, by setting the degree of etherification of CMC to 0.85 or more and 1.1 or less, the tortuosity τ of the negative electrode
負極活物質層22bにおけるCMCの含有量は、0.5質量%以上1.3質量%以下である。CMCの含有量を上記範囲とすることにより、負極集電体22aにおける皺の発生を抑制できる。
The content of CMC in the negative electrode
CMCの含有量は、0.6質量%以上であることが好ましく、0.7質量%以上であることがより好ましい。また、CMCの含有量は、1.2質量%以下であることが好ましく、1.1質量%以下であることがより好ましい。 The content of CMC is preferably 0.6% by mass or more, and more preferably 0.7% by mass or more. The CMC content is preferably 1.2% by mass or less, more preferably 1.1% by mass or less.
負極活物質層22bにおけるSBRの含有量は、2.2質量%以上5.0質量%以下である。SBRの含有量を2.2質量%以上とすることにより、負極集電体22aにおける皺の発生を抑制できるとともに、負極集電体22aと負極活物質層22bとの間の剥離強度の低下を抑制できる。SBRの含有量を5.0質量%以下とすることにより、負極の抵抗を低減できる。
The content of SBR in the negative electrode
負極集電体22aと負極活物質層22bとの間の剥離強度を更に向上させる場合には、SBRの含有量は、4.4質量%以上であることが好ましく、5.5質量%以上であることがより好ましい。また、SBRの含有量は、7.0質量%以下であることが好ましく、6.0質量%以下であることがより好ましい。
When the peel strength between the negative electrode
また、負極活物質層22bにおけるCMCの含有量及びSBRの含有量の合計は、6.0質量%以下であることが好ましく、5.5質量%以下であることがより好ましい。CMCの含有量及びSBRの含有量の合計を小さくすることにより、負極活物質層22bの屈曲度τを低下させることができる。これにより、電極細孔内をイオンが通過する際の抵抗であるイオン抵抗が低下し、蓄電装置10の電池特性が向上する。
The total content of CMC and SBR in the negative electrode
負極活物質層22bは、必要に応じて、負極活物質、CMC、及びSBR以外のその他成分を含有してもよい。その他成分としては、例えば、電気伝導性を高めるための導電助剤、CMC及びSBR以外の結着剤、電解質(ポリマーマトリクス、イオン伝導性ポリマー、電解液等)、イオン伝導性を高めるための電解質支持塩(リチウム塩)が挙げられる。
The negative electrode
導電助剤は、負極22の導電性を高めるために添加される。導電助剤は、例えばアセチレンブラック、カーボンブラック、グラファイト等である。
結着剤としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂、ポリイミド、ポリアミドイミド等のイミド系樹脂、アルコキシシリル基含有樹脂、ポリ(メタ)アクリル酸等のアクリル系樹脂、アルギン酸ナトリウム、アルギン酸アンモニウム等のアルギン酸塩、水溶性セルロースエステル架橋体、デンプン-アクリル酸グラフト重合体を例示することができる。これらの結着剤は、単独で又は複数で用いられ得る。溶媒には、例えば、水、N-メチル-2-ピロリドン等が用いられる。
The conductive auxiliary agent is added to increase the conductivity of the
Examples of the binder include fluororesins such as polyvinylidene fluoride, polytetrafluoroethylene and fluororubber, thermoplastic resins such as polypropylene and polyethylene, imide-based resins such as polyimide and polyamideimide, resins containing an alkoxysilyl group, and poly (poly). Meta) Acrylic resins such as acrylic acid, alginates such as sodium alginate and ammonium alginate, water-soluble cellulose ester cross-linking products, and starch-acrylic acid graft polymers can be exemplified. These binders can be used alone or in combination. As the solvent, for example, water, N-methyl-2-pyrrolidone and the like are used.
負極活物質層22bの厚さ及び目付量は、特に限定されず、リチウムイオン二次電池についての従来公知の知見が適宜参照され得る。ただし、蓄電セル20のエネルギー密度を大きくする観点から、負極活物質層22bの目付量を大きくすることが好ましい。
The thickness and basis weight of the negative electrode
負極活物質層22bの厚さは、例えば、150μm以上であることが好ましく、200μm以上であることがより好ましい。また、負極活物質層22bの厚さは、例えば、500μm以下である。負極活物質層22bの目付量は、例えば、17mg/cm2以上であることが好ましく、25mg/cm2以上であることがより好ましい。また、負極活物質層22bの目付量は、例えば、60mg/cm2以下である。
The thickness of the negative electrode
負極活物質層22bの目付量が17mg/cm2以上である場合、負極活物質層22bにおけるCMCに対するSBRの質量比(SBR/CMC)を1.69以上3以下とすることが好ましく、2.0以上2.6以下とすることがより好ましい。なお、負極活物質層22bにおけるCMCの含有量は、0.5質量%以上1.3質量%以下であり、SBRの含有量は、2.2質量%以上5.0質量%以下である。したがって、上記質量比(SBR/CMC)が取り得る値の下限は、1.69(=2.2/1.3)である。
When the grain size of the negative electrode
負極活物質層22bの目付量が大きい場合、負極活物質層22bに、厚みムラ、プレスムラ、抵抗ムラ等の各種ムラが生じやすくなる。負極活物質層22bに生じた各種ムラは、負極活物質層22bの容量劣化を生じさせる原因になる。上記質量比(SBR/CMC)を1.69以上3以下とすることにより、負極活物質層22bの容量劣化を抑制できる。
When the basis weight of the negative electrode
次に、本実施形態の蓄電装置10の製造方法について説明する。
図2に示すように、蓄電装置10は、電極形成工程S1と、蓄電セル形成工程S2と、セルスタック形成工程S3と順に経ることにより製造される。
Next, a method of manufacturing the
As shown in FIG. 2, the
<電極形成工程>
電極形成工程S1は、正極21を形成する正極形成工程と、負極22を形成する負極形成工程とを有する。
<Electrode forming process>
The electrode forming step S1 includes a positive electrode forming step of forming the
正極形成工程は特に限定されるものではなく、正極集電体21a及び正極活物質層21bを備える正極21の形成に適用される公知の方法を用いることができる。例えば、正極集電体21aの第1面21a1に対して、固化することにより正極活物質層21bとなる正極合材を所定厚みとなるように付着させた後、正極合材に応じた固化処理を行うことにより正極21を形成することができる。
The positive electrode forming step is not particularly limited, and a known method applied to the formation of the
負極形成工程は、負極集電体22aの第1面22a1に対して、固化することにより負極活物質層22bとなる負極合材を付着させた後、所定の固化処理を行うことにより負極22を形成する工程である。
In the negative electrode forming step, a negative electrode mixture that becomes a negative electrode
負極合材は、必須成分として、負極活物質と、CMCと、SBRと、溶媒とを含有する。また、負極合材は、必要に応じて上記の負極活物質層欄にて記載したその他成分を含有してもよい。 The negative electrode mixture contains a negative electrode active material, CMC, SBR, and a solvent as essential components. Further, the negative electrode mixture may contain other components described in the above-mentioned negative electrode active material layer column, if necessary.
負極合材に含有される負極活物質は、上記の負極活物質層欄にて記載したものと同様である。負極合材に含有される固形成分の合計質量を100質量部としたとき、負極活物質の含有量は、例えば、94.0質量部以上97.3質量部以下である。 The negative electrode active material contained in the negative electrode mixture is the same as that described in the negative electrode active material layer column above. When the total mass of the solid components contained in the negative electrode mixture is 100 parts by mass, the content of the negative electrode active material is, for example, 94.0 parts by mass or more and 97.3 parts by mass or less.
負極合材に含有されるCMCは、上記の負極活物質層欄にて記載したものと同様である。
負極合材に含有される固形成分の合計質量を100質量部としたとき、CMCの含有量は、0.5質量部以上1.3質量部以下である。上記CMCの含有量は、0.6質量部以上であることが好ましく、0.7質量部以上であることがより好ましい。また、上記CMCの含有量は、1.2質量部以下であることが好ましく、1.1質量部以下であることがより好ましい。上記CMCの含有量を0.5質量部以上とすることにより、流動性のある負極合材を調製することが容易になる。
The CMC contained in the negative electrode mixture is the same as that described in the negative electrode active material layer column above.
When the total mass of the solid components contained in the negative electrode mixture is 100 parts by mass, the content of CMC is 0.5 parts by mass or more and 1.3 parts by mass or less. The content of the CMC is preferably 0.6 parts by mass or more, and more preferably 0.7 parts by mass or more. The CMC content is preferably 1.2 parts by mass or less, and more preferably 1.1 parts by mass or less. By setting the CMC content to 0.5 parts by mass or more, it becomes easy to prepare a fluid negative electrode mixture.
負極合材に含有されるSBRは、上記の負極活物質層欄にて記載したものと同様である。負極合材に含有される固形成分の合計質量を100質量部としたとき、SBRの含有量は、2.2質量部以上5.0質量部以下である。上記SBRの含有量は、4.0質量部以下であることが好ましく、3.0質量部以下であることがより好ましい。 The SBR contained in the negative electrode mixture is the same as that described in the negative electrode active material layer column above. When the total mass of the solid components contained in the negative electrode mixture is 100 parts by mass, the SBR content is 2.2 parts by mass or more and 5.0 parts by mass or less. The content of the SBR is preferably 4.0 parts by mass or less, and more preferably 3.0 parts by mass or less.
溶媒は、例えば、水、N-メチルピロリドン(NMP)である。溶媒は、二種以上を組合せて用いてもよい。溶媒は、水を主成分とする溶媒、例えば、溶媒における水の質量割合が50~100質量%である溶媒であることが好ましい。 The solvent is, for example, water, N-methylpyrrolidone (NMP). Two or more kinds of solvents may be used in combination. The solvent is preferably a solvent containing water as a main component, for example, a solvent in which the mass ratio of water in the solvent is 50 to 100% by mass.
ここで、水を主成分とする溶媒を用いた場合、負極合材の粘度の経時的な安定性を向上させる観点から、エーテル化度が1.1以下のCMCを用いることが好ましい。CMCのエーテル化度が低下すると、CMCの疎水性が増大して水への溶解性が低下する。これにより、負極合材中においてCMCの疎水性部位が疎水性の高い炭素等の負極活物質の表面に吸着しやすくなり、水を主成分とする溶媒中での負極活物質の分散安定性が向上し、負極合材の粘度の経時的な上昇を抑制できる。 Here, when a solvent containing water as a main component is used, it is preferable to use a CMC having a degree of etherification of 1.1 or less from the viewpoint of improving the stability of the viscosity of the negative electrode mixture over time. When the degree of etherification of CMC decreases, the hydrophobicity of CMC increases and the solubility in water decreases. As a result, the hydrophobic part of CMC is easily adsorbed on the surface of the negative electrode active material such as carbon having high hydrophobicity in the negative electrode mixture, and the dispersion stability of the negative electrode active material in the solvent containing water as a main component is improved. It can be improved and the increase in the viscosity of the negative electrode mixture over time can be suppressed.
溶媒は、例えば、負極合材の固形割合が60~65質量%となるように負極合材に配合される。また、負極合材の粘度は、例えば、25℃において5000~50000mPa・sである。 The solvent is added to the negative electrode mixture so that the solid ratio of the negative electrode mixture is, for example, 60 to 65% by mass. The viscosity of the negative electrode mixture is, for example, 5000 to 50,000 mPa · s at 25 ° C.
負極形成工程において、負極集電体22aに負極合材を付着させる方法は特に限定させるものではなく、ロールコート法等の電極の形成に適用される公知の方法を用いることができる。負極集電体22aに付着させる負極合材の厚みは、負極合材に含有される固形成分の目付量が、上述した負極活物質層22bの目付量の範囲内となるように設定される。また、負極形成工程の固化処理は、加熱などにより、負極集電体22aに付着させた負極合材を乾燥させて、溶媒を除去する処理である。
In the negative electrode forming step, the method of adhering the negative electrode mixture to the negative electrode
<蓄電セル形成工程>
蓄電セル形成工程S2では、まず、セパレータ23を間に挟んで正極活物質層21b及び負極活物質層22bが互いに積層方向に対向するように正極21及び負極22を配置するとともに、正極21と負極22の間、かつ正極集電体21a及び負極集電体22aよりも外周側にスペーサ24を配置する。
<Storage cell formation process>
In the storage cell forming step S2, first, the
その後、正極21、負極22、及びセパレータ23とスペーサ24とを溶着により接合することにより、各部材が一体化された組立体を形成する。スペーサ24の溶着方法としては、例えば、熱溶着、超音波溶着又は赤外線溶着など、公知の溶着方法が挙げられる。
After that, the
次に、スペーサ24の一部に設けられた注入口を通じて組立体の内部の空間Sに電解質を注入した後、注入口を封止する。これにより、蓄電セル20が形成される。
<セルスタック形成工程>
セルスタック形成工程S3では、まず、複数の蓄電セル20を、正極集電体21aの第2面21a2と負極集電体22aの第2面22a2とを向い合せるように重ねて積層する。このとき、一方の蓄電セル20の正極集電体21aの第2面21a2と、他方の蓄電セル20の負極集電体22aの第2面22a2とを互いに接触させる。その後、積層方向に隣り合う蓄電セル20におけるスペーサ24の外周部分24a同士を接合することにより複数の蓄電セル20を一体化する。
Next, the electrolyte is injected into the space S inside the assembly through the injection port provided in a part of the
<Cell stack formation process>
In the cell stack forming step S3, first, a plurality of
次に、積層方向の一端において最も外側に配置された正極21の正極集電体21aの第2面21a2に対して、正極通電板40を重ねて電気的に接続した状態にて固定する。同様に、積層方向の他端において最も外側に配置された負極22の負極集電体22aの第2面22a2に対して、負極通電板50を重ねて電気的に接続した状態にて固定する。このとき、負極集電体22aの第2面22a2と、負極通電板50とを互いに接触させる。
Next, the positive electrode current-carrying
本実施形態においては、正極集電体21a及び負極通電板50が負極集電体22aの第2面22a2に面接触する導電部分に相当する。また、セルスタック形成工程S3における、複数の蓄電セル20を積層する工程及び負極通電板50を接続する工程が、負極22の負極集電体22aの第2面22a2に導電部分を接触させる重ね工程に相当する。
In the present embodiment, the positive electrode
次に、本実施形態の作用について説明する。
蓄電装置10は、負極活物質層22bに含有される結着剤成分として、CMC及びSBRを用いるとともに、それらの含有量を特定範囲に設定している。これにより、負極活物質層22bの製造時にCMCから溶媒が除去されることに起因する負極活物質層22bの収縮が抑制されて、箔状の負極集電体22aに皺が生じることを抑制できる。その結果、正極集電体21aの第2面21a2と負極集電体22aの第2面22a2との接触部分における密着性の低下、及び密着性の低下に伴う接触抵抗の増大を抑制できる。
Next, the operation of this embodiment will be described.
The
次に、本実施形態の効果について説明する。
(1)蓄電装置10は、厚さ1~100μmの箔状の負極集電体22aの第1面22a1に負極活物質層22bが設けられた負極22と、正極集電体21aの第1面21a1に正極活物質層21bが設けられてなり、正極活物質層21bが負極22の負極活物質層22bと対向するように配置された正極21と、正極活物質層21bと負極活物質層22bとの間に配置されたセパレータ23とが繰り返し積層されるとともに、負極集電体22aの第2面22a2と、正極集電体21aの第2面21a2とが接触するように負極22及び正極21が積層された構造を有する。負極活物質層22bは、負極活物質と、CMCと、SBRとを含有し、CMCの含有量は、0.5質量%以上1.3質量%以下であり、SBRの含有量は、2.2質量%以上5.0質量%以下である。
Next, the effect of this embodiment will be described.
(1) The
上記構成によれば、箔状の負極集電体に皺を生じさせ難い負極活物質層22bが得られる。その結果、負極集電体22aに対する負極活物質層22bの目付量を増加させて、蓄電セル20のエネルギー密度を大きくすることが容易になる。
According to the above configuration, the negative electrode
(2)CMCのエーテル化度は、0.85以上1.1以下であることが好ましい。
この場合には、負極活物質層22bの屈曲度τを低下させることができる。これにより、負極活物質層22bの電極細孔内をイオンが通過する際の抵抗であるイオン抵抗が低下し、蓄電装置10の電池特性が向上する。
(2) The degree of etherification of CMC is preferably 0.85 or more and 1.1 or less.
In this case, the tortuosity τ of the negative electrode
(3)負極活物質層22bの目付量は、17mg/cm2以上であることが好ましい。
負極活物質層22bの目付量が大きくなるほど、負極集電体22aに皺が生じやすくなる。そのため、負極活物質層22bの目付量が大きい場合には、上記(1)の効果がより顕著に得られる。
(3) The basis weight of the negative electrode
The larger the basis weight of the negative electrode
(4)蓄電装置10の製造方法は、負極集電体22aの第1面22a1に負極合材を付着及び乾燥させることにより負極22を形成する負極形成工程と、負極22の負極集電体22aの第2面22a2に導電部分を接触させる重ね工程とを有する。負極合材は、負極活物質と、CMCと、SBRと、溶媒とを含有する。負極合材に含有される固形成分の合計質量を100質量部としたとき、CMCの含有量は、0.5質量部以上1.3質量部以下であり、SBRの含有量は、2.2質量部以上5.0質量部以下である。上記構成によれば、上記(1)の効果が得られる。
(4) The method for manufacturing the
(5)負極合材に含有される溶媒は、水を主成分とする溶媒であり、負極合材に含有されるCMCのエーテル化度は1.1以下であることが好ましい。
この場合には、溶媒中での負極活物質の分散安定性が向上し、負極合材の粘度の経時的な安定性が向上する。これにより、電極形成工程における負極集電体22aに負極合材を付着させる処理を長時間にわたって連続的に行った場合に、負極合材の塗工むらが生じ難くなり、連続処理が行いやすくなる。
(5) The solvent contained in the negative electrode mixture is a solvent containing water as a main component, and the degree of etherification of CMC contained in the negative electrode mixture is preferably 1.1 or less.
In this case, the dispersion stability of the negative electrode active material in the solvent is improved, and the stability of the viscosity of the negative electrode mixture over time is improved. As a result, when the process of adhering the negative electrode mixture to the negative electrode
(6)負極活物質層22bの目付量は、17mg/cm2以上であり、CMCに対するSBRの質量比(SBR/CMC)は、1.69以上3以下であることが好ましい。
上記構成によれば、負極活物質層22bの目付量が大きいことに起因する負極活物質層22bの容量劣化を抑制できる。なお、この効果は、負極活物質層22bの目付量が大きくなるほど、より顕著に得られる。
(6) The basis weight of the negative electrode
According to the above configuration, it is possible to suppress the capacity deterioration of the negative electrode
なお、本実施形態は、以下のように変更して実施することができる。本実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
○電解質は、液体電解質に限定されるものでなく、ポリマーマトリックス中に保持された電解質を含む高分子ゲル電解質等の固体電解質であってもよい。また、セパレータ23自体を高分子電解質又は無機型電解質等の電解質で構成してもよい。
In addition, this embodiment can be changed and carried out as follows. The present embodiment and the following modified examples can be implemented in combination with each other within a technically consistent range.
○ The electrolyte is not limited to the liquid electrolyte, and may be a solid electrolyte such as a polymer gel electrolyte containing an electrolyte held in the polymer matrix. Further, the
○スペーサ24は、正極集電体21a及び負極集電体22aのいずれか一方のみに接合又は固定されるものであってもよい。
○スペーサ24は、正極21及び負極22との間隔を保持して集電体間の短絡を防止する機能を有するものであればよく、正極21及び負極22との間の空間Sを封止する封止部として機能しないものであってもよい。例えば、電解質が固体電解質である場合には、封止部として機能しないスペーサ24を採用できる。また、スペーサ24の形状は、正極集電体21a及び負極集電体22aの周囲を取り囲む枠状に限定されるものではなく、スペーサ24に求められる機能に応じて適宜、変更可能である。
○ The
○ The
○正極21の熱安定性を向上させるために、正極集電体21aの第1面21a1及び第2面21a2の一方又は両方に耐熱層を設けてもよい。耐熱層としては、例えば、無機粒子と結着剤とを含む層が挙げられ、その他に増粘剤等の添加剤を含んでもよい。負極22についても同様である。
○ In order to improve the thermal stability of the
○正極通電板40と正極集電体21aとの間に、両部材間の導電接触を良好にするために、正極集電体21aに密着する導電層を配置してもよい。導電層としては、例えば、アセチレンブラック又はグラファイト等のカーボンを含む層、Au等を含むメッキ層などの正極集電体21aよりも低い硬度を有する層が挙げられる。また、負極通電板50と負極集電体22aとの間に同様の導電層を配置してもよい。この場合、負極通電板50に代わって導電層が導電部分となる場合がある。
○ In order to improve the conductive contact between both members between the positive electrode
○蓄電装置の製造方法に関して、蓄電セル形成工程におけるスペーサ24と他の部材との接合と、積層方向に隣り合う蓄電セル20におけるスペーサ24の外周部分24a同士の接合を一度に行ってもよい。
○ Regarding the method of manufacturing the power storage device, the
次に、上記実施形態及び変更例から把握できる技術的思想を以下に記載する。
(イ)厚さ1~100μmの箔状の負極集電体の第1面に負極活物質層が設けられた負極と、前記負極の前記負極集電体における前記第1面の反対側の第2面であって、前記負極活物質層が設けられた部分の反対側に位置する部分に重ね合わされた導電部分とを有する蓄電装置であって、前記負極活物質層は、負極活物質と、カルボキシメチルセルロースと、スチレン-ブタジエンゴムとを含有し、前記カルボキシメチルセルロースの含有量は、0.5質量%以上1.3質量%以下であり、前記スチレン-ブタジエンゴムの含有量は、2.2質量%以上5.0質量%以下であることを特徴とする蓄電装置。
Next, the technical ideas that can be grasped from the above-described embodiment and modified examples are described below.
(A) A negative electrode having a negative electrode active material layer provided on the first surface of a foil-shaped negative electrode current collector having a thickness of 1 to 100 μm, and a second electrode on the opposite side of the first surface of the negative electrode current collector. A power storage device having two surfaces, a conductive portion superimposed on a portion located on the opposite side of the portion provided with the negative electrode active material layer, wherein the negative electrode active material layer is a negative electrode active material and a negative electrode active material. It contains carboxymethyl cellulose and styrene-butadiene rubber, and the content of the carboxymethyl cellulose is 0.5% by mass or more and 1.3% by mass or less, and the content of the styrene-butadiene rubber is 2.2% by mass. A power storage device characterized by being% or more and 5.0% by mass or less.
(ロ)厚さ1~100μmの箔状の負極集電体の第1面に負極活物質層が設けられた負極と、前記負極の前記負極集電体における前記第1面の反対側の第2面であって、前記負極活物質層が設けられた部分の反対側に位置する部分に重ね合わされた導電部分とを有する蓄電装置の製造方法であって、前記負極集電体の前記第1面に負極合材を付着及び乾燥させることにより前記負極を形成する負極形成工程と、前記負極の前記負極集電体の前記第2面に前記導電部分を接触させる重ね工程とを有し、前記負極合材は、負極活物質と、カルボキシメチルセルロースと、スチレン-ブタジエンゴムと、溶媒とを含有し、前記負極合材に含有される固形成分の合計質量を100質量部としたとき、前記カルボキシメチルセルロースの含有量は、0.5質量部以上1.3質量部以下であり、前記スチレン-ブタジエンゴムの含有量は、2.2質量部以上5.0質量部以下であることを特徴とする蓄電装置の製造方法。 (B) A negative electrode having a negative electrode active material layer provided on the first surface of a foil-shaped negative electrode current collector having a thickness of 1 to 100 μm, and a second electrode on the opposite side of the first surface of the negative electrode current collector. A method for manufacturing a power storage device having two surfaces, a conductive portion superimposed on a portion located on the opposite side of a portion provided with the negative electrode active material layer, and the first one of the negative electrode current collector. It has a negative electrode forming step of forming the negative electrode by adhering and drying the negative electrode mixture on the surface, and a stacking step of bringing the conductive portion into contact with the second surface of the negative electrode current collector of the negative electrode. The negative electrode mixture contains a negative electrode active material, carboxymethyl cellulose, styrene-butadiene rubber, and a solvent, and when the total mass of the solid components contained in the negative electrode mixture is 100 parts by mass, the carboxymethyl cellulose is said. Is 0.5 parts by mass or more and 1.3 parts by mass or less, and the content of the styrene-butadiene rubber is 2.2 parts by mass or more and 5.0 parts by mass or less. How to manufacture the device.
以下に、上記実施形態をさらに具体化した実施例について説明する。
<試験1>
負極活物質、CMC、及びSBRを表1に示す割合で混合するとともに、この混合物に水を加えて固形分比率65質量%の負極合材を調製した。負極集電体の片側の表面に対してドクターブレード法を用いて負極合材を膜状に塗布した。塗布された負極合材を露点-40℃環境下、100℃で6時間加熱処理して、負極合材中の水を除去することにより、負極集電体上に目付量17mg/cm2の負極活物質層が形成された試験例1及び試験例2の負極シートを作製した。
Hereinafter, examples in which the above embodiment is further embodied will be described.
<Test 1>
The negative electrode active material, CMC, and SBR were mixed at the ratios shown in Table 1, and water was added to the mixture to prepare a negative electrode mixture having a solid content ratio of 65% by mass. The negative electrode mixture was applied in the form of a film on one surface of the negative electrode current collector using the doctor blade method. The applied negative electrode mixture is heat-treated at a dew point of -40 ° C for 6 hours at 100 ° C to remove water in the negative electrode mixture, whereby a negative electrode having a grain size of 17 mg / cm 2 is placed on the negative electrode current collector. The negative electrode sheets of Test Example 1 and Test Example 2 in which the active material layer was formed were prepared.
試験1に用いた負極活物質、CMC、SBR、及び負極集電体は以下のとおりである。
負極活物質:平均粒子径(D50)が3.3μmの黒鉛
CMC:日本製紙株式会社製MAC350HC(エーテル化度0.83)
SBR:JSR株式会社製TRD2001
負極集電体:厚さ15μmの銅箔
試験例1及び試験例2の負極シートの両面を目視にて観察し、負極集電体の皺の有無を確認した。その結果を表1に示す。図3(a)は試験例1の負極の負極集電体の第2面を映した写真であり、図3(b)は試験例2の負極の負極集電体の第2面を映した写真である。
The negative electrode active material, CMC, SBR, and negative electrode current collector used in Test 1 are as follows.
Negative electrode active material: Graphite with an average particle size (D50) of 3.3 μm CMC: MAC350HC manufactured by Nippon Paper Industries, Ltd. (etherification degree 0.83)
SBR: TRD2001 manufactured by JSR Corporation
Negative electrode current collector: Copper foil with a thickness of 15 μm Both sides of the negative electrode sheets of Test Example 1 and Test Example 2 were visually observed to confirm the presence or absence of wrinkles in the negative electrode current collector. The results are shown in Table 1. FIG. 3 (a) is a photograph showing the second surface of the negative electrode current collector of the negative electrode of Test Example 1, and FIG. 3 (b) shows the second surface of the negative electrode current collector of the negative electrode of Test Example 2. It is a photograph.
<試験2>
負極活物質、CMC、及びSBRの割合を表2に示す割合に変更した点を除いて試験1と同様の方法により試験例3~7の負極シートを作製した。
<Test 2>
Negative electrode sheets of Test Examples 3 to 7 were prepared by the same method as in Test 1 except that the ratios of the negative electrode active material, CMC, and SBR were changed to the ratios shown in Table 2.
試験例3~7の負極シートの両面を目視にて観察し、負極集電体の皺の有無を確認した。その結果を表2に示す。
試験例3~7の負極シートを2.5cm×4cmに裁断したものを測定サンプルとして、剥離試験装置(MINEBEA社製、LTS-50N-S300)を用いて、JIS K 6854-1に準拠した90度剥離試験を行った。90度剥離試験にて測定された強度を線幅(2.5cm)で除算することにより、測定サンプルにおける負極活物質層と負極集電体との間の剥離強度を算出した。その結果を表2に示す。
Both sides of the negative electrode sheets of Test Examples 3 to 7 were visually observed to confirm the presence or absence of wrinkles in the negative electrode current collector. The results are shown in Table 2.
Using a peeling test device (LTS-50N-S300 manufactured by MINEBEA) as a measurement sample obtained by cutting the negative electrode sheets of Test Examples 3 to 7 into 2.5 cm × 4 cm, 90 conforming to JIS K 6854-1. A peeling test was performed. The peel strength between the negative electrode active material layer and the negative electrode current collector in the measurement sample was calculated by dividing the strength measured in the 90 degree peeling test by the line width (2.5 cm). The results are shown in Table 2.
<試験3>
負極活物質、CMC、及びSBRの割合を表3に示す割合に変更した点を除いて試験1と同様の方法により試験例8~12の負極シートを作製した。
<Test 3>
Negative electrode sheets of Test Examples 8 to 12 were prepared by the same method as in Test 1 except that the ratios of the negative electrode active material, CMC, and SBR were changed to the ratios shown in Table 3.
作製した負極シートを所定形状に裁断してなる負極、セパレータ、及び電解液を用いて屈曲度測定用の対称モデルセルを作製した。セパレータとしては、ポリエチレンからなるセパレータを用いた。電解液としては、ジメチルカーボネート、エチルメチルカーボネート、フルオロエチレンカーボネート、及びエチレンカーボネートを体積比40:35:5:20で混合した混合溶媒に、ヘキサフルオロリン酸リチウムを1.2Mの濃度となるように溶解させた電解液を用いた。 A symmetric model cell for measuring tortuosity was prepared using a negative electrode, a separator, and an electrolytic solution obtained by cutting the prepared negative electrode sheet into a predetermined shape. As the separator, a separator made of polyethylene was used. The electrolytic solution is a mixed solvent in which dimethyl carbonate, ethyl methyl carbonate, fluoroethylene carbonate, and ethylene carbonate are mixed at a volume ratio of 40:35:5:20, and lithium hexafluorophosphate is added to a concentration of 1.2 M. An electrolytic solution dissolved in is used.
下記式(1)に基づいて、各試験例の負極シートの負極活物質層の屈曲度τを算出した。その結果を表3に示す。
屈曲度τ=(Rion・A・K・ε)/2d …(1)
Rion:イオン抵抗
A:電極面積(8.06cm2)
K:電解液のイオン電導度
ε:負極活物質層の空隙率
d:負極活物質層の厚さ(0.1mm)
イオン抵抗Rionは、対称モデルセルの対称セルインピーダンスを測定し、測定された対称セルインピーダンスの極限低周波数の実数成分(=イオン抵抗Rion/3)から導出した。
The tortuosity τ of the negative electrode active material layer of the negative electrode sheet of each test example was calculated based on the following formula (1). The results are shown in Table 3.
Tortuosity τ = (Rion ・ A ・ K ・ ε) / 2d… (1)
Rion: Ion resistance A: Electrode area (8.06 cm 2 )
K: Ion conductivity of the electrolytic solution ε: Void ratio of the negative electrode active material layer d: Thickness of the negative electrode active material layer (0.1 mm)
The ion resistance Rion was derived from the extremely low frequency real number component (= ion resistance Rion / 3) of the measured symmetric cell impedance by measuring the symmetric cell impedance of the symmetric model cell.
電解液のイオン電導度Kは、白金極を備えたセルに上記組成の電解液を封入したサンプルの25℃、10kHzでの抵抗の測定値から算出した。
負極活物質層の空隙率εは、水銀圧入法を用いて測定した。
The ion conductivity K of the electrolytic solution was calculated from the measured resistance at 25 ° C. and 10 kHz of the sample in which the electrolytic solution having the above composition was sealed in a cell provided with a platinum electrode.
The porosity ε of the negative electrode active material layer was measured by using the mercury intrusion method.
<試験4>
負極活物質、CMC、及びSBRの割合、並びにCMCの種類を変更した点を除いて試験1と同様の方法により試験例13~16の負極シートを作製した。負極活物質、CMC、及びSBRの割合は表4に示すとおりである。試験4では、CMCとして、エーテル化度が0.83、0.90、0.93、1.36のいずれかであるCMCを用いた。
<Test 4>
Negative electrode sheets of Test Examples 13 to 16 were prepared by the same method as in Test 1 except that the ratios of the negative electrode active material, CMC, and SBR, and the type of CMC were changed. The ratios of the negative electrode active material, CMC, and SBR are as shown in Table 4. In Test 4, a CMC having an etherification degree of 0.83, 0.90, 0.93, or 1.36 was used as the CMC.
試験3と同様の方法により各試験例の負極シートの負極活物質層の屈曲度τを算出した。その結果を表4に示す。 The tortuosity τ of the negative electrode active material layer of the negative electrode sheet of each test example was calculated by the same method as in Test 3. The results are shown in Table 4.
<試験5>
負極活物質、CMC、及びSBRの割合を表5に示す割合に変更した点を除いて試験1と同様の方法により試験例17~18の負極シートを作製した。試験3と同様の方法により各試験例の負極シートの負極活物質層の屈曲度τを算出した。その結果を表5に示す。
<Test 5>
Negative electrode sheets of Test Examples 17 to 18 were prepared by the same method as in Test 1 except that the ratios of the negative electrode active material, CMC, and SBR were changed to the ratios shown in Table 5. The tortuosity τ of the negative electrode active material layer of the negative electrode sheet of each test example was calculated by the same method as in Test 3. The results are shown in Table 5.
また、作製した負極シートを縦3.1mm×横2.6mmの長方形状に裁断してなる負極と、正極と、セパレータとを組合せることにより電極体電池とした。電池ケース内に、電極体電池を収容するとともに電解液を注入して、電池ケースを密閉することにより、リチウムイオン二次電池を得た。 Further, the prepared negative electrode sheet was cut into a rectangular shape having a length of 3.1 mm and a width of 2.6 mm, and a negative electrode, a positive electrode, and a separator were combined to form an electrode body battery. A lithium ion secondary battery was obtained by accommodating the electrode body battery in the battery case and injecting an electrolytic solution to seal the battery case.
正極としては、アルミニウムからなる正極集電体と、LiFePO4とポリフッ化ビニリデンとアセチレンブラックからなる正極活物質層とを有する正極を用いた。セパレータとしては、ポリエチレンからなるセパレータを用いた。電解液としては、試験3と同じものを用いた。 As the positive electrode, a positive electrode having a positive electrode current collector made of aluminum and a positive electrode active material layer made of LiFePO 4 , polyvinylidene fluoride, and acetylene black was used. As the separator, a separator made of polyethylene was used. The same electrolytic solution as in Test 3 was used.
得られたリチウムイオン二次電池について、直流電流1.9mAで負極における正極に対する電圧が4.0Vになるまで定電流(CC)充電を行い、その後、4.0Vまで定電圧(CV)充電を2時間行った。充電が終了してから30分後に、負極における正極に対する電圧が2.5Vになるまで放電を行った。1Cの電流値を38.5mAと設定し、下記式に基づいて1C放電特性を算出した。その結果を表5に示す。 The obtained lithium ion secondary battery is charged with a constant current (CC) at a direct current of 1.9 mA until the voltage to the positive electrode at the negative electrode reaches 4.0 V, and then is charged with a constant voltage (CV) to 4.0 V. I went for 2 hours. Thirty minutes after charging was completed, discharge was performed until the voltage with respect to the positive electrode at the negative electrode became 2.5 V. The current value of 1C was set to 38.5 mA, and the 1C discharge characteristic was calculated based on the following formula. The results are shown in Table 5.
1C放電特性(%)=(1C CC放電容量/0.33C CC+CV(22.5V、2時間)容量)×100 1C discharge characteristic (%) = (1C CC discharge capacity / 0.33C CC + CV (22.5V, 2 hours) capacity) × 100
<試験6>
負極活物質、CMC、及びSBRを表6に示す割合で混合するとともに、この混合物に水を加えて固形分比率58質量%の試験例19~21の負極合材を調製した。試験6に用いた負極活物質、CMC、及びSBRは試験1と同じである。調製した負極合材を攪拌容器内で攪拌させながら25℃、湿度60%の環境下にて保存し、3日経過後の流動性の有無を目視により確認した。その結果を表6に示す。
<Test 6>
The negative electrode active material, CMC, and SBR were mixed at the ratios shown in Table 6, and water was added to this mixture to prepare a negative electrode mixture of Test Examples 19 to 21 having a solid content ratio of 58% by mass. The negative electrode active material, CMC, and SBR used in Test 6 are the same as in Test 1. The prepared negative electrode mixture was stored in an environment of 25 ° C. and 60% humidity while stirring in a stirring container, and the presence or absence of fluidity after 3 days was visually confirmed. The results are shown in Table 6.
<試験7>
負極活物質、CMC、及びSBRの割合、並びにCMC及びSBRの種類を変更した点を除いて試験6と同様の方法により試験例22~27の負極合材を調製した。試験7では、CMCとして、エーテル化度が0.90、1.36のいずれかであるCMCを用いた。SBRとして、日本エイアンドエル株式会社製AL1002、日本エイアンドエル株式会社製AL2001、JSR株式会社製TRD2001のいずれかを用いた。
<Test 7>
The negative electrode mixture of Test Examples 22 to 27 was prepared by the same method as in Test 6 except that the ratios of the negative electrode active material, CMC, and SBR, and the types of CMC and SBR were changed. In Test 7, a CMC having an etherification degree of either 0.90 or 1.36 was used as the CMC. As the SBR, any one of AL1002 manufactured by Nippon A & L Inc., AL2001 manufactured by Nippon A & L Inc., and TRD2001 manufactured by JSR Corporation was used.
調製した負極合材の調整直後の粘度と、攪拌容器内で負極合材を攪拌させながら25℃の環境下にて保存し、7日経過後の粘度を測定し、7日経過後の粘度上昇率を算出した。その結果を表7に示す。 The viscosity of the prepared negative electrode mixture immediately after adjustment and the viscosity of the negative mixture were stored in an environment of 25 ° C. while stirring in a stirring container, and the viscosity after 7 days was measured, and the viscosity increase rate after 7 days was measured. Calculated. The results are shown in Table 7.
<試験8>
負極活物質、CMC、及びSBRを表8に示す割合で混合するとともに、この混合物に水を加えて固形分比率63.7質量%の負極合材を調製した。
負極集電体の片側の表面に対して、ドクターブレード法を用いて負極合材を膜状に塗布した。塗布された負極合材を露点-40℃環境下、100℃で6時間加熱処理して、負極合材中の水を除去することにより、負極集電体上に目付量30mg/cm2の負極活物質層が形成された試験例28~31の負極シートを作製した。
<Test 8>
The negative electrode active material, CMC, and SBR were mixed at the ratios shown in Table 8, and water was added to this mixture to prepare a negative electrode mixture having a solid content ratio of 63.7% by mass.
The negative electrode mixture was applied in the form of a film on one surface of the negative electrode current collector using the doctor blade method. The applied negative electrode mixture is heat-treated at a dew point of -40 ° C for 6 hours at 100 ° C to remove water in the negative electrode mixture, whereby a negative electrode having a grain size of 30 mg / cm 2 is placed on the negative electrode current collector. The negative electrode sheets of Test Examples 28 to 31 on which the active material layer was formed were prepared.
試験8に用いた負極活物質、CMC、及び負極集電体は以下のとおりである。
負極活物質:平均粒子径(D50)が15.3μmの黒鉛
CMC:エーテル化度0.89のCMC
負極集電体:厚さ15μmの銅箔
作製した負極シートを縦3.1mm×横2.6mmの長方形状に裁断してなる負極と、正極と、セパレータとを組合せることにより電極体電池とした。電池ケース内に、電極体電池を収容するとともに電解液を注入して、電池ケースを密閉することにより、リチウムイオン二次電池を得た。
The negative electrode active material, CMC, and negative electrode current collector used in Test 8 are as follows.
Negative electrode active material: Graphite with an average particle size (D50) of 15.3 μm CMC: CMC with an etherification degree of 0.89
Negative electrode current collector: Copper foil with a thickness of 15 μm A negative electrode formed by cutting a prepared negative electrode sheet into a rectangular shape of 3.1 mm in length × 2.6 mm in width, a positive electrode, and an electrode body battery by combining a separator. did. A lithium ion secondary battery was obtained by accommodating the electrode body battery in the battery case and injecting an electrolytic solution to seal the battery case.
正極としては、アルミニウムからなる正極集電体と、LiFePO4とポリフッ化ビニリデンとアセチレンブラックからなる正極活物質層とを有する正極を用いた。セパレータとしては、ポリエチレンからなるセパレータを用いた。電解液としては、エチレンカーボネートとプロピオン酸メチルを体積比15:85で混合した混合溶媒に、LiPF6を濃度1.2mol/Lで溶解して母液とし、当該母液に対して1質量%に相当する量のリチウムジフルオロ(オキサラート)ボラート(LiDFOB)及び1質量%に相当する量のビニレンカーボネートを加えて溶解したものを用いた。 As the positive electrode, a positive electrode having a positive electrode current collector made of aluminum and a positive electrode active material layer made of LiFePO 4 , polyvinylidene fluoride, and acetylene black was used. As the separator, a separator made of polyethylene was used. As the electrolytic solution, LiPF 6 was dissolved in a mixed solvent in which ethylene carbonate and methyl propionate were mixed at a volume ratio of 15:85 at a concentration of 1.2 mol / L to prepare a mother liquor, which was equivalent to 1% by mass with respect to the mother liquor. The amount of lithium difluoro (oxalate) borate (LiDFOB) and the amount of vinylene carbonate corresponding to 1% by mass were added and dissolved.
得られたリチウムイオン二次電池について、直流電流7.58mAで負極電極における正極電極に対する電圧が3.75Vになるまで充電を行い、充電が終了してから10分後に、直流電流25.3mAで負極電極における正極電極に対する電圧が3.0Vになるまで放電を行った。 The obtained lithium ion secondary battery is charged with a DC current of 7.58 mA until the voltage to the positive electrode of the negative electrode reaches 3.75 V, and 10 minutes after the charging is completed, the DC current is 25.3 mA. The current was discharged until the voltage of the negative electrode with respect to the positive electrode became 3.0 V.
上記の放電及び充電を1サイクルとして5サイクルの充放電を行い、下記式に基づいて容量維持率を算出した。容量維持率を算出する上記試験を2回ずつ実施し、容量維持率の平均値を算出した。その結果を表8に示す。また、負極シートの負極活物質層におけるCMCに対するSBRの質量比(SBR/CMC)と、リチウムイオン二次電池の容量維持率との関係を表すグラフを図4に示す。 Five cycles of charging and discharging were performed with the above discharging and charging as one cycle, and the capacity retention rate was calculated based on the following formula. The above test for calculating the capacity retention rate was carried out twice, and the average value of the capacity retention rate was calculated. The results are shown in Table 8. Further, FIG. 4 shows a graph showing the relationship between the mass ratio of SBR to CMC (SBR / CMC) in the negative electrode active material layer of the negative electrode sheet and the capacity retention rate of the lithium ion secondary battery.
容量維持率(%)=(5サイクル後の放電容量/初回サイクルにおける放電容量)×100 Capacity retention rate (%) = (Discharge capacity after 5 cycles / Discharge capacity in the first cycle) x 100
10…蓄電装置、20…蓄電セル、21…正極、21a…正極集電体、21b…正極活物質層、22…負極、22a…負極集電体、22b…負極活物質層、23…セパレータ、24…スペーサ、30…セルスタック、40…正極通電板、50…負極通電板。 10 ... power storage device, 20 ... power storage cell, 21 ... positive electrode, 21a ... positive electrode current collector, 21b ... positive electrode active material layer, 22 ... negative electrode, 22a ... negative electrode current collector, 22b ... negative electrode active material layer, 23 ... separator, 24 ... spacer, 30 ... cell stack, 40 ... positive electrode energizing plate, 50 ... negative electrode energizing plate.
Claims (4)
前記負極活物質層は、負極活物質と、カルボキシメチルセルロースと、スチレン-ブタジエンゴムとを含有し、
前記カルボキシメチルセルロースの含有量は、0.5質量%以上1.3質量%以下であり、
前記スチレン-ブタジエンゴムの含有量は、2.2質量%以上5.0質量%以下であることを特徴とする蓄電装置。 A negative electrode having a negative electrode active material layer provided on the first surface of a foil-shaped negative electrode current collector having a thickness of 1 to 100 μm and a positive electrode active material layer provided on the first surface of the positive electrode current collector are provided. A positive electrode in which the active material layer is arranged so as to face the negative electrode active material layer of the negative electrode and a separator arranged between the positive electrode active material layer and the negative electrode active material layer are repeatedly laminated and laminated. The negative electrode and the positive electrode are laminated so that the second surface on the opposite side of the first surface of the negative electrode current collector and the second surface on the opposite side of the first surface of the positive electrode current collector are in contact with each other. It is a power storage device with a structure
The negative electrode active material layer contains a negative electrode active material, carboxymethyl cellulose, and styrene-butadiene rubber.
The content of the carboxymethyl cellulose is 0.5% by mass or more and 1.3% by mass or less.
A power storage device characterized in that the content of the styrene-butadiene rubber is 2.2% by mass or more and 5.0% by mass or less.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020128494 | 2020-07-29 | ||
JP2020128494 | 2020-07-29 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022027413A true JP2022027413A (en) | 2022-02-10 |
JP7521436B2 JP7521436B2 (en) | 2024-07-24 |
Family
ID=80264068
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021007368A Active JP7521436B2 (en) | 2020-07-29 | 2021-01-20 | Power storage device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7521436B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4428939A1 (en) | 2023-03-07 | 2024-09-11 | Toyota Jidosha Kabushiki Kaisha | Negative electrode and non-aqueous electrolyte secondary battery |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5217596B2 (en) | 2007-05-24 | 2013-06-19 | 日産自動車株式会社 | Non-aqueous solvent secondary battery current collector and electrode and battery using the same |
JP5515257B2 (en) | 2008-09-12 | 2014-06-11 | 日産自動車株式会社 | Bipolar secondary battery |
JP2010238365A (en) | 2009-03-30 | 2010-10-21 | Hitachi Vehicle Energy Ltd | Nonaqueous electrolyte secondary battery |
JP7163647B2 (en) | 2018-07-13 | 2022-11-01 | 日産自動車株式会社 | battery |
-
2021
- 2021-01-20 JP JP2021007368A patent/JP7521436B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4428939A1 (en) | 2023-03-07 | 2024-09-11 | Toyota Jidosha Kabushiki Kaisha | Negative electrode and non-aqueous electrolyte secondary battery |
Also Published As
Publication number | Publication date |
---|---|
JP7521436B2 (en) | 2024-07-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4041044B2 (en) | Method for manufacturing electrochemical device | |
JP7069612B2 (en) | Manufacturing method of laminated electrode body, power storage element and laminated electrode body | |
JP4283598B2 (en) | Non-aqueous electrolyte solution and lithium ion secondary battery | |
JP2012119091A (en) | Nonaqueous electrolytic solution, electrode, and electrochemical device comprising nonaqueous electrolytic solution and electrode | |
CN103843172B (en) | Dividing plate with heat-resistant insulating layer | |
KR101846767B1 (en) | Nonaqueous electrolyte secondary battery | |
WO2022030279A1 (en) | Power storage device | |
JP2022081306A (en) | Manufacturing method of positive electrode for power storage device | |
JP7521436B2 (en) | Power storage device | |
JP6083289B2 (en) | Lithium ion secondary battery | |
WO2019022063A1 (en) | Electrode, power storage element, and method for manufacturing electrode | |
JP2012014968A (en) | Lithium-ion secondary battery | |
JP2022066834A (en) | Manufacturing method of cathode for power storage device, and cathode of power storage device | |
JP2021197279A (en) | Power storage cell and power storage device | |
JP5699858B2 (en) | Electrodes and electrical devices | |
JP2022043686A (en) | Power storage device | |
WO2023182112A1 (en) | Electrode for power storage device | |
JP7329014B2 (en) | Method for manufacturing laminated secondary battery | |
JP7197537B2 (en) | lithium ion secondary battery | |
JP7543884B2 (en) | Lithium-ion secondary battery | |
WO2023120171A1 (en) | Power storage device | |
JP2022137852A (en) | power storage device | |
WO2022130763A1 (en) | Power storage device | |
WO2022113913A1 (en) | Electricity storage device | |
WO2022113912A1 (en) | Power storage device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230414 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20240118 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240130 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20240401 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240517 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240611 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240624 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7521436 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |