JP2022026850A - Filter and multiplexer - Google Patents

Filter and multiplexer Download PDF

Info

Publication number
JP2022026850A
JP2022026850A JP2020130511A JP2020130511A JP2022026850A JP 2022026850 A JP2022026850 A JP 2022026850A JP 2020130511 A JP2020130511 A JP 2020130511A JP 2020130511 A JP2020130511 A JP 2020130511A JP 2022026850 A JP2022026850 A JP 2022026850A
Authority
JP
Japan
Prior art keywords
parallel
resonator
electrode fingers
elastic wave
resonators
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020130511A
Other languages
Japanese (ja)
Other versions
JP7456876B2 (en
Inventor
翔 岩嵜
Sho Iwasaki
輝 下村
Hikaru Shimomura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2020130511A priority Critical patent/JP7456876B2/en
Publication of JP2022026850A publication Critical patent/JP2022026850A/en
Application granted granted Critical
Publication of JP7456876B2 publication Critical patent/JP7456876B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a filter capable of reducing an insertion loss.SOLUTION: A filter includes: one or a plurality of serial resonators connected to a path between an input terminal and an output terminal in serial; a plurality of electrode fingers 31a and 31b in which one end is connected to the path, the other end is connected to a ground, and which is arranged in a first arrangement direction; and bus bars 32a and 32b to which the plurality of electrode fingers 31a and 31b. The plurality of electrode fingers 31a and 31b contains a pair of comb-type electrodes 34a and 34b which is differently faced each other in at least one part, respectively. In a first parallel resonator of which an average interval of the plurality of electrode fingers 31a and 31b is the minimum, virtual straight liners 50ba and 50bb connecting a tip of the plurality of electrode fingers 31a of one comb-type electrode 34a of the pair of comb-type electrodes are inclined and extended to a first arrangement direction. At least one parallel resonator other than the first parallel resonator, comprises a plurality of parallel resonators in which straight liners 60a and 60b are extended so as to be nearly matched to the first arrangement direction.SELECTED DRAWING: Figure 2

Description

本発明は、フィルタ及びマルチプレクサに関する。 The present invention relates to filters and multiplexers.

スマートフォン等の無線通信機器では、フィルタ及びマルチプレクサに弾性波共振器が用いられている。弾性波共振器は圧電基板上に一対の櫛型電極と一対の反射器とを有する。櫛型電極は複数の電極指と複数の電極指が接続するバスバーとを有する。反射器は一対の櫛型電極が励振する弾性波を反射し一対の櫛型電極内に閉じ込める。櫛型電極の電極指が交差する交差領域を電極指が励振する弾性波の伝搬方向から傾斜させることが知られている(例えば特許文献1)。 In wireless communication devices such as smartphones, elastic wave resonators are used for filters and multiplexers. The elastic wave resonator has a pair of comb-shaped electrodes and a pair of reflectors on a piezoelectric substrate. The comb-shaped electrode has a plurality of electrode fingers and a bus bar to which the plurality of electrode fingers are connected. The reflector reflects elastic waves excited by the pair of comb-shaped electrodes and confine them in the pair of comb-shaped electrodes. It is known that the crossing region where the electrode fingers of the comb-shaped electrode intersect is inclined from the propagation direction of the elastic wave excited by the electrode fingers (for example, Patent Document 1).

国際公開第2015/064238号International Publication No. 2015/064238

特許文献1に記載の弾性波共振器によれば、櫛型電極の電極指が交差する交差領域を弾性波の伝搬方向から傾斜させることで横モードスプリアスが抑制される。しかしながら、このような弾性波共振器を直列共振器及び並列共振器に用いてフィルタを形成した場合に、スプリアスは抑制されるが、挿入損失が大きくなってしまうことがある。 According to the elastic wave resonator described in Patent Document 1, transverse mode spurious is suppressed by inclining the crossing region where the electrode fingers of the comb-shaped electrode intersect from the propagation direction of the elastic wave. However, when a filter is formed by using such an elastic wave resonator for a series resonator and a parallel resonator, spurious emission is suppressed, but insertion loss may increase.

本発明は、上記課題に鑑みなされたものであり、挿入損失を低減することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to reduce insertion loss.

本発明は、入力端子と出力端子との間の経路に直列に接続される1又は複数の直列共振器と、一端が前記経路に接続され、他端がグランドに接続され、第1配列方向に配置される複数の第1電極指と前記複数の第1電極指が接続する第1バスバーとをそれぞれ有し少なくとも一部において前記複数の第1電極指が互い違いとなって向かい合う一対の第1櫛型電極を各々含み、前記複数の第1電極指の平均間隔が最も小さい第1並列共振器は、前記一対の第1櫛型電極のうち一方の第1櫛型電極の前記複数の第1電極指の先端を結ぶ仮想的な第1直線が前記第1配列方向に対して傾斜して延伸し、前記第1並列共振器以外の少なくとも1つの並列共振器は、前記第1直線が前記第1配列方向に略一致して延伸する複数の並列共振器と、を備えるフィルタである。 The present invention comprises one or more series resonators connected in series in the path between the input and output terminals, one end connected to the path and the other end connected to the ground, in the first array direction. A pair of first combs having a plurality of first electrode fingers arranged and a first bus bar to which the plurality of first electrode fingers are connected, and the plurality of first electrode fingers alternately facing each other at least in a part thereof. The first parallel resonator containing each type electrode and having the smallest average distance between the plurality of first electrode fingers is the plurality of first electrodes of the first comb type electrode of one of the pair of first comb type electrodes. A virtual first straight line connecting the tips of the fingers is inclined and extended with respect to the first arrangement direction, and in at least one parallel resonator other than the first parallel resonator, the first straight line is the first. It is a filter including a plurality of parallel resonators extending substantially in line with each other in the arrangement direction.

上記構成において、前記複数の並列共振器のうち少なくとも前記複数の第1電極指の平均間隔が最も大きい第2並列共振器は、前記第1直線が前記第1配列方向に略一致して延伸する構成とすることができる。 In the above configuration, in the second parallel resonator having the largest average spacing of at least the plurality of first electrode fingers among the plurality of parallel resonators, the first straight line extends substantially in agreement with the first arrangement direction. It can be configured.

上記構成において、前記複数の並列共振器のうち前記第2並列共振器以外の並列共振器は、全て前記第1直線が前記第1配列方向に対して傾斜して延伸する構成とすることができる。 In the above configuration, all of the parallel resonators other than the second parallel resonator among the plurality of parallel resonators can be configured such that the first straight line is inclined and extended with respect to the first arrangement direction. ..

上記構成において、前記複数の並列共振器のうち前記第1並列共振器以外の並列共振器は、全て前記第1直線が前記第1配列方向に略一致して延伸する構成とすることができる。 In the above configuration, all of the parallel resonators other than the first parallel resonator among the plurality of parallel resonators can be configured such that the first straight line substantially coincides with the first arrangement direction and extends.

上記構成において、前記複数の並列共振器の隣り合う共振周波数の間隔の中で最も間隔が大きい箇所を基準として、前記基準よりも共振周波数が高い並列共振器は、前記第1直線が前記第1配列方向に対して傾斜して延伸し、前記基準よりも共振周波数が低い並列共振器は、前記第1直線が前記第1配列方向に略一致して延伸する構成とすることができる。 In the above configuration, in the parallel resonator having a resonance frequency higher than the reference, the first straight line is the first, with respect to the portion having the largest interval among the intervals of the adjacent resonance frequencies of the plurality of parallel resonators. A parallel resonator that is inclined with respect to the arrangement direction and has a resonance frequency lower than that of the reference can be configured such that the first straight line substantially coincides with the first arrangement direction and extends.

上記構成において、前記第1並列共振器は、前記入力端子と前記出力端子との間において前記入力端子に最も近い初段及び前記出力端子に最も近い終段以外に接続される構成とすることができる。 In the above configuration, the first parallel resonator may be configured to be connected between the input terminal and the output terminal other than the first stage closest to the input terminal and the final stage closest to the output terminal. ..

上記構成において、前記一対の第1櫛型電極は、前記第1バスバーに接続されるダミー電極指を有さない構成とすることができる。 In the above configuration, the pair of first comb-shaped electrodes may have no dummy electrode finger connected to the first bus bar.

上記構成において、前記一対の第1櫛型電極は、前記第1バスバーに接続されるダミー電極指を有する構成とすることができる。 In the above configuration, the pair of first comb-shaped electrodes may have a dummy electrode finger connected to the first bus bar.

上記構成において、前記1又は複数の直列共振器は、第2配列方向に配置された複数の第2電極指と前記複数の第2電極指が接続する第2バスバーとをそれぞれ有し少なくとも一部において前記複数の第2電極指が互い違いとなって向かい合う一対の第2櫛型電極を各々含み、前記一対の第2櫛型電極のうち一方の第2櫛型電極の前記複数の第2電極指の先端を結ぶ仮想的な第2直線が前記第2配列方向に対して傾斜して延伸する構成とすることができる。 In the above configuration, the one or more series resonators each have a plurality of second electrode fingers arranged in the second arrangement direction and a second bus bar to which the plurality of second electrode fingers are connected, and at least a part thereof. Includes a pair of second comb-shaped electrodes in which the plurality of second electrode fingers are alternately opposed to each other, and the plurality of second electrode fingers of the second comb-shaped electrode of one of the pair of second comb-shaped electrodes. The virtual second straight line connecting the tips of the above can be configured to be inclined and extended with respect to the second arrangement direction.

本発明は、上記に記載のフィルタを含むマルチプレクサである。 The present invention is a multiplexer including the filters described above.

本発明によれば、挿入損失を低減することができる。 According to the present invention, the insertion loss can be reduced.

図1は、フィルタの回路図である。FIG. 1 is a circuit diagram of a filter. 図2は、フィルタに用いられる第1弾性波共振器の平面図である。FIG. 2 is a plan view of the first elastic wave resonator used in the filter. 図3は、第1弾性波共振器の断面図である。FIG. 3 is a cross-sectional view of the first elastic wave resonator. 図4は、フィルタに用いられる第2弾性波共振器の平面図である。FIG. 4 is a plan view of the second elastic wave resonator used in the filter. 図5(a)は、実施例1、比較例1、及び比較例2のフィルタの通過特性を示す図、図5(b)は、図5(a)の領域Aの拡大図である。5 (a) is a diagram showing the passing characteristics of the filters of Example 1, Comparative Example 1, and Comparative Example 2, and FIG. 5 (b) is an enlarged view of the region A of FIG. 5 (a). 図6は、第1弾性波共振器と第2弾性波共振器のReal(Y)の周波数特性を示す図である。FIG. 6 is a diagram showing the frequency characteristics of Real (Y) of the first elastic wave resonator and the second elastic wave resonator. 図7(a)は、実施例1のフィルタにおける並列共振器P1からP4の通過特性を示す図、図7(b)は、直列共振器S1からS3の通過特性を示す図である。FIG. 7A is a diagram showing the passage characteristics of the parallel resonators P1 to P4 in the filter of the first embodiment, and FIG. 7B is a diagram showing the passage characteristics of the series resonators S1 to S3. 図8(a)は、フィルタに用いられる第3弾性波共振器の平面図、図8(b)は、第4弾性波共振器の平面図である。FIG. 8A is a plan view of the third elastic wave resonator used for the filter, and FIG. 8B is a plan view of the fourth elastic wave resonator. 図9(a)は、フィルタに用いられる第5弾性波共振器の平面図、図9(b)は、第6弾性波共振器の平面図である。9 (a) is a plan view of the fifth elastic wave resonator used for the filter, and FIG. 9 (b) is a plan view of the sixth elastic wave resonator. 図10(a)から図10(e)は、基板の他の例を示す断面図である。10 (a) to 10 (e) are cross-sectional views showing another example of the substrate. 図11(a)は、実施例2及び比較例3のフィルタの通過特性を示す図、図11(b)は、図11(a)の領域Aの拡大図である。11 (a) is a diagram showing the passing characteristics of the filters of Example 2 and Comparative Example 3, and FIG. 11 (b) is an enlarged view of the region A of FIG. 11 (a). 図12(a)は、実施例2のフィルタにおける並列共振器P1からP4の通過特性を示す図、図12(b)は、直列共振器S1からS3の通過特性を示す図である。FIG. 12A is a diagram showing the passage characteristics of the parallel resonators P1 to P4 in the filter of the second embodiment, and FIG. 12B is a diagram showing the passage characteristics of the series resonators S1 to S3. 図13は、実施例3及び比較例4のフィルタの通過特性並びに実施例3のフィルタにおける並列共振器P1からP4及び直列共振器S1からS3の通過特性を示す図である。FIG. 13 is a diagram showing the pass characteristics of the filters of Example 3 and Comparative Example 4 and the pass characteristics of the parallel resonators P1 to P4 and the series resonators S1 to S3 in the filter of Example 3. 図14は、実施例4に係るデュプレクサの回路図である。FIG. 14 is a circuit diagram of the duplexer according to the fourth embodiment.

以下、図面を参照し、本発明の実施例について説明する。 Hereinafter, examples of the present invention will be described with reference to the drawings.

図1は、フィルタの回路図である。図1のように、フィルタ100は、入力端子Tinと出力端子Toutとの間の経路に1又は複数の直列共振器S1からS3が直列に接続されている。入力端子Tinと出力端子Toutとの間に複数の並列共振器P1からP4が並列に接続されている。並列共振器P1からP4は入力端子Tinと出力端子Toutとの間の経路に一端が接続し、グランド端子に他端が接続されている。 FIG. 1 is a circuit diagram of a filter. As shown in FIG. 1, in the filter 100, one or a plurality of series resonators S1 to S3 are connected in series in the path between the input terminal Tin and the output terminal Tout. A plurality of parallel resonators P1 to P4 are connected in parallel between the input terminal Tin and the output terminal Tout. One end of the parallel resonators P1 to P4 is connected to the path between the input terminal Tin and the output terminal Tout, and the other end is connected to the ground terminal.

図2は、フィルタに用いられる第1弾性波共振器の平面図である。電極指の配列方向をX方向、電極指の延伸方向をY方向、圧電基板の法線方向をZ方向とする。X方向、Y方向、及びZ方向は圧電基板の結晶方位とは限らないが、圧電基板が回転YカットX伝搬基板の場合にはX方向が結晶方位のX軸方位となる。 FIG. 2 is a plan view of the first elastic wave resonator used in the filter. The arrangement direction of the electrode fingers is the X direction, the extension direction of the electrode fingers is the Y direction, and the normal direction of the piezoelectric substrate is the Z direction. The X-direction, Y-direction, and Z-direction are not necessarily the crystal orientations of the piezoelectric substrate, but when the piezoelectric substrate is a rotating Y-cut X-propagation substrate, the X-direction is the X-axis orientation of the crystal orientation.

図2のように、第1弾性波共振器11は1ポート弾性表面波共振器であり、基板20上にIDT(InterDigital Transducer)30及び反射器40が設けられている。反射器40はIDT30のX方向の両側に設けられている。 As shown in FIG. 2, the first surface acoustic wave resonator 11 is a 1-port surface acoustic wave resonator, and an IDT (InterDigital Transducer) 30 and a reflector 40 are provided on the substrate 20. Reflectors 40 are provided on both sides of the IDT 30 in the X direction.

IDT30は、対向する一対の櫛型電極34a及び34bを備える。櫛型電極34aは、複数の電極指31a及びバスバー32aを備える。複数の電極指31aはバスバー32aに接続されている。櫛型電極34bも同様に、複数の電極指31b及びバスバー32bを備える。複数の電極指31bはバスバー32bに接続されている。電極指31aと電極指31bとはX方向の少なくとも一部において互い違いとなるように設けられている。電極指31aとバスバー32bとはY方向において対向する。電極指31aの先端とバスバー32bとの間はギャップ35bである。電極指31bとバスバー32aも同様であり、電極指31bとバスバー32aとはY方向において対向し、電極指31bの先端とバスバー32aとの間はギャップ35aである。Y方向において電極指31aと電極指31bとが重なる領域は交差領域36である。 The IDT 30 includes a pair of opposed comb-shaped electrodes 34a and 34b. The comb-shaped electrode 34a includes a plurality of electrode fingers 31a and a bus bar 32a. The plurality of electrode fingers 31a are connected to the bus bar 32a. Similarly, the comb-shaped electrode 34b also includes a plurality of electrode fingers 31b and a bus bar 32b. The plurality of electrode fingers 31b are connected to the bus bar 32b. The electrode finger 31a and the electrode finger 31b are provided so as to be staggered in at least a part in the X direction. The electrode finger 31a and the bus bar 32b face each other in the Y direction. There is a gap 35b between the tip of the electrode finger 31a and the bus bar 32b. The same applies to the electrode finger 31b and the bus bar 32a, the electrode finger 31b and the bus bar 32a face each other in the Y direction, and there is a gap 35a between the tip of the electrode finger 31b and the bus bar 32a. The region where the electrode finger 31a and the electrode finger 31b overlap in the Y direction is the intersection region 36.

櫛型電極34aの電極指31a及び櫛型電極34bの電極指31bが励振する弾性波は、主にX方向に伝搬する。一対の櫛型電極34a及び34bのうち一方の櫛型電極の電極指31a又は31bの間隔Dがほぼ弾性波の波長λとなる。電極指31a又は31bの間隔Dは、電極指31a及び31bのピッチPの概ね2倍である。反射器40は、複数の電極指41と複数の電極指41が接続するバスバー42とを備える。反射器40は弾性波を反射する。これにより、弾性波のエネルギーが交差領域36内に閉じ込められる。 The elastic waves excited by the electrode finger 31a of the comb-shaped electrode 34a and the electrode finger 31b of the comb-shaped electrode 34b propagate mainly in the X direction. The distance D between the electrode fingers 31a or 31b of one of the pair of comb-shaped electrodes 34a and 34b is approximately the wavelength λ of the elastic wave. The distance D between the electrode fingers 31a or 31b is approximately twice the pitch P of the electrode fingers 31a and 31b. The reflector 40 includes a plurality of electrode fingers 41 and a bus bar 42 to which the plurality of electrode fingers 41 are connected. The reflector 40 reflects elastic waves. As a result, the energy of the elastic wave is confined in the intersection region 36.

IDT30は2つの領域37a及び37bを含む。領域37aにおける複数の電極指31bの先端を結ぶ仮想的な直線50aa及び複数の電極指31aの先端を結ぶ仮想的な直線50baを規定する。同様に、領域37bにおける複数の電極指31bの先端を結ぶ仮想的な直線50ab及び複数の電極指31aの先端を結ぶ仮想的な直線50bbを規定する。複数の電極指31bの先端を結ぶ直線50aa及び50ab並びに複数の電極指31aの先端を結ぶ仮想的な直線50ba及び50bbはX方向に対して傾斜して延伸する。言い換えると、複数のギャップ35aを結ぶ仮想的な直線及び複数のギャップ35bを結ぶ仮想的な直線はX方向に対して傾斜して延伸する。領域37aにおける直線50aaと直線50baとは略平行であり、直線50aaと直線50baとの間はほぼ交差領域36である。領域37bにおける直線50abと直線50bbとは略平行であり、直線50abと直線50bbとの間はほぼ交差領域36である。 IDT30 includes two regions 37a and 37b. A virtual straight line 50a connecting the tips of the plurality of electrode fingers 31b in the region 37a and a virtual straight line 50ba connecting the tips of the plurality of electrode fingers 31a are defined. Similarly, a virtual straight line 50ab connecting the tips of the plurality of electrode fingers 31b in the region 37b and a virtual straight line 50bb connecting the tips of the plurality of electrode fingers 31a are defined. The straight lines 50a and 50ab connecting the tips of the plurality of electrode fingers 31b and the virtual straight lines 50ba and 50bb connecting the tips of the plurality of electrode fingers 31a are inclined and extended in the X direction. In other words, the virtual straight line connecting the plurality of gaps 35a and the virtual straight line connecting the plurality of gaps 35b are inclined and extended in the X direction. The straight line 50aa and the straight line 50ba in the region 37a are substantially parallel to each other, and the area between the straight line 50aa and the straight line 50ba is substantially an intersecting region 36. The straight line 50ab and the straight line 50bb in the region 37b are substantially parallel to each other, and the area between the straight line 50ab and the straight line 50bb is substantially an intersecting region 36.

X方向に平行な仮想的な直線60a及び60bを規定する。直線60aと直線50aa及び直線50abとのなす角度をθaa及びθabとする。直線60bと直線50ba及び直線50bbとのなす角度をθba及びθbbとする。ここで、θaa、θab、θba、及びθbbは、直線60a及び60bを基準として反時計回りを正とする。図2では、θaa及びθbaは正であり、θab及びθbbは負である。また、θaaとθbaは略等しく、θabとθbbは略等しい。 It defines virtual straight lines 60a and 60b parallel to the X direction. Let θaa and θab be the angles formed by the straight line 60a and the straight line 50aa and the straight line 50ab. The angles formed by the straight line 60b and the straight line 50ba and the straight line 50bb are defined as θba and θbb. Here, θaa, θab, θba, and θbb are positive in the counterclockwise direction with respect to the straight lines 60a and 60b. In FIG. 2, θaa and θba are positive, and θab and θbb are negative. Further, θaa and θba are substantially equal, and θab and θbb are substantially equal.

図3は、第1弾性波共振器の断面図である。図3のように、基板20は、支持基板20aと、支持基板20a上に設けられた減衰層20b及び温度補償層20cと、支持基板20a上に接合層20dによって接合された圧電基板20eと、を備える。IDT30及び反射器40は、基板20上に形成された金属膜21により形成される。 FIG. 3 is a cross-sectional view of the first elastic wave resonator. As shown in FIG. 3, the substrate 20 includes a support substrate 20a, a damping layer 20b and a temperature compensation layer 20c provided on the support substrate 20a, and a piezoelectric substrate 20e bonded on the support substrate 20a by a bonding layer 20d. To prepare for. The IDT 30 and the reflector 40 are formed by a metal film 21 formed on the substrate 20.

支持基板20aは、単結晶サファイア基板、シリコン基板、スピネル基板、水晶基板、石英基板、アルミナ基板、又は炭化シリコン基板等である。例えば支持基板20aに厚さが50μm~500μmの単結晶サファイア基板を用いてもよい。減衰層20bは、酸化アルミニウム膜、窒化アルミニウム膜、シリコン膜、窒化シリコン膜、又は炭化シリコン膜等である。例えば減衰層20bに厚さが0.1μm~10μmの酸化アルミニウム膜を用いてもよい。温度補償層20cは、圧電基板20eとは弾性定数の温度係数の符号が反対の材料で形成された膜であり、例えば酸化シリコン膜である。例えば温度補償層20cに厚さが0.1μm~10μmの酸化シリコン膜を用いてもよい。接合層20dは例えば酸化アルミニウム膜である。例えば接合層20dに厚さが1nm~20nmの酸化アルミニウム膜を用いてもよい。なお、支持基板20a、減衰層20b、温度補償層20c、及び接合層20dは設けられていなくてもよい。 The support substrate 20a is a single crystal sapphire substrate, a silicon substrate, a spinel substrate, a crystal substrate, a quartz substrate, an alumina substrate, a silicon carbide substrate, or the like. For example, a single crystal sapphire substrate having a thickness of 50 μm to 500 μm may be used for the support substrate 20a. The damping layer 20b is an aluminum oxide film, an aluminum nitride film, a silicon film, a silicon nitride film, a silicon carbide film, or the like. For example, an aluminum oxide film having a thickness of 0.1 μm to 10 μm may be used for the damping layer 20b. The temperature compensation layer 20c is a film formed of a material whose elastic constant has a temperature coefficient opposite to that of the piezoelectric substrate 20e, and is, for example, a silicon oxide film. For example, a silicon oxide film having a thickness of 0.1 μm to 10 μm may be used for the temperature compensation layer 20c. The bonding layer 20d is, for example, an aluminum oxide film. For example, an aluminum oxide film having a thickness of 1 nm to 20 nm may be used for the bonding layer 20d. The support substrate 20a, the damping layer 20b, the temperature compensation layer 20c, and the bonding layer 20d may not be provided.

圧電基板20eは、例えばタンタル酸リチウム基板又はニオブ酸リチウム基板であり、例えば回転YカットX伝搬のタンタル酸リチウム基板又はニオブ酸リチウム基板である。例えば圧電基板20eに厚さが0.5μm~20μmの36°~48°YカットX伝搬のタンタル酸リチウム基板を用いてもよい。金属膜21は、例えばアルミニウム膜、銅膜、又はモリブデン膜である。アルミニウム膜、銅膜、又はモリブデン膜と圧電基板20eとの間にチタン膜又はクロム膜等の金属膜が設けられていてもよい。例えば金属膜21に厚さが10nm~50nmのチタン膜と厚さが70nm~150nmのアルミニウム銅合金(銅:1重量%)膜との積層膜を用いてもよい。金属膜21を覆って厚さが5nm~30nmの酸化シリコン膜からなる保護膜が設けられていてもよい。 The piezoelectric substrate 20e is, for example, a lithium tantalate substrate or a lithium niobate substrate, and is, for example, a lithium tantalate substrate or a lithium niobate substrate for rotating Y-cut X propagation. For example, a lithium tantalate substrate having a thickness of 0.5 μm to 20 μm and having a Y-cut X propagation of 36 ° to 48 ° may be used for the piezoelectric substrate 20e. The metal film 21 is, for example, an aluminum film, a copper film, or a molybdenum film. A metal film such as a titanium film or a chromium film may be provided between the aluminum film, the copper film, or the molybdenum film and the piezoelectric substrate 20e. For example, a laminated film of a titanium film having a thickness of 10 nm to 50 nm and an aluminum-copper alloy (copper: 1% by weight) film having a thickness of 70 nm to 150 nm may be used for the metal film 21. A protective film made of a silicon oxide film having a thickness of 5 nm to 30 nm may be provided so as to cover the metal film 21.

IDT30の電極指31a及び31bの対数を20対~300対としてもよい。IDT30の電極指31a及び31bのピッチPを1μm~6μmとしてもよい。開口長(交差領域36のY方向長)を10λ~50λとしてもよい。IDT30の電極指31a及び31bのデューティー比を30%~80%としてもよい。反射器40の電極指41の対数を5対~20対としてもよい。反射器40の電極指41のピッチを1μm~6μmとしてもよい。反射器40の電極指41のデューティー比を30%~80%としてもよい。第1弾性波共振器11においてθaa及びθba:0°より大きく7°以下とし、θab及びθbbを0°より小さく-7°以上としてもよい。 The logarithm of the electrode fingers 31a and 31b of the IDT 30 may be 20 to 300 pairs. The pitch P of the electrode fingers 31a and 31b of the IDT 30 may be 1 μm to 6 μm. The opening length (the length of the intersection region 36 in the Y direction) may be 10λ to 50λ. The duty ratio of the electrode fingers 31a and 31b of the IDT 30 may be 30% to 80%. The logarithm of the electrode fingers 41 of the reflector 40 may be 5 to 20 pairs. The pitch of the electrode fingers 41 of the reflector 40 may be 1 μm to 6 μm. The duty ratio of the electrode finger 41 of the reflector 40 may be 30% to 80%. In the first elastic wave resonator 11, θaa and θba: may be larger than 0 ° and 7 ° or less, and θab and θbb may be smaller than 0 ° and −7 ° or more.

図4は、フィルタに用いられる第2弾性波共振器の平面図である。図4のように、第2弾性波共振器12は、複数の電極指31bの先端を結ぶ仮想的な直線50a及び複数の電極指31aの先端を結ぶ仮想的な直線50bがX方向と略平行である。言い換えると、複数のギャップ35aを結ぶ仮想的な直線及び複数のギャップ35bを結ぶ仮想的な直線がX方向と略平行である。その他の構成は第1弾性波共振器11と同じであるため説明を省略する。 FIG. 4 is a plan view of the second elastic wave resonator used in the filter. As shown in FIG. 4, in the second elastic wave resonator 12, the virtual straight line 50a connecting the tips of the plurality of electrode fingers 31b and the virtual straight line 50b connecting the tips of the plurality of electrode fingers 31a are substantially parallel to the X direction. Is. In other words, the virtual straight line connecting the plurality of gaps 35a and the virtual straight line connecting the plurality of gaps 35b are substantially parallel to the X direction. Since other configurations are the same as those of the first elastic wave resonator 11, the description thereof will be omitted.

[実験]
実施例1、比較例1、及び比較例2のフィルタの通過特性の実験を行った。実施例1のフィルタは、図1における直列共振器S1からS3及び並列共振器P4に図2の第1弾性波共振器11を用い、並列共振器P1からP3に図4の第2弾性波共振器12を用いた。比較例1のフィルタは、直列共振器S1からS3及び並列共振器P1からP4に図2の第1弾性波共振器11を用いた。比較例2のフィルタは、直列共振器S1からS3に図2の第1弾性波共振器11を用い、並列共振器P1からP4に図4の第2弾性波共振器12を用いた。表1にまとめる。

Figure 2022026850000002
[experiment]
Experiments on the passing characteristics of the filters of Example 1, Comparative Example 1, and Comparative Example 2 were performed. The filter of the first embodiment uses the first elastic wave resonator 11 of FIG. 2 for the series resonators S1 to S3 and the parallel resonator P4 in FIG. 1, and the second elastic wave resonance of FIG. 4 for the parallel resonators P1 to P3. A vessel 12 was used. As the filter of Comparative Example 1, the first elastic wave resonator 11 of FIG. 2 was used for the series resonators S1 to S3 and the parallel resonators P1 to P4. As the filter of Comparative Example 2, the first elastic wave resonator 11 of FIG. 2 was used for the series resonators S1 to S3, and the second elastic wave resonator 12 of FIG. 4 was used for the parallel resonators P1 to P4. It is summarized in Table 1.
Figure 2022026850000002

表2に、実施例1、比較例1、及び比較例2のフィルタにおける直列共振器S1からS3及び並列共振器P1からP4の共振周波数を示す。表2のように、直列共振器S1の共振周波数を2703.6MHz、直列共振器S2の共振周波数を2708.6MHz、直列共振器S3の共振周波数を2683.6MHzとした。並列共振器P1の共振周波数を2513.5MHz、並列共振器P2の共振周波数を2518.5MHz、並列共振器P3の共振周波数を2523.5MHz、並列共振器P4の共振周波数を2548.5MHzとした。共振周波数は電極指の平均間隔Dに相関があることから、直列共振器S1からS3は電極指の平均間隔Dがそれぞれ異なり、直列共振器S3、直列共振器S1、直列共振器S2の順に平均間隔Dが小さくなっている。並列共振器P1からP4も電極指の平均間隔Dがそれぞれ異なり、並列共振器P1、並列共振器P2、並列共振器P3、並列共振器P4の順に平均間隔Dが小さくなっている。

Figure 2022026850000003
Table 2 shows the resonance frequencies of the series resonators S1 to S3 and the parallel resonators P1 to P4 in the filters of Example 1, Comparative Example 1, and Comparative Example 2. As shown in Table 2, the resonance frequency of the series resonator S1 is 2703.6 MHz, the resonance frequency of the series resonator S2 is 2708.6 MHz, and the resonance frequency of the series resonator S3 is 2683.6 MHz. The resonance frequency of the parallel resonator P1 was 2513.5 MHz, the resonance frequency of the parallel resonator P2 was 2518.5 MHz, the resonance frequency of the parallel resonator P3 was 2523.5 MHz, and the resonance frequency of the parallel resonator P4 was 2548.5 MHz. Since the resonance frequency correlates with the average distance D of the electrode fingers, the average distance D of the electrode fingers differs between the series resonators S1 and S3, and the series resonator S3, the series resonator S1 and the series resonator S2 are averaged in this order. The interval D is small. The parallel resonators P1 to P4 also have different average distances D between the electrode fingers, and the average distance D decreases in the order of the parallel resonator P1, the parallel resonator P2, the parallel resonator P3, and the parallel resonator P4.
Figure 2022026850000003

第1弾性波共振器11及び第2弾性波共振器12の構成を以下として実験を行った。
基板20
支持基板20a:厚さが500μmのサファイア基板
減衰層20b:厚さが450nmの酸化アルミニウム膜
温度補償層20c:厚さが450nmの酸化シリコン膜
接合層20d:厚さが10nmの酸化アルミニウム膜
圧電基板20e:厚さが750nmの42°YカットX伝搬タンタル酸リチウム基板
IDT30及び反射器40
金属膜21:圧電基板20e側から厚さが50nmのチタン膜、厚さが104nmのアルミニウム銅合金(銅:1重量%)膜
金属膜21上の保護膜:厚さが15nmの酸化シリコン膜
第1弾性波共振器11のθaa及びθba:7°、θab及びθbb:-7°
An experiment was conducted with the configurations of the first elastic wave resonator 11 and the second elastic wave resonator 12 as follows.
Board 20
Support substrate 20a: Sapphire substrate with a thickness of 500 μm Damping layer 20b: Aluminum oxide film with a thickness of 450 nm Temperature compensation layer 20c: Silicon oxide film with a thickness of 450 nm Bonding layer 20d: Aluminum oxide film with a thickness of 10 nm piezoelectric substrate 20e: 42 ° Y-cut X-propagated lithium tartrate substrate IDT30 and reflector 40 with a thickness of 750 nm
Metal film 21: Titanium film with a thickness of 50 nm from the piezoelectric substrate 20e side, aluminum-copper alloy (copper: 1% by weight) film with a thickness of 104 nm Protective film on the metal film 21: Silicon oxide film with a thickness of 15 nm 1 The elastic wave resonator 11 θaa and θba: 7 °, θab and θbb: −7 °

図5(a)は、実施例1、比較例1、及び比較例2のフィルタの通過特性を示す図、図5(b)は、図5(a)の領域Aの拡大図である。図5(a)及び図5(b)の横軸は周波数[MHz]であり、縦軸は減衰量[dB]である。減衰量はS21の大きさである。図5(a)及び図5(b)のように、比較例2では、通過帯域の低周波側において矢印の箇所にスプリアスが生成されている。このスプリアスは、Y方向に伝搬する弾性波に起因する横モードスプリアスに相当すると考えられる。比較例2でスプリアスが生成されたのは、比較例2では並列共振器P1からP4に、直線50a及び50bがX方向に略平行である第2弾性波共振器12を用いたためであると考えられる。これに対し、実施例1及び比較例1では、通過帯域の低周波側におけるスプリアスの生成が抑制されている。これは、実施例1では並列共振器P4に、比較例1では並列共振器P1からP4に、直線50aa、50ab、50ba、及び50bbがX方向から傾斜する第1弾性波共振器11を用いたためであると考えられる。 5 (a) is a diagram showing the passing characteristics of the filters of Example 1, Comparative Example 1, and Comparative Example 2, and FIG. 5 (b) is an enlarged view of the region A of FIG. 5 (a). The horizontal axis of FIGS. 5A and 5B is the frequency [MHz], and the vertical axis is the attenuation amount [dB]. The amount of attenuation is the magnitude of S21. As shown in FIGS. 5A and 5B, in Comparative Example 2, spurious is generated at the position of the arrow on the low frequency side of the pass band. This spurious is considered to correspond to a transverse mode spurious caused by an elastic wave propagating in the Y direction. It is considered that the spurious was generated in Comparative Example 2 because the second elastic wave resonator 12 in which the straight lines 50a and 50b are substantially parallel in the X direction was used for the parallel resonators P1 to P4 in Comparative Example 2. Be done. On the other hand, in Example 1 and Comparative Example 1, the generation of spurious on the low frequency side of the pass band is suppressed. This is because the first elastic wave resonator 11 in which the straight lines 50aa, 50ab, 50ba, and 50bb are inclined from the X direction is used for the parallel resonator P4 in the first embodiment and for the parallel resonators P1 to P4 in the comparative example 1. Is considered to be.

実施例1及び比較例1は共にスプリアスの生成が抑制されているが、比較例1は通過帯域内の高周波側の挿入損失が大きいのに対し、実施例1は挿入損失が低減されている。 In both Example 1 and Comparative Example 1, the generation of spurious is suppressed, but in Comparative Example 1, the insertion loss on the high frequency side in the pass band is large, whereas in Example 1, the insertion loss is reduced.

図6は、第1弾性波共振器と第2弾性波共振器のReal(Y)の周波数特性を示す図である。図6の横軸は周波数[MHz]であり、縦軸はReal(Y)[S]である。Real(Y)はS11のアドミタンスの実部である。第1弾性波共振器11及び第2弾性波共振器12の構成を以下として実験を行った。
基板20
支持基板20a:厚さが500μmのサファイア基板
減衰層20b:厚さが450nmの酸化アルミニウム膜
温度補償層20c:厚さが450nmの酸化シリコン膜
接合層20d:厚さが10nmの酸化アルミニウム膜
圧電基板20e:厚さが750nmの42°YカットX伝搬タンタル酸リチウム基板
IDT30及び反射器40
金属膜21:圧電基板20e側から厚さが50nmのチタン膜、厚さが104nmのアルミニウム銅合金(銅:1重量%)膜
金属膜21上の保護膜:厚さが15nmの酸化シリコン膜
IDT30の対数:120対
IDT30のピッチP:1.48μm
開口長(交差領域36のY方向長):41.82λ
IDT30のデューティー比:55%
反射器40の対数:11対
反射器40のピッチ:1.48μm
反射器40のデューティー比:55%
第1弾性波共振器11のθaa及びθba:7°、θab及びθbb:-7°
FIG. 6 is a diagram showing the frequency characteristics of Real (Y) of the first elastic wave resonator and the second elastic wave resonator. The horizontal axis of FIG. 6 is the frequency [MHz], and the vertical axis is Real (Y) [S]. Real (Y) is the real part of S11's admittance. An experiment was conducted with the configurations of the first elastic wave resonator 11 and the second elastic wave resonator 12 as follows.
Board 20
Support substrate 20a: Sapphire substrate with a thickness of 500 μm Damping layer 20b: Aluminum oxide film with a thickness of 450 nm Temperature compensation layer 20c: Silicon oxide film with a thickness of 450 nm Bonding layer 20d: Aluminum oxide film with a thickness of 10 nm piezoelectric substrate 20e: 42 ° Y-cut X-propagated lithium tartrate substrate IDT30 and reflector 40 with a thickness of 750 nm
Metal film 21: Titanium film with a thickness of 50 nm from the piezoelectric substrate 20e side, aluminum-copper alloy (copper: 1% by weight) film with a thickness of 104 nm Protective film on the metal film 21: Silicon oxide film with a thickness of 15 nm IDT30 Log: 120 vs IDT30 pitch P: 1.48 μm
Aperture length (Y direction length of intersection region 36): 41.82λ
IDT30 duty ratio: 55%
Logarithm of reflector 40: 11 pairs Pitch of reflector 40: 1.48 μm
Duty ratio of reflector 40: 55%
Θaa and θba: 7 °, θab and θbb: −7 ° of the first elastic wave resonator 11.

図6のように、第2弾性波共振器12は共振周波数から反共振周波数までの周波数においてスプリアスが生成されている。このため、図5(a)及び図5(b)において、並列共振器P1からP4に第2弾性波共振器12を用いた比較例2のフィルタでは、通過帯域の低周波側においてスプリアスが生成されたと考えられる。一方、第1弾性波共振器11では共振周波数から反共振周波数までの周波数においてスプリアスの生成が抑制されている。このため、図5(a)及び図5(b)において、並列共振器P4に第1弾性波共振器11を用いた実施例1のフィルタ及び並列共振器P1からP4に第1弾性波共振器11を用いた比較例1のフィルタでは、通過帯域の低周波側におけるスプリアスの生成が抑制されたと考えられる。 As shown in FIG. 6, spurious is generated in the second elastic wave resonator 12 at a frequency from the resonance frequency to the antiresonance frequency. Therefore, in FIGS. 5 (a) and 5 (b), in the filter of Comparative Example 2 in which the second elastic wave resonator 12 is used for the parallel resonators P1 to P4, spurious is generated on the low frequency side of the pass band. It is believed that it was done. On the other hand, in the first elastic wave resonator 11, spurious generation is suppressed at a frequency from the resonance frequency to the antiresonance frequency. Therefore, in FIGS. 5 (a) and 5 (b), the filter of Example 1 in which the first elastic wave resonator 11 is used for the parallel resonator P4 and the first elastic wave resonator for the parallel resonators P1 to P4. It is considered that the filter of Comparative Example 1 using 11 suppressed the generation of spurious on the low frequency side of the passing band.

図6のように、第1弾性波共振器11は、第2弾性波共振器12と比べて、反共振周波数よりも高い周波数において損失が大きくなっている。これは、圧電基板20eが異方性物質であるため、直線50aa、50ab、50ba、及び50bbをX方向から傾斜、すなわち交差領域36を弾性波の伝搬方向から傾斜させたことによって生じたものと考えられる。このため、図5(a)及び図5(b)において、並列共振器P1からP4に第1弾性波共振器11を用いた比較例1のフィルタでは、スプリアスの生成は抑制されたが、通過帯域内の高周波側での挿入損失が大きくなったと考えられる。 As shown in FIG. 6, the first elastic wave resonator 11 has a larger loss at a frequency higher than the antiresonance frequency as compared with the second elastic wave resonator 12. This is because the piezoelectric substrate 20e is an anisotropic substance, so that the straight lines 50aa, 50ab, 50ba, and 50bb are inclined from the X direction, that is, the intersecting region 36 is inclined from the propagation direction of the elastic wave. Conceivable. Therefore, in FIGS. 5 (a) and 5 (b), the filter of Comparative Example 1 in which the first elastic wave resonator 11 is used for the parallel resonators P1 to P4 suppresses the generation of spurious, but passes through. It is considered that the insertion loss on the high frequency side in the band increased.

図7(a)は、実施例1のフィルタにおける並列共振器P1からP4の通過特性を示す図、図7(b)は、直列共振器S1からS3の通過特性を示す図である。図7(a)及び図7(b)の横軸は周波数[MHz]であり、縦軸は減衰量[dB]である。図7(a)及び図7(b)において、実施例1のフィルタの通過特性を点線で図示している。 FIG. 7A is a diagram showing the passage characteristics of the parallel resonators P1 to P4 in the filter of the first embodiment, and FIG. 7B is a diagram showing the passage characteristics of the series resonators S1 to S3. The horizontal axis of FIGS. 7A and 7B is the frequency [MHz], and the vertical axis is the attenuation amount [dB]. In FIGS. 7 (a) and 7 (b), the passing characteristics of the filter of the first embodiment are shown by dotted lines.

図7(a)及び表2のように、並列共振器P1からP4は共振周波数がフィルタの通過帯域よりも低周波側にあり、反共振周波数近傍より高周波側での損失がフィルタの通過帯域内の高周波側の挿入損失に影響を及ぼす。ここで、並列共振器P1からP4の共振周波数はP1、P2、P3、P4の順に高くなっていて、共振周波数の最も高い並列共振器P4は他の並列共振器P1からP3に比べて反共振周波数より高周波側の損失がフィルタの通過帯域内の高周波側の挿入損失に及ぼす影響が小さい。また、共振周波数が最も高い並列共振器P4の通過特性はフィルタの通過帯域の低周波側の肩の近くに位置するため、並列共振器P4にスプリアスが発生した場合にフィルタの通過帯域の低周波側にスプリアスが生成され易い。これらのため、図5(a)及び図5(b)において、実施例1のフィルタでは、通過帯域内の高周波側の挿入損失への影響が大きい並列共振器P1からP3に第2弾性波共振器12を用いていて、これにより、通過帯域内の高周波側の挿入損失が抑制されたと考えられる。また、通過帯域の低周波側のスピリアスへの影響が大きい並列共振器P4に第1弾性波共振器11を用いていて、これにより、通過帯域の低周波側におけるスプリアスの生成が抑制されたと考えられる。 As shown in FIGS. 7A and 2 in the parallel resonators P1 to P4, the resonance frequency is on the lower frequency side of the pass band of the filter, and the loss on the higher frequency side than near the anti-resonance frequency is within the pass band of the filter. Affects the insertion loss on the high frequency side of. Here, the resonance frequencies of the parallel resonators P1 to P4 are higher in the order of P1, P2, P3, and P4, and the parallel resonator P4 having the highest resonance frequency is anti-resonant as compared with the other parallel resonators P1 to P3. The effect of the loss on the high frequency side of the frequency on the insertion loss on the high frequency side in the pass band of the filter is small. Further, since the pass characteristic of the parallel resonator P4 having the highest resonance frequency is located near the shoulder on the low frequency side of the pass band of the filter, the low frequency of the pass band of the filter when spurious occurs in the parallel resonator P4. Spurious is likely to be generated on the side. Therefore, in FIGS. 5 (a) and 5 (b), in the filter of the first embodiment, the second elastic wave resonance occurs from the parallel resonators P1 to P3, which have a large influence on the insertion loss on the high frequency side in the pass band. It is considered that the instrument 12 was used, and the insertion loss on the high frequency side in the pass band was suppressed by this. Further, it is considered that the first elastic wave resonator 11 is used for the parallel resonator P4, which has a large influence on the spirit on the low frequency side of the pass band, and that this suppresses the generation of spurious on the low frequency side of the pass band. Be done.

図7(b)及び表2のように、直列共振器S1からS3は、共振周波数がフィルタの通過帯域内にあり、反共振周波数がフィルタの通過帯域よりも高周波側にある。したがって、直列共振器S1からS3では反共振周波数よりも高い周波数において損失が大きくなったとしてもフィルタの通過帯域内の挿入損失への影響はほとんどない。このため、直列共振器S1からS3には第1弾性波共振器11を用いてスプリアスの生成を抑制することが好ましい。 As shown in FIGS. 7 (b) and Table 2, in the series resonators S1 to S3, the resonance frequency is in the pass band of the filter, and the antiresonance frequency is on the high frequency side of the pass band of the filter. Therefore, in the series resonators S1 to S3, even if the loss becomes large at a frequency higher than the antiresonance frequency, there is almost no influence on the insertion loss in the pass band of the filter. Therefore, it is preferable to use a first elastic wave resonator 11 for the series resonators S1 to S3 to suppress the generation of spurious.

[フィルタに用いられる弾性波共振器の他の例]
図8(a)は、フィルタに用いられる第3弾性波共振器の平面図、図8(b)は、第4弾性波共振器の平面図である。図9(a)は、フィルタに用いられる第5弾性波共振器の平面図、図9(b)は、第6弾性波共振器の平面図である。
[Other examples of elastic wave resonators used in filters]
FIG. 8A is a plan view of the third elastic wave resonator used for the filter, and FIG. 8B is a plan view of the fourth elastic wave resonator. 9 (a) is a plan view of the fifth elastic wave resonator used for the filter, and FIG. 9 (b) is a plan view of the sixth elastic wave resonator.

図8(a)のように、第3弾性波共振器13では、反射器40のバスバー42がX方向に略一致して延在している。その他の構成は第1弾性波共振器11と同じであるため説明を省略する。第1弾性波共振器11では反射器40はバスバー42がX方向に対し傾斜して延在するように設けられていたが、第3弾性波共振器13のように反射器40をバスバー42がX方向に略一致して延在するように設けることで、第3弾性波共振器13のY方向の大きさを第1弾性波共振器11と比べて小さくできる。 As shown in FIG. 8A, in the third elastic wave resonator 13, the bus bar 42 of the reflector 40 extends substantially in the X direction. Since other configurations are the same as those of the first elastic wave resonator 11, the description thereof will be omitted. In the first elastic wave resonator 11, the reflector 40 is provided so that the bus bar 42 is inclined and extends in the X direction. However, like the third elastic wave resonator 13, the reflector 40 is provided by the bus bar 42. By providing the third elastic wave resonator 13 so as to extend so as to substantially coincide with the X direction, the size of the third elastic wave resonator 13 in the Y direction can be made smaller than that of the first elastic wave resonator 11.

図8(b)のように、第4弾性波共振器14では、複数の電極指31bの先端を結ぶ直線50aは直線60aに対し傾斜し、複数の電極指31aの先端を結ぶ直線50bは直線60bに対し傾斜している。直線50aと直線60aとのなす角度θaと、直線50bと直線60bとのなす角度θbとは、IDT30内で一定である。その他の構成は第1弾性波共振器11と同じであるため説明を省略する。第4弾性波共振器14においても第3弾性波共振器13と同様に、反射器40をバスバー42がX方向に略一致して延在するように設けてもよい。 As shown in FIG. 8B, in the fourth elastic wave resonator 14, the straight line 50a connecting the tips of the plurality of electrode fingers 31b is inclined with respect to the straight line 60a, and the straight line 50b connecting the tips of the plurality of electrode fingers 31a is a straight line. It is inclined with respect to 60b. The angle θa formed by the straight line 50a and the straight line 60a and the angle θb formed by the straight line 50b and the straight line 60b are constant within the IDT 30. Since other configurations are the same as those of the first elastic wave resonator 11, the description thereof will be omitted. Similarly to the third elastic wave resonator 13, the fourth elastic wave resonator 14 may be provided with the reflector 40 so as to extend so that the bus bar 42 substantially coincides with the X direction.

図9(a)のように、第5弾性波共振器15では、櫛型電極34aは、複数の電極指31a、複数のダミー電極指33a、及びバスバー32aを備える。複数の電極指31a及び複数のダミー電極指33aはバスバー32aに接続されている。櫛型電極34bも同様に、複数の電極指31b、複数のダミー電極指33b、及びバスバー32bを備える。複数の電極指31b及び複数のダミー電極指33bはバスバー32bに接続されている。電極指31aとダミー電極指33bとはY方向において対向する。電極指31aの先端とダミー電極指33bの先端との間がギャップ35bである。電極指31bとダミー電極指33aも同様であり、電極指31bとダミー電極指33aとはY方向において対向し、電極指31bの先端とダミー電極指33aの先端との間がギャップ35aである。その他の構成は第1弾性波共振器11と同じであるため説明を省略する。 As shown in FIG. 9A, in the fifth elastic wave resonator 15, the comb-shaped electrode 34a includes a plurality of electrode fingers 31a, a plurality of dummy electrode fingers 33a, and a bus bar 32a. The plurality of electrode fingers 31a and the plurality of dummy electrode fingers 33a are connected to the bus bar 32a. Similarly, the comb-shaped electrode 34b includes a plurality of electrode fingers 31b, a plurality of dummy electrode fingers 33b, and a bus bar 32b. The plurality of electrode fingers 31b and the plurality of dummy electrode fingers 33b are connected to the bus bar 32b. The electrode finger 31a and the dummy electrode finger 33b face each other in the Y direction. The gap 35b is between the tip of the electrode finger 31a and the tip of the dummy electrode finger 33b. The same applies to the electrode finger 31b and the dummy electrode finger 33a. The electrode finger 31b and the dummy electrode finger 33a face each other in the Y direction, and a gap 35a is provided between the tip of the electrode finger 31b and the tip of the dummy electrode finger 33a. Since other configurations are the same as those of the first elastic wave resonator 11, the description thereof will be omitted.

図9(b)のように、第6弾性波共振器16では、複数の電極指31bの先端を結ぶ直線50aは直線60aに対し傾斜し、複数の電極指31aの先端を結ぶ直線50bは直線60bに対し傾斜している。直線50aと直線60aとのなす角度θaと、直線50bと直線60bとのなす角度θbとは、IDT30内で一定である。その他の構成は第5弾性波共振器15と同じであるため説明を省略する。 As shown in FIG. 9B, in the sixth elastic wave resonator 16, the straight line 50a connecting the tips of the plurality of electrode fingers 31b is inclined with respect to the straight line 60a, and the straight line 50b connecting the tips of the plurality of electrode fingers 31a is a straight line. It is inclined with respect to 60b. The angle θa formed by the straight line 50a and the straight line 60a and the angle θb formed by the straight line 50b and the straight line 60b are constant within the IDT 30. Since other configurations are the same as those of the fifth elastic wave resonator 15, the description thereof will be omitted.

第5弾性波共振器15及び第6弾性波共振器16においても第3弾性波共振器13と同様に、反射器40をバスバー42がX方向に略一致して延在するように設けてもよい。 In the fifth elastic wave resonator 15 and the sixth elastic wave resonator 16, similarly to the third elastic wave resonator 13, even if the reflector 40 is provided so that the bus bar 42 extends substantially in the X direction. good.

横モードスプリアスを抑制するための共振器として、第1弾性波共振器11の代わりに第3弾性波共振器13から第6弾性波共振器16のいずれかを用いてもよい。 As the resonator for suppressing the transverse mode spurious, any one of the third elastic wave resonator 13 to the sixth elastic wave resonator 16 may be used instead of the first elastic wave resonator 11.

[基板の他の例]
図10(a)から図10(e)は、基板の他の例を示す断面図である。図10(a)のように、支持基板20aと減衰層20bの界面70に凹凸が形成されていてもよい。凹凸は規則的に形成されていてもよいし、不規則であってもよい。界面70の算術平均粗さRaは10nm以上1000nm以下であってもよいし、50nm以上500nm以下であってもよいし、100nm以上300nm以下であってもよい。図10(b)のように、支持基板20aと減衰層20bの界面70に加えて、減衰層20bと温度補償層20cの界面71にも凹凸が形成されていてもよい。図10(c)のように、支持基板20aと温度補償層20cとの間に減衰層が設けられていない場合でもよい。図10(d)のように、支持基板20aと温度補償層20cの界面72に凹凸が形成されていてもよい。図10(e)のように、支持基板20aと圧電基板20eの間に減衰層、温度補償層、及び接合層が設けられていない場合でもよい。
[Other examples of boards]
10 (a) to 10 (e) are cross-sectional views showing another example of the substrate. As shown in FIG. 10A, the interface 70 between the support substrate 20a and the damping layer 20b may have irregularities. The unevenness may be formed regularly or may be irregular. The arithmetic mean roughness Ra of the interface 70 may be 10 nm or more and 1000 nm or less, 50 nm or more and 500 nm or less, or 100 nm or more and 300 nm or less. As shown in FIG. 10B, in addition to the interface 70 between the support substrate 20a and the damping layer 20b, the interface 71 between the damping layer 20b and the temperature compensation layer 20c may also have irregularities. As shown in FIG. 10C, the damping layer may not be provided between the support substrate 20a and the temperature compensation layer 20c. As shown in FIG. 10D, the interface 72 between the support substrate 20a and the temperature compensation layer 20c may have irregularities. As shown in FIG. 10 (e), the damping layer, the temperature compensation layer, and the bonding layer may not be provided between the support substrate 20a and the piezoelectric substrate 20e.

実施例1のフィルタによれば、複数の並列共振器P1からP4のうち最も共振周波数が高い並列共振器P4に第1弾性波共振器11、第3弾性波共振器13、第4弾性波共振器14、第5弾性波共振器15、又は第6弾性波共振器16を用い、並列共振器P4以外の少なくとも1つの並列共振器に第2弾性波共振器12を用いている。言い換えると、複数の並列共振器P1からP4のうち複数の電極指31a又は31bの平均間隔Dが最も小さい並列共振器P4に第1弾性波共振器11、第3弾性波共振器13、第4弾性波共振器14、第5弾性波共振器15、又は第6弾性波共振器16を用い、並列共振器P4以外の少なくとも1つの並列共振器に第2弾性波共振器12を用いている。第1弾性波共振器11、第3弾性波共振器13、第4弾性波共振器14、第5弾性波共振器15、又は第6弾性波共振器16は直線50aa、50ab、50ba、50bb、50a、及び50bがX方向に対して傾斜して延伸する共振器であり、第2弾性波共振器12は直線50a及び50bがX方向に略一致して延伸する共振器である。これにより、図5(a)及び図5(b)のように、スプリアスの生成を抑制しつつ、通過帯域内の高周波側の挿入損失を低減することができる。複数の電極指31a又は31bの平均間隔Dは、櫛型電極34a又は34bのX方向の長さを電極指31a又は31bの本数で除することで算出してもよい。また、IDT30のX方向の長さを電極指31a及び31bの対数(電極指31a及び31bの合計本数の1/2)で除することで電極指31a又は31bの平均間隔Dとしてもよい。 According to the filter of the first embodiment, the first elastic wave resonator 11, the third elastic wave resonator 13, and the fourth elastic wave resonance are added to the parallel resonator P4 having the highest resonance frequency among the plurality of parallel resonators P1 to P4. A device 14, a fifth elastic wave resonator 15, or a sixth elastic wave resonator 16 is used, and a second elastic wave resonator 12 is used for at least one parallel resonator other than the parallel resonator P4. In other words, among the plurality of parallel resonators P1 to P4, the parallel resonator P4 having the smallest average distance D of the plurality of electrode fingers 31a or 31b has the first elastic wave resonator 11, the third elastic wave resonator 13, and the fourth. An elastic wave resonator 14, a fifth elastic wave resonator 15, or a sixth elastic wave resonator 16 is used, and a second elastic wave resonator 12 is used for at least one parallel resonator other than the parallel resonator P4. The first elastic wave resonator 11, the third elastic wave resonator 13, the fourth elastic wave resonator 14, the fifth elastic wave resonator 15, or the sixth elastic wave resonator 16 are straight lines 50aa, 50ab, 50ba, 50bb, The 50a and 50b are resonators that are inclined and extended in the X direction, and the second elastic wave resonator 12 is a resonator in which the straight lines 50a and 50b are substantially aligned and extended in the X direction. As a result, as shown in FIGS. 5A and 5B, it is possible to reduce the insertion loss on the high frequency side in the pass band while suppressing the generation of spurious. The average distance D of the plurality of electrode fingers 31a or 31b may be calculated by dividing the length of the comb-shaped electrodes 34a or 34b in the X direction by the number of electrode fingers 31a or 31b. Further, the average distance D of the electrode fingers 31a or 31b may be obtained by dividing the length of the IDT 30 in the X direction by the logarithm of the electrode fingers 31a and 31b (1/2 of the total number of the electrode fingers 31a and 31b).

複数の並列共振器P1からP4のうち最も共振周波数が高い(最も電極指の平均間隔Dが小さい)並列共振器P4以外の並列共振器P1からP3は全て第2弾性波共振器12としてもよい。これにより、通過帯域内の高周波側の挿入損失を効果的に低減できる。 The parallel resonators P1 to P3 other than the parallel resonator P4 having the highest resonance frequency (the smallest average distance D of the electrode fingers) among the plurality of parallel resonators P1 to P4 may all be the second elastic wave resonator 12. .. As a result, the insertion loss on the high frequency side in the pass band can be effectively reduced.

表1及び表2のように、複数の並列共振器P1からP4の隣り合う共振周波数の間隔の中で最も間隔が大きい箇所を基準として、この基準よりも共振周波数が高い並列共振器P4は第1弾性波共振器11とし、基準よりも共振周波数が低い並列共振器P1からP3は第2弾性波共振器12としてもよい。これにより、スプリアスの抑制と挿入損失の低減の両立を効果的に行うことができる。 As shown in Tables 1 and 2, the parallel resonator P4 having a resonance frequency higher than this reference is the first in reference to the location where the interval between the adjacent resonance frequencies of the plurality of parallel resonators P1 to P4 is the largest. The 1 elastic wave resonator 11 may be used, and the parallel resonators P1 to P3 having a resonance frequency lower than the reference may be the second elastic wave resonator 12. This makes it possible to effectively suppress spurious emissions and reduce insertion loss at the same time.

直列共振器S1からS3においては反共振周波数よりも高い周波数において損失が大きくなってもフィルタの通過帯域内の挿入損失への影響は小さい。このため、スプリアスの生成を抑制するために、直列共振器S1からS3は全て、第1弾性波共振器11、第3弾性波共振器13、第4弾性波共振器14、第5弾性波共振器15、又は第6弾性波共振器16である場合が好ましい。 In the series resonators S1 to S3, even if the loss becomes large at a frequency higher than the antiresonance frequency, the influence on the insertion loss in the pass band of the filter is small. Therefore, in order to suppress the generation of spurious, all of the series resonators S1 to S3 have a first elastic wave resonator 11, a third elastic wave resonator 13, a fourth elastic wave resonator 14, and a fifth elastic wave resonance. The device 15 or the sixth elastic wave resonator 16 is preferable.

実施例1では、複数の並列共振器P1からP4のうち共振周波数が最も高い並列共振器P4に第1弾性波共振器11を用い、並列共振器P4以外の残りの並列共振器P1からP3に第2弾性波共振器12を用いる場合の例を示した。実施例2では、複数の並列共振器のうち共振周波数が最も低い並列共振器に第2弾性波共振器12を用い、共振周波数が最も高い並列共振器を含む残りの並列共振器全てに第1弾性波共振器11を用いる場合の例について説明する。 In the first embodiment, the first elastic wave resonator 11 is used for the parallel resonator P4 having the highest resonance frequency among the plurality of parallel resonators P1 to P4, and the remaining parallel resonators P1 to P3 other than the parallel resonator P4 are used. An example of using the second elastic wave resonator 12 is shown. In the second embodiment, the second elastic wave resonator 12 is used as the parallel resonator having the lowest resonance frequency among the plurality of parallel resonators, and the first is used for all the remaining parallel resonators including the parallel resonator having the highest resonance frequency. An example in the case of using the elastic wave resonator 11 will be described.

[実験]
実施例2及び比較例3のフィルタの通過特性の実験を行った。実施例2及び比較例3のフィルタでは、図1における直列共振器S1からS3及び並列共振器P1からP4の共振周波数を表3のようにした。すなわち、直列共振器S1の共振周波数を2703.6MHz、直列共振器S2の共振周波数を2683.6MHz、直列共振器S3の共振周波数を2708.6MHzとした。並列共振器P1の共振周波数を2538.5MHz、並列共振器P2の共振周波数を2548.5MHz、並列共振器P3の共振周波数を2543.5MHz、並列共振器P4の共振周波数を2513.5MHzとした。したがって、並列共振器P1からP4のうち共振周波数が最も高い(電極指の平均間隔Dが最も小さい)共振器は並列共振器P2であり、共振周波数が最も低い(電極指の平均間隔Dが最も大きい)共振器は並列共振器P4である。

Figure 2022026850000004
[experiment]
Experiments on the passing characteristics of the filters of Example 2 and Comparative Example 3 were performed. In the filters of Example 2 and Comparative Example 3, the resonance frequencies of the series resonators S1 to S3 and the parallel resonators P1 to P4 in FIG. 1 are as shown in Table 3. That is, the resonance frequency of the series resonator S1 was 2703.6 MHz, the resonance frequency of the series resonator S2 was 2683.6 MHz, and the resonance frequency of the series resonator S3 was 2708.6 MHz. The resonance frequency of the parallel resonator P1 was 2538.5 MHz, the resonance frequency of the parallel resonator P2 was 2548.5 MHz, the resonance frequency of the parallel resonator P3 was 2543.5 MHz, and the resonance frequency of the parallel resonator P4 was 2513.5 MHz. Therefore, among the parallel resonators P1 to P4, the resonator having the highest resonance frequency (the average distance D of the electrode fingers is the smallest) is the parallel resonator P2, and the resonance frequency is the lowest (the average distance D of the electrode fingers is the smallest). The large) resonator is the parallel resonator P4.
Figure 2022026850000004

実施例2のフィルタにおいて、並列共振器P1からP4のうち共振周波数が最も高い共振器は並列共振器P2で、最も低い共振器は並列共振器P4であることから、直列共振器S1からS3及び並列共振器P1からP3に図2の第1弾性波共振器11を用い、並列共振器P4に図4の第2弾性波共振器12を用いた。比較例3のフィルタでは、直列共振器S1からS3及び並列共振器P1からP4に図2の第1弾性波共振器11を用いた。表4にまとめる。

Figure 2022026850000005
In the filter of the second embodiment, among the parallel resonators P1 to P4, the resonator having the highest resonance frequency is the parallel resonator P2, and the resonator having the lowest resonance frequency is the parallel resonator P4. The first elastic wave resonator 11 of FIG. 2 was used for the parallel resonators P1 to P3, and the second elastic wave resonator 12 of FIG. 4 was used for the parallel resonator P4. In the filter of Comparative Example 3, the first elastic wave resonator 11 of FIG. 2 was used for the series resonators S1 to S3 and the parallel resonators P1 to P4. It is summarized in Table 4.
Figure 2022026850000005

第1弾性波共振器11及び第2弾性波共振器12の構成は、実施例1に示した実験のときと同じ条件とした。 The configurations of the first elastic wave resonator 11 and the second elastic wave resonator 12 were the same as those in the experiment shown in Example 1.

図11(a)は、実施例2及び比較例3のフィルタの通過特性を示す図、図11(b)は、図11(a)の領域Aの拡大図である。図12(a)は、実施例2のフィルタにおける並列共振器P1からP4の通過特性を示す図、図12(b)は、直列共振器S1からS3の通過特性を示す図である。図11(a)から図12(b)の横軸は周波数[MHz]であり、縦軸は減衰量[dB]である。図12(a)及び図12(b)において、実施例2のフィルタの通過特性を点線で図示している。 11 (a) is a diagram showing the passing characteristics of the filters of Example 2 and Comparative Example 3, and FIG. 11 (b) is an enlarged view of the region A of FIG. 11 (a). FIG. 12A is a diagram showing the passage characteristics of the parallel resonators P1 to P4 in the filter of the second embodiment, and FIG. 12B is a diagram showing the passage characteristics of the series resonators S1 to S3. The horizontal axis of FIGS. 11A to 12B is the frequency [MHz], and the vertical axis is the attenuation amount [dB]. In FIGS. 12 (a) and 12 (b), the passing characteristics of the filter of the second embodiment are shown by dotted lines.

図11(a)及び図11(b)のように、実施例2は比較例3に比べて通過帯域内の高周波側の挿入損失が低減されている。図12(a)のように、共振周波数が最も低い並列共振器P4は、反共振周波数よりも高周波側の広い帯域がフィルタの通過帯域内にある。このため、共振周波数が最も低い並列共振器P4は他の並列共振器P1からP3に比べてフィルタの通過帯域内の挿入損失に及ぼす影響が大きい。 As shown in FIGS. 11 (a) and 11 (b), in Example 2, the insertion loss on the high frequency side in the pass band is reduced as compared with Comparative Example 3. As shown in FIG. 12A, in the parallel resonator P4 having the lowest resonance frequency, a wide band on the high frequency side of the antiresonance frequency is within the pass band of the filter. Therefore, the parallel resonator P4 having the lowest resonance frequency has a greater influence on the insertion loss in the pass band of the filter than the other parallel resonators P1 to P3.

したがって、複数の並列共振器P1からP4のうち少なくとも共振周波数が最も低い(電極指の平均間隔Dが最も大きい)並列共振器P4に第2弾性波共振器12を用いることが好ましい。これにより、図11(a)及び図11(b)の実施例2のように、フィルタの通過帯域内の高周波側の挿入損失を効果的に低減できる。 Therefore, it is preferable to use the second elastic wave resonator 12 for the parallel resonator P4 having at least the lowest resonance frequency (the largest average distance D of the electrode fingers) among the plurality of parallel resonators P1 to P4. As a result, as in the second embodiment of FIGS. 11 (a) and 11 (b), the insertion loss on the high frequency side in the pass band of the filter can be effectively reduced.

図12(a)のように、並列共振器P1からP3の通過特性はフィルタの通過帯域の低周波側の肩の近くに位置するため、並列共振器P1からP3にスプリアスが発生した場合にフィルタの通過帯域の低周波側においてスプリアスが生成され易い。したがって、複数の並列共振器P1からP4のうち共振周波数が最も低い並列共振器P4に第2弾性波共振器12を用い、共振周波数が最も高い並列共振器P2を含む並列共振器P4以外の並列共振器P1からP3の全てに第1弾性波共振器11を用いてもよい。これにより、フィルタの通過帯域内の高周波側の挿入損失を低減しつつ、スプリアスの生成を効果的に抑制できる。 As shown in FIG. 12A, since the pass characteristics of the parallel resonators P1 to P3 are located near the shoulder on the low frequency side of the pass band of the filter, the filter is filtered when spurious is generated in the parallel resonators P1 to P3. Spurious is likely to be generated on the low frequency side of the passband. Therefore, the second elastic wave resonator 12 is used for the parallel resonator P4 having the lowest resonance frequency among the plurality of parallel resonators P1 to P4, and the parallel resonators other than the parallel resonator P4 including the parallel resonator P2 having the highest resonance frequency are used in parallel. The first elastic wave resonator 11 may be used for all of the resonators P1 to P3. As a result, spurious generation can be effectively suppressed while reducing the insertion loss on the high frequency side in the pass band of the filter.

[実験]
実施例3及び比較例4のフィルタに対して行った通過特性の実験について説明する。実施例3及び比較例4のフィルタでは、図1における直列共振器S1からS3及び並列共振器P1からP4の共振周波数を表5のようにした。すなわち、直列共振器S1の共振周波数を2703.6MHz、直列共振器S2の共振周波数を2683.6MHz、直列共振器S3の共振周波数を2708.6MHzとした。並列共振器P1の共振周波数を2513.5MHz、並列共振器P2の共振周波数を2518.5MHz、並列共振器P3の共振周波数を2548.5MHz、並列共振器P4の共振周波数を2522.4MHzとした。したがって、直列共振器S1からS3のうち共振周波数が最も低い(電極指の平均間隔Dが最も大きい)共振器は直列共振器S2であり、並列共振器P1からP4のうち共振周波数が最も高い(電極指の平均間隔Dが最も小さい)共振器は並列共振器P3である。

Figure 2022026850000006
[experiment]
An experiment of passage characteristics performed on the filters of Example 3 and Comparative Example 4 will be described. In the filters of Example 3 and Comparative Example 4, the resonance frequencies of the series resonators S1 to S3 and the parallel resonators P1 to P4 in FIG. 1 are as shown in Table 5. That is, the resonance frequency of the series resonator S1 was 2703.6 MHz, the resonance frequency of the series resonator S2 was 2683.6 MHz, and the resonance frequency of the series resonator S3 was 2708.6 MHz. The resonance frequency of the parallel resonator P1 was 2513.5 MHz, the resonance frequency of the parallel resonator P2 was 2518.5 MHz, the resonance frequency of the parallel resonator P3 was 2548.5 MHz, and the resonance frequency of the parallel resonator P4 was 2522.4 MHz. Therefore, the resonator having the lowest resonance frequency among the series resonators S1 to S3 (the average distance D between the electrode fingers is the largest) is the series resonator S2, and the resonance frequency is the highest among the parallel resonators P1 to P4 (there is the highest resonance frequency among the parallel resonators P1 to P4). The resonator (with the smallest average distance D between the electrode fingers) is the parallel resonator P3.
Figure 2022026850000006

実施例3のフィルタにおいて、並列共振器P1からP4のうち共振周波数が最も高い共振器は並列共振器P3であることから、直列共振器S1からS3及び並列共振器P3に図2の第1弾性波共振器11を用い、並列共振器P1、P2、及びP4に図4の第2弾性波共振器12を用いた。比較例4のフィルタでは、直列共振器S1からS3及び並列共振器P1からP4に図2の第1弾性波共振器11を用いた。表6にまとめる。

Figure 2022026850000007
In the filter of the third embodiment, since the resonator having the highest resonance frequency among the parallel resonators P1 to P4 is the parallel resonator P3, the series resonators S1 to S3 and the parallel resonator P3 have the first elasticity of FIG. The wave resonator 11 was used, and the second elastic wave resonator 12 of FIG. 4 was used for the parallel resonators P1, P2, and P4. In the filter of Comparative Example 4, the first elastic wave resonator 11 of FIG. 2 was used for the series resonators S1 to S3 and the parallel resonators P1 to P4. It is summarized in Table 6.
Figure 2022026850000007

第1弾性波共振器11及び第2弾性波共振器12の構成は、実施例1に示した実験のときと同じ条件とした。 The configurations of the first elastic wave resonator 11 and the second elastic wave resonator 12 were the same as those in the experiment shown in Example 1.

図13は、実施例3及び比較例4のフィルタの通過特性並びに実施例3のフィルタにおける並列共振器P1からP4及び直列共振器S1からS3の通過特性を示す図である。図13の横軸は周波数[MHz]であり、縦軸は減衰量[dB]である。並列共振器P1からP4の通過特性を点線で図示し、直列共振器S1からS3の通過特性を一点鎖線で図示している。 FIG. 13 is a diagram showing the pass characteristics of the filters of Example 3 and Comparative Example 4 and the pass characteristics of the parallel resonators P1 to P4 and the series resonators S1 to S3 in the filter of Example 3. The horizontal axis of FIG. 13 is the frequency [MHz], and the vertical axis is the attenuation amount [dB]. The passing characteristics of the parallel resonators P1 to P4 are shown by dotted lines, and the passing characteristics of the series resonators S1 to S3 are shown by the alternate long and short dashed line.

図13のように、実施例3は比較例4に比べて通過帯域内の高周波側での挿入損失が低減されている。これは、実施例3では並列共振器P1、P2、及びP4に第2弾性波共振器12を用いたためと考えられる。また、実施例3では並列共振器P3に第1弾性波共振器11を用い、比較例4では並列共振器P1からP4に第1弾性波共振器11を用いているため、通過帯域の低周波側でのスプリアスの生成が抑制されている。 As shown in FIG. 13, in Example 3, the insertion loss on the high frequency side in the pass band is reduced as compared with Comparative Example 4. It is considered that this is because the second elastic wave resonator 12 was used for the parallel resonators P1, P2, and P4 in the third embodiment. Further, in Example 3, the first elastic wave resonator 11 is used for the parallel resonator P3, and in Comparative Example 4, the first elastic wave resonator 11 is used for the parallel resonators P1 to P4, so that the low frequency of the passing band is used. The generation of sprias on the side is suppressed.

実施例1では、複数の並列共振器P1からP4のうち共振周波数が最も高い共振器は出力端子Toutに最も近くに接続する終段の並列共振器P4であり、並列共振器P4に第1弾性波共振器11を用い、その他の並列共振器P1からP3に第2弾性波共振器12を用いた場合を例に示した。しかしながら、この場合に限られない。実施例3のように、複数の並列共振器P1からP4のうち共振周波数が最も高い共振器は並列共振器P3で、並列共振器P3に第1弾性波共振器11を用い、その他の並列共振器P1、P2、P4に第2弾性波共振器12を用いる場合でもよい。この場合でも、通過帯域の低周波側でのスプリアスの生成を抑制しつつ、通過帯域内の高周波側の挿入損失を低減することができる。 In the first embodiment, the resonator having the highest resonance frequency among the plurality of parallel resonators P1 to P4 is the final-stage parallel resonator P4 connected to the output terminal Tout closest to the output terminal Tout, and the parallel resonator P4 has the first elasticity. The case where the wave resonator 11 is used and the second elastic wave resonator 12 is used for the other parallel resonators P1 to P3 is shown as an example. However, this is not the case. As in the third embodiment, the resonator having the highest resonance frequency among the plurality of parallel resonators P1 to P4 is the parallel resonator P3, the first elastic wave resonator 11 is used for the parallel resonator P3, and other parallel resonances. The second elastic wave resonator 12 may be used for the instruments P1, P2, and P4. Even in this case, it is possible to reduce the insertion loss on the high frequency side in the pass band while suppressing the generation of spurious on the low frequency side of the pass band.

複数の並列共振器P1からP4のうち共振周波数が最も高い(電極指の平均間隔Dが最も小さい)共振器は、入力端子Tinに最も近くで接続する初段の並列共振器及び出力端子Toutに最も近くで接続する終段の並列共振器以外の並列共振器であることが好ましい。初段の並列共振器は最も大きな電力が入力され易く、終段の並列共振器はアンテナとのミスマッチによって大きな反射電極が入力されることがあるため、共振周波数が最も高い(電極指の平均間隔Dが最小さいい)並列共振器を初段又は終段以外に配置すると静電破壊が起こる場合があるためである。また、複数の直列共振器S1からS3のうち共振周波数が最も低い(電極指の平均間隔Dが最も大きい)共振器は、入力端子Tinに最も近くで接続する初段の直列共振器及び出力端子Toutに最も近くで接続する終段の直列共振器以外の直列共振器であることが好ましい。 Of the plurality of parallel resonators P1 to P4, the resonator having the highest resonance frequency (the average distance D between the electrode fingers is the smallest) is the first-stage parallel resonator connected closest to the input terminal Tin and the output terminal Tout. It is preferable to use a parallel resonator other than the final stage parallel resonator connected nearby. The first-stage parallel resonator is likely to receive the largest power, and the final-stage parallel resonator may receive a large reflecting electrode due to a mismatch with the antenna, so the resonance frequency is the highest (average spacing D of the electrode fingers). This is because electrostatic breakdown may occur if the parallel resonator is placed in a stage other than the first stage or the final stage. Further, among the plurality of series resonators S1 to S3, the resonator having the lowest resonance frequency (the average distance D between the electrode fingers is the largest) is the first-stage series resonator connected to the input terminal Tin closest to the output terminal Tout. It is preferable to use a series resonator other than the final stage series resonator connected to the nearest one.

図14は、実施例4に係るデュプレクサの回路図である。図14のように、デュプレクサ200は、共通端子Antと送信端子Txとの間に送信フィルタ80が接続されている。共通端子Antと受信端子Rxとの間に受信フィルタ81が接続されている。送信フィルタ80は、送信端子Txから入力された信号のうち送信帯域の信号を送信信号として共通端子Antに通過させ、他の周波数の信号を抑圧する。受信フィルタ81は、共通端子Antから入力された信号のうち受信帯域の信号を受信信号として受信端子Rxに通過させ、他の周波数の信号を抑圧する。送信フィルタ80及び受信フィルタ81の少なくとも一方を、実施例1から実施例3のフィルタとすることができる。マルチプレクサとしてデュプレクサを例に説明したが、トリプレクサ又はクワッドプレクサでもよい。 FIG. 14 is a circuit diagram of the duplexer according to the fourth embodiment. As shown in FIG. 14, in the duplexer 200, a transmission filter 80 is connected between the common terminal Ant and the transmission terminal Tx. A reception filter 81 is connected between the common terminal Ant and the reception terminal Rx. The transmission filter 80 passes a signal in the transmission band among the signals input from the transmission terminal Tx to the common terminal Ant as a transmission signal, and suppresses signals of other frequencies. The reception filter 81 passes a signal in the reception band among the signals input from the common terminal Ant to the reception terminal Rx as a reception signal, and suppresses signals of other frequencies. At least one of the transmission filter 80 and the reception filter 81 can be the filters of the first to third embodiments. Although the duplexer has been described as an example as the multiplexer, a triplexer or a quadplexer may be used.

以上、本願発明の実施形態について詳述したが、本願発明はかかる特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本願発明の要旨の範囲内において、種々の変形・変更が可能である。 Although the embodiments of the present invention have been described in detail above, the present invention is not limited to such a specific embodiment, and various modifications and variations are made within the scope of the gist of the present invention described in the claims. It can be changed.

11 第1弾性波共振器
12 第2弾性波共振器
13 第3弾性波共振器
14 第4弾性波共振器
15 第5弾性波共振器
16 第6弾性波共振器
20 基板
20a 支持基板
20b 減衰層
20c 温度補償層
20d 接合層
20e 圧電基板
21 金属膜
30 IDT
31a、31b 電極指
32a、32b バスバー
33a、33b ダミー電極指
34a、34b 櫛型電極
35a、35b ギャップ
36 交差領域
37a、37b 領域
40 反射器
41 電極指
42 バスバー
50a、50b、50aa、50ab、50ba、50bb 直線
60a、60b 直線
70~72 界面
80 送信フィルタ
81 受信フィルタ
100 フィルタ
200 デュプレクサ
11 1st elastic wave resonator 12 2nd elastic wave resonator 13 3rd elastic wave resonator 14 4th elastic wave resonator 15 5th elastic wave resonator 16 6th elastic wave resonator 20 Board 20a Support board 20b Damping layer 20c Temperature compensation layer 20d Bonding layer 20e Resonant substrate 21 Metal film 30 IDT
31a, 31b Electrode finger 32a, 32b Bus bar 33a, 33b Dummy electrode finger 34a, 34b Comb-shaped electrode 35a, 35b Gap 36 Crossing area 37a, 37b Area 40 Reflector 41 Electrode finger 42 Bus bar 50a, 50b, 50aa, 50ab, 50ba, 50bb straight 60a, 60b straight 70-72 interface 80 transmit filter 81 receive filter 100 filter 200 duplexer

Claims (10)

入力端子と出力端子との間の経路に直列に接続される1又は複数の直列共振器と、
一端が前記経路に接続され、他端がグランドに接続され、第1配列方向に配置される複数の第1電極指と前記複数の第1電極指が接続する第1バスバーとをそれぞれ有し少なくとも一部において前記複数の第1電極指が互い違いとなって向かい合う一対の第1櫛型電極を各々含み、前記複数の第1電極指の平均間隔が最も小さい第1並列共振器は、前記一対の第1櫛型電極のうち一方の第1櫛型電極の前記複数の第1電極指の先端を結ぶ仮想的な第1直線が前記第1配列方向に対して傾斜して延伸し、前記第1並列共振器以外の少なくとも1つの並列共振器は、前記第1直線が前記第1配列方向に略一致して延伸する複数の並列共振器と、を備えるフィルタ。
One or more series resonators connected in series in the path between the input and output terminals,
One end is connected to the path, the other end is connected to the ground, and each has a plurality of first electrode fingers arranged in the first arrangement direction and a first bus bar to which the plurality of first electrode fingers are connected. The first parallel resonator, which includes a pair of first comb-shaped electrodes in which the plurality of first electrode fingers are alternately opposed to each other and the average distance between the plurality of first electrode fingers is the smallest, is the pair. A virtual first straight line connecting the tips of the plurality of first electrode fingers of one of the first comb-shaped electrodes is inclined and extended with respect to the first arrangement direction, and the first The at least one parallel resonator other than the parallel resonator is a filter including a plurality of parallel resonators in which the first straight line extends substantially in agreement with the first arrangement direction.
前記複数の並列共振器のうち少なくとも前記複数の第1電極指の平均間隔が最も大きい第2並列共振器は、前記第1直線が前記第1配列方向に略一致して延伸する、請求項1に記載のフィルタ。 Claim 1 of the second parallel resonator having at least the largest average spacing of the plurality of first electrode fingers among the plurality of parallel resonators, wherein the first straight line extends substantially in accordance with the first arrangement direction. The filter described in. 前記複数の並列共振器のうち前記第2並列共振器以外の並列共振器は、全て前記第1直線が前記第1配列方向に対して傾斜して延伸する、請求項2に記載のフィルタ。 The filter according to claim 2, wherein all of the parallel resonators other than the second parallel resonator among the plurality of parallel resonators have the first straight line inclined and extended with respect to the first arrangement direction. 前記複数の並列共振器のうち前記第1並列共振器以外の並列共振器は、全て前記第1直線が前記第1配列方向に略一致して延伸する、請求項1または2に記載のフィルタ。 The filter according to claim 1 or 2, wherein in all the parallel resonators other than the first parallel resonator among the plurality of parallel resonators, the first straight line extends substantially in agreement with the first arrangement direction. 前記複数の並列共振器の隣り合う共振周波数の間隔の中で最も間隔が大きい箇所を基準として、前記基準よりも共振周波数が高い並列共振器は、前記第1直線が前記第1配列方向に対して傾斜して延伸し、前記基準よりも共振周波数が低い並列共振器は、前記第1直線が前記第1配列方向に略一致して延伸する、請求項1から4のいずれか一項に記載のフィルタ。 In a parallel resonator having a resonance frequency higher than the reference, the first straight line is relative to the first arrangement direction, with reference to the portion having the largest interval among the intervals of adjacent resonance frequencies of the plurality of parallel resonators. The parallel resonator having a lower resonance frequency than the reference is the one according to any one of claims 1 to 4, wherein the first straight line extends substantially in agreement with the first arrangement direction. Filter. 前記第1並列共振器は、前記入力端子と前記出力端子との間において前記入力端子に最も近い初段及び前記出力端子に最も近い終段以外に接続される、請求項1から5のいずれか一項に記載のフィルタ。 One of claims 1 to 5, wherein the first parallel resonator is connected between the input terminal and the output terminal other than the first stage closest to the input terminal and the final stage closest to the output terminal. The filter described in the section. 前記一対の第1櫛型電極は、前記第1バスバーに接続されるダミー電極指を有さない、請求項1から6のいずれか一項に記載のフィルタ。 The filter according to any one of claims 1 to 6, wherein the pair of first comb-shaped electrodes does not have a dummy electrode finger connected to the first bus bar. 前記一対の第1櫛型電極は、前記第1バスバーに接続されるダミー電極指を有する、請求項1から6のいずれか一項に記載のフィルタ。 The filter according to any one of claims 1 to 6, wherein the pair of first comb-shaped electrodes has a dummy electrode finger connected to the first bus bar. 前記1又は複数の直列共振器は、第2配列方向に配置された複数の第2電極指と前記複数の第2電極指が接続する第2バスバーとをそれぞれ有し少なくとも一部において前記複数の第2電極指が互い違いとなって向かい合う一対の第2櫛型電極を各々含み、前記一対の第2櫛型電極のうち一方の第2櫛型電極の前記複数の第2電極指の先端を結ぶ仮想的な第2直線が前記第2配列方向に対して傾斜して延伸する、請求項1から8のいずれか一項に記載のフィルタ。 The one or more series resonators each have a plurality of second electrode fingers arranged in the second arrangement direction and a second bus bar to which the plurality of second electrode fingers are connected, and at least a part of the plurality of second electrode fingers. Each includes a pair of second comb-shaped electrodes in which the second electrode fingers are staggered to face each other, and connects the tips of the plurality of second electrode fingers of one of the pair of second comb-shaped electrodes. The filter according to any one of claims 1 to 8, wherein the virtual second straight line is inclined and stretched with respect to the second arrangement direction. 請求項1から9のいずれか一項に記載のフィルタを含むマルチプレクサ。
A multiplexer including the filter according to any one of claims 1 to 9.
JP2020130511A 2020-07-31 2020-07-31 Filters and multiplexers Active JP7456876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020130511A JP7456876B2 (en) 2020-07-31 2020-07-31 Filters and multiplexers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020130511A JP7456876B2 (en) 2020-07-31 2020-07-31 Filters and multiplexers

Publications (2)

Publication Number Publication Date
JP2022026850A true JP2022026850A (en) 2022-02-10
JP7456876B2 JP7456876B2 (en) 2024-03-27

Family

ID=80263785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020130511A Active JP7456876B2 (en) 2020-07-31 2020-07-31 Filters and multiplexers

Country Status (1)

Country Link
JP (1) JP7456876B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9124240B2 (en) 2011-04-12 2015-09-01 Skyworks Panasonic Filter Solutions Japan Co., Ltd. Acoustic wave device and antenna duplexer employing the same
WO2015064238A1 (en) 2013-10-31 2015-05-07 京セラ株式会社 Elastic wave element, filter element and communication device
WO2016208236A1 (en) 2015-06-22 2016-12-29 株式会社村田製作所 Elastic wave filter device
WO2018003273A1 (en) 2016-06-28 2018-01-04 株式会社村田製作所 Multiplexer, high-frequency front end circuit, and communication device
WO2019065671A1 (en) 2017-09-29 2019-04-04 株式会社村田製作所 Multiplexer, high-frequency front-end circuit, and communication device
DE102018130141A1 (en) 2018-11-28 2020-05-28 RF360 Europe GmbH Electroacoustic resonator and RF filter
DE102018130144A1 (en) 2018-11-28 2020-05-28 RF360 Europe GmbH Electroacoustic resonator and RF filter

Also Published As

Publication number Publication date
JP7456876B2 (en) 2024-03-27

Similar Documents

Publication Publication Date Title
US11496116B2 (en) Acoustic wave filter device, multiplexer and composite filter device
WO2018168836A1 (en) Acoustic wave element, acoustic wave filter device, and multiplexer
US10461718B2 (en) Acoustic wave resonator, filter, and multiplexer
WO2021002321A1 (en) Elastic wave filter and multiplexer
WO2019131530A1 (en) Acoustic wave filter
JP3419339B2 (en) Surface acoustic wave filters, duplexers, communication equipment
US9608596B2 (en) Acoustic wave device and antenna duplexer including same
JP2017228945A (en) Acoustic wave resonator, filter and multiplexer
US11569433B2 (en) Acoustic wave resonator, filter, and multiplexer
JP6935220B2 (en) Elastic wave elements, filters and multiplexers
CN113206653A (en) Elastic wave filter
US7372347B2 (en) Surface acoustic wave device
US7746199B2 (en) Acoustic wave device
KR101044971B1 (en) Surface acoustic wave filter
JP7237556B2 (en) Acoustic wave resonators, filters and multiplexers
WO2020137263A1 (en) Filter device
JP6465441B2 (en) Multiplexer
JP7456876B2 (en) Filters and multiplexers
JP7411334B2 (en) elastic wave resonator
WO2021015187A1 (en) Elastic wave filter
US11012048B2 (en) Filter and multiplexer
US20210006231A1 (en) Acoustic wave device, filter, and multiplexer
WO2023054301A1 (en) Elastic wave filter device and multiplexer
WO2023074373A1 (en) Elastic wave resonator, elastic wave filter device, and multiplexer
WO2023068206A1 (en) Multiplexer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240314

R150 Certificate of patent or registration of utility model

Ref document number: 7456876

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150