WO2023068206A1 - Multiplexer - Google Patents

Multiplexer Download PDF

Info

Publication number
WO2023068206A1
WO2023068206A1 PCT/JP2022/038441 JP2022038441W WO2023068206A1 WO 2023068206 A1 WO2023068206 A1 WO 2023068206A1 JP 2022038441 W JP2022038441 W JP 2022038441W WO 2023068206 A1 WO2023068206 A1 WO 2023068206A1
Authority
WO
WIPO (PCT)
Prior art keywords
wave filter
elastic wave
filter
passband
acoustic wave
Prior art date
Application number
PCT/JP2022/038441
Other languages
French (fr)
Japanese (ja)
Inventor
茂生 小笹
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2023068206A1 publication Critical patent/WO2023068206A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/46Networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezo-electric or electrostrictive material
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves

Definitions

  • the present invention relates to a multiplexer with acoustic wave filters.
  • Patent Document 1 discloses an inductance element having one end connected to a first common terminal and the other end connected to a second common terminal, and a first acoustic wave filter connected to the first common terminal without an inductance element. , and a plurality of acoustic wave filters connected to a second common terminal. According to this, the insertion loss within the passband of each acoustic wave filter connected to the common terminal can be reduced.
  • the multiplexer described in Patent Document 1 poses a problem of the loss of the acoustic wave filters (hereinafter referred to as bundling loss) due to the common connection of the plurality of acoustic wave filters to the second common terminal.
  • bundling loss the loss of the acoustic wave filters
  • the bundling loss of filter A increases as the conductance in the passband A of the filter B increases. Therefore, as the number of acoustic wave filters connected to the second common terminal increases, the conductance in the passband A of the acoustic wave filters connected in parallel increases, and the bundling loss of the filters A increases.
  • the insertion loss of A increases.
  • an object of the present invention is to provide a multiplexer in which the insertion loss within the passband of each commonly connected acoustic wave filter is reduced.
  • a multiplexer includes a first elastic wave filter having a first passband and a second elastic wave filter having a second passband having a higher frequency than the first passband.
  • a filter wherein one end of the first elastic wave filter and one end of the second elastic wave filter are connected, the second elastic wave filter has one or more elastic wave resonators, and one or more elastic wave resonators the element is arranged on a series arm path connecting one end and the other end of the second elastic wave filter, and includes a series arm resonator connected closest to one end of the one or more elastic wave resonators;
  • the antiresonant frequency of the resonator is equal to or lower than the frequency of the high frequency end of the first passband.
  • a multiplexer includes a first elastic wave filter having a first passband and a second elastic wave filter having a second passband having a higher frequency than the first passband,
  • Each of the first elastic wave filter and the second elastic wave filter is composed of a surface acoustic wave resonator having an IDT (InterDigital Transducer) electrode, and one end of the first elastic wave filter and one end of the second elastic wave filter are connected.
  • the second acoustic wave filter has one or more surface acoustic wave resonators, and the one or more surface acoustic wave resonators are arranged on a series arm path connecting one end and the other end of the second acoustic wave filter.
  • the electrode finger pitch of the IDT electrodes constituting the series arm resonator is included in the first acoustic wave filter It is larger than any of the electrode finger pitches of the IDT electrodes constituting all surface acoustic wave resonators.
  • a multiplexer includes a first elastic wave filter having a first passband and a second elastic wave filter having a second passband having a higher frequency than the first passband, Each of the first elastic wave filter and the second elastic wave filter is formed between the support substrate, the first electrode and the second electrode formed on one surface of the support substrate, and the first electrode and the second electrode. and one end of the first acoustic wave filter and one end of the second acoustic wave filter are connected, and the second acoustic wave filter includes one or more bulk acoustic wave filters.
  • a piezoelectric layer that includes a series arm resonator connected close to one end, and that constitutes the series arm resonator is higher than any of the piezoelectric layers that constitute all the bulk acoustic wave resonators included in the first acoustic wave filter. thick.
  • FIG. 1 is a circuit configuration diagram of a multiplexer according to Embodiment 1.
  • FIG. 2A is a diagram showing a first example of a circuit configuration of a second elastic wave filter that constitutes the multiplexer according to Embodiment 1.
  • FIG. 2B is a diagram illustrating a second example of a circuit configuration of a second elastic wave filter that configures the multiplexer according to Embodiment 1.
  • FIG. 3A is a plan view and a cross-sectional view schematically showing a first example of an elastic wave resonator that constitutes the elastic wave filter according to Embodiment 1.
  • FIG. 3B is a cross-sectional view schematically showing a second example of the elastic wave resonator that constitutes the elastic wave filter according to Embodiment 1.
  • FIG. 1 is a circuit configuration diagram of a multiplexer according to Embodiment 1.
  • FIG. 2A is a diagram showing a first example of a circuit configuration of a second elastic wave filter that constitutes the multiplexer
  • FIG. 3C is a cross-sectional view schematically showing a third example of the elastic wave resonator that constitutes the elastic wave filter according to Embodiment 1.
  • FIG. 4A is a graph comparing pass characteristics of second acoustic wave filters according to Example 1 and Comparative Example 1.
  • FIG. 4B is a Smith chart comparing impedance characteristics viewed from the common terminal of the second acoustic wave filters according to Example 1 and Comparative Example 1.
  • FIG. 5A is a graph showing pass characteristics of first elastic wave filters (for transmission) of multiplexers according to Example 1 and Comparative Example 1.
  • FIG. 5B is a graph showing pass characteristics of the first elastic wave filter (for reception) of the multiplexers according to Example 1 and Comparative Example 1.
  • FIG. 6 is a circuit configuration diagram of a multiplexer according to the second embodiment.
  • FIG. 7A compares the impedance characteristics of the first passband (transmission) viewed from the first common terminal when the first elastic wave filter and the second elastic wave filter are commonly connected in Example 2 and Comparative Example 2.
  • FIG. 7B compares the impedance characteristics of the first passband (reception) viewed from the first common terminal when the first elastic wave filter and the second elastic wave filter are commonly connected in Example 2 and Comparative Example 2.
  • Smith chart. 7C is a Smith chart comparing the impedance characteristics of the second passband viewed from the first common terminal when the first elastic wave filter and the second elastic wave filter are commonly connected in Example 2 and Comparative Example 2.
  • FIG. 7D compares the impedance characteristics of the third passband (transmission) viewed from the first common terminal when the first elastic wave filter and the second elastic wave filter are commonly connected in Example 2 and Comparative Example 2.
  • FIG. 7E compares the impedance characteristics of the third passband (receiving) viewed from the first common terminal when the first elastic wave filter and the second elastic wave filter are commonly connected in Example 2 and Comparative Example 2.
  • Smith chart. 8A shows the impedance characteristics of the first passband (transmission) viewed from the second common terminal when the inductor, the first elastic wave filter, and the second elastic wave filter are commonly connected in Example 2 and Comparative Example 2.
  • FIG. It is a comparative graph.
  • 8B shows the impedance characteristics of the first passband (reception) viewed from the second common terminal when the inductor, the first elastic wave filter, and the second elastic wave filter are commonly connected in Example 2 and Comparative Example 2. It is a comparative graph. 8C is a graph comparing the impedance characteristics of the second passband viewed from the second common terminal when the inductor, the first elastic wave filter, and the second elastic wave filter are commonly connected in Example 2 and Comparative Example 2; is. 8D shows the impedance characteristics of the third passband (transmission) viewed from the second common terminal when the inductor, the first elastic wave filter, and the second elastic wave filter are commonly connected in Example 2 and Comparative Example 2. FIG. It is a comparative graph.
  • FIG. 8E shows the impedance characteristics of the third passband (receiving) viewed from the second common terminal when the inductor, the first elastic wave filter, and the second elastic wave filter are commonly connected in Example 2 and Comparative Example 2.
  • FIG. It is a comparative graph.
  • FIG. 9 is a graph comparing the conductance characteristics seen from the second common terminal when the inductor, the first elastic wave filter, and the second elastic wave filter are connected in common between Example 2 and Comparative Example 2.
  • FIG. FIG. 10 is a graph comparing the impedance characteristics seen from the second common terminal of the multiplexers according to the second embodiment and the second comparative example between the second embodiment and the second comparative example.
  • FIG. 11A is a graph showing pass characteristics of second elastic wave filters (for reception) of multiplexers according to Example 2 and Comparative Example 2.
  • FIG. 11B is a graph showing pass characteristics of the third elastic wave filter (for transmission) of the multiplexers according to Example 2 and Comparative Example 2.
  • FIG. 11C is a graph showing pass characteristics of the third acoustic wave filter (for reception) of the multiplexers according to Example 2 and Comparative Example 2.
  • the passband of the filter is defined as the frequency band between two frequencies that are 3 dB larger than the minimum value of the insertion loss in the passband.
  • FIG. 1 is a circuit configuration diagram of a multiplexer 1 according to the first embodiment. As shown in the figure, the multiplexer 1 includes filters 11 , 12 and 21 , an antenna connection terminal 90 , a common terminal 91 , input terminals 110 and 210 and an output terminal 120 .
  • the antenna connection terminal 90 is connected to, for example, an antenna element.
  • Common terminal 91 is an example of a first common terminal, and is connected to the output terminal of filter 11 , the input terminal of filter 12 , and the output terminal of filter 21 .
  • the filter 11 is an example of a first acoustic wave filter, and has a passband (first passband) including the band A transmission band. One end (output end) of the filter 11 is connected to the common terminal 91, and the other end (input end) is connected to the input terminal 110 (first input/output terminal). Filter 11 has one or more elastic wave resonators.
  • the filter 12 has a passband including the band A reception band. One end (input end) of the filter 12 is connected to the common terminal 91 and the other end (output end) is connected to the output terminal 120 .
  • Filter 12 has one or more elastic wave resonators.
  • the filter 21 is an example of a second acoustic wave filter, and has a passband (second passband) including the transmission band of band B. One end (output end) of the filter 21 is connected to the common terminal 91, and the other end (input end) is connected to the input terminal 210 (second input/output terminal).
  • Filter 21 has one or more elastic wave resonators.
  • the filter 21 is arranged on a series arm path connecting the common terminal 91 and the input terminal 210 and includes a series arm resonator connected closest to the common terminal 91 among the one or more elastic wave resonators.
  • the transmission band of band B has a higher frequency than the transmission band and reception band of band A.
  • the anti-resonance frequency fa1 of the series arm resonator is equal to or lower than the frequency of the high frequency end of the first passband.
  • band A for example, LTE (Long Term Evolution) Band 3 (transmission band: 1710-1785 MHz, reception band: 1805-1880 MHz) is applied, and as band B, for example, LTE Band 1 (transmission band: 1920-1980 MHz, reception band: 2110-2170 MHz).
  • LTE Long Term Evolution
  • filters 11 and 12 may be omitted in the multiplexer 1 according to the present embodiment.
  • Filters other than filters 11 , 12 and 21 may be connected to common terminal 91 .
  • the antenna connection terminal 90, the input terminals 110 and 210, the output terminal 120, and the common terminal 91 may not be included in the multiplexer 1.
  • FIG. 2A is a diagram showing a first example of the circuit configuration of the filter 21 that constitutes the multiplexer 1 according to the first embodiment.
  • FIG. 2B is a diagram showing a second example of the circuit configuration of the filter 21 forming the multiplexer 1 according to the first embodiment.
  • the filter 21 according to the present embodiment has, for example, the circuit configuration of the elastic wave filter 21A shown in FIG. 2A or the elastic wave filter 21B shown in FIG. 2B.
  • the elastic wave filter 21A shown in FIG. 2A includes series arm resonators 101 to 105, parallel arm resonators 151 to 154, and an inductor 161.
  • the series arm resonators 101 to 105 are arranged on a series arm path connecting the input terminal 210 and the common terminal 91 .
  • Each of the parallel arm resonators 151-154 is connected between each connection point of the series arm resonators 101-105 and the input terminal 210 and the ground.
  • the acoustic wave filter 21A constitutes a ladder-type bandpass filter.
  • Inductor 161 is connected between the connection point of parallel arm resonators 151, 152 and 153 and the ground, and adjusts the attenuation pole in the filter pass characteristics.
  • the number of series arm resonators and parallel arm resonators is arbitrary, and inductor 161 may be omitted.
  • the elastic wave filter 21B shown in FIG. 2B includes a longitudinal coupling filter section 203, series arm resonators 201 and 202, and parallel arm resonators 251 and 253.
  • the longitudinal coupling filter unit 203 has, for example, nine IDTs, each of which is composed of a pair of IDT electrodes facing each other.
  • Series arm resonators 201 and 202 and parallel arm resonator 251 constitute a ladder filter section.
  • the elastic wave filter 21B constitutes a bandpass filter.
  • the number of series arm resonators and parallel arm resonators and the number of IDTs constituting longitudinally coupled filter section 203 are arbitrary.
  • the series arm resonator 101 is arranged on the series arm path connecting the common terminal 91 and the input terminal 210, and is connected closest to the common terminal 91 among the one or more elastic wave resonators. It is a series arm resonator.
  • the series arm resonator 201 is arranged on the series arm path connecting the common terminal 91 and the input terminal 210, and is closest to the common terminal 91 among the one or more elastic wave resonators. connected series arm resonators.
  • FIG. 3A is a plan view and a cross-sectional view schematically showing a first example of elastic wave resonators of filters 11, 12 and 21 according to Embodiment 1.
  • FIG. The figure illustrates the basic structure of elastic wave resonators that constitute the filters 11, 12 and 21.
  • the elastic wave resonator 60 shown in FIG. 3A is for explaining a typical structure of an elastic wave resonator, and the number and length of the electrode fingers constituting the electrodes are Not limited.
  • the acoustic wave resonator 60 is composed of a piezoelectric substrate 50 and comb electrodes 60a and 60b.
  • a pair of interdigitated electrodes 60a and 60b are formed on the substrate 50 so as to face each other.
  • the comb-shaped electrode 60a is composed of a plurality of parallel electrode fingers 61a and busbar electrodes 62a connecting the plurality of electrode fingers 61a.
  • the comb-shaped electrode 60b is composed of a plurality of parallel electrode fingers 61b and a busbar electrode 62b connecting the plurality of electrode fingers 61b.
  • the plurality of electrode fingers 61a and 61b are formed along a direction orthogonal to the elastic wave propagation direction (X-axis direction).
  • the IDT electrode 54 which is composed of a plurality of electrode fingers 61a and 61b and busbar electrodes 62a and 62b, has a laminated structure of an adhesion layer 540 and a main electrode layer 542, as shown in (b) of FIG. 3A. It's becoming
  • the adhesion layer 540 is a layer for improving adhesion between the substrate 50 and the main electrode layer 542, and is made of Ti, for example.
  • the material of the main electrode layer 542 is, for example, Al containing 1% Cu.
  • Protective layer 55 is formed to cover comb electrodes 60a and 60b.
  • the protective layer 55 is a layer for the purpose of protecting the main electrode layer 542 from the external environment, adjusting frequency temperature characteristics, and increasing moisture resistance. is.
  • the materials forming the adhesion layer 540, the main electrode layer 542 and the protective layer 55 are not limited to the materials described above.
  • the IDT electrode 54 may not have the laminated structure described above.
  • the IDT electrode 54 may be composed of, for example, metals or alloys such as Ti, Al, Cu, Pt, Au, Ag, and Pd, and may be composed of a plurality of laminates composed of the above metals or alloys. may Also, the protective layer 55 may not be formed.
  • the substrate 50 includes a high acoustic velocity support substrate 51, a low acoustic velocity film 52, and a piezoelectric film 53.
  • the high acoustic velocity support substrate 51, the low acoustic velocity film 52, and the piezoelectric film 53 are It has a structure laminated in this order.
  • the piezoelectric film 53 is, for example, a ⁇ ° Y-cut X-propagation LiTaO 3 piezoelectric single crystal or piezoelectric ceramics (lithium tantalate single crystal cut along a plane normal to an axis rotated ⁇ ° from the Y axis with the X axis as the central axis, (or ceramics, single crystal or ceramics in which surface acoustic waves propagate in the X-axis direction). Note that the material of the piezoelectric single crystal used as the piezoelectric film 53 and the cut angle ⁇ are appropriately selected according to the required specifications of each filter.
  • the high acoustic velocity support substrate 51 is a substrate that supports the low acoustic velocity film 52 , the piezoelectric film 53 and the IDT electrodes 54 .
  • the high acoustic velocity support substrate 51 is a substrate in which the acoustic velocity of bulk waves in the high acoustic velocity support substrate 51 is faster than acoustic waves such as surface waves and boundary waves propagating through the piezoelectric film 53, and surface acoustic waves are generated. It functions so that it is confined in the portion where the piezoelectric film 53 and the low sound velocity film 52 are laminated and does not leak below the high sound velocity support substrate 51 .
  • the high acoustic velocity support substrate 51 is, for example, a silicon substrate.
  • the low sound velocity film 52 is a film in which the sound velocity of the bulk wave in the low sound velocity film 52 is lower than that of the bulk wave propagating through the piezoelectric film 53 , and is arranged between the piezoelectric film 53 and the high sound velocity support substrate 51 . be.
  • This structure and the nature of the elastic wave to concentrate its energy in a low-temperature medium suppresses leakage of the surface acoustic wave energy to the outside of the IDT electrode.
  • the low-temperature velocity film 52 is, for example, a film whose main component is silicon dioxide.
  • the laminated structure of the substrate 50 it is possible to significantly increase the Q value at the resonance frequency and the antiresonance frequency compared to the conventional structure using a single layer of piezoelectric substrate. That is, since an acoustic wave resonator with a high Q value can be configured, it is possible to configure a filter with a small insertion loss using the acoustic wave resonator.
  • the high acoustic velocity support substrate 51 has a structure in which a support substrate and a high acoustic velocity film having a higher acoustic velocity than elastic waves such as surface waves and boundary waves propagating through the piezoelectric film 53 are laminated.
  • the support substrate includes piezoelectric materials such as sapphire, lithium tantalate, lithium niobate, and quartz, alumina, magnesia, silicon nitride, aluminum nitride, silicon carbide, zirconia, cordierite, mullite, steatite, and fort.
  • the high acoustic velocity film includes aluminum nitride, aluminum oxide, silicon carbide, silicon nitride, silicon oxynitride, DLC film, diamond, media containing these materials as main components, and media containing mixtures of these materials as main components. etc., various high acoustic velocity materials can be used.
  • FIG. 3B is a cross-sectional view schematically showing a second example of elastic wave resonators of filters 11, 12 and 21 according to the first embodiment.
  • the elastic wave resonator 60 shown in FIG. 3A shows an example in which the IDT electrodes 54 are formed on the substrate 50 having the piezoelectric film 53.
  • the substrate on which the IDT electrodes 54 are formed is shown in FIG. 3B.
  • the piezoelectric single crystal substrate 57 may be a single piezoelectric layer.
  • the piezoelectric single crystal substrate 57 is composed of, for example, a piezoelectric single crystal of LiNbO 3 .
  • the acoustic wave resonator according to this example is composed of a piezoelectric single crystal substrate 57 of LiNbO 3 , an IDT electrode 54 , and a protective layer 58 formed on the piezoelectric single crystal substrate 57 and the IDT electrode 54 . .
  • the piezoelectric film 53 and the piezoelectric single crystal substrate 57 described above may be appropriately changed in laminated structure, material, cut angle, and thickness according to the required transmission characteristics of the elastic wave filter device. Even an acoustic wave resonator using a LiTaO 3 piezoelectric substrate having a cut angle other than the cut angle described above can produce the same effects as the acoustic wave resonator 60 using the piezoelectric film 53 described above.
  • the substrate on which the IDT electrodes 54 are formed may have a structure in which a supporting substrate, an energy trapping layer, and a piezoelectric film are laminated in this order.
  • An IDT electrode 54 is formed on the piezoelectric film.
  • the piezoelectric film is, for example, LiTaO 3 piezoelectric single crystal or piezoelectric ceramics.
  • the support substrate is the substrate that supports the piezoelectric film, the energy confinement layer, and the IDT electrodes 54 .
  • the energy confinement layer consists of one or more layers, and the velocity of the bulk acoustic wave propagating through at least one layer is greater than the velocity of the elastic wave propagating near the piezoelectric film.
  • the energy trapping layer may have a laminated structure of a low acoustic velocity layer and a high acoustic velocity layer.
  • the sound velocity layer is a film in which the sound velocity of bulk waves in the sound velocity layer is lower than the sound velocity of elastic waves propagating through the piezoelectric film.
  • the high acoustic velocity layer is a film in which the acoustic velocity of bulk waves in the high acoustic velocity layer is higher than the acoustic velocity of elastic waves propagating through the piezoelectric film.
  • the support substrate may be a high acoustic velocity layer.
  • the energy trapping layer may be an acoustic impedance layer having a configuration in which a low acoustic impedance layer with a relatively low acoustic impedance and a high acoustic impedance layer with a relatively high acoustic impedance are alternately laminated. .
  • the wavelength of the elastic wave resonator is defined by the wavelength ⁇ which is the repetition period of the plurality of electrode fingers 61a or 61b forming the IDT electrode 54 shown in (b) of FIG. 3A.
  • the electrode finger pitch is 1/2 of the wavelength ⁇
  • the line width of the electrode fingers 61a and 61b constituting the comb-shaped electrodes 60a and 60b is W
  • the distance between the adjacent electrode fingers 61a and 61b is When the space width is S, it is defined as (W+S).
  • S space width
  • the intersecting width L of the pair of comb-shaped electrodes 60a and 60b is the overlap of the electrode fingers 61a and 61b when viewed from the elastic wave propagation direction (X-axis direction). is the length of the electrode finger that
  • the electrode duty of each acoustic wave resonator is the line width occupation ratio of the plurality of electrode fingers 61a and 61b, and is the ratio of the line width to the sum of the line width and space width of the plurality of electrode fingers 61a and 61b. and is defined as W/(W+S).
  • the height of the comb electrodes 60a and 60b is h.
  • electrode parameters related to the shape of the IDT electrodes of the acoustic wave resonator such as the wavelength ⁇ , the electrode finger pitch, the crossing width L, the electrode duty, and the height h of the IDT electrodes 54, are defined as electrode parameters.
  • the electrode finger pitch of the IDT electrodes 54 is defined by the average electrode finger pitch of the IDT electrodes 54 .
  • the average electrode finger pitch of the IDT electrode 54 is defined by the total number of the electrode fingers 61a and 61b included in the IDT electrode 54 being Ni, and the electrode finger positioned at one end of the IDT electrode 54 in the elastic wave propagation direction and It is defined as Di/(Ni-1), where Di is the center-to-center distance from the positioned electrode finger.
  • the resonance frequency and the antiresonance frequency of the surface acoustic wave resonator shift to the lower frequency side as the electrode finger pitch of the IDT electrode increases. shift.
  • FIG. 3C is a cross-sectional view schematically showing a third example of elastic wave resonators of filters 11, 12 and 21 according to the first embodiment.
  • Bulk acoustic wave resonators are shown as acoustic wave resonators of filters 11, 12 and 21 in FIG. 3C.
  • the bulk acoustic wave resonator has, for example, a support substrate 65, a lower electrode 66, a piezoelectric layer 67, and an upper electrode 68. , a piezoelectric layer 67, and an upper electrode 68 are laminated in this order.
  • the support substrate 65 is a substrate for supporting the lower electrode 66, the piezoelectric layer 67, and the upper electrode 68, and is, for example, a silicon substrate.
  • the support substrate 65 is provided with a cavity in a region in contact with the lower electrode 66 . This allows the piezoelectric layer 67 to vibrate freely.
  • the lower electrode 66 is an example of a first electrode and is formed on one surface of the support substrate 65 .
  • the upper electrode 68 is an example of a second electrode and is formed on one surface of the support substrate 65 .
  • the lower electrode 66 and the upper electrode 68 are made of Al containing 1% Cu, for example.
  • the piezoelectric layer 67 is formed between the lower electrode 66 and the upper electrode 68 .
  • the piezoelectric layer 67 is made of, for example, ZnO (zinc oxide), AlN (aluminum nitride), PZT (lead zirconate titanate), KN (potassium niobate), LN (lithium niobate), LT (lithium tantalate),
  • the main component is at least one of quartz and LiBO (lithium borate).
  • the bulk acoustic wave resonator having the above laminated structure induces a bulk acoustic wave in the piezoelectric layer 67 by applying electrical energy between the lower electrode 66 and the upper electrode 68 to generate resonance. It is.
  • a bulk acoustic wave generated by this bulk acoustic wave resonator propagates between the lower electrode 66 and the upper electrode 68 in a direction perpendicular to the film surface of the piezoelectric layer 67 . That is, the bulk acoustic wave resonator is a resonator that utilizes bulk acoustic waves.
  • the resonance frequency and anti-resonance frequency of the bulk acoustic wave resonator shift to the low frequency side.
  • the multiplexer according to Example 1 is an example of the multiplexer 1 according to the present embodiment.
  • the multiplexer according to Comparative Example 1 is not included in the multiplexers according to this embodiment.
  • the multiplexer includes filters 11 and 12, an acoustic wave filter 21A (filter 21), an antenna connection terminal 90, a common terminal 91, input terminals 110 and 210, and an output 4A, the antiresonance frequency fa1 of the series arm resonator 101 connected closest to the common terminal 91 among the elastic wave resonators of the elastic wave filter 21A is the same as the filter 11 (FIG. 4A). 4A is located within the passband of A-Tx). Among the filters 11 and 12 and the acoustic wave filter 21A, the passband of the filter 11 is located on the lowest frequency side, and the passband of the acoustic wave filter 21A is located on the highest frequency side.
  • the multiplexer according to Comparative Example 1 has a circuit configuration similar to that of the multiplexer according to Example 1. , and is located on the high frequency side of the low end of the passband (B-Tx in FIG. 4A) of the elastic wave filter 21A.
  • FIG. 4B is a Smith chart comparing the impedance characteristics of the acoustic wave filters 21A according to Example 1 and Comparative Example 1 viewed from the common terminal 91.
  • FIG. The figure shows the impedance characteristics of the elastic wave filter 21A alone as viewed from the common terminal 91 side in Example 1 and Comparative Example 1.
  • FIG. 4B is a Smith chart comparing the impedance characteristics of the acoustic wave filters 21A according to Example 1 and Comparative Example 1 viewed from the common terminal 91.
  • FIG. The figure shows the impedance characteristics of the elastic wave filter 21A alone as viewed from the common terminal 91 side in Example 1 and Comparative Example 1.
  • the impedance of the passband (A-Tx) of the filter 11 is located away from the open point (around 5 o'clock on the Smith chart).
  • the passband (A-Tx ) is located near the open point (near 3:30 on the Smith chart) compared to Comparative Example 1.
  • the series arm resonator 101 (elastic wave resonator) has a small capacitance (near the high frequency side of fa1) or a large inductance (near the low frequency side of fa1) near the anti-resonance frequency fa1.
  • the anti-resonance frequency fa1 is positioned within the passband (A-Tx) of the filter 11, so that the passband ( A-Tx) is compared with the impedance of the passband (A-Tx) seen from the common terminal 91 side of the acoustic wave filter 21A alone according to Comparative Example 1, in the counterclockwise direction of the equal resistance circle or closer to the open point (lower capacitance), or in the clockwise direction of the equal resistance circle and closer to the open point (higher inductance).
  • FIG. 5A is a graph showing pass characteristics of the filter 11 of the multiplexer according to Example 1 and Comparative Example 1.
  • FIG. 5B is a graph showing pass characteristics of the filters 12 of the multiplexers according to Example 1 and Comparative Example 1.
  • the conductance of the passband (A-Tx) in the elastic wave filter 21A alone can be made smaller, so that the filters 11 and 12 and the elastic wave filter 21A are connected to the common terminal.
  • the so-called bundling loss when connected to 91 can be reduced.
  • the multiplexer according to the first embodiment can also reduce the insertion loss of the filter 12 .
  • the anti-resonance frequency fa1 of the series arm resonator 101 is located on the lower frequency side than the passband (A-Rx) of the filter 12, so that the impedance of the passband (A-Rx) is different from that of Comparative Example 1. This is because it is located near the open point by comparison.
  • the multiplexer according to the first embodiment it is possible to reduce the insertion loss within the passband of the filters 11 and 12 connected to the common terminal 91.
  • the anti-resonance frequency fa1 of the series arm resonator 101 may be located on the lower frequency side than the passband (A-Tx) of the filter 11. Even in this case, the series arm resonator 101 has a small capacitance in the passband (A-Tx). It is possible to reduce the insertion loss within the passband of the filter 11 connected to the common terminal 91 .
  • the anti-resonance frequency fa1 of the series arm resonator 101 connected closest to the common terminal 91 among the elastic wave resonators of the elastic wave filter 21A is the same as that of the filter 11 (A-Tx). It is characterized by being located within the passband.
  • the multiplexer according to Modification 1 includes filters 11 and 12, elastic wave filter 21A (filter 21), antenna connection terminal 90, common terminal 91, input terminals 110 and 210, and output terminal 120, and the acoustic wave filter 21A has one or more surface acoustic wave resonators, and the one or more surface acoustic wave resonators are series arm paths connecting one end and the other end of the acoustic wave filter 21A.
  • the electrode finger pitch of the IDT electrodes 54 that constitute the series arm resonator includes a series arm resonator connected closest to the one end of the one or more surface acoustic wave resonators arranged above the filter. 11 may be larger than any of the electrode finger pitches of the IDT electrodes 54 constituting all the surface acoustic wave resonators.
  • the anti-resonance frequency fa1 of the series arm resonator of the elastic wave filter 21A is located within the passband of the filter 11 or on the lower frequency side than the passband. Therefore, it is possible to obtain the same effect as the multiplexer according to the first embodiment.
  • the multiplexer according to Modification 2 includes filters 11 and 12, an acoustic wave filter 21A (filter 21), an antenna connection terminal 90, a common terminal 91, input terminals 110 and 210, and an output terminal 120.
  • Each of the acoustic wave filter 21A and the filter 11 includes, as shown in FIG. 3C, a supporting substrate 65, a lower electrode 66 and an upper electrode 68 formed on one surface of the supporting substrate 65, and a lower electrode 66 and an upper electrode. and a piezoelectric layer 67 formed between the electrode 68 and a bulk acoustic wave resonator.
  • the elastic wave filter 21A has one or more bulk acoustic wave resonators, and the one or more bulk acoustic wave resonators are arranged on a series arm path connecting one end and the other end of the elastic wave filter 21A.
  • the piezoelectric layer 67 includes the series arm resonator connected closest to the one end of the one or more acoustic wave resonators, and the piezoelectric layer 67 that constitutes the series arm resonator has all the bulk acoustic wave resonators included in the filter 11. It may be characterized by being thicker than any of the piezoelectric layers 67 that make up the child.
  • the anti-resonance frequency fa1 of the series arm resonator of the elastic wave filter 21A is located within the passband of the filter 11 or on the lower frequency side than the passband. Therefore, it is possible to obtain the same effect as the multiplexer according to the first embodiment.
  • FIG. 6 is a circuit diagram of the multiplexer 2 according to the second embodiment.
  • the multiplexer 2 includes filters 11, 12, 21, 31 and 32, an inductor 41, an antenna connection terminal 90, common terminals 91, 92 and 93, and input terminals 110, 210 and 310. , and output terminals 120 and 320 .
  • Multiplexer 2 according to the present embodiment has filters 31 and 32, inductor 41, common terminals 92 and 93, input terminal 310, and output terminal 320 added, compared to multiplexer 1 according to the first embodiment. Points are different.
  • the description of the same configuration as that of the multiplexer 1 according to the first embodiment will be omitted, and the different configuration will be mainly described.
  • the common terminal 91 is an example of a first common terminal, and is connected to the output end of the filter 11, the input end of the filter 12, the output end of the filter 21, and one end of the inductor 41.
  • the common terminal 93 is an example of a second common terminal and is connected to the other end of the inductor 41 and the common terminal 92 .
  • the filter 31 is an example of a third acoustic wave filter, and has a passband (third passband) including the band C transmission band. One end (output end) of the filter 31 is connected to the common terminal 92, and the other end (input end) is connected to the input terminal 310 (third input/output terminal).
  • the filter 32 has a passband including the band C reception band. One end (input end) of the filter 32 is connected to the common terminal 92 and the other end (output end) is connected to the output terminal 320 .
  • the inductor 41 is an example of an inductance element, and has one end connected to a common terminal 91 and the other end connected to a common terminal 93 .
  • the one or more elastic wave resonators of the filter 21 are arranged on a series arm path connecting the common terminal 91 and the input terminal 210, and are connected closest to the common terminal 91 among the one or more elastic wave resonators. including a series arm resonator.
  • the anti-resonance frequency fa1 of the series arm resonator is equal to or lower than the frequency of the high frequency end of the first passband.
  • the transmission band of band B is higher in frequency than the transmission band and reception band of band A and lower in frequency than the transmission band and reception band of band C.
  • Band 3 of LTE is applied as band A
  • Band 1 of LTE is applied as band B
  • Band 7 of LTE is applied as band C (transmission band: 2500-2570 MHz, reception band : 2620-2690 MHz) applies.
  • one of the filters 11 and 12 may be omitted, and one of the filters 31 and 32 may be omitted.
  • Filters other than filters 11 , 12 , 21 , 31 and 32 may be connected to common terminal 91 or 92 .
  • the antenna connection terminal 90, the input terminals 110, 210 and 310, the output terminals 120 and 320, and the common terminals 91, 92 and 93 may not be included in the multiplexer 2.
  • the multiplexer according to Example 2 is an example of the multiplexer 2 according to this embodiment.
  • the multiplexer according to Comparative Example 2 is not included in the multiplexers according to this embodiment.
  • the multiplexer includes an acoustic wave filter 21A (filter 21), filters 11, 12, 31 and 32, an inductor 41, an antenna connection terminal 90, common terminals 91 and 92 and 93, input terminals 110, 210 and 310, and output terminals 120 and 320, and is the opposite of the series arm resonator 101 connected closest to the common terminal 91 among the elastic wave resonators of the elastic wave filter 21A.
  • the resonance frequency fa1 is located within the passband (A-Tx) of the filter 11.
  • the multiplexer according to Comparative Example 2 has a circuit configuration similar to that of the multiplexer according to Example 2. is located on the high frequency side of the low end of the passband (B-Tx) of the elastic wave filter 21A.
  • FIG. 7A shows the impedance characteristics (admittance characteristics) of the passband (A-Tx) viewed from the common terminal 91 when the filters 11 and 12 and the acoustic wave filter 21A (filter 21) are commonly connected, in Example 2 and for comparison. 2 is a Smith chart compared in Example 2;
  • FIG. 7B shows the impedance characteristics (admittance characteristics) of the passband (A ⁇ Rx) viewed from the common terminal 91 when the filters 11 and 12 and the elastic wave filter 21A (filter 21) are commonly connected. and a Smith chart compared in Comparative Example 2.
  • FIG. 7A shows the impedance characteristics (admittance characteristics) of the passband (A-Tx) viewed from the common terminal 91 when the filters 11 and 12 and the acoustic wave filter 21A (filter 21) are commonly connected, in Example 2 and for comparison. 2 is a Smith chart compared in Example 2;
  • FIG. 7B shows the impedance characteristics (admittance characteristics) of the passband (
  • FIG. 7C shows the impedance characteristics (admittance characteristics) of the passband (B-Tx) viewed from the common terminal 91 when the filters 11 and 12 and the elastic wave filter 21A (filter 21) are commonly connected. and a Smith chart compared in Comparative Example 2.
  • FIG. 7D shows the impedance characteristics (admittance characteristics) of the passband (C-Tx) viewed from the common terminal 91 when the filters 11 and 12 and the elastic wave filter 21A (filter 21) are commonly connected. and a Smith chart compared in Comparative Example 2.
  • FIG. 7C shows the impedance characteristics (admittance characteristics) of the passband (B-Tx) viewed from the common terminal 91 when the filters 11 and 12 and the elastic wave filter 21A (filter 21) are commonly connected. and a Smith chart compared in Comparative Example 2.
  • FIG. 7E shows the impedance characteristics (admittance characteristics) of the passband (C-Rx) viewed from the common terminal 91 when the filters 11 and 12 and the acoustic wave filter 21A (filter 21) are connected in common. and a Smith chart compared in Comparative Example 2.
  • the anti-resonance frequency fa1 of the series arm resonator of the elastic wave filter 21A is positioned within the passband (A-Tx), the impedance ( admittance) shifted in the open direction with respect to Comparative Example 1.
  • the susceptance of the elastic wave filter 21A shifted to a smaller direction. The lower the susceptance, the lower the capacitiveness.
  • the capacitive series arm resonators are arranged in series in the elastic wave filter 21A.
  • the impedance (admittance) of the passband (B-Tx) shifts in the direction in which the capacitiveness is slightly larger than that of the second comparative example.
  • FIG. 8A shows the impedance characteristics (admittance characteristics) of the passband (A-Tx) viewed from the common terminal 93 when the inductor 41, the filters 11 and 12, and the acoustic wave filter 21A are commonly connected, in Example 2 and Comparative Example. 2 is a Smith chart for comparison.
  • FIG. 8B shows the impedance characteristics (admittance characteristics) of the passband (A-Rx) viewed from the common terminal 93 when the inductor 41, the filters 11 and 12, and the acoustic wave filter 21A are commonly connected, in the second embodiment and the 6 is a Smith chart compared in Comparative Example 2.
  • FIG. 8C shows the impedance characteristics (admittance characteristics) of the passband (B-Tx) viewed from the common terminal 93 when the inductor 41, the filters 11 and 12, and the elastic wave filter 21A are commonly connected.
  • 6 is a Smith chart compared in Comparative Example 2.
  • FIG. 8D shows the impedance characteristics (admittance characteristics) of the passband (C-Tx) viewed from the common terminal 93 when the inductor 41, the filters 11 and 12, and the acoustic wave filter 21A are connected in common. 6 is a Smith chart compared in Comparative Example 2.
  • FIG. 8E shows the impedance characteristics (admittance characteristics) of the passband (C-Rx) viewed from the common terminal 93 when the inductor 41, the filters 11 and 12, and the acoustic wave filter 21A are connected in common.
  • 6 is a Smith chart compared in Comparative Example 2.
  • the impedance of the passband (C-Tx and C-Rx) when looking at the filters 11, 12 and the acoustic wave filter 21A from the common terminal 93 is , the second embodiment is closer to the open point than the second comparative example.
  • FIG. 9 is a graph comparing the conductance characteristics seen from the common terminal 93 when the inductor 41, the filters 11 and 12, and the acoustic wave filter 21A are commonly connected between Example 2 and Comparative Example 2.
  • FIG. 9 As shown in the figure, when the filters 11 and 12 and the elastic wave filter 21A are commonly connected, the conductance of the passband (C-Tx and C-Rx) seen from the common terminal 93 is compared in the second embodiment. It is smaller than Example 2.
  • inductor 41, filters 11 and 12, acoustic wave filter 21A, and filters 31 and 32 are connected at common terminal 93, the insertion loss in the passband of each filter can be reduced.
  • FIG. 10 is a Smith chart comparing the impedance characteristics seen from the common terminal 93 of the multiplexers according to Example 2 and Comparative Example 2 in Example 2 and Comparative Example 2.
  • FIG. 10(a) shows the impedance characteristics of the passband (A-Tx)
  • FIG. 10(b) shows the impedance characteristics of the passband (A-Rx).
  • (c) of FIG. 10 shows the impedance characteristics of the passband (B-Tx)
  • (d) of FIG. 10 shows the impedance characteristics of the passband (C-Tx)
  • (e) of FIG. shows the impedance characteristics of the passband (C-Rx). It can be seen that by commonly connecting the five filters at the common terminal 93, the impedance of any passband is matched to approximately 50 ⁇ .
  • FIG. 11A is a graph showing pass characteristics of the filter 12 (A-Rx) of the multiplexer according to Example 2 and Comparative Example 2.
  • FIG. 11B is a graph showing pass characteristics of the filter 31 (C-Tx) of the multiplexer according to Example 2 and Comparative Example 2.
  • FIG. 11C is a graph showing pass characteristics of the filter 32 (C-Rx) of the multiplexer according to Example 2 and Comparative Example 2.
  • FIG. 12 In the filters 12, 31 and 32, the insertion loss in the passband is reduced in the second embodiment compared to the second comparative example.
  • the multiplexer 1 according to the first embodiment and the multiplexer 2 according to the second embodiment include the filter 11 having the first passband and the filter having the second passband higher in frequency than the first passband. 21, one end of the filter 11 and one end of the filter 21 are connected, the filter 21 has one or more elastic wave resonators, and the one or more elastic wave resonators are connected to the one end of the filter 21 A series arm resonator arranged on a series arm path connecting with the other end and connected closest to the one end among the one or more elastic wave resonators, and the antiresonance frequency fa1 of the series arm resonator is , below the frequency of the high frequency end of the first passband.
  • the series arm resonator has a small capacitance or a large inductance near the anti-resonance frequency fa1.
  • the anti-resonance frequency fa1 is positioned within the passband (A-Tx) of the filter 11 or on the low frequency side, so that the passband (A-Tx) seen from the common terminal 91 side of the filter 21 alone is
  • the impedance will be in the counterclockwise direction of the circle of equal resistance and located closer to the open point (smaller capacitance) or in the clockwise direction of the circle of equal resistance and located closer to the open point (larger inductance). .
  • Positioning the impedance of the passband (A-Tx) in the single filter 21 on the open side of the equal resistance circle makes the conductance of the passband (A-Tx) in the single filter 21 smaller. are equivalent. Therefore, it is possible to reduce the so-called bundling loss when the filters 11 and 21 are connected to the common terminal 91, and to provide a multiplexer in which the insertion loss within the passband of each filter is reduced.
  • the anti-resonance frequency fa1 of the series arm resonator may be located within the first passband.
  • the anti-resonance frequency fa1 is positioned within the first passband of the filter 11, so the impedance of the first passband viewed from the common terminal 91 side of the filter 21 alone is closer to the open point. will come closer. Therefore, the so-called bundling loss when the filters 11 and 21 are connected to the common terminal 91 can be further reduced.
  • the multiplexers 1 and 2 further include one or more acoustic wave filters connected to one end of the filter 11 and one end of the filter 21, and the passbands of the filters 11 and 21 and the one or more acoustic wave filters Among them, the first passband of the filter 11 may be located on the lowest frequency side.
  • the second passband of the filter 21 may be located on the highest frequency side among the passbands of the filters 11 and 21 and the one or more elastic wave filters.
  • the multiplexers 1 and 2 further include a common terminal 91 connected to one end of the filter 11 and one end of the filter 21, an input terminal 110 connected to the other end of the filter 11, and the other end of the filter 21. and an input terminal 210 .
  • the multiplexer 2 further includes a filter 31 having a third passband higher in frequency than the second passband, and an inductor 41.
  • One end of the inductor 41 is connected to one end of the filter 11 and one end of the filter 21.
  • the other end of the inductor 41 may be connected to one end of the filter 31 .
  • the admittances of the first passband and the second passband are arranged on (the inductive side of) the 50 ⁇ isoconductance circle.
  • the admittance seen from the common terminal 91 of the common-connected filters 11 and 21 is located at a small capacitive position, the admittance is shifted to (the inductive side of) the 50 ⁇ isoconductance circle.
  • the inductance value of the inductor 41 for is larger. As this inductance value increases, the impedance (admittance) of the third passband viewed from common terminal 93 to filters 11 and 21 approaches the open point (has small conductance). Therefore, when the inductor 41 and the filters 11, 21 and 31 are connected at the common terminal 93, the insertion loss in the passband of each filter can be reduced.
  • the multiplexer 2 may further include a common terminal 93 connected to the other end of the inductor 41 and one end of the filter 31 , and an input terminal 310 connected to the other end of the filter 31 .
  • the multiplexer according to Modification 1 includes a filter 11 having a first passband and a filter 21 having a second passband higher in frequency than the first passband, and each of the filters 11 and 21 One end of the filter 11 and one end of the filter 21 are connected, the filter 21 has one or more surface acoustic wave resonators, and the one or more surface acoustic wave
  • the resonator is arranged on a series arm path connecting the one end and the other end of the filter 21, and includes a series arm resonator connected closest to the one end among the one or more surface acoustic wave resonators,
  • the electrode finger pitch of the IDT electrodes forming the series arm resonator is greater than the electrode finger pitches of the IDT electrodes forming all the surface acoustic wave resonators included in the filter 11 .
  • the antiresonance frequency fa1 is positioned within the passband (A-Tx) of the filter 11 or on the low frequency side, and the passband ( A-Tx) is either in the counterclockwise direction of the equal resistance circle and located closer to the open point (low capacitance) or in the clockwise direction of the equal resistance circle and located closer to the open point (inductance large). Therefore, it is possible to reduce the so-called bundling loss when the filters 11 and 21 are connected to the common terminal 91, and to provide a multiplexer in which the insertion loss within the passband of each filter is reduced.
  • the multiplexer according to Modification 2 includes a filter 11 having a first passband and a filter 21 having a second passband having a higher frequency than the first passband, and each of the filters 11 and 21 A bulk acoustic wave having a support substrate 65, a lower electrode 66 and an upper electrode 68 formed on one surface of the support substrate 65, and a piezoelectric layer 67 formed between the lower electrode 66 and the upper electrode 68.
  • the filter 21 has one or more bulk acoustic wave resonators, and the one or more bulk acoustic wave resonators of the filter 21 A series arm resonator arranged on a series arm path connecting the one end and the other end and connected closest to the one end among the one or more bulk acoustic wave resonators, constituting the series arm resonator.
  • the piezoelectric layer 67 is thicker than any of the piezoelectric layers 67 forming all the bulk acoustic wave resonators included in the filter 11 .
  • the antiresonance frequency fa1 is positioned within the passband (A-Tx) of the filter 11 or on the low frequency side, and the passband ( A-Tx) is either in the counterclockwise direction of the equal resistance circle and located closer to the open point (low capacitance) or in the clockwise direction of the equal resistance circle and located closer to the open point (inductance large). Therefore, it is possible to reduce the so-called bundling loss when the filters 11 and 21 are connected to the common terminal 91, and to provide a multiplexer in which the insertion loss within the passband of each filter is reduced.
  • matching elements such as inductors and capacitors, and switch circuits may be connected between the constituent elements.
  • the inductor may include a wiring inductor that is a wiring that connects each component.
  • the resonance frequency fr1 and the antiresonance frequency fa1 shown in the above embodiments, examples, and modifications are obtained, for example, by contacting an RF probe to the two input/output electrodes of the elastic wave resonator to measure the reflection characteristics. It is derived by
  • the present invention can be widely used in communication equipment such as mobile phones as a low-loss multiplexer applicable to multi-band and multi-mode frequency standards.
  • Reference Signs List 1 2 Multiplexer 11, 12, 21, 31, 32 Filter 21A, 21B Acoustic wave filter 41, 161 Inductor 50 Substrate 51 High acoustic velocity support substrate 52 Low acoustic velocity film 53 Piezoelectric film 54 IDT electrode 55, 58 Protective layer 57 Piezoelectric single crystal Substrate 60 Acoustic wave resonators 60a, 60b Comb electrodes 61a, 61b Electrode fingers 62a, 62b Busbar electrodes 65 Supporting substrate 66 Lower electrode 67 Piezoelectric layer 68 Upper electrode 90 Antenna connection terminal 91, 92, 93 Common terminal 101, 102, 103 , 104, 105, 201, 202 series arm resonators 110, 210, 310 input terminals 120, 320 output terminals 151, 152, 153, 154, 251, 253 parallel arm resonators 203 longitudinal coupling filter section 540 adhesion layer 542 main electrode layer

Abstract

A multiplexer (1) comprises a filter (11) that has a first passband and a filter (21) that has a second passband that has a higher frequency than the first passband. One end of filter (11) is connected to one end of filter (21). Filter (21) has one or more elastic wave resonators that are arranged on a series arm path that connects the one end and another end of filter (21). The elastic wave resonators include a series arm resonator that is the elastic wave resonator connected closest to the one end, and the antiresonant frequency fa1 of the series arm resonator is at or below the frequency at the high-frequency end of the first passband.

Description

マルチプレクサmultiplexer
 本発明は、弾性波フィルタを備えるマルチプレクサに関する。 The present invention relates to a multiplexer with acoustic wave filters.
 特許文献1には、一端が第1共通端子に接続され他端が第2共通端子に接続されたインダクタンス素子と、第1共通端子にインダクタンス素子を介さずに接続された第1弾性波フィルタと、第2共通端子に接続された複数の弾性波フィルタとを備えたマルチプレクサが開示されている。これによれば、共通端子に接続された各弾性波フィルタの通過帯域内の挿入損失を低減できるとしている。 Patent Document 1 discloses an inductance element having one end connected to a first common terminal and the other end connected to a second common terminal, and a first acoustic wave filter connected to the first common terminal without an inductance element. , and a plurality of acoustic wave filters connected to a second common terminal. According to this, the insertion loss within the passband of each acoustic wave filter connected to the common terminal can be reduced.
特開2019-220877号公報JP 2019-220877 A
 しかしながら、特許文献1に記載のマルチプレクサでは、複数の弾性波フィルタを第2共通端子に共通接続したことによる弾性波フィルタの損失(以下、束ね損失と記す)が問題となる。例えば、第2共通端子に接続された複数の弾性波フィルタの一つをフィルタA(通過帯域A)とし、他の1つをフィルタB(通過帯域B)とした場合、フィルタAの束ね損失は、フィルタBの通過帯域Aにおけるコンダクタンスが大きいほど大きくなる。このため、第2共通端子に接続される弾性波フィルタの数が増加するほど、並列接続された弾性波フィルタの通過帯域Aにおけるコンダクタンスが大きくなることで、フィルタAの束ね損失が増大し、フィルタAの挿入損失が大きくなる。 However, the multiplexer described in Patent Document 1 poses a problem of the loss of the acoustic wave filters (hereinafter referred to as bundling loss) due to the common connection of the plurality of acoustic wave filters to the second common terminal. For example, when one of the plurality of acoustic wave filters connected to the second common terminal is set to filter A (passband A) and the other one is set to filter B (passband B), the bundling loss of filter A is , increases as the conductance in the passband A of the filter B increases. Therefore, as the number of acoustic wave filters connected to the second common terminal increases, the conductance in the passband A of the acoustic wave filters connected in parallel increases, and the bundling loss of the filters A increases. The insertion loss of A increases.
 そこで、本発明は、上記課題を解決するためになされたものであって、共通接続された各弾性波フィルタの通過帯域内の挿入損失が低減されたマルチプレクサを提供することを目的とする。 Therefore, the present invention has been made to solve the above problems, and an object of the present invention is to provide a multiplexer in which the insertion loss within the passband of each commonly connected acoustic wave filter is reduced.
 上記目的を達成するために、本発明の一態様に係るマルチプレクサは、第1通過帯域を有する第1弾性波フィルタと、第1通過帯域よりも周波数が高い第2通過帯域を有する第2弾性波フィルタと、を備え、第1弾性波フィルタの一端と第2弾性波フィルタの一端とが接続され、第2弾性波フィルタは、1以上の弾性波共振子を有し、1以上の弾性波共振子は、第2弾性波フィルタの一端と他端とを結ぶ直列腕経路上に配置され、1以上の弾性波共振子のうちで最も一端に近く接続された直列腕共振子を含み、直列腕共振子の反共振周波数は、第1通過帯域の高周波端の周波数以下である。 To achieve the above object, a multiplexer according to an aspect of the present invention includes a first elastic wave filter having a first passband and a second elastic wave filter having a second passband having a higher frequency than the first passband. a filter, wherein one end of the first elastic wave filter and one end of the second elastic wave filter are connected, the second elastic wave filter has one or more elastic wave resonators, and one or more elastic wave resonators the element is arranged on a series arm path connecting one end and the other end of the second elastic wave filter, and includes a series arm resonator connected closest to one end of the one or more elastic wave resonators; The antiresonant frequency of the resonator is equal to or lower than the frequency of the high frequency end of the first passband.
 また、本発明の一態様に係るマルチプレクサは、第1通過帯域を有する第1弾性波フィルタと、第1通過帯域よりも周波数が高い第2通過帯域を有する第2弾性波フィルタと、を備え、第1弾性波フィルタおよび第2弾性波フィルタのそれぞれは、IDT(InterDigital Transducer)電極を有する弾性表面波共振子で構成され、第1弾性波フィルタの一端と第2弾性波フィルタの一端とが接続され、第2弾性波フィルタは、1以上の弾性表面波共振子を有し、1以上の弾性表面波共振子は、第2弾性波フィルタの一端と他端とを結ぶ直列腕経路上に配置され、1以上の弾性表面波共振子のうちで最も一端に近く接続された直列腕共振子を含み、直列腕共振子を構成するIDT電極の電極指ピッチは、第1弾性波フィルタに含まれる全ての弾性表面波共振子を構成するIDT電極の電極指ピッチのいずれよりも大きい。 Further, a multiplexer according to an aspect of the present invention includes a first elastic wave filter having a first passband and a second elastic wave filter having a second passband having a higher frequency than the first passband, Each of the first elastic wave filter and the second elastic wave filter is composed of a surface acoustic wave resonator having an IDT (InterDigital Transducer) electrode, and one end of the first elastic wave filter and one end of the second elastic wave filter are connected. and the second acoustic wave filter has one or more surface acoustic wave resonators, and the one or more surface acoustic wave resonators are arranged on a series arm path connecting one end and the other end of the second acoustic wave filter. and includes a series arm resonator connected closest to one end among one or more surface acoustic wave resonators, and the electrode finger pitch of the IDT electrodes constituting the series arm resonator is included in the first acoustic wave filter It is larger than any of the electrode finger pitches of the IDT electrodes constituting all surface acoustic wave resonators.
 また、本発明の一態様に係るマルチプレクサは、第1通過帯域を有する第1弾性波フィルタと、第1通過帯域よりも周波数が高い第2通過帯域を有する第2弾性波フィルタと、を備え、第1弾性波フィルタおよび第2弾性波フィルタのそれぞれは、支持基板と、支持基板の一方面上に形成された第1電極および第2電極と、第1電極と第2電極との間に形成された圧電体層と、を有するバルク弾性波共振子で構成され、第1弾性波フィルタの一端と第2弾性波フィルタの一端とが接続され、第2弾性波フィルタは、1以上のバルク弾性波共振子を有し、1以上のバルク弾性波共振子は、第2弾性波フィルタの一端と他端とを結ぶ直列腕経路上に配置され、1以上のバルク弾性波共振子のうちで最も一端に近く接続された直列腕共振子を含み、直列腕共振子を構成する圧電体層は、第1弾性波フィルタに含まれる全てのバルク弾性波共振子を構成する圧電体層のいずれよりも厚い。 Further, a multiplexer according to an aspect of the present invention includes a first elastic wave filter having a first passband and a second elastic wave filter having a second passband having a higher frequency than the first passband, Each of the first elastic wave filter and the second elastic wave filter is formed between the support substrate, the first electrode and the second electrode formed on one surface of the support substrate, and the first electrode and the second electrode. and one end of the first acoustic wave filter and one end of the second acoustic wave filter are connected, and the second acoustic wave filter includes one or more bulk acoustic wave filters. and one or more bulk acoustic wave resonators are arranged on a series arm path connecting one end and the other end of the second bulk acoustic wave filter, and among the one or more bulk acoustic wave resonators, A piezoelectric layer that includes a series arm resonator connected close to one end, and that constitutes the series arm resonator is higher than any of the piezoelectric layers that constitute all the bulk acoustic wave resonators included in the first acoustic wave filter. thick.
 本発明によれば、共通接続された各弾性波フィルタの通過帯域内の挿入損失が低減されたマルチプレクサを提供することが可能となる。 According to the present invention, it is possible to provide a multiplexer in which the insertion loss within the passband of each commonly connected acoustic wave filter is reduced.
図1は、実施の形態1に係るマルチプレクサの回路構成図である。FIG. 1 is a circuit configuration diagram of a multiplexer according to Embodiment 1. FIG. 図2Aは、実施の形態1に係るマルチプレクサを構成する第2弾性波フィルタの回路構成の第1例を示す図である。2A is a diagram showing a first example of a circuit configuration of a second elastic wave filter that constitutes the multiplexer according to Embodiment 1. FIG. 図2Bは、実施の形態1に係るマルチプレクサを構成する第2弾性波フィルタの回路構成の第2例を示す図である。2B is a diagram illustrating a second example of a circuit configuration of a second elastic wave filter that configures the multiplexer according to Embodiment 1. FIG. 図3Aは、実施の形態1に係る弾性波フィルタを構成する弾性波共振子の第1例を模式的に表す平面図および断面図である。3A is a plan view and a cross-sectional view schematically showing a first example of an elastic wave resonator that constitutes the elastic wave filter according to Embodiment 1. FIG. 図3Bは、実施の形態1に係る弾性波フィルタを構成する弾性波共振子の第2例を模式的に表す断面図である。3B is a cross-sectional view schematically showing a second example of the elastic wave resonator that constitutes the elastic wave filter according to Embodiment 1. FIG. 図3Cは、実施の形態1に係る弾性波フィルタを構成する弾性波共振子の第3例を模式的に表す断面図である。3C is a cross-sectional view schematically showing a third example of the elastic wave resonator that constitutes the elastic wave filter according to Embodiment 1. FIG. 図4Aは、実施例1および比較例1に係る第2弾性波フィルタの通過特性を比較したグラフである。4A is a graph comparing pass characteristics of second acoustic wave filters according to Example 1 and Comparative Example 1. FIG. 図4Bは、実施例1および比較例1に係る第2弾性波フィルタの共通端子から見たインピーダンス特性を比較したスミスチャートである。4B is a Smith chart comparing impedance characteristics viewed from the common terminal of the second acoustic wave filters according to Example 1 and Comparative Example 1. FIG. 図5Aは、実施例1および比較例1に係るマルチプレクサの第1弾性波フィルタ(送信用)の通過特性を示すグラフである。5A is a graph showing pass characteristics of first elastic wave filters (for transmission) of multiplexers according to Example 1 and Comparative Example 1. FIG. 図5Bは、実施例1および比較例1に係るマルチプレクサの第1弾性波フィルタ(受信用)の通過特性を示すグラフである。5B is a graph showing pass characteristics of the first elastic wave filter (for reception) of the multiplexers according to Example 1 and Comparative Example 1. FIG. 図6は、実施の形態2に係るマルチプレクサの回路構成図である。FIG. 6 is a circuit configuration diagram of a multiplexer according to the second embodiment. 図7Aは、第1弾性波フィルタおよび第2弾性波フィルタを共通接続した場合の第1共通端子から見た第1通過帯域(送信)のインピーダンス特性を、実施例2および比較例2で比較したスミスチャートである。FIG. 7A compares the impedance characteristics of the first passband (transmission) viewed from the first common terminal when the first elastic wave filter and the second elastic wave filter are commonly connected in Example 2 and Comparative Example 2. Smith chart. 図7Bは、第1弾性波フィルタおよび第2弾性波フィルタを共通接続した場合の第1共通端子から見た第1通過帯域(受信)のインピーダンス特性を、実施例2および比較例2で比較したスミスチャートである。FIG. 7B compares the impedance characteristics of the first passband (reception) viewed from the first common terminal when the first elastic wave filter and the second elastic wave filter are commonly connected in Example 2 and Comparative Example 2. Smith chart. 図7Cは、第1弾性波フィルタおよび第2弾性波フィルタを共通接続した場合の第1共通端子から見た第2通過帯域のインピーダンス特性を、実施例2および比較例2で比較したスミスチャートである。7C is a Smith chart comparing the impedance characteristics of the second passband viewed from the first common terminal when the first elastic wave filter and the second elastic wave filter are commonly connected in Example 2 and Comparative Example 2. FIG. be. 図7Dは、第1弾性波フィルタおよび第2弾性波フィルタを共通接続した場合の第1共通端子から見た第3通過帯域(送信)のインピーダンス特性を、実施例2および比較例2で比較したスミスチャートである。FIG. 7D compares the impedance characteristics of the third passband (transmission) viewed from the first common terminal when the first elastic wave filter and the second elastic wave filter are commonly connected in Example 2 and Comparative Example 2. Smith chart. 図7Eは、第1弾性波フィルタおよび第2弾性波フィルタを共通接続した場合の第1共通端子から見た第3通過帯域(受信)のインピーダンス特性を、実施例2および比較例2で比較したスミスチャートである。FIG. 7E compares the impedance characteristics of the third passband (receiving) viewed from the first common terminal when the first elastic wave filter and the second elastic wave filter are commonly connected in Example 2 and Comparative Example 2. Smith chart. 図8Aは、インダクタ、第1弾性波フィルタおよび第2弾性波フィルタを共通接続した場合の第2共通端子から見た第1通過帯域(送信)のインピーダンス特性を、実施例2および比較例2で比較したグラフである。8A shows the impedance characteristics of the first passband (transmission) viewed from the second common terminal when the inductor, the first elastic wave filter, and the second elastic wave filter are commonly connected in Example 2 and Comparative Example 2. FIG. It is a comparative graph. 図8Bは、インダクタ、第1弾性波フィルタおよび第2弾性波フィルタを共通接続した場合の第2共通端子から見た第1通過帯域(受信)のインピーダンス特性を、実施例2および比較例2で比較したグラフである。8B shows the impedance characteristics of the first passband (reception) viewed from the second common terminal when the inductor, the first elastic wave filter, and the second elastic wave filter are commonly connected in Example 2 and Comparative Example 2. It is a comparative graph. 図8Cは、インダクタ、第1弾性波フィルタおよび第2弾性波フィルタを共通接続した場合の第2共通端子から見た第2通過帯域のインピーダンス特性を、実施例2および比較例2で比較したグラフである。8C is a graph comparing the impedance characteristics of the second passband viewed from the second common terminal when the inductor, the first elastic wave filter, and the second elastic wave filter are commonly connected in Example 2 and Comparative Example 2; is. 図8Dは、インダクタ、第1弾性波フィルタおよび第2弾性波フィルタを共通接続した場合の第2共通端子から見た第3通過帯域(送信)のインピーダンス特性を、実施例2および比較例2で比較したグラフである。8D shows the impedance characteristics of the third passband (transmission) viewed from the second common terminal when the inductor, the first elastic wave filter, and the second elastic wave filter are commonly connected in Example 2 and Comparative Example 2. FIG. It is a comparative graph. 図8Eは、インダクタ、第1弾性波フィルタおよび第2弾性波フィルタを共通接続した場合の第2共通端子から見た第3通過帯域(受信)のインピーダンス特性を、実施例2および比較例2で比較したグラフである。8E shows the impedance characteristics of the third passband (receiving) viewed from the second common terminal when the inductor, the first elastic wave filter, and the second elastic wave filter are commonly connected in Example 2 and Comparative Example 2. FIG. It is a comparative graph. 図9は、インダクタ、第1弾性波フィルタおよび第2弾性波フィルタを共通接続した場合の第2共通端子から見たコンダクタンス特性を、実施例2および比較例2で比較したグラフである。FIG. 9 is a graph comparing the conductance characteristics seen from the second common terminal when the inductor, the first elastic wave filter, and the second elastic wave filter are connected in common between Example 2 and Comparative Example 2. FIG. 図10は、実施例2および比較例2に係るマルチプレクサの第2共通端子から見たインピーダンス特性を、実施例2および比較例2で比較したグラフである。FIG. 10 is a graph comparing the impedance characteristics seen from the second common terminal of the multiplexers according to the second embodiment and the second comparative example between the second embodiment and the second comparative example. 図11Aは、実施例2および比較例2に係るマルチプレクサの第2弾性波フィルタ(受信用)の通過特性を示すグラフである。11A is a graph showing pass characteristics of second elastic wave filters (for reception) of multiplexers according to Example 2 and Comparative Example 2. FIG. 図11Bは、実施例2および比較例2に係るマルチプレクサの第3弾性波フィルタ(送信用)の通過特性を示すグラフである。11B is a graph showing pass characteristics of the third elastic wave filter (for transmission) of the multiplexers according to Example 2 and Comparative Example 2. FIG. 図11Cは、実施例2および比較例2に係るマルチプレクサの第3弾性波フィルタ(受信用)の通過特性を示すグラフである。11C is a graph showing pass characteristics of the third acoustic wave filter (for reception) of the multiplexers according to Example 2 and Comparative Example 2. FIG.
 以下、本発明の実施の形態について、実施例、変形例および図面を用いて詳細に説明する。なお、以下で説明する実施例および変形例は、いずれも包括的または具体的な例を示すものである。以下の実施例および変形例で示される数値、形状、材料、構成要素、構成要素の配置および接続形態などは、一例であり、本発明を限定する主旨ではない。以下の実施例および変形例における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、図面に示される構成要素の大きさまたは大きさの比は、必ずしも厳密ではない。 Hereinafter, embodiments of the present invention will be described in detail using examples, modifications, and drawings. It should be noted that the embodiments and modifications described below are all comprehensive or specific examples. Numerical values, shapes, materials, constituent elements, arrangement of constituent elements, connection forms, and the like shown in the following examples and modifications are examples, and are not intended to limit the present invention. Among the components in the following examples and modifications, components not described in independent claims will be described as optional components. Also, the sizes or size ratios of components shown in the drawings are not necessarily exact.
 また、以下の実施の形態において、フィルタの通過帯域は、当該通過帯域内における挿入損失の最小値から3dB大きい2つの周波数間の周波数帯域と定義される。 Also, in the following embodiments, the passband of the filter is defined as the frequency band between two frequencies that are 3 dB larger than the minimum value of the insertion loss in the passband.
 (実施の形態1)
 [1.1 マルチプレクサ1の回路構成]
 図1は、実施の形態1に係るマルチプレクサ1の回路構成図である。同図に示すように、マルチプレクサ1は、フィルタ11、12および21と、アンテナ接続端子90と、共通端子91と、入力端子110および210と、出力端子120と、を備える。
(Embodiment 1)
[1.1 Circuit Configuration of Multiplexer 1]
FIG. 1 is a circuit configuration diagram of a multiplexer 1 according to the first embodiment. As shown in the figure, the multiplexer 1 includes filters 11 , 12 and 21 , an antenna connection terminal 90 , a common terminal 91 , input terminals 110 and 210 and an output terminal 120 .
 アンテナ接続端子90は、例えば、アンテナ素子に接続される。共通端子91は、第1共通端子の一例であり、フィルタ11の出力端、フィルタ12の入力端、およびフィルタ21の出力端と接続されている。 The antenna connection terminal 90 is connected to, for example, an antenna element. Common terminal 91 is an example of a first common terminal, and is connected to the output terminal of filter 11 , the input terminal of filter 12 , and the output terminal of filter 21 .
 フィルタ11は、第1弾性波フィルタの一例であり、バンドAの送信帯域を含む通過帯域(第1通過帯域)を有する。フィルタ11の一端(出力端)は共通端子91に接続され、他端(入力端)は入力端子110(第1入出力端子)に接続されている。フィルタ11は、1以上の弾性波共振子を有する。 The filter 11 is an example of a first acoustic wave filter, and has a passband (first passband) including the band A transmission band. One end (output end) of the filter 11 is connected to the common terminal 91, and the other end (input end) is connected to the input terminal 110 (first input/output terminal). Filter 11 has one or more elastic wave resonators.
 フィルタ12は、バンドAの受信帯域を含む通過帯域を有する。フィルタ12の一端(入力端)は共通端子91に接続され、他端(出力端)は出力端子120に接続されている。フィルタ12は、1以上の弾性波共振子を有する。 The filter 12 has a passband including the band A reception band. One end (input end) of the filter 12 is connected to the common terminal 91 and the other end (output end) is connected to the output terminal 120 . Filter 12 has one or more elastic wave resonators.
 フィルタ21は、第2弾性波フィルタの一例であり、バンドBの送信帯域を含む通過帯域(第2通過帯域)を有する。フィルタ21の一端(出力端)は共通端子91に接続され、他端(入力端)は入力端子210(第2入出力端子)に接続されている。フィルタ21は、1以上の弾性波共振子を有する。フィルタ21は、共通端子91と入力端子210とを結ぶ直列腕経路上に配置され、当該1以上の弾性波共振子のうちで最も共通端子91に近く接続された直列腕共振子を含む。 The filter 21 is an example of a second acoustic wave filter, and has a passband (second passband) including the transmission band of band B. One end (output end) of the filter 21 is connected to the common terminal 91, and the other end (input end) is connected to the input terminal 210 (second input/output terminal). Filter 21 has one or more elastic wave resonators. The filter 21 is arranged on a series arm path connecting the common terminal 91 and the input terminal 210 and includes a series arm resonator connected closest to the common terminal 91 among the one or more elastic wave resonators.
 バンドBの送信帯域は、バンドAの送信帯域および受信帯域よりも周波数が高い。 The transmission band of band B has a higher frequency than the transmission band and reception band of band A.
 ここで、上記直列腕共振子の反共振周波数fa1は、第1通過帯域の高周波端の周波数以下である。 Here, the anti-resonance frequency fa1 of the series arm resonator is equal to or lower than the frequency of the high frequency end of the first passband.
 なお、バンドAとしては、例えば、LTE(Long Term Evolution)のBand3(送信帯域:1710-1785MHz、受信帯域:1805-1880MHz)が適用され、バンドBとしては、例えば、LTEのBand1(送信帯域:1920-1980MHz、受信帯域:2110-2170MHz)が適用される。 As band A, for example, LTE (Long Term Evolution) Band 3 (transmission band: 1710-1785 MHz, reception band: 1805-1880 MHz) is applied, and as band B, for example, LTE Band 1 (transmission band: 1920-1980 MHz, reception band: 2110-2170 MHz).
 なお、本実施の形態に係るマルチプレクサ1において、フィルタ11および12の一方はなくてもよい。また、フィルタ11、12および21以外のフィルタが共通端子91に接続されていてもよい。 Note that one of the filters 11 and 12 may be omitted in the multiplexer 1 according to the present embodiment. Filters other than filters 11 , 12 and 21 may be connected to common terminal 91 .
 また、アンテナ接続端子90、入力端子110および210、出力端子120、ならびに共通端子91は、マルチプレクサ1が備えていなくてもよい。 Also, the antenna connection terminal 90, the input terminals 110 and 210, the output terminal 120, and the common terminal 91 may not be included in the multiplexer 1.
 [1.2 弾性波フィルタの構造]
 ここで、マルチプレクサ1を構成するフィルタ21の回路構成、および、各フィルタを構成する弾性波共振子の構造について例示する。
[1.2 Structure of elastic wave filter]
Here, the circuit configuration of the filter 21 forming the multiplexer 1 and the structure of the elastic wave resonator forming each filter will be illustrated.
 図2Aは、実施の形態1に係るマルチプレクサ1を構成するフィルタ21の回路構成の第1例を示す図である。また、図2Bは、実施の形態1に係るマルチプレクサ1を構成するフィルタ21の回路構成の第2例を示す図である。 FIG. 2A is a diagram showing a first example of the circuit configuration of the filter 21 that constitutes the multiplexer 1 according to the first embodiment. FIG. 2B is a diagram showing a second example of the circuit configuration of the filter 21 forming the multiplexer 1 according to the first embodiment.
 本実施の形態に係るフィルタ21は、例えば、図2Aに示された弾性波フィルタ21A、または、図2Bに示された弾性波フィルタ21Bの回路構成を有する。 The filter 21 according to the present embodiment has, for example, the circuit configuration of the elastic wave filter 21A shown in FIG. 2A or the elastic wave filter 21B shown in FIG. 2B.
 図2Aに示された弾性波フィルタ21Aは、直列腕共振子101~105と、並列腕共振子151~154と、インダクタ161と、を備える。 The elastic wave filter 21A shown in FIG. 2A includes series arm resonators 101 to 105, parallel arm resonators 151 to 154, and an inductor 161.
 直列腕共振子101~105は、入力端子210と共通端子91とを結ぶ直列腕経路上に配置されている。また、並列腕共振子151~154のそれぞれは、直列腕共振子101~105、および入力端子210の各接続点とグランドとの間に接続されている。上記接続構成により、弾性波フィルタ21Aは、ラダー型のバンドパスフィルタを構成している。また、インダクタ161は、並列腕共振子151、152および153の接続点とグランドとの間に接続され、フィルタ通過特性における減衰極を調整する。なお、フィルタ21の第1例として示された弾性波フィルタ21Aにおいて、直列腕共振子および並列腕共振子の数は任意であり、また、インダクタ161はなくてもよい。 The series arm resonators 101 to 105 are arranged on a series arm path connecting the input terminal 210 and the common terminal 91 . Each of the parallel arm resonators 151-154 is connected between each connection point of the series arm resonators 101-105 and the input terminal 210 and the ground. With the above connection configuration, the acoustic wave filter 21A constitutes a ladder-type bandpass filter. Inductor 161 is connected between the connection point of parallel arm resonators 151, 152 and 153 and the ground, and adjusts the attenuation pole in the filter pass characteristics. In acoustic wave filter 21A shown as the first example of filter 21, the number of series arm resonators and parallel arm resonators is arbitrary, and inductor 161 may be omitted.
 図2Bに示された弾性波フィルタ21Bは、縦結合型フィルタ部203と、直列腕共振子201および202と、並列腕共振子251および253と、を備える。 The elastic wave filter 21B shown in FIG. 2B includes a longitudinal coupling filter section 203, series arm resonators 201 and 202, and parallel arm resonators 251 and 253.
 縦結合型フィルタ部203は、例えば、9個のIDTを有し、当該9個のIDTのそれぞれは、互いに対向する一対のIDT電極で構成されている。直列腕共振子201および202、ならびに、並列腕共振子251は、ラダー型フィルタ部を構成している。上記接続構成により、弾性波フィルタ21Bは、バンドパスフィルタを構成する。なお、フィルタ21の第2例として示された弾性波フィルタ21Bにおいて、直列腕共振子および並列腕共振子の数、および、縦結合型フィルタ部203を構成するIDTの数は任意である。 The longitudinal coupling filter unit 203 has, for example, nine IDTs, each of which is composed of a pair of IDT electrodes facing each other. Series arm resonators 201 and 202 and parallel arm resonator 251 constitute a ladder filter section. With the connection configuration described above, the elastic wave filter 21B constitutes a bandpass filter. In elastic wave filter 21B shown as the second example of filter 21, the number of series arm resonators and parallel arm resonators and the number of IDTs constituting longitudinally coupled filter section 203 are arbitrary.
 上記第1例において、直列腕共振子101は、共通端子91と入力端子210とを結ぶ直列腕経路上に配置され、上記1以上の弾性波共振子のうちで最も共通端子91に近く接続された直列腕共振子である。 In the first example, the series arm resonator 101 is arranged on the series arm path connecting the common terminal 91 and the input terminal 210, and is connected closest to the common terminal 91 among the one or more elastic wave resonators. It is a series arm resonator.
 また、上記第2例において、直列腕共振子201は、共通端子91と入力端子210とを結ぶ直列腕経路上に配置され、上記1以上の弾性波共振子のうちで最も共通端子91に近く接続された直列腕共振子である。 Further, in the second example, the series arm resonator 201 is arranged on the series arm path connecting the common terminal 91 and the input terminal 210, and is closest to the common terminal 91 among the one or more elastic wave resonators. connected series arm resonators.
 図3Aは、実施の形態1に係るフィルタ11、12および21の弾性波共振子の第1例を模式的に表す平面図および断面図である。同図には、フィルタ11、12および21を構成する弾性波共振子の基本構造が例示されている。なお、図3Aに示された弾性波共振子60は、弾性波共振子の典型的な構造を説明するためのものであって、電極を構成する電極指の本数および長さなどは、これに限定されない。 FIG. 3A is a plan view and a cross-sectional view schematically showing a first example of elastic wave resonators of filters 11, 12 and 21 according to Embodiment 1. FIG. The figure illustrates the basic structure of elastic wave resonators that constitute the filters 11, 12 and 21. As shown in FIG. Note that the elastic wave resonator 60 shown in FIG. 3A is for explaining a typical structure of an elastic wave resonator, and the number and length of the electrode fingers constituting the electrodes are Not limited.
 弾性波共振子60は、圧電性を有する基板50と、櫛形電極60aおよび60bとで構成されている。 The acoustic wave resonator 60 is composed of a piezoelectric substrate 50 and comb electrodes 60a and 60b.
 図3Aの(a)に示すように、基板50の上には、互いに対向する一対の櫛形電極60aおよび60bが形成されている。櫛形電極60aは、互いに平行な複数の電極指61aと、複数の電極指61aを接続するバスバー電極62aとで構成されている。また、櫛形電極60bは、互いに平行な複数の電極指61bと、複数の電極指61bを接続するバスバー電極62bとで構成されている。複数の電極指61aおよび61bは、弾性波伝搬方向(X軸方向)と直交する方向に沿って形成されている。 As shown in (a) of FIG. 3A, a pair of interdigitated electrodes 60a and 60b are formed on the substrate 50 so as to face each other. The comb-shaped electrode 60a is composed of a plurality of parallel electrode fingers 61a and busbar electrodes 62a connecting the plurality of electrode fingers 61a. The comb-shaped electrode 60b is composed of a plurality of parallel electrode fingers 61b and a busbar electrode 62b connecting the plurality of electrode fingers 61b. The plurality of electrode fingers 61a and 61b are formed along a direction orthogonal to the elastic wave propagation direction (X-axis direction).
 また、複数の電極指61aおよび61b、ならびに、バスバー電極62aおよび62bで構成されるIDT電極54は、図3Aの(b)に示すように、密着層540と主電極層542との積層構造となっている。 The IDT electrode 54, which is composed of a plurality of electrode fingers 61a and 61b and busbar electrodes 62a and 62b, has a laminated structure of an adhesion layer 540 and a main electrode layer 542, as shown in (b) of FIG. 3A. It's becoming
 密着層540は、基板50と主電極層542との密着性を向上させるための層であり、材料として、例えば、Tiが用いられる。主電極層542は、材料として、例えば、Cuを1%含有したAlが用いられる。保護層55は、櫛形電極60aおよび60bを覆うように形成されている。保護層55は、主電極層542を外部環境から保護する、周波数温度特性を調整する、および、耐湿性を高めるなどを目的とする層であり、例えば、二酸化ケイ素を主成分とする誘電体膜である。 The adhesion layer 540 is a layer for improving adhesion between the substrate 50 and the main electrode layer 542, and is made of Ti, for example. The material of the main electrode layer 542 is, for example, Al containing 1% Cu. Protective layer 55 is formed to cover comb electrodes 60a and 60b. The protective layer 55 is a layer for the purpose of protecting the main electrode layer 542 from the external environment, adjusting frequency temperature characteristics, and increasing moisture resistance. is.
 なお、密着層540、主電極層542および保護層55を構成する材料は、上述した材料に限定されない。さらに、IDT電極54は、上記積層構造でなくてもよい。IDT電極54は、例えば、Ti、Al、Cu、Pt、Au、Ag、Pdなどの金属または合金から構成されてもよく、また、上記の金属または合金から構成される複数の積層体から構成されてもよい。また、保護層55は、形成されていなくてもよい。 It should be noted that the materials forming the adhesion layer 540, the main electrode layer 542 and the protective layer 55 are not limited to the materials described above. Furthermore, the IDT electrode 54 may not have the laminated structure described above. The IDT electrode 54 may be composed of, for example, metals or alloys such as Ti, Al, Cu, Pt, Au, Ag, and Pd, and may be composed of a plurality of laminates composed of the above metals or alloys. may Also, the protective layer 55 may not be formed.
 次に、基板50の積層構造について説明する。 Next, the laminated structure of the substrate 50 will be described.
 図3Aの(c)に示すように、基板50は、高音速支持基板51と、低音速膜52と、圧電膜53とを備え、高音速支持基板51、低音速膜52および圧電膜53がこの順で積層された構造を有している。 As shown in (c) of FIG. 3A, the substrate 50 includes a high acoustic velocity support substrate 51, a low acoustic velocity film 52, and a piezoelectric film 53. The high acoustic velocity support substrate 51, the low acoustic velocity film 52, and the piezoelectric film 53 are It has a structure laminated in this order.
 圧電膜53は、例えばθ°YカットX伝搬LiTaO圧電単結晶または圧電セラミックス(X軸を中心軸としてY軸からθ°回転した軸を法線とする面で切断したリチウムタンタレート単結晶、またはセラミックスであって、X軸方向に弾性表面波が伝搬する単結晶またはセラミックス)からなる。なお、各フィルタの要求仕様により、圧電膜53として使用される圧電単結晶の材料およびカット角θが適宜選択される。 The piezoelectric film 53 is, for example, a θ° Y-cut X-propagation LiTaO 3 piezoelectric single crystal or piezoelectric ceramics (lithium tantalate single crystal cut along a plane normal to an axis rotated θ° from the Y axis with the X axis as the central axis, (or ceramics, single crystal or ceramics in which surface acoustic waves propagate in the X-axis direction). Note that the material of the piezoelectric single crystal used as the piezoelectric film 53 and the cut angle θ are appropriately selected according to the required specifications of each filter.
 高音速支持基板51は、低音速膜52、圧電膜53ならびにIDT電極54を支持する基板である。高音速支持基板51は、さらに、圧電膜53を伝搬する表面波および境界波などの弾性波よりも、高音速支持基板51中のバルク波の音速が高速となる基板であり、弾性表面波を圧電膜53および低音速膜52が積層されている部分に閉じ込め、高音速支持基板51より下方に漏れないように機能する。高音速支持基板51は、例えば、シリコン基板である。 The high acoustic velocity support substrate 51 is a substrate that supports the low acoustic velocity film 52 , the piezoelectric film 53 and the IDT electrodes 54 . The high acoustic velocity support substrate 51 is a substrate in which the acoustic velocity of bulk waves in the high acoustic velocity support substrate 51 is faster than acoustic waves such as surface waves and boundary waves propagating through the piezoelectric film 53, and surface acoustic waves are generated. It functions so that it is confined in the portion where the piezoelectric film 53 and the low sound velocity film 52 are laminated and does not leak below the high sound velocity support substrate 51 . The high acoustic velocity support substrate 51 is, for example, a silicon substrate.
 低音速膜52は、圧電膜53を伝搬するバルク波よりも、低音速膜52中のバルク波の音速が低速となる膜であり、圧電膜53と高音速支持基板51との間に配置される。この構造と、弾性波が本質的に低音速な媒質にエネルギーが集中するという性質とにより、弾性表面波エネルギーのIDT電極外への漏れが抑制される。低音速膜52は、例えば、二酸化ケイ素を主成分とする膜である。 The low sound velocity film 52 is a film in which the sound velocity of the bulk wave in the low sound velocity film 52 is lower than that of the bulk wave propagating through the piezoelectric film 53 , and is arranged between the piezoelectric film 53 and the high sound velocity support substrate 51 . be. This structure and the nature of the elastic wave to concentrate its energy in a low-temperature medium suppresses leakage of the surface acoustic wave energy to the outside of the IDT electrode. The low-temperature velocity film 52 is, for example, a film whose main component is silicon dioxide.
 なお、基板50の上記積層構造によれば、圧電基板を単層で使用している従来の構造と比較して、共振周波数および反共振周波数におけるQ値を大幅に高めることが可能となる。すなわち、Q値が高い弾性波共振子を構成し得るので、当該弾性波共振子を用いて、挿入損失が小さいフィルタを構成することが可能となる。 In addition, according to the laminated structure of the substrate 50, it is possible to significantly increase the Q value at the resonance frequency and the antiresonance frequency compared to the conventional structure using a single layer of piezoelectric substrate. That is, since an acoustic wave resonator with a high Q value can be configured, it is possible to configure a filter with a small insertion loss using the acoustic wave resonator.
 なお、高音速支持基板51は、支持基板と、圧電膜53を伝搬する表面波および境界波などの弾性波よりも、伝搬するバルク波の音速が高速となる高音速膜とが積層された構造を有していてもよい。この場合、支持基板には、サファイア、リチウムタンタレート、リチウムニオベイト、および水晶等の圧電体、アルミナ、マグネシア、窒化ケイ素、窒化アルミニウム、炭化ケイ素、ジルコニア、コージライト、ムライト、ステアタイト、およびフォルステライト等の各種セラミック、ガラス等の誘電体、シリコンおよび窒化ガリウム等の半導体、ならびに樹脂基板等を用いることができる。また、高音速膜には、窒化アルミニウム、酸化アルミニウム、炭化ケイ素、窒化ケイ素、酸窒化ケイ素、DLC膜、ダイヤモンド、これらの材料を主成分とする媒質、これらの材料の混合物を主成分とする媒質等、様々な高音速材料を用いることができる。 The high acoustic velocity support substrate 51 has a structure in which a support substrate and a high acoustic velocity film having a higher acoustic velocity than elastic waves such as surface waves and boundary waves propagating through the piezoelectric film 53 are laminated. may have In this case, the support substrate includes piezoelectric materials such as sapphire, lithium tantalate, lithium niobate, and quartz, alumina, magnesia, silicon nitride, aluminum nitride, silicon carbide, zirconia, cordierite, mullite, steatite, and fort. Various ceramics such as stellite, dielectrics such as glass, semiconductors such as silicon and gallium nitride, and resin substrates can be used. The high acoustic velocity film includes aluminum nitride, aluminum oxide, silicon carbide, silicon nitride, silicon oxynitride, DLC film, diamond, media containing these materials as main components, and media containing mixtures of these materials as main components. etc., various high acoustic velocity materials can be used.
 また、図3Bは、実施の形態1に係るフィルタ11、12および21の弾性波共振子の第2例を模式的に表す断面図である。図3Aに示した弾性波共振子60では、IDT電極54が、圧電膜53を有する基板50上に形成された例を示したが、当該IDT電極54が形成される基板は、図3Bに示すように、圧電体層の単層からなる圧電単結晶基板57であってもよい。圧電単結晶基板57は、例えば、LiNbOの圧電単結晶で構成されている。本例に係る弾性波共振子は、LiNbOの圧電単結晶基板57と、IDT電極54と、圧電単結晶基板57上およびIDT電極54上に形成された保護層58と、で構成されている。 FIG. 3B is a cross-sectional view schematically showing a second example of elastic wave resonators of filters 11, 12 and 21 according to the first embodiment. The elastic wave resonator 60 shown in FIG. 3A shows an example in which the IDT electrodes 54 are formed on the substrate 50 having the piezoelectric film 53. The substrate on which the IDT electrodes 54 are formed is shown in FIG. 3B. Thus, the piezoelectric single crystal substrate 57 may be a single piezoelectric layer. The piezoelectric single crystal substrate 57 is composed of, for example, a piezoelectric single crystal of LiNbO 3 . The acoustic wave resonator according to this example is composed of a piezoelectric single crystal substrate 57 of LiNbO 3 , an IDT electrode 54 , and a protective layer 58 formed on the piezoelectric single crystal substrate 57 and the IDT electrode 54 . .
 上述した圧電膜53および圧電単結晶基板57は、弾性波フィルタ装置の要求通過特性などに応じて、適宜、積層構造、材料、カット角、および、厚みを変更してもよい。上述したカット角以外のカット角を有するLiTaO圧電基板などを用いた弾性波共振子であっても、上述した圧電膜53を用いた弾性波共振子60と同様の効果を奏することができる。 The piezoelectric film 53 and the piezoelectric single crystal substrate 57 described above may be appropriately changed in laminated structure, material, cut angle, and thickness according to the required transmission characteristics of the elastic wave filter device. Even an acoustic wave resonator using a LiTaO 3 piezoelectric substrate having a cut angle other than the cut angle described above can produce the same effects as the acoustic wave resonator 60 using the piezoelectric film 53 described above.
 また、IDT電極54が形成される基板は、支持基板と、エネルギー閉じ込め層と、圧電膜がこの順で積層された構造を有していてもよい。圧電膜上にIDT電極54が形成される。圧電膜は、例えば、LiTaO圧電単結晶または圧電セラミックスが用いられる。支持基板は、圧電膜、エネルギー閉じ込め層、およびIDT電極54を支持する基板である。 Also, the substrate on which the IDT electrodes 54 are formed may have a structure in which a supporting substrate, an energy trapping layer, and a piezoelectric film are laminated in this order. An IDT electrode 54 is formed on the piezoelectric film. The piezoelectric film is, for example, LiTaO 3 piezoelectric single crystal or piezoelectric ceramics. The support substrate is the substrate that supports the piezoelectric film, the energy confinement layer, and the IDT electrodes 54 .
 エネルギー閉じ込め層は1層または複数の層からなり、その少なくとも1つの層を伝搬するバルク弾性波の速度は、圧電膜近傍を伝搬する弾性波の速度よりも大きい。例えば、エネルギー閉じ込め層は、低音速層と、高音速層との積層構造となっていてもよい。低音速層は、圧電膜を伝搬する弾性波の音速よりも、低音速層中のバルク波の音速が低速となる膜である。高音速層は、圧電膜を伝搬する弾性波の音速よりも、高音速層中のバルク波の音速が高速となる膜である。なお、支持基板を高音速層としてもよい。 The energy confinement layer consists of one or more layers, and the velocity of the bulk acoustic wave propagating through at least one layer is greater than the velocity of the elastic wave propagating near the piezoelectric film. For example, the energy trapping layer may have a laminated structure of a low acoustic velocity layer and a high acoustic velocity layer. The sound velocity layer is a film in which the sound velocity of bulk waves in the sound velocity layer is lower than the sound velocity of elastic waves propagating through the piezoelectric film. The high acoustic velocity layer is a film in which the acoustic velocity of bulk waves in the high acoustic velocity layer is higher than the acoustic velocity of elastic waves propagating through the piezoelectric film. Note that the support substrate may be a high acoustic velocity layer.
 また、エネルギー閉じ込め層は、音響インピーダンスが相対的に低い低音響インピーダンス層と、音響インピーダンスが相対的に高い高音響インピーダンス層とが、交互に積層された構成を有する音響インピーダンス層であってもよい。 Also, the energy trapping layer may be an acoustic impedance layer having a configuration in which a low acoustic impedance layer with a relatively low acoustic impedance and a high acoustic impedance layer with a relatively high acoustic impedance are alternately laminated. .
 ここで、弾性波共振子60を構成するIDT電極の電極パラメータの一例(実施例)について説明する。 Here, an example (working example) of the electrode parameters of the IDT electrodes forming the acoustic wave resonator 60 will be described.
 弾性波共振子の波長とは、図3Aの(b)に示すIDT電極54を構成する複数の電極指61aまたは61bの繰り返し周期である波長λで規定される。また、電極指ピッチは、波長λの1/2であり、櫛形電極60aおよび60bをそれぞれ構成する電極指61aおよび61bのライン幅をWとし、隣り合う電極指61aと電極指61bとの間のスペース幅をSとした場合、(W+S)で定義される。また、一対の櫛形電極60aおよび60bの交叉幅Lは、図3Aの(a)に示すように、電極指61aと電極指61bとの弾性波伝搬方向(X軸方向)から見た場合の重複する電極指の長さである。また、各弾性波共振子の電極デューティーは、複数の電極指61aおよび61bのライン幅占有率であり、複数の電極指61aおよび61bのライン幅とスペース幅との加算値に対する当該ライン幅の割合であり、W/(W+S)で定義される。また、櫛形電極60aおよび60bの高さをhとしている。以降では、波長λ、電極指ピッチ、交叉幅L、電極デューティー、IDT電極54の高さh等、弾性波共振子のIDT電極の形状に関するパラメータは、電極パラメータと定義される。 The wavelength of the elastic wave resonator is defined by the wavelength λ which is the repetition period of the plurality of electrode fingers 61a or 61b forming the IDT electrode 54 shown in (b) of FIG. 3A. The electrode finger pitch is 1/2 of the wavelength λ, the line width of the electrode fingers 61a and 61b constituting the comb-shaped electrodes 60a and 60b is W, and the distance between the adjacent electrode fingers 61a and 61b is When the space width is S, it is defined as (W+S). Moreover, as shown in (a) of FIG. 3A, the intersecting width L of the pair of comb-shaped electrodes 60a and 60b is the overlap of the electrode fingers 61a and 61b when viewed from the elastic wave propagation direction (X-axis direction). is the length of the electrode finger that The electrode duty of each acoustic wave resonator is the line width occupation ratio of the plurality of electrode fingers 61a and 61b, and is the ratio of the line width to the sum of the line width and space width of the plurality of electrode fingers 61a and 61b. and is defined as W/(W+S). Also, the height of the comb electrodes 60a and 60b is h. Hereinafter, parameters related to the shape of the IDT electrodes of the acoustic wave resonator, such as the wavelength λ, the electrode finger pitch, the crossing width L, the electrode duty, and the height h of the IDT electrodes 54, are defined as electrode parameters.
 なお、IDT電極54において、隣り合う電極指間の間隔が一定でない場合には、IDT電極54の電極指ピッチは、IDT電極54の平均電極指ピッチで定義される。IDT電極54の平均電極指ピッチは、IDT電極54に含まれる電極指61a、61bの総本数をNi本とし、IDT電極54の、弾性波伝搬方向における一方端に位置する電極指と他方端に位置する電極指との中心間距離をDiとすると、Di/(Ni-1)と定義される。 In the IDT electrodes 54 , if the intervals between adjacent electrode fingers are not constant, the electrode finger pitch of the IDT electrodes 54 is defined by the average electrode finger pitch of the IDT electrodes 54 . The average electrode finger pitch of the IDT electrode 54 is defined by the total number of the electrode fingers 61a and 61b included in the IDT electrode 54 being Ni, and the electrode finger positioned at one end of the IDT electrode 54 in the elastic wave propagation direction and It is defined as Di/(Ni-1), where Di is the center-to-center distance from the positioned electrode finger.
 例えば、IDT電極の膜厚、保護層の膜厚、および電極デューティーが一定である場合、IDT電極の電極指ピッチが大きいほど、弾性表面波共振子の共振周波数および反共振周波数は低周波側へシフトする。 For example, when the film thickness of the IDT electrode, the film thickness of the protective layer, and the electrode duty are constant, the resonance frequency and the antiresonance frequency of the surface acoustic wave resonator shift to the lower frequency side as the electrode finger pitch of the IDT electrode increases. shift.
 また、図3Cは、実施の形態1に係るフィルタ11、12および21の弾性波共振子の第3例を模式的に表す断面図である。図3Cには、フィルタ11、12および21の弾性波共振子として、バルク弾性波共振子が示されている。同図に示すように、バルク弾性波共振子は、例えば、支持基板65と、下部電極66と、圧電体層67と、上部電極68と、を有しており、支持基板65、下部電極66、圧電体層67、および上部電極68がこの順で積層された構成となっている。 FIG. 3C is a cross-sectional view schematically showing a third example of elastic wave resonators of filters 11, 12 and 21 according to the first embodiment. Bulk acoustic wave resonators are shown as acoustic wave resonators of filters 11, 12 and 21 in FIG. 3C. As shown in the figure, the bulk acoustic wave resonator has, for example, a support substrate 65, a lower electrode 66, a piezoelectric layer 67, and an upper electrode 68. , a piezoelectric layer 67, and an upper electrode 68 are laminated in this order.
 支持基板65は、下部電極66、圧電体層67、および上部電極68を支持するための基板であり、例えば、シリコン基板である。なお、支持基板65は、下部電極66と接触する領域に、空洞が設けられている。これにより、圧電体層67を自由に振動させることが可能となる。 The support substrate 65 is a substrate for supporting the lower electrode 66, the piezoelectric layer 67, and the upper electrode 68, and is, for example, a silicon substrate. The support substrate 65 is provided with a cavity in a region in contact with the lower electrode 66 . This allows the piezoelectric layer 67 to vibrate freely.
 下部電極66は、第1電極の一例であり、支持基板65の一方面上に形成されている。上部電極68は、第2電極の一例であり、支持基板65の一方面上に形成されている。下部電極66および上部電極68は、材料として、例えば、Cuを1%含有したAlが用いられる。 The lower electrode 66 is an example of a first electrode and is formed on one surface of the support substrate 65 . The upper electrode 68 is an example of a second electrode and is formed on one surface of the support substrate 65 . The lower electrode 66 and the upper electrode 68 are made of Al containing 1% Cu, for example.
 圧電体層67は、下部電極66と上部電極68との間に形成されている。圧電体層67は、例えば、ZnO(酸化亜鉛)、AlN(窒化アルミニウム)、PZT(チタン酸ジルコン酸鉛)、KN(ニオブ酸カリウム)、LN(リチウムニオベイト)、LT(リチウムタンタレート)、水晶、およびLiBO(ホウ酸リチウム)の少なくとも1つを主成分とする。 The piezoelectric layer 67 is formed between the lower electrode 66 and the upper electrode 68 . The piezoelectric layer 67 is made of, for example, ZnO (zinc oxide), AlN (aluminum nitride), PZT (lead zirconate titanate), KN (potassium niobate), LN (lithium niobate), LT (lithium tantalate), The main component is at least one of quartz and LiBO (lithium borate).
 上記積層構成を有するバルク弾性波共振子は、下部電極66と上部電極68との間に電気的なエネルギーを印加することで圧電体層67内にてバルク弾性波を誘発して共振を発生させるものである。このバルク弾性波共振子により生成されるバルク弾性波は、下部電極66と上部電極68との間を、圧電体層67の膜面に垂直な方向に伝搬する。つまり、バルク弾性波共振子は、バルク弾性波を利用した共振子である。 The bulk acoustic wave resonator having the above laminated structure induces a bulk acoustic wave in the piezoelectric layer 67 by applying electrical energy between the lower electrode 66 and the upper electrode 68 to generate resonance. It is. A bulk acoustic wave generated by this bulk acoustic wave resonator propagates between the lower electrode 66 and the upper electrode 68 in a direction perpendicular to the film surface of the piezoelectric layer 67 . That is, the bulk acoustic wave resonator is a resonator that utilizes bulk acoustic waves.
 例えば、圧電体層67の膜厚が大きいほど、バルク弾性波共振子の共振周波数および反共振周波数は低周波側へシフトする。 For example, as the film thickness of the piezoelectric layer 67 increases, the resonance frequency and anti-resonance frequency of the bulk acoustic wave resonator shift to the low frequency side.
 [1.3 マルチプレクサ1の特性]
 以下では、本実施の形態に係るマルチプレクサ1のインピーダンス特性(アドミタンス特性)および通過特性について、実施例1および比較例1のマルチプレクサを比較しながら説明する。
[1.3 Characteristics of Multiplexer 1]
The impedance characteristics (admittance characteristics) and pass characteristics of the multiplexer 1 according to the present embodiment will be described below while comparing the multiplexers of the first embodiment and the first comparative example.
 実施例1に係るマルチプレクサは、本実施の形態に係るマルチプレクサ1の一実施例である。比較例1に係るマルチプレクサは、本実施の形態に係るマルチプレクサに含まれない。 The multiplexer according to Example 1 is an example of the multiplexer 1 according to the present embodiment. The multiplexer according to Comparative Example 1 is not included in the multiplexers according to this embodiment.
 実施例1に係るマルチプレクサは、図1に示すように、フィルタ11および12と、弾性波フィルタ21A(フィルタ21)と、アンテナ接続端子90と、共通端子91と、入力端子110および210と、出力端子120と、を備え、図4Aに示すように、弾性波フィルタ21Aの弾性波共振子のうち共通端子91に最も近く接続された直列腕共振子101の反共振周波数fa1は、フィルタ11(図4AでA-Tx)の通過帯域内に位置している。また、フィルタ11、12、および弾性波フィルタ21Aのうち、フィルタ11の通過帯域が最も低周波側に位置し、弾性波フィルタ21Aの通過帯域が最も高周波側に位置する。 1, the multiplexer according to the first embodiment includes filters 11 and 12, an acoustic wave filter 21A (filter 21), an antenna connection terminal 90, a common terminal 91, input terminals 110 and 210, and an output 4A, the antiresonance frequency fa1 of the series arm resonator 101 connected closest to the common terminal 91 among the elastic wave resonators of the elastic wave filter 21A is the same as the filter 11 (FIG. 4A). 4A is located within the passband of A-Tx). Among the filters 11 and 12 and the acoustic wave filter 21A, the passband of the filter 11 is located on the lowest frequency side, and the passband of the acoustic wave filter 21A is located on the highest frequency side.
 一方、比較例1に係るマルチプレクサは、実施例1に係るマルチプレクサと同様の回路構成を有するが、弾性波フィルタ21Aの弾性波共振子のうちのいずれの直列腕共振子の反共振周波数もフィルタ11の通過帯域内に位置せず、弾性波フィルタ21Aの通過帯域(図4AでB-Tx)低域端よりも高周波側に位置している。 On the other hand, the multiplexer according to Comparative Example 1 has a circuit configuration similar to that of the multiplexer according to Example 1. , and is located on the high frequency side of the low end of the passband (B-Tx in FIG. 4A) of the elastic wave filter 21A.
 図4Bは、実施例1および比較例1に係る弾性波フィルタ21Aの共通端子91から見たインピーダンス特性を比較したスミスチャートである。同図には、実施例1および比較例1における、共通端子91側から見た弾性波フィルタ21A単体のインピーダンス特性が示されている。 FIG. 4B is a Smith chart comparing the impedance characteristics of the acoustic wave filters 21A according to Example 1 and Comparative Example 1 viewed from the common terminal 91. FIG. The figure shows the impedance characteristics of the elastic wave filter 21A alone as viewed from the common terminal 91 side in Example 1 and Comparative Example 1. FIG.
 比較例1に係る弾性波フィルタ21Aでは、フィルタ11の通過帯域(A-Tx)のインピーダンスは、オープン点から離れて(スミスチャート上の5時付近に)位置している。 In the elastic wave filter 21A according to Comparative Example 1, the impedance of the passband (A-Tx) of the filter 11 is located away from the open point (around 5 o'clock on the Smith chart).
 これに対して、実施例1に係る弾性波フィルタ21Aでは、直列腕共振子101の反共振周波数fa1がフィルタ11の通過帯域(A-Tx)内に位置するため、当該通過帯域(A-Tx)のインピーダンスは、比較例1と比較して、オープン点近傍に(スミスチャート上の3時半付近に)位置している。 On the other hand, in the elastic wave filter 21A according to the first embodiment, since the antiresonance frequency fa1 of the series arm resonator 101 is located within the passband (A-Tx) of the filter 11, the passband (A-Tx ) is located near the open point (near 3:30 on the Smith chart) compared to Comparative Example 1.
 直列腕共振子101(弾性波共振子)は、反共振周波数fa1近傍では、キャパシタンス小(fa1高周波側近傍)またはインダクタンス大(fa1低周波側近傍)となる。実施例1に係る弾性波フィルタ21Aでは、フィルタ11の通過帯域(A-Tx)内に反共振周波数fa1が位置することにより、弾性波フィルタ21A単体の共通端子91側から見た上記通過帯域(A-Tx)のインピーダンスは、比較例1に係る弾性波フィルタ21A単体の共通端子91側から見た上記通過帯域(A-Tx)のインピーダンスと比較して、等レジスタンス円の反時計回り方向であってオープン点により近く位置する(キャパシタンス小)、または、等レジスタンス円の時計回り方向であってオープン点により近く位置する(インダクタンス大)こととなる。 The series arm resonator 101 (elastic wave resonator) has a small capacitance (near the high frequency side of fa1) or a large inductance (near the low frequency side of fa1) near the anti-resonance frequency fa1. In the elastic wave filter 21A according to the first embodiment, the anti-resonance frequency fa1 is positioned within the passband (A-Tx) of the filter 11, so that the passband ( A-Tx) is compared with the impedance of the passband (A-Tx) seen from the common terminal 91 side of the acoustic wave filter 21A alone according to Comparative Example 1, in the counterclockwise direction of the equal resistance circle or closer to the open point (lower capacitance), or in the clockwise direction of the equal resistance circle and closer to the open point (higher inductance).
 弾性波フィルタ21A単体における上記通過帯域(A-Tx)のインピーダンスが等レジスタンス円上の、よりオープン側に位置することは、弾性波フィルタ21A単体における上記通過帯域(A-Tx)のコンダクタンスを、より小さくすることと等価である。 The fact that the impedance of the passband (A-Tx) in the acoustic wave filter 21A alone is located on the more open side on the equal resistance circle means that the conductance of the passband (A-Tx) in the acoustic wave filter 21A alone is Equivalent to making it smaller.
 図5Aは、実施例1および比較例1に係るマルチプレクサのフィルタ11の通過特性を示すグラフである。また、図5Bは、実施例1および比較例1に係るマルチプレクサのフィルタ12の通過特性を示すグラフである。図5Aに示すように、実施例1に係るマルチプレクサでは、弾性波フィルタ21A単体における上記通過帯域(A-Tx)のコンダクタンスを、より小さくできたため、フィルタ11、12および弾性波フィルタ21Aを共通端子91に接続した場合の、いわゆる束ね損失を低減できている。 5A is a graph showing pass characteristics of the filter 11 of the multiplexer according to Example 1 and Comparative Example 1. FIG. FIG. 5B is a graph showing pass characteristics of the filters 12 of the multiplexers according to Example 1 and Comparative Example 1. In FIG. As shown in FIG. 5A, in the multiplexer according to the first embodiment, the conductance of the passband (A-Tx) in the elastic wave filter 21A alone can be made smaller, so that the filters 11 and 12 and the elastic wave filter 21A are connected to the common terminal. The so-called bundling loss when connected to 91 can be reduced.
 なお、図5Bに示すように、フィルタ12についても、実施例1に係るマルチプレクサの方が、挿入損失を低減できている。これは、直列腕共振子101の反共振周波数fa1がフィルタ12の通過帯域(A-Rx)よりも低周波側に位置するため、当該通過帯域(A-Rx)のインピーダンスが、比較例1と比較して、オープン点近傍に位置するためである。 Note that, as shown in FIG. 5B, the multiplexer according to the first embodiment can also reduce the insertion loss of the filter 12 . This is because the anti-resonance frequency fa1 of the series arm resonator 101 is located on the lower frequency side than the passband (A-Rx) of the filter 12, so that the impedance of the passband (A-Rx) is different from that of Comparative Example 1. This is because it is located near the open point by comparison.
 これによれば、実施例1に係るマルチプレクサにおいて、共通端子91に接続されたフィルタ11および12の通過帯域内の挿入損失を低減することが可能となる。 According to this, in the multiplexer according to the first embodiment, it is possible to reduce the insertion loss within the passband of the filters 11 and 12 connected to the common terminal 91.
 なお、本実施の形態に係るマルチプレクサ1において、直列腕共振子101の反共振周波数fa1は、フィルタ11の通過帯域(A-Tx)よりも低周波側に位置してもよい。この場合であっても、直列腕共振子101は上記通過帯域(A-Tx)において小さなキャパシタンスを有するので、比較例1と比較して、フィルタ21における上記通過帯域(A-Tx)のコンダクタンスを小さくすることが可能となり、共通端子91に接続されたフィルタ11の通過帯域内の挿入損失を低減することが可能となる。 In the multiplexer 1 according to the present embodiment, the anti-resonance frequency fa1 of the series arm resonator 101 may be located on the lower frequency side than the passband (A-Tx) of the filter 11. Even in this case, the series arm resonator 101 has a small capacitance in the passband (A-Tx). It is possible to reduce the insertion loss within the passband of the filter 11 connected to the common terminal 91 .
 なお、実施例1に係るマルチプレクサでは、弾性波フィルタ21Aの弾性波共振子のうち共通端子91に最も近く接続された直列腕共振子101の反共振周波数fa1が、フィルタ11(A-Tx)の通過帯域内に位置していることを特徴とした。この特徴に代わって、変形例1に係るマルチプレクサは、フィルタ11および12と、弾性波フィルタ21A(フィルタ21)と、アンテナ接続端子90と、共通端子91と、入力端子110および210と、出力端子120と、を備え、弾性波フィルタ21Aは、1以上の弾性表面波共振子を有し、当該1以上の弾性表面波共振子は、弾性波フィルタ21Aの一端と他端とを結ぶ直列腕経路上に配置され、当該1以上の弾性表面波共振子のうちで最も上記一端に近く接続された直列腕共振子を含み、当該直列腕共振子を構成するIDT電極54の電極指ピッチは、フィルタ11に含まれる全ての弾性表面波共振子を構成するIDT電極54の電極指ピッチのいずれよりも大きい、ことを特徴としてもよい。 In the multiplexer according to the first embodiment, the anti-resonance frequency fa1 of the series arm resonator 101 connected closest to the common terminal 91 among the elastic wave resonators of the elastic wave filter 21A is the same as that of the filter 11 (A-Tx). It is characterized by being located within the passband. Instead of this feature, the multiplexer according to Modification 1 includes filters 11 and 12, elastic wave filter 21A (filter 21), antenna connection terminal 90, common terminal 91, input terminals 110 and 210, and output terminal 120, and the acoustic wave filter 21A has one or more surface acoustic wave resonators, and the one or more surface acoustic wave resonators are series arm paths connecting one end and the other end of the acoustic wave filter 21A. The electrode finger pitch of the IDT electrodes 54 that constitute the series arm resonator includes a series arm resonator connected closest to the one end of the one or more surface acoustic wave resonators arranged above the filter. 11 may be larger than any of the electrode finger pitches of the IDT electrodes 54 constituting all the surface acoustic wave resonators.
 これによれば、弾性波フィルタ21Aの上記直列腕共振子の反共振周波数fa1は、フィルタ11の通過帯域内または当該通過帯域よりも低周波側に位置することとなる。よって、実施例1に係るマルチプレクサと同様の効果を奏することが可能となる。 According to this, the anti-resonance frequency fa1 of the series arm resonator of the elastic wave filter 21A is located within the passband of the filter 11 or on the lower frequency side than the passband. Therefore, it is possible to obtain the same effect as the multiplexer according to the first embodiment.
 なお、変形例1に係るマルチプレクサにおいて、弾性波フィルタ21Aおよびフィルタ11を構成する弾性表面波共振子のIDT電極54の膜厚、保護層55の膜厚、および電極デューティーが同じである場合に、上記効果が顕著に奏される。 In the multiplexer according to Modification 1, when the thickness of the IDT electrode 54, the thickness of the protective layer 55, and the electrode duty of the surface acoustic wave resonators constituting the acoustic wave filter 21A and the filter 11 are the same, The above effect is exhibited remarkably.
 また、変形例2に係るマルチプレクサは、フィルタ11および12と、弾性波フィルタ21A(フィルタ21)と、アンテナ接続端子90と、共通端子91と、入力端子110および210と、出力端子120と、を備え、弾性波フィルタ21Aおよびフィルタ11のそれぞれは、図3Cに示すように、支持基板65と、支持基板65の一方面上に形成された下部電極66および上部電極68と、下部電極66と上部電極68との間に形成された圧電体層67と、を有するバルク弾性波共振子で構成される。弾性波フィルタ21Aは、1以上のバルク弾性波共振子を有し、当該1以上のバルク弾性波共振子は、弾性波フィルタ21Aの一端と他端とを結ぶ直列腕経路上に配置され、当該1以上の弾性波共振子のうちで最も上記一端に近く接続された直列腕共振子を含み、当該直列腕共振子を構成する圧電体層67は、フィルタ11に含まれる全てのバルク弾性波共振子を構成する圧電体層67のいずれよりも厚い、ことを特徴としてもよい。 Further, the multiplexer according to Modification 2 includes filters 11 and 12, an acoustic wave filter 21A (filter 21), an antenna connection terminal 90, a common terminal 91, input terminals 110 and 210, and an output terminal 120. Each of the acoustic wave filter 21A and the filter 11 includes, as shown in FIG. 3C, a supporting substrate 65, a lower electrode 66 and an upper electrode 68 formed on one surface of the supporting substrate 65, and a lower electrode 66 and an upper electrode. and a piezoelectric layer 67 formed between the electrode 68 and a bulk acoustic wave resonator. The elastic wave filter 21A has one or more bulk acoustic wave resonators, and the one or more bulk acoustic wave resonators are arranged on a series arm path connecting one end and the other end of the elastic wave filter 21A. The piezoelectric layer 67 includes the series arm resonator connected closest to the one end of the one or more acoustic wave resonators, and the piezoelectric layer 67 that constitutes the series arm resonator has all the bulk acoustic wave resonators included in the filter 11. It may be characterized by being thicker than any of the piezoelectric layers 67 that make up the child.
 これによれば、弾性波フィルタ21Aの上記直列腕共振子の反共振周波数fa1は、フィルタ11の通過帯域内または当該通過帯域よりも低周波側に位置することとなる。よって、実施例1に係るマルチプレクサと同様の効果を奏することが可能となる。 According to this, the anti-resonance frequency fa1 of the series arm resonator of the elastic wave filter 21A is located within the passband of the filter 11 or on the lower frequency side than the passband. Therefore, it is possible to obtain the same effect as the multiplexer according to the first embodiment.
 (実施の形態2)
 [2.1 マルチプレクサ2の回路構成]
 図6は、実施の形態2に係るマルチプレクサ2の回路構成図である。同図に示すように、マルチプレクサ2は、フィルタ11、12、21、31および32と、インダクタ41と、アンテナ接続端子90と、共通端子91、92および93と、入力端子110、210および310と、出力端子120および320と、を備える。本実施の形態に係るマルチプレクサ2は、実施の形態1に係るマルチプレクサ1と比較して、フィルタ31および32、インダクタ41、共通端子92および93、入力端子310、ならびに出力端子320が付加されている点が異なる。以下、本実施の形態に係るマルチプレクサ2について、実施の形態1に係るマルチプレクサ1と同じ構成については説明を省略し、異なる構成を中心に説明する。
(Embodiment 2)
[2.1 Circuit Configuration of Multiplexer 2]
FIG. 6 is a circuit diagram of the multiplexer 2 according to the second embodiment. As shown in the figure, the multiplexer 2 includes filters 11, 12, 21, 31 and 32, an inductor 41, an antenna connection terminal 90, common terminals 91, 92 and 93, and input terminals 110, 210 and 310. , and output terminals 120 and 320 . Multiplexer 2 according to the present embodiment has filters 31 and 32, inductor 41, common terminals 92 and 93, input terminal 310, and output terminal 320 added, compared to multiplexer 1 according to the first embodiment. Points are different. Hereinafter, regarding the multiplexer 2 according to the present embodiment, the description of the same configuration as that of the multiplexer 1 according to the first embodiment will be omitted, and the different configuration will be mainly described.
 共通端子91は、第1共通端子の一例であり、フィルタ11の出力端、フィルタ12の入力端、フィルタ21の出力端、およびインダクタ41の一端と接続されている。 The common terminal 91 is an example of a first common terminal, and is connected to the output end of the filter 11, the input end of the filter 12, the output end of the filter 21, and one end of the inductor 41.
 共通端子93は、第2共通端子の一例であり、インダクタ41の他端および共通端子92と接続されている。 The common terminal 93 is an example of a second common terminal and is connected to the other end of the inductor 41 and the common terminal 92 .
 フィルタ31は、第3弾性波フィルタの一例であり、バンドCの送信帯域を含む通過帯域(第3通過帯域)を有する。フィルタ31の一端(出力端)は共通端子92に接続され、他端(入力端)は入力端子310(第3入出力端子)に接続されている。 The filter 31 is an example of a third acoustic wave filter, and has a passband (third passband) including the band C transmission band. One end (output end) of the filter 31 is connected to the common terminal 92, and the other end (input end) is connected to the input terminal 310 (third input/output terminal).
 フィルタ32は、バンドCの受信帯域を含む通過帯域を有する。フィルタ32の一端(入力端)は共通端子92に接続され、他端(出力端)は出力端子320に接続されている。 The filter 32 has a passband including the band C reception band. One end (input end) of the filter 32 is connected to the common terminal 92 and the other end (output end) is connected to the output terminal 320 .
 インダクタ41は、インダクタンス素子の一例であり、一端が共通端子91に接続され、他端が共通端子93に接続されている。 The inductor 41 is an example of an inductance element, and has one end connected to a common terminal 91 and the other end connected to a common terminal 93 .
 フィルタ21が有する1以上の弾性波共振子は、共通端子91と入力端子210とを結ぶ直列腕経路上に配置され、当該1以上の弾性波共振子のうちで最も共通端子91に近く接続された直列腕共振子を含む。上記直列腕共振子の反共振周波数fa1は、第1通過帯域の高周波端の周波数以下である。 The one or more elastic wave resonators of the filter 21 are arranged on a series arm path connecting the common terminal 91 and the input terminal 210, and are connected closest to the common terminal 91 among the one or more elastic wave resonators. including a series arm resonator. The anti-resonance frequency fa1 of the series arm resonator is equal to or lower than the frequency of the high frequency end of the first passband.
 バンドBの送信帯域は、バンドAの送信帯域および受信帯域よりも周波数が高く、かつ、バンドCの送信帯域および受信帯域よりも周波数が低い。 The transmission band of band B is higher in frequency than the transmission band and reception band of band A and lower in frequency than the transmission band and reception band of band C.
 なお、バンドAとしては、例えば、LTEのBand3が適用され、バンドBとしては、例えば、LTEのBand1が適用され、バンドCとしては、例えば、LTEのBand7(送信帯域:2500-2570MHz、受信帯域:2620-2690MHz)が適用される。 In addition, for example, Band 3 of LTE is applied as band A, Band 1 of LTE is applied as band B, and Band 7 of LTE is applied as band C (transmission band: 2500-2570 MHz, reception band : 2620-2690 MHz) applies.
 なお、本実施の形態に係るマルチプレクサ2において、フィルタ11および12の一方はなくてもよく、また、フィルタ31および32の一方がなくてもよい。また、フィルタ11、12、21、31および32以外のフィルタが共通端子91または92に接続されていてもよい。 In addition, in the multiplexer 2 according to the present embodiment, one of the filters 11 and 12 may be omitted, and one of the filters 31 and 32 may be omitted. Filters other than filters 11 , 12 , 21 , 31 and 32 may be connected to common terminal 91 or 92 .
 また、アンテナ接続端子90、入力端子110、210および310、出力端子120および320、ならびに共通端子91、92および93は、マルチプレクサ2が備えていなくてもよい。 Also, the antenna connection terminal 90, the input terminals 110, 210 and 310, the output terminals 120 and 320, and the common terminals 91, 92 and 93 may not be included in the multiplexer 2.
 [2.2 マルチプレクサ2の特性]
 以下では、本実施の形態に係るマルチプレクサ2のインピーダンス特性および通過特性について、実施例2および比較例2のマルチプレクサを比較しながら説明する。
[2.2 Characteristics of Multiplexer 2]
Hereinafter, the impedance characteristics and pass characteristics of the multiplexer 2 according to the present embodiment will be described while comparing the multiplexers of Example 2 and Comparative Example 2. FIG.
 実施例2に係るマルチプレクサは、本実施の形態に係るマルチプレクサ2の一実施例である。比較例2に係るマルチプレクサは、本実施の形態に係るマルチプレクサに含まれない。 The multiplexer according to Example 2 is an example of the multiplexer 2 according to this embodiment. The multiplexer according to Comparative Example 2 is not included in the multiplexers according to this embodiment.
 実施例2に係るマルチプレクサは、図6に示すように、弾性波フィルタ21A(フィルタ21)と、フィルタ11、12、31および32と、インダクタ41と、アンテナ接続端子90と、共通端子91、92および93と、入力端子110、210および310と、出力端子120および320と、を備え、弾性波フィルタ21Aの弾性波共振子のうち共通端子91に最も近く接続された直列腕共振子101の反共振周波数fa1は、フィルタ11の通過帯域(A-Tx)内に位置している。また、フィルタ11、12、31、32および弾性波フィルタ21Aのうち、フィルタ11の通過帯域が最も低周波側に位置し、フィルタ32の通過帯域が最も高周波側に位置する。 As shown in FIG. 6, the multiplexer according to the second embodiment includes an acoustic wave filter 21A (filter 21), filters 11, 12, 31 and 32, an inductor 41, an antenna connection terminal 90, common terminals 91 and 92 and 93, input terminals 110, 210 and 310, and output terminals 120 and 320, and is the opposite of the series arm resonator 101 connected closest to the common terminal 91 among the elastic wave resonators of the elastic wave filter 21A. The resonance frequency fa1 is located within the passband (A-Tx) of the filter 11. FIG. Among the filters 11, 12, 31, 32 and the acoustic wave filter 21A, the passband of the filter 11 is located on the lowest frequency side, and the passband of the filter 32 is located on the highest frequency side.
 一方、比較例2に係るマルチプレクサは、実施例2に係るマルチプレクサと同様の回路構成を有するが、弾性波フィルタ21Aの弾性波共振子のうちのいずれの直列腕共振子の反共振周波数もフィルタ11の通過帯域内に位置せず、弾性波フィルタ21Aの通過帯域(B-Tx)低域端よりも高周波側に位置している。 On the other hand, the multiplexer according to Comparative Example 2 has a circuit configuration similar to that of the multiplexer according to Example 2. is located on the high frequency side of the low end of the passband (B-Tx) of the elastic wave filter 21A.
 図7Aは、フィルタ11、12および弾性波フィルタ21A(フィルタ21)を共通接続した場合の共通端子91から見た通過帯域(A-Tx)のインピーダンス特性(アドミタンス特性)を、実施例2および比較例2で比較したスミスチャートである。また、図7Bは、フィルタ11、12および弾性波フィルタ21A(フィルタ21)を共通接続した場合の共通端子91から見た通過帯域(A-Rx)のインピーダンス特性(アドミタンス特性)を、実施例2および比較例2で比較したスミスチャートである。また、図7Cは、フィルタ11、12および弾性波フィルタ21A(フィルタ21)を共通接続した場合の共通端子91から見た通過帯域(B-Tx)のインピーダンス特性(アドミタンス特性)を、実施例2および比較例2で比較したスミスチャートである。また、図7Dは、フィルタ11、12および弾性波フィルタ21A(フィルタ21)を共通接続した場合の共通端子91から見た通過帯域(C-Tx)のインピーダンス特性(アドミタンス特性)を、実施例2および比較例2で比較したスミスチャートである。また、図7Eは、フィルタ11、12および弾性波フィルタ21A(フィルタ21)を共通接続した場合の共通端子91から見た通過帯域(C-Rx)のインピーダンス特性(アドミタンス特性)を、実施例2および比較例2で比較したスミスチャートである。 FIG. 7A shows the impedance characteristics (admittance characteristics) of the passband (A-Tx) viewed from the common terminal 91 when the filters 11 and 12 and the acoustic wave filter 21A (filter 21) are commonly connected, in Example 2 and for comparison. 2 is a Smith chart compared in Example 2; FIG. 7B shows the impedance characteristics (admittance characteristics) of the passband (A−Rx) viewed from the common terminal 91 when the filters 11 and 12 and the elastic wave filter 21A (filter 21) are commonly connected. and a Smith chart compared in Comparative Example 2. FIG. 7C shows the impedance characteristics (admittance characteristics) of the passband (B-Tx) viewed from the common terminal 91 when the filters 11 and 12 and the elastic wave filter 21A (filter 21) are commonly connected. and a Smith chart compared in Comparative Example 2. FIG. 7D shows the impedance characteristics (admittance characteristics) of the passband (C-Tx) viewed from the common terminal 91 when the filters 11 and 12 and the elastic wave filter 21A (filter 21) are commonly connected. and a Smith chart compared in Comparative Example 2. FIG. 7E shows the impedance characteristics (admittance characteristics) of the passband (C-Rx) viewed from the common terminal 91 when the filters 11 and 12 and the acoustic wave filter 21A (filter 21) are connected in common. and a Smith chart compared in Comparative Example 2.
 実施例1では、弾性波フィルタ21Aが有する直列腕共振子の反共振周波数fa1が通過帯域(A-Tx)内に位置することで、弾性波フィルタ21Aの通過帯域(A-Tx)のインピーダンス(アドミタンス)が、比較例1に対してオープン方向にシフトした。言い換えると、弾性波フィルタ21Aのサセプタンスが小さい方向にシフトした。サセプタンスが小さいほど、容量性は小さくなる。 In the first embodiment, since the anti-resonance frequency fa1 of the series arm resonator of the elastic wave filter 21A is positioned within the passband (A-Tx), the impedance ( admittance) shifted in the open direction with respect to Comparative Example 1. In other words, the susceptance of the elastic wave filter 21A shifted to a smaller direction. The lower the susceptance, the lower the capacitiveness.
 これより、図7Aに示すように、フィルタ11、12および弾性波フィルタ21Aを共通端子91に接続させた状態であっても、通過帯域(A-Tx)のインピーダンス(アドミタンス)は、比較例2に比べて容量性が小さい方向へとシフトする。また、図7Bに示すように、フィルタ11、12および弾性波フィルタ21Aを共通端子91に接続させた状態であっても、通過帯域(A-Rx)のインピーダンス(アドミタンス)は、比較例2に比べて容量性が小さい方向へとシフトする。 From this, as shown in FIG. 7A, even when the filters 11 and 12 and the elastic wave filter 21A are connected to the common terminal 91, the impedance (admittance) of the passband (A-Tx) is , the capacitiveness shifts to a direction smaller than that of . Further, as shown in FIG. 7B, even when the filters 11 and 12 and the elastic wave filter 21A are connected to the common terminal 91, the impedance (admittance) of the passband (A-Rx) is It shifts in the direction of smaller capacitiveness.
 なお、図7Cに示すように、フィルタ11、12および弾性波フィルタ21Aを共通端子91に接続させた状態では、弾性波フィルタ21Aにおいて直列に容量性の直列腕共振子が配置されていることから、通過帯域(B-Tx)のインピーダンス(アドミタンス)は、比較例2に比べて容量性がやや大きい方向へとシフトする。 As shown in FIG. 7C, when the filters 11 and 12 and the elastic wave filter 21A are connected to the common terminal 91, the capacitive series arm resonators are arranged in series in the elastic wave filter 21A. , the impedance (admittance) of the passband (B-Tx) shifts in the direction in which the capacitiveness is slightly larger than that of the second comparative example.
 また、図7Dおよび図7Eに示すように、フィルタ11、12および弾性波フィルタ21Aを共通端子91に接続させた状態では、通過帯域(C-Tx)および通過帯域(C-Rx)のインピーダンス(アドミタンス)は、弾性波フィルタ21Aの直列腕共振子の周波数配置に影響されないので、比較例2に比べてほぼシフトしない。 7D and 7E, when the filters 11 and 12 and the elastic wave filter 21A are connected to the common terminal 91, the impedance (C-Tx) and the passband (C-Rx) of the passband (C-Rx) The admittance) is not affected by the frequency arrangement of the series arm resonators of the elastic wave filter 21A, so it is not substantially shifted as compared with the second comparative example.
 図8Aは、インダクタ41、フィルタ11、12および弾性波フィルタ21Aを共通接続した場合の共通端子93から見た通過帯域(A-Tx)のインピーダンス特性(アドミタンス特性)を、実施例2および比較例2で比較したスミスチャートである。また、図8Bは、インダクタ41、フィルタ11、12および弾性波フィルタ21Aを共通接続した場合の共通端子93から見た通過帯域(A-Rx)のインピーダンス特性(アドミタンス特性)を、実施例2および比較例2で比較したスミスチャートである。また、図8Cは、インダクタ41、フィルタ11、12および弾性波フィルタ21Aを共通接続した場合の共通端子93から見た通過帯域(B-Tx)のインピーダンス特性(アドミタンス特性)を、実施例2および比較例2で比較したスミスチャートである。また、図8Dは、インダクタ41、フィルタ11、12および弾性波フィルタ21Aを共通接続した場合の共通端子93から見た通過帯域(C-Tx)のインピーダンス特性(アドミタンス特性)を、実施例2および比較例2で比較したスミスチャートである。また、図8Eは、インダクタ41、フィルタ11、12および弾性波フィルタ21Aを共通接続した場合の共通端子93から見た通過帯域(C-Rx)のインピーダンス特性(アドミタンス特性)を、実施例2および比較例2で比較したスミスチャートである。 FIG. 8A shows the impedance characteristics (admittance characteristics) of the passband (A-Tx) viewed from the common terminal 93 when the inductor 41, the filters 11 and 12, and the acoustic wave filter 21A are commonly connected, in Example 2 and Comparative Example. 2 is a Smith chart for comparison. Further, FIG. 8B shows the impedance characteristics (admittance characteristics) of the passband (A-Rx) viewed from the common terminal 93 when the inductor 41, the filters 11 and 12, and the acoustic wave filter 21A are commonly connected, in the second embodiment and the 6 is a Smith chart compared in Comparative Example 2. FIG. Further, FIG. 8C shows the impedance characteristics (admittance characteristics) of the passband (B-Tx) viewed from the common terminal 93 when the inductor 41, the filters 11 and 12, and the elastic wave filter 21A are commonly connected. 6 is a Smith chart compared in Comparative Example 2. FIG. FIG. 8D shows the impedance characteristics (admittance characteristics) of the passband (C-Tx) viewed from the common terminal 93 when the inductor 41, the filters 11 and 12, and the acoustic wave filter 21A are connected in common. 6 is a Smith chart compared in Comparative Example 2. FIG. FIG. 8E shows the impedance characteristics (admittance characteristics) of the passband (C-Rx) viewed from the common terminal 93 when the inductor 41, the filters 11 and 12, and the acoustic wave filter 21A are connected in common. 6 is a Smith chart compared in Comparative Example 2. FIG.
 図8A~図8Cに示すように、フィルタ11、12および弾性波フィルタ21Aを共通端子91で接続した場合の、帯域(A-Tx、A-Rx、B-Tx)のアドミタンスが50Ωの等コンダクタンス円(の誘導性側)に乗るように、インダクタ41が接続される。このとき、実施例2は、比較例2に比べて、互いに共通接続されたフィルタ11、12および弾性波フィルタ21Aを共通端子91から見たアドミタンスが容量性の小さな箇所に位置している(図7Aおよび図7B参照)。このため、図8Aおよび図8Bに示すように、上記アドミタンスを50Ωの等コンダクタンス円(の誘導性側)にシフトさせるには、比較例2よりも実施例2の方がインダクタ41のインダクタンス値が大きくなる。 As shown in FIGS. 8A to 8C, when the filters 11 and 12 and the acoustic wave filter 21A are connected at the common terminal 91, the admittance of the band (A-Tx, A-Rx, B-Tx) is equal conductance of 50 Ω An inductor 41 is connected so as to ride on (the inductive side of) the circle. At this time, in Example 2, compared to Comparative Example 2, the filters 11 and 12 and the elastic wave filter 21A, which are commonly connected to each other, are positioned at a position where the admittance when viewed from the common terminal 91 is small in capacitiveness (Fig. 7A and 7B). Therefore, as shown in FIGS. 8A and 8B, in order to shift the admittance to (the inductive side of) the equal conductance circle of 50Ω, the inductance value of the inductor 41 in Example 2 is higher than that in Comparative Example 2. growing.
 このインダクタンス値の大小に起因して、図8Dおよび図8Eに示すように、共通端子93からフィルタ11、12および弾性波フィルタ21Aを見た通過帯域(C-TxおよびC-Rx)のインピーダンスは、実施例2の方が比較例2よりもオープン点に近づくこととなる。 Due to the magnitude of this inductance value, as shown in FIGS. 8D and 8E, the impedance of the passband (C-Tx and C-Rx) when looking at the filters 11, 12 and the acoustic wave filter 21A from the common terminal 93 is , the second embodiment is closer to the open point than the second comparative example.
 図9は、インダクタ41、フィルタ11、12および弾性波フィルタ21Aを共通接続した場合の共通端子93から見たコンダクタンス特性を、実施例2および比較例2で比較したグラフである。同図に示すように、フィルタ11、12および弾性波フィルタ21Aを共通接続した場合の共通端子93から見た通過帯域(C-TxおよびC-Rx)のコンダクタンスは、実施例2の方が比較例2よりも小さくなっている。これにより、インダクタ41、フィルタ11、12および弾性波フィルタ21Aと、フィルタ31および32とを、共通端子93で接続した場合の各フィルタの通過帯域の挿入損失を低減できる。 FIG. 9 is a graph comparing the conductance characteristics seen from the common terminal 93 when the inductor 41, the filters 11 and 12, and the acoustic wave filter 21A are commonly connected between Example 2 and Comparative Example 2. FIG. As shown in the figure, when the filters 11 and 12 and the elastic wave filter 21A are commonly connected, the conductance of the passband (C-Tx and C-Rx) seen from the common terminal 93 is compared in the second embodiment. It is smaller than Example 2. As a result, when inductor 41, filters 11 and 12, acoustic wave filter 21A, and filters 31 and 32 are connected at common terminal 93, the insertion loss in the passband of each filter can be reduced.
 図10は、実施例2および比較例2に係るマルチプレクサの共通端子93から見たインピーダンス特性を、実施例2および比較例2で比較したスミスチャートである。具体的には、図10の(a)には通過帯域(A-Tx)のインピーダンス特性が示され、図10の(b)には通過帯域(A-Rx)のインピーダンス特性が示され、図10の(c)には通過帯域(B-Tx)のインピーダンス特性が示され、図10の(d)には通過帯域(C-Tx)のインピーダンス特性が示され、図10の(e)には通過帯域(C-Rx)のインピーダンス特性が示されている。5つのフィルタを共通端子93にて共通接続することで、いずれの通過帯域のインピーダンスもほぼ50Ωに整合されていることが解る。 FIG. 10 is a Smith chart comparing the impedance characteristics seen from the common terminal 93 of the multiplexers according to Example 2 and Comparative Example 2 in Example 2 and Comparative Example 2. FIG. Specifically, FIG. 10(a) shows the impedance characteristics of the passband (A-Tx), and FIG. 10(b) shows the impedance characteristics of the passband (A-Rx). (c) of FIG. 10 shows the impedance characteristics of the passband (B-Tx), (d) of FIG. 10 shows the impedance characteristics of the passband (C-Tx), and (e) of FIG. shows the impedance characteristics of the passband (C-Rx). It can be seen that by commonly connecting the five filters at the common terminal 93, the impedance of any passband is matched to approximately 50Ω.
 図11Aは、実施例2および比較例2に係るマルチプレクサのフィルタ12(A-Rx)の通過特性を示すグラフである。図11Bは、実施例2および比較例2に係るマルチプレクサのフィルタ31(C-Tx)の通過特性を示すグラフである。図11Cは、実施例2および比較例2に係るマルチプレクサのフィルタ32(C-Rx)の通過特性を示すグラフである。フィルタ12、31および32において、実施例2の方が比較例2に比べて、通過帯域の挿入損失が低減されている。 FIG. 11A is a graph showing pass characteristics of the filter 12 (A-Rx) of the multiplexer according to Example 2 and Comparative Example 2. FIG. 11B is a graph showing pass characteristics of the filter 31 (C-Tx) of the multiplexer according to Example 2 and Comparative Example 2. FIG. 11C is a graph showing pass characteristics of the filter 32 (C-Rx) of the multiplexer according to Example 2 and Comparative Example 2. FIG. In the filters 12, 31 and 32, the insertion loss in the passband is reduced in the second embodiment compared to the second comparative example.
 [3 効果など]
 以上のように、実施の形態1に係るマルチプレクサ1および実施の形態2に係るマルチプレクサ2は、第1通過帯域を有するフィルタ11と、第1通過帯域よりも周波数が高い第2通過帯域を有するフィルタ21と、を備え、フィルタ11の一端とフィルタ21の一端とが接続され、フィルタ21は1以上の弾性波共振子を有し、当該1以上の弾性波共振子は、フィルタ21の上記一端と他端とを結ぶ直列腕経路上に配置され、当該1以上の弾性波共振子のうちで最も上記一端に近く接続された直列腕共振子を含み、当該直列腕共振子の反共振周波数fa1は、第1通過帯域の高周波端の周波数以下である。
[3 Effects, etc.]
As described above, the multiplexer 1 according to the first embodiment and the multiplexer 2 according to the second embodiment include the filter 11 having the first passband and the filter having the second passband higher in frequency than the first passband. 21, one end of the filter 11 and one end of the filter 21 are connected, the filter 21 has one or more elastic wave resonators, and the one or more elastic wave resonators are connected to the one end of the filter 21 A series arm resonator arranged on a series arm path connecting with the other end and connected closest to the one end among the one or more elastic wave resonators, and the antiresonance frequency fa1 of the series arm resonator is , below the frequency of the high frequency end of the first passband.
 これによれば、上記直列腕共振子は、反共振周波数fa1近傍では、キャパシタンス小またはインダクタンス大となる。フィルタ21では、フィルタ11の通過帯域(A-Tx)内または低周波側に反共振周波数fa1が位置することにより、フィルタ21単体の共通端子91側から見た上記通過帯域(A-Tx)のインピーダンスは、等レジスタンス円の反時計回り方向であってオープン点により近く位置する(キャパシタンス小)、または、等レジスタンス円の時計回り方向であってオープン点により近く位置する(インダクタンス大)こととなる。フィルタ21単体における上記通過帯域(A-Tx)のインピーダンスが、等レジスタンス円上のオープン側に位置することは、フィルタ21単体における上記通過帯域(A-Tx)のコンダクタンスを、より小さくすることと等価である。よって、フィルタ11および21を共通端子91に接続した場合の、いわゆる束ね損失を低減でき、各フィルタの通過帯域内の挿入損失が低減されたマルチプレクサを提供することが可能となる。 According to this, the series arm resonator has a small capacitance or a large inductance near the anti-resonance frequency fa1. In the filter 21, the anti-resonance frequency fa1 is positioned within the passband (A-Tx) of the filter 11 or on the low frequency side, so that the passband (A-Tx) seen from the common terminal 91 side of the filter 21 alone is The impedance will be in the counterclockwise direction of the circle of equal resistance and located closer to the open point (smaller capacitance) or in the clockwise direction of the circle of equal resistance and located closer to the open point (larger inductance). . Positioning the impedance of the passband (A-Tx) in the single filter 21 on the open side of the equal resistance circle makes the conductance of the passband (A-Tx) in the single filter 21 smaller. are equivalent. Therefore, it is possible to reduce the so-called bundling loss when the filters 11 and 21 are connected to the common terminal 91, and to provide a multiplexer in which the insertion loss within the passband of each filter is reduced.
 また例えば、マルチプレクサ1および2において、上記直列腕共振子の反共振周波数fa1は、第1通過帯域内に位置してもよい。 Also, for example, in multiplexers 1 and 2, the anti-resonance frequency fa1 of the series arm resonator may be located within the first passband.
 これによれば、フィルタ21では、フィルタ11の第1通過帯域内に反共振周波数fa1が位置するので、フィルタ21単体の共通端子91側から見た第1通過帯域のインピーダンスは、よりオープン点に接近することとなる。よって、フィルタ11および21を共通端子91に接続した場合の、いわゆる束ね損失をより低減できる。 According to this, in the filter 21, the anti-resonance frequency fa1 is positioned within the first passband of the filter 11, so the impedance of the first passband viewed from the common terminal 91 side of the filter 21 alone is closer to the open point. will come closer. Therefore, the so-called bundling loss when the filters 11 and 21 are connected to the common terminal 91 can be further reduced.
 また例えば、マルチプレクサ1および2は、さらに、フィルタ11の一端およびフィルタ21の一端に接続された1以上の弾性波フィルタを備え、フィルタ11、21および上記1以上の弾性波フィルタの各通過帯域のうち、フィルタ11の第1通過帯域が最も低周波側に位置してもよい。 Further, for example, the multiplexers 1 and 2 further include one or more acoustic wave filters connected to one end of the filter 11 and one end of the filter 21, and the passbands of the filters 11 and 21 and the one or more acoustic wave filters Among them, the first passband of the filter 11 may be located on the lowest frequency side.
 また例えば、マルチプレクサ1および2において、フィルタ11、21および上記1以上の弾性波フィルタの各通過帯域のうち、フィルタ21の第2通過帯域が最も高周波側に位置してもよい。 Also, for example, in the multiplexers 1 and 2, the second passband of the filter 21 may be located on the highest frequency side among the passbands of the filters 11 and 21 and the one or more elastic wave filters.
 また例えば、マルチプレクサ1および2は、さらに、フィルタ11の一端およびフィルタ21の一端に接続された共通端子91と、フィルタ11の他端に接続された入力端子110と、フィルタ21の他端に接続された入力端子210と、を備えてもよい。 Further, for example, the multiplexers 1 and 2 further include a common terminal 91 connected to one end of the filter 11 and one end of the filter 21, an input terminal 110 connected to the other end of the filter 11, and the other end of the filter 21. and an input terminal 210 .
 また例えば、マルチプレクサ2は、さらに、第2通過帯域よりも周波数が高い第3通過帯域を有するフィルタ31と、インダクタ41と、を備え、インダクタ41の一端はフィルタ11の一端およびフィルタ21の一端に接続され、インダクタ41の他端はフィルタ31の一端に接続されていてもよい。 For example, the multiplexer 2 further includes a filter 31 having a third passband higher in frequency than the second passband, and an inductor 41. One end of the inductor 41 is connected to one end of the filter 11 and one end of the filter 21. , and the other end of the inductor 41 may be connected to one end of the filter 31 .
 これによれば、インダクタ41により、フィルタ11および21を共通端子91で接続した場合の、第1通過帯域および第2通過帯域のアドミタンスは、50Ωの等コンダクタンス円(の誘導性側)に乗るように調整されるが、共通接続されたフィルタ11および21を共通端子91から見たアドミタンスが小さな容量性に位置しているため、上記アドミタンスを50Ωの等コンダクタンス円(の誘導性側)にシフトさせるためのインダクタ41のインダクタンス値は、より大きくなる。このインダクタンス値が大きくなることで、共通端子93からフィルタ11および21を見た第3通過帯域のインピーダンス(アドミタンス)は、よりもオープン点に近づく(小さなコンダクタンスを有する)こととなる。よって、インダクタ41、フィルタ11、21および31を、共通端子93で接続した場合の各フィルタの通過帯域の挿入損失を低減できる。 According to this, when the filters 11 and 21 are connected to the common terminal 91 by the inductor 41, the admittances of the first passband and the second passband are arranged on (the inductive side of) the 50Ω isoconductance circle. , but since the admittance seen from the common terminal 91 of the common-connected filters 11 and 21 is located at a small capacitive position, the admittance is shifted to (the inductive side of) the 50Ω isoconductance circle. The inductance value of the inductor 41 for is larger. As this inductance value increases, the impedance (admittance) of the third passband viewed from common terminal 93 to filters 11 and 21 approaches the open point (has small conductance). Therefore, when the inductor 41 and the filters 11, 21 and 31 are connected at the common terminal 93, the insertion loss in the passband of each filter can be reduced.
 また例えば、マルチプレクサ2は、さらに、インダクタ41の他端およびフィルタ31の一端に接続された共通端子93と、フィルタ31の他端に接続された入力端子310と、を備えてもよい。 Also, for example, the multiplexer 2 may further include a common terminal 93 connected to the other end of the inductor 41 and one end of the filter 31 , and an input terminal 310 connected to the other end of the filter 31 .
 また、変形例1に係るマルチプレクサは、第1通過帯域を有するフィルタ11と、第1通過帯域よりも周波数が高い第2通過帯域を有するフィルタ21と、を備え、フィルタ11および21のそれぞれは、IDT電極を有する弾性表面波共振子で構成され、フィルタ11の一端とフィルタ21の一端とが接続され、フィルタ21は、1以上の弾性表面波共振子を有し、当該1以上の弾性表面波共振子は、フィルタ21の上記一端と他端とを結ぶ直列腕経路上に配置され、当該1以上の弾性表面波共振子のうちで最も上記一端に近く接続された直列腕共振子を含み、当該直列腕共振子を構成するIDT電極の電極指ピッチは、フィルタ11に含まれる全ての弾性表面波共振子を構成するIDT電極の電極指ピッチのいずれよりも大きい。 Further, the multiplexer according to Modification 1 includes a filter 11 having a first passband and a filter 21 having a second passband higher in frequency than the first passband, and each of the filters 11 and 21 One end of the filter 11 and one end of the filter 21 are connected, the filter 21 has one or more surface acoustic wave resonators, and the one or more surface acoustic wave The resonator is arranged on a series arm path connecting the one end and the other end of the filter 21, and includes a series arm resonator connected closest to the one end among the one or more surface acoustic wave resonators, The electrode finger pitch of the IDT electrodes forming the series arm resonator is greater than the electrode finger pitches of the IDT electrodes forming all the surface acoustic wave resonators included in the filter 11 .
 これによれば、フィルタ21では、フィルタ11の通過帯域(A-Tx)内または低周波側に反共振周波数fa1が位置することとなり、フィルタ21単体の共通端子91側から見た上記通過帯域(A-Tx)のインピーダンスは、等レジスタンス円の反時計回り方向であってオープン点により近く位置する(キャパシタンス小)、または、等レジスタンス円の時計回り方向であってオープン点により近く位置する(インダクタンス大)こととなる。よって、フィルタ11および21を共通端子91に接続した場合の、いわゆる束ね損失を低減でき、各フィルタの通過帯域内の挿入損失が低減されたマルチプレクサを提供することが可能となる。 According to this, in the filter 21, the antiresonance frequency fa1 is positioned within the passband (A-Tx) of the filter 11 or on the low frequency side, and the passband ( A-Tx) is either in the counterclockwise direction of the equal resistance circle and located closer to the open point (low capacitance) or in the clockwise direction of the equal resistance circle and located closer to the open point (inductance large). Therefore, it is possible to reduce the so-called bundling loss when the filters 11 and 21 are connected to the common terminal 91, and to provide a multiplexer in which the insertion loss within the passband of each filter is reduced.
 また、変形例2に係るマルチプレクサは、第1通過帯域を有するフィルタ11と、第1通過帯域よりも周波数が高い第2通過帯域を有するフィルタ21と、を備え、フィルタ11および21のそれぞれは、支持基板65と、支持基板65の一方面上に形成された下部電極66および上部電極68と、下部電極66と上部電極68との間に形成された圧電体層67と、を有するバルク弾性波共振子で構成され、フィルタ11の一端とフィルタ21の一端とが接続され、フィルタ21は、1以上のバルク弾性波共振子を有し、当該1以上のバルク弾性波共振子は、フィルタ21の上記一端と他端とを結ぶ直列腕経路上に配置され、当該1以上のバルク弾性波共振子のうちで最も上記一端に近く接続された直列腕共振子を含み、当該直列腕共振子を構成する圧電体層67は、フィルタ11に含まれる全てのバルク弾性波共振子を構成する圧電体層67のいずれよりも厚い。 Further, the multiplexer according to Modification 2 includes a filter 11 having a first passband and a filter 21 having a second passband having a higher frequency than the first passband, and each of the filters 11 and 21 A bulk acoustic wave having a support substrate 65, a lower electrode 66 and an upper electrode 68 formed on one surface of the support substrate 65, and a piezoelectric layer 67 formed between the lower electrode 66 and the upper electrode 68. One end of the filter 11 and one end of the filter 21 are connected, the filter 21 has one or more bulk acoustic wave resonators, and the one or more bulk acoustic wave resonators of the filter 21 A series arm resonator arranged on a series arm path connecting the one end and the other end and connected closest to the one end among the one or more bulk acoustic wave resonators, constituting the series arm resonator. The piezoelectric layer 67 is thicker than any of the piezoelectric layers 67 forming all the bulk acoustic wave resonators included in the filter 11 .
 これによれば、フィルタ21では、フィルタ11の通過帯域(A-Tx)内または低周波側に反共振周波数fa1が位置することとなり、フィルタ21単体の共通端子91側から見た上記通過帯域(A-Tx)のインピーダンスは、等レジスタンス円の反時計回り方向であってオープン点により近く位置する(キャパシタンス小)、または、等レジスタンス円の時計回り方向であってオープン点により近く位置する(インダクタンス大)こととなる。よって、フィルタ11および21を共通端子91に接続した場合の、いわゆる束ね損失を低減でき、各フィルタの通過帯域内の挿入損失が低減されたマルチプレクサを提供することが可能となる。 According to this, in the filter 21, the antiresonance frequency fa1 is positioned within the passband (A-Tx) of the filter 11 or on the low frequency side, and the passband ( A-Tx) is either in the counterclockwise direction of the equal resistance circle and located closer to the open point (low capacitance) or in the clockwise direction of the equal resistance circle and located closer to the open point (inductance large). Therefore, it is possible to reduce the so-called bundling loss when the filters 11 and 21 are connected to the common terminal 91, and to provide a multiplexer in which the insertion loss within the passband of each filter is reduced.
 (その他の実施の形態)
 以上、本発明に係るマルチプレクサについて、実施の形態、実施例および変形例を挙げて説明したが、本発明は、上記実施の形態、実施例および変形例に限定されるものではない。上記実施の形態、実施例および変形例に対して本発明の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例や、本発明に係るマルチプレクサを内蔵した各種機器も本発明に含まれる。
(Other embodiments)
Although the multiplexer according to the present invention has been described above with reference to the embodiments, examples, and modifications, the present invention is not limited to the above-described embodiments, examples, and modifications. Modifications that can be made by those skilled in the art without departing from the scope of the present invention with respect to the above-described embodiments, examples, and modifications, and various devices incorporating the multiplexer according to the present invention. include.
 また、例えば、上記実施の形態、実施例および変形例に係るマルチプレクサにおいて、各構成要素の間に、インダクタおよびキャパシタなどの整合素子、ならびにスイッチ回路が接続されていてもかまわない。なお、インダクタには、各構成要素間を繋ぐ配線による配線インダクタが含まれてもよい。 Also, for example, in the multiplexers according to the above-described embodiments, examples, and modifications, matching elements such as inductors and capacitors, and switch circuits may be connected between the constituent elements. Note that the inductor may include a wiring inductor that is a wiring that connects each component.
 なお、上記実施の形態、実施例および変形例において示された共振周波数fr1および反共振周波数fa1は、例えば、弾性波共振子の2つの入出力電極にRFプローブを接触させて反射特性を測定することで導出される。 Note that the resonance frequency fr1 and the antiresonance frequency fa1 shown in the above embodiments, examples, and modifications are obtained, for example, by contacting an RF probe to the two input/output electrodes of the elastic wave resonator to measure the reflection characteristics. It is derived by
 本発明は、マルチバンド化およびマルチモード化された周波数規格に適用できる低損失のマルチプレクサとして、携帯電話などの通信機器に広く利用できる。 The present invention can be widely used in communication equipment such as mobile phones as a low-loss multiplexer applicable to multi-band and multi-mode frequency standards.
 1、2  マルチプレクサ
 11、12、21、31、32  フィルタ
 21A、21B  弾性波フィルタ
 41、161  インダクタ
 50  基板
 51  高音速支持基板
 52  低音速膜
 53  圧電膜
 54  IDT電極
 55、58  保護層
 57  圧電単結晶基板
 60  弾性波共振子
 60a、60b  櫛形電極
 61a、61b  電極指
 62a、62b  バスバー電極
 65  支持基板
 66  下部電極
 67  圧電体層
 68  上部電極
 90  アンテナ接続端子
 91、92、93  共通端子
 101、102、103、104、105、201、202  直列腕共振子
 110、210、310  入力端子
 120、320  出力端子
 151、152、153、154、251、253  並列腕共振子
 203  縦結合型フィルタ部
 540  密着層
 542  主電極層
Reference Signs List 1, 2 Multiplexer 11, 12, 21, 31, 32 Filter 21A, 21B Acoustic wave filter 41, 161 Inductor 50 Substrate 51 High acoustic velocity support substrate 52 Low acoustic velocity film 53 Piezoelectric film 54 IDT electrode 55, 58 Protective layer 57 Piezoelectric single crystal Substrate 60 Acoustic wave resonators 60a, 60b Comb electrodes 61a, 61b Electrode fingers 62a, 62b Busbar electrodes 65 Supporting substrate 66 Lower electrode 67 Piezoelectric layer 68 Upper electrode 90 Antenna connection terminal 91, 92, 93 Common terminal 101, 102, 103 , 104, 105, 201, 202 series arm resonators 110, 210, 310 input terminals 120, 320 output terminals 151, 152, 153, 154, 251, 253 parallel arm resonators 203 longitudinal coupling filter section 540 adhesion layer 542 main electrode layer

Claims (9)

  1.  第1通過帯域を有する第1弾性波フィルタと、
     前記第1通過帯域よりも周波数が高い第2通過帯域を有する第2弾性波フィルタと、を備え、
     前記第1弾性波フィルタの一端と前記第2弾性波フィルタの一端とが接続され、
     前記第2弾性波フィルタは、1以上の弾性波共振子を有し、
     前記1以上の弾性波共振子は、前記第2弾性波フィルタの前記一端と他端とを結ぶ直列腕経路上に配置され、前記1以上の弾性波共振子のうちで最も前記一端に近く接続された直列腕共振子を含み、
     前記直列腕共振子の反共振周波数は、前記第1通過帯域の高周波端の周波数以下である、
     マルチプレクサ。
    a first acoustic wave filter having a first passband;
    a second acoustic wave filter having a second passband having a higher frequency than the first passband,
    one end of the first elastic wave filter and one end of the second elastic wave filter are connected,
    The second elastic wave filter has one or more elastic wave resonators,
    The one or more elastic wave resonators are arranged on a series arm path connecting the one end and the other end of the second elastic wave filter, and are connected closest to the one end among the one or more elastic wave resonators. including a series arm resonator with
    The anti-resonance frequency of the series arm resonator is equal to or lower than the frequency of the high frequency end of the first passband.
    multiplexer.
  2.  前記直列腕共振子の反共振周波数は、前記第1通過帯域内に位置する、
     請求項1に記載のマルチプレクサ。
    an anti-resonance frequency of the series arm resonator is located within the first passband;
    A multiplexer according to claim 1.
  3.  さらに、
     前記第1弾性波フィルタの前記一端および前記第2弾性波フィルタの前記一端に接続された1以上の弾性波フィルタを備え、
     前記第1弾性波フィルタ、前記第2弾性波フィルタおよび前記1以上の弾性波フィルタの各通過帯域のうち、前記第1弾性波フィルタの前記第1通過帯域が最も低周波側に位置する、
     請求項1または2に記載のマルチプレクサ。
    moreover,
    One or more elastic wave filters connected to the one end of the first elastic wave filter and the one end of the second elastic wave filter,
    Among the passbands of the first elastic wave filter, the second elastic wave filter, and the one or more elastic wave filters, the first passband of the first elastic wave filter is located on the lowest frequency side,
    3. Multiplexer according to claim 1 or 2.
  4.  前記第1弾性波フィルタ、前記第2弾性波フィルタおよび前記1以上の弾性波フィルタの各通過帯域のうち、前記第2弾性波フィルタの前記第2通過帯域が最も高周波側に位置する、
     請求項3に記載のマルチプレクサ。
    Among the passbands of the first elastic wave filter, the second elastic wave filter, and the one or more elastic wave filters, the second passband of the second elastic wave filter is located on the highest frequency side,
    4. A multiplexer as claimed in claim 3.
  5.  さらに、
     前記第1弾性波フィルタの前記一端および前記第2弾性波フィルタの前記一端に接続された第1共通端子と、
     前記第1弾性波フィルタの他端に接続された第1入出力端子と、
     前記第2弾性波フィルタの他端に接続された第2入出力端子と、を備える、
     請求項1~4のいずれか1項に記載のマルチプレクサ。
    moreover,
    a first common terminal connected to the one end of the first elastic wave filter and the one end of the second elastic wave filter;
    a first input/output terminal connected to the other end of the first acoustic wave filter;
    a second input/output terminal connected to the other end of the second elastic wave filter;
    A multiplexer according to any one of claims 1-4.
  6.  さらに、
     前記第2通過帯域よりも周波数が高い第3通過帯域を有する第3弾性波フィルタと、
     インダクタンス素子と、を備え、
     前記インダクタンス素子の一端は、前記第1弾性波フィルタの前記一端および前記第2弾性波フィルタの前記一端に接続され、
     前記インダクタンス素子の他端は、前記第3弾性波フィルタの一端に接続されている、
     請求項1~5のいずれか1項に記載のマルチプレクサ。
    moreover,
    a third elastic wave filter having a third passband having a higher frequency than the second passband;
    and an inductance element,
    one end of the inductance element is connected to the one end of the first elastic wave filter and the one end of the second elastic wave filter;
    The other end of the inductance element is connected to one end of the third acoustic wave filter,
    A multiplexer according to any one of claims 1-5.
  7.  さらに、
     前記インダクタンス素子の前記他端および前記第3弾性波フィルタの前記一端に接続された第2共通端子と、
     前記第3弾性波フィルタの他端に接続された第3入出力端子と、を備える、
     請求項6に記載のマルチプレクサ。
    moreover,
    a second common terminal connected to the other end of the inductance element and the one end of the third elastic wave filter;
    a third input/output terminal connected to the other end of the third acoustic wave filter;
    7. Multiplexer according to claim 6.
  8.  第1通過帯域を有する第1弾性波フィルタと、
     前記第1通過帯域よりも周波数が高い第2通過帯域を有する第2弾性波フィルタと、を備え、
     前記第1弾性波フィルタおよび前記第2弾性波フィルタのそれぞれは、IDT(InterDigital Transducer)電極を有する弾性表面波共振子で構成され、
     前記第1弾性波フィルタの一端と前記第2弾性波フィルタの一端とが接続され、
     前記第2弾性波フィルタは、1以上の弾性表面波共振子を有し、
     前記1以上の弾性表面波共振子は、前記第2弾性波フィルタの前記一端と他端とを結ぶ直列腕経路上に配置され、前記1以上の弾性表面波共振子のうちで最も前記一端に近く接続された直列腕共振子を含み、
     前記直列腕共振子を構成する前記IDT電極の電極指ピッチは、前記第1弾性波フィルタに含まれる全ての弾性表面波共振子を構成する前記IDT電極の電極指ピッチのいずれよりも大きい、
     マルチプレクサ。
    a first acoustic wave filter having a first passband;
    a second acoustic wave filter having a second passband having a higher frequency than the first passband,
    Each of the first elastic wave filter and the second elastic wave filter is composed of a surface acoustic wave resonator having an IDT (InterDigital Transducer) electrode,
    one end of the first elastic wave filter and one end of the second elastic wave filter are connected,
    The second acoustic wave filter has one or more surface acoustic wave resonators,
    The one or more surface acoustic wave resonators are arranged on a series arm path connecting the one end and the other end of the second acoustic wave filter, and the one or more surface acoustic wave resonators are closest to the one end. including closely connected series arm resonators,
    The electrode finger pitch of the IDT electrodes forming the series arm resonator is greater than any of the electrode finger pitches of the IDT electrodes forming all the surface acoustic wave resonators included in the first acoustic wave filter.
    multiplexer.
  9.  第1通過帯域を有する第1弾性波フィルタと、
     前記第1通過帯域よりも周波数が高い第2通過帯域を有する第2弾性波フィルタと、を備え、
     前記第1弾性波フィルタおよび前記第2弾性波フィルタのそれぞれは、
     支持基板と、前記支持基板の一方面上に形成された第1電極および第2電極と、前記第1電極と前記第2電極との間に形成された圧電体層と、を有するバルク弾性波共振子で構成され、
     前記第1弾性波フィルタの一端と前記第2弾性波フィルタの一端とが接続され、
     前記第2弾性波フィルタは、1以上のバルク弾性波共振子を有し、
     前記1以上のバルク弾性波共振子は、前記第2弾性波フィルタの前記一端と他端とを結ぶ直列腕経路上に配置され、前記1以上のバルク弾性波共振子のうちで最も前記一端に近く接続された直列腕共振子を含み、
     前記直列腕共振子を構成する前記圧電体層は、前記第1弾性波フィルタに含まれる全てのバルク弾性波共振子を構成する前記圧電体層のいずれよりも厚い、
     マルチプレクサ。
    a first acoustic wave filter having a first passband;
    a second acoustic wave filter having a second passband having a higher frequency than the first passband,
    Each of the first elastic wave filter and the second elastic wave filter,
    A bulk acoustic wave including a support substrate, a first electrode and a second electrode formed on one surface of the support substrate, and a piezoelectric layer formed between the first electrode and the second electrode. Consists of a resonator,
    one end of the first elastic wave filter and one end of the second elastic wave filter are connected,
    The second elastic wave filter has one or more bulk acoustic wave resonators,
    The one or more bulk acoustic wave resonators are arranged on a series arm path connecting the one end and the other end of the second second filter, and the one or more bulk acoustic wave resonators are closest to the one end. including closely connected series arm resonators,
    The piezoelectric layer forming the series arm resonator is thicker than any of the piezoelectric layers forming all the bulk acoustic wave resonators included in the first acoustic wave filter,
    multiplexer.
PCT/JP2022/038441 2021-10-22 2022-10-14 Multiplexer WO2023068206A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-172941 2021-10-22
JP2021172941 2021-10-22

Publications (1)

Publication Number Publication Date
WO2023068206A1 true WO2023068206A1 (en) 2023-04-27

Family

ID=86059299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/038441 WO2023068206A1 (en) 2021-10-22 2022-10-14 Multiplexer

Country Status (1)

Country Link
WO (1) WO2023068206A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019188007A1 (en) * 2018-03-28 2019-10-03 株式会社村田製作所 Multiplexer, high-frequency front end circuit, communication device, and elastic wave filter
JP2019220877A (en) * 2018-06-21 2019-12-26 株式会社村田製作所 Multiplexer
WO2021085609A1 (en) * 2019-10-31 2021-05-06 株式会社村田製作所 Acoustic wave filter
WO2021177108A1 (en) * 2020-03-06 2021-09-10 京セラ株式会社 Elastic wave resonator, elastic wave filter, demultiplexer, and communication device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019188007A1 (en) * 2018-03-28 2019-10-03 株式会社村田製作所 Multiplexer, high-frequency front end circuit, communication device, and elastic wave filter
JP2019220877A (en) * 2018-06-21 2019-12-26 株式会社村田製作所 Multiplexer
WO2021085609A1 (en) * 2019-10-31 2021-05-06 株式会社村田製作所 Acoustic wave filter
WO2021177108A1 (en) * 2020-03-06 2021-09-10 京セラ株式会社 Elastic wave resonator, elastic wave filter, demultiplexer, and communication device

Similar Documents

Publication Publication Date Title
CN109600125B (en) Filter
CN107124152B (en) Multiplexer, transmission device, and reception device
KR102429897B1 (en) Multiplexers, high-frequency front-end circuits and communication devices
WO2018003273A1 (en) Multiplexer, high-frequency front end circuit, and communication device
KR20190019022A (en) Multiplexer
US10193529B2 (en) Elastic wave device
JP6870684B2 (en) Multiplexer
WO2019017422A1 (en) Multiplexer, high-frequency front end circuit, and communication device
US10958241B2 (en) Extractor
CN111527699B (en) Elastic wave filter
US10715111B2 (en) Elastic wave filter device and duplexer
KR102431434B1 (en) Filter devices and multiplexers
US20220239280A1 (en) Acoustic wave filter
US11855605B2 (en) Acoustic wave filter device and multiplexer
CN109217837B (en) Multiplexer
JP2020048067A (en) Extractor
WO2023068206A1 (en) Multiplexer
JP2022075959A (en) Acoustic wave filter
CN110809858B (en) multiplexer
WO2023090238A1 (en) Multiplexer
WO2023054301A1 (en) Elastic wave filter device and multiplexer
WO2023074373A1 (en) Elastic wave resonator, elastic wave filter device, and multiplexer
WO2023282328A1 (en) Acoustic wave element, acoustic wave filter device, and multiplexer
WO2023120264A1 (en) High frequency circuit and communication apparatus
US20240106414A1 (en) Multiplexer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22883510

Country of ref document: EP

Kind code of ref document: A1