JP2022022959A - Method of manufacturing copper cylinder type target for thin film coating using sputtering method through hot extrusion technique - Google Patents

Method of manufacturing copper cylinder type target for thin film coating using sputtering method through hot extrusion technique Download PDF

Info

Publication number
JP2022022959A
JP2022022959A JP2021010435A JP2021010435A JP2022022959A JP 2022022959 A JP2022022959 A JP 2022022959A JP 2021010435 A JP2021010435 A JP 2021010435A JP 2021010435 A JP2021010435 A JP 2021010435A JP 2022022959 A JP2022022959 A JP 2022022959A
Authority
JP
Japan
Prior art keywords
copper
hot extrusion
grain size
thin film
crystal grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021010435A
Other languages
Japanese (ja)
Other versions
JP7309217B2 (en
Inventor
テカクーンハキ,ヴァチャクラン
Vachakran Tekacoonhaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oriental Copper Co Ltd
Oriental Copper CoLtd
Original Assignee
Oriental Copper Co Ltd
Oriental Copper CoLtd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oriental Copper Co Ltd, Oriental Copper CoLtd filed Critical Oriental Copper Co Ltd
Publication of JP2022022959A publication Critical patent/JP2022022959A/en
Application granted granted Critical
Publication of JP7309217B2 publication Critical patent/JP7309217B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Extrusion Of Metal (AREA)

Abstract

To provide a manufacturing method for manufacturing a copper cylinder type target.SOLUTION: Manufacture of a copper cylinder type target comprises: casting a copper ingot to form a rod; and performing hot extrusion and cold drawing on the obtained copper rod without any heat treatment. For prevention against crystal grain growth of copper, it is important to control a cooling speed by immediately dipping an extruded copper target in a water bath. Preferable conditions for manufacture of copper crystal grains of 50-150 μm in grain size are that: (a) a temperature of the copper ingot before the hot extrusion is 800-900°C, and (b) a hot extrusion speed is 5-20 mm/sec. The copper ingot after the hot extrusion becomes a copper target material, which is reduced in external diameter and internal diameter through cold drawing after the extrusion, and has surface hardness less than 100 Vickers hardness. In the method, the copper cylinder type target can be manufactured which is used suitably as a copper cylinder type target for thin film coating using a sputtering technique, and an obtained thin film has high quality.SELECTED DRAWING: Figure 1

Description

本発明は、冶金学の分野に関し、特に、スパッタリング法を使用した薄膜コーティングのための銅円筒型ターゲットの熱間押出技術からの製造の分野に関する。 The present invention relates to the field of metallurgy, in particular to the field of manufacture from hot extrusion techniques for copper cylindrical targets for thin film coating using sputtering.

現在、大部分の表面めっきは、電気めっきなどの化学技術を好む。しかし、かかる技術には、完成した表面の品質が低いことや環境問題など、いくつかの問題がある。そのため、真空コーティングなどの新たな表面めっき技術が開発されてきた。真空コーティング技術は真空中で実施され、環境問題を生じ得る化学物質を必要としない。更に、真空コーティング技術は、「薄膜」と呼ばれる非常に薄いコーティング表面を作製できる。通常、膜は、その厚さが5μm以下の場合に「薄膜」と呼ばれる。 Currently, most surface plating prefers chemical techniques such as electroplating. However, such technology has some problems such as poor quality of the finished surface and environmental problems. Therefore, new surface plating technologies such as vacuum coating have been developed. Vacuum coating technology is performed in vacuum and does not require chemicals that can cause environmental problems. In addition, vacuum coating techniques can produce very thin coated surfaces called "thin films". Usually, a film is called a "thin film" when its thickness is 5 μm or less.

薄膜真空コーティングプロセスは、化学的プロセスと物理的プロセスの2種類に分類できる。
1)薄膜コーティングの化学的プロセスは、気相中での化学物質の分解及びコーティングしようとする表面上での新たな種の形成を利用する。このプロセスの例は、プラズマCVD及びレーザーCVDである。
2)薄膜コーティングの物理的プロセスは、コーティング材の表面からコーティング材の原子をエッチングすることを利用する。遊離コーティング原子は拡散し、コーティングしようとする材料の表面に結合する。このプロセスの例は、蒸発及びスパッタリングである。
Thin film vacuum coating processes can be classified into two types: chemical processes and physical processes.
1) The chemical process of thin film coating utilizes the decomposition of chemicals in the gas phase and the formation of new species on the surface to be coated. Examples of this process are plasma CVD and laser CVD.
2) The physical process of thin film coating utilizes etching of the atoms of the coating material from the surface of the coating material. Free coating atoms diffuse and bond to the surface of the material to be coated. Examples of this process are evaporation and sputtering.

スパッタリング技術は、研究及び薄膜製品開発に好適な薄膜コーティング技術である。この技術の利点は、金属、ガラス、合金、セラミックス及び半導体などのいくつかの薄膜材料に応用できること、薄膜の厚さを精密に制御できること、及び薄膜の特性を様々に変更できることである。産業界がスパッタリング技術を活用している例は、マイクロエレクトロニクス、半導体、導電性フィルム、保護フィルム、ハードディスクドライブ、自動車、建築用ガラスパネル、光ファイバー、太陽電池、テレビ画面、及びモバイルデバイス画面である。 Sputtering technology is a thin film coating technology suitable for research and thin film product development. The advantages of this technique are that it can be applied to several thin film materials such as metals, glass, alloys, ceramics and semiconductors, that the thickness of the thin film can be precisely controlled, and that the properties of the thin film can be varied. Examples of industry utilization of sputtering technology are microelectronics, semiconductors, conductive films, protective films, hard disk drives, automobiles, architectural glass panels, optical fibers, solar cells, television screens, and mobile device screens.

真空スパッタリング技術の原理は、コーティングチャンバ内に1×10-6mbar以下の圧力の真空を作ることから始まる。その後、アルゴンなどの不活性ガスを、所定の圧力までチャンバ内に充填する。スパッタリングは、磁場を用いてアルゴン分子のイオンを生成することで始まり、生成したイオンを、電場を用いて方向づけしてコーティング材(又はターゲット材)の表面に衝突させることで、コーティング材の表面上の原子がコーティング材の表面から除去されて基材の表面へと移動する。次いで、コーティング材の原子は、図1~4に示すように、基材の表面上に付着して、基材の表面上に薄膜を生じる。 The principle of vacuum sputtering technology begins with creating a vacuum with a pressure of 1 x 10-6 mbar or less in the coating chamber. The chamber is then filled with an inert gas such as argon to a predetermined pressure. Sputtering begins by generating ions of argon molecules using a magnetic field, and the generated ions are directed using an electric field to collide with the surface of the coating material (or target material) on the surface of the coating material. Atoms are removed from the surface of the coating material and migrate to the surface of the substrate. Then, as shown in FIGS. 1 to 4, the atoms of the coating material adhere to the surface of the base material to form a thin film on the surface of the base material.

1985年のスパッタリング技術では、半導体特性を有する薄膜の場合、アルミニウムの抵抗は最も低くはなかったが、ターゲット材としてアルミニウムを使用することが好まれた。これは、当時のこの技術の限界によるものである。しかし、1980年代のIBMの開発後は、高速、精密かつ十分に開発された技術により、ターゲット材として銅及び銀の使用が増えて現在に至る。これは、これらの金属は両方ともアルミニウムよりも電気抵抗が低く、電子移動抵抗性に優れるためである。得られる薄膜の品質は、チャンバ内圧力、ターゲット材表面のガスイオン衝突数、ガスの種類などのスパッタリング装置の操作条件にも依存することが知られている。更に、薄膜の品質は、ターゲット材の特性にも依存し、これは品質又はスパッタリング工程中の欠陥の生成に直接影響する。かかる特性は:
1)ターゲット材の純度
2)ターゲット材に含まれる酸化物(例えば、アルミニウムターゲットの場合Al、銅ターゲットの場合CuO)などの誘電体の量。
3)気孔率、例えば、スパッタリング工程中にガスから発生した空隙の量。
4)ターゲット材の結晶粒径
5)ターゲット材の表面粗さ
6)ターゲット材の機械的強度又は硬度
In the 1985 sputtering technique, the resistance of aluminum was not the lowest for thin films with semiconductor properties, but it was preferred to use aluminum as the target material. This is due to the limitations of this technology at the time. However, after the development of IBM in the 1980s, the use of copper and silver as target materials has increased due to high-speed, precise and well-developed technology. This is because both of these metals have lower electrical resistance than aluminum and have excellent electron transfer resistance. It is known that the quality of the obtained thin film also depends on the operating conditions of the sputtering apparatus such as the pressure in the chamber, the number of gas ion collisions on the surface of the target material, and the type of gas. In addition, the quality of the thin film also depends on the properties of the target material, which directly affects the quality or the generation of defects during the sputtering process. Such characteristics are:
1) Purity of the target material 2) Amount of dielectric such as oxides contained in the target material (for example, Al 2 O 3 for an aluminum target and Cu O for a copper target).
3) Porosity, eg, the amount of voids generated from the gas during the sputtering process.
4) Crystal grain size of the target material 5) Surface roughness of the target material 6) Mechanical strength or hardness of the target material

オリエンタルカッパー社(Oriental Copper Co.,Ltd)は、2017年9月29日以降、特許「Method for manufacturing copper cylindrical target from hot extrusion technique for thin film coating using sputtering method」をタイ国知的財産局に出願している。この出願は、平板状ターゲット材の形態のスパッタリングターゲットを開示している。しかし、現在、別のスパッタリングターゲットが薄膜コーティングに使用され始めている。かかるターゲットは円筒型の形状を有し、「円筒型ターゲット材」と呼ばれる。円筒型ターゲット材の価格は平板状ターゲット材よりも高いが、円筒型ターゲット材は、材料利用率が高い(すなわち、ターゲット材1つ当たり約80%であるが、平板状ターゲット材はわずか35%)という利点を有する。更に円筒型ターゲット材の単位重量当たりの価格も、平板状ターゲット材より低い。表1は、クロム製の平板状ターゲット材と円筒型ターゲット材の比較を示す。上記の理由により、発明者らは、スパッタリング技術を使用した薄膜コーティングに好適な円筒型材料を作製するための研究をより多く行ってきた。 Oriental Copper Co., Ltd. (Oriental Copper Co., Ltd.) has been working on the patent "Manufacturing copper cylindrical corpper cylindrical cult is doing. This application discloses a sputtering target in the form of a flat plate target material. However, other sputtering targets are now beginning to be used for thin film coatings. Such a target has a cylindrical shape and is called a "cylindrical target material". The price of the cylindrical target material is higher than that of the flat plate target material, but the cylindrical target material has a high material utilization rate (that is, about 80% per target material, but the flat plate target material is only 35%. ). Furthermore, the price per unit weight of the cylindrical target material is also lower than that of the flat plate target material. Table 1 shows a comparison between a flat plate target material made of chrome and a cylindrical target material. For the above reasons, the inventors have conducted more research to produce cylindrical materials suitable for thin film coatings using sputtering techniques.

Cr平板状ターゲット材と円筒型ターゲット材の比較 Comparison of Cr flat plate target material and cylindrical target material

Figure 2022022959000002
Figure 2022022959000002

過去には、銅円筒型ターゲットの特性を研究し、要求を満たすように銅円筒型ターゲットの特性に影響する、又は特性を制御できる製造方法及び条件を見出そうとした研究が数件ある。 In the past, there have been several studies that have studied the properties of copper cylindrical targets and have sought to find manufacturing methods and conditions that affect or control the properties of copper cylindrical targets to meet their requirements.

例えば、特許文献1(古河電気工業株式会社)は、無酸素(OF)銅から製造した円筒状スパッタリングターゲット材を開示している。その製造工程は、以下のステップを有する:無酸素銅(Cu=99.995%)→熱間加工(圧延/押出工程)→焼鈍(温度=740~810℃)→引抜(冷間加工%=9.7~17.0%)。得られたターゲット材の結晶粒径は、90~140μmの範囲であった。この特許は、140μm未満の結晶粒径は、過度のスパッタリングを起こさず、スパッタリングされた原子がより均一な拡散方向を有すると主張している。 For example, Patent Document 1 (Furukawa Electric Co., Ltd.) discloses a cylindrical sputtering target material manufactured from oxygen-free (OF) copper. The manufacturing process has the following steps: oxygen-free copper (Cu = 99.995%) → hot working (rolling / extrusion process) → annealing (temperature = 740 to 810 ° C) → drawing (cold working% =) 9.7 to 17.0%). The crystal grain size of the obtained target material was in the range of 90 to 140 μm. The patent claims that a crystal grain size of less than 140 μm does not cause excessive sputtering and that the sputtered atoms have a more uniform diffusion direction.

特許文献2(日立電線株式会社)及び特許文献3(株式会社SHカッパープロダクツ)は、無酸素銅から製造した外径165mm、肉厚25mmの円筒型スパッタリングターゲット材の製造方法を開示している。この製造方法は、以下のステップを有する:無酸素銅(Cu=99.9又は99.99%)→熱間押出→拡管引抜→熱処理。いずれの研究も、拡管率を10%に保ちながら熱処理温度を400~650℃で変えること、及び熱処理温度を400℃に保ちながら拡管率を3~20%で変えることによって、熱処理温度及び拡管率の影響を研究した。その結果、低い熱処理温度(400℃)はターゲット材の割れを引き起こし、高い熱処理温度(600℃)は、銅の結晶粒が広く異なる粒径を有する原因となることが見出された。低い拡管率(3%)は、銅の結晶粒が広く異なる粒径を有する原因となるが、高い拡管率(20%)はターゲット材の割れを引き起こす。したがって、両研究から、次の最適条件が画定された:熱処理温度=450~600℃で180分、及び拡管率5~15%。得られた銅結晶粒径は50~100μmで、ターゲット材に割れがなかった。更に、両研究から、100μm未満の銅結晶粒径はスパッタリング工程中の異常放電の数が少ないという別の利点を有することも主張された。 Patent Document 2 (Hitachi Electric Wire Co., Ltd.) and Patent Document 3 (SH Copper Products Co., Ltd.) disclose a method for manufacturing a cylindrical sputtering target material having an outer diameter of 165 mm and a wall thickness of 25 mm, which is manufactured from oxygen-free copper. This manufacturing method has the following steps: oxygen-free copper (Cu = 99.9 or 99.99%) → hot extrusion → tube expansion drawing → heat treatment. In both studies, the heat treatment temperature and the tube expansion rate were changed by changing the heat treatment temperature at 400 to 650 ° C while keeping the tube expansion rate at 10%, and by changing the tube expansion rate at 3 to 20% while keeping the heat treatment temperature at 400 ° C. The effect of was studied. As a result, it was found that a low heat treatment temperature (400 ° C.) causes cracking of the target material, and a high heat treatment temperature (600 ° C.) causes the copper crystal grains to have widely different particle sizes. A low tube expansion rate (3%) causes copper grains to have widely different grain sizes, while a high tube expansion rate (20%) causes cracking of the target material. Therefore, from both studies, the following optimal conditions were defined: heat treatment temperature = 450-600 ° C. for 180 minutes, and tube expansion rate 5-15%. The obtained copper crystal grain size was 50 to 100 μm, and the target material was not cracked. Furthermore, both studies have also argued that copper crystal grain sizes less than 100 μm have the additional advantage of having a smaller number of anomalous discharges during the sputtering process.

特許文献4(三菱マテリアル株式会社)及び特許文献5(三菱マテリアル株式会社)は、外径140~180mm、内径110~135mm、長さ1,000~4,000mmを有する円筒型スパッタリングターゲットの製造方法を開示している。この製造方法は以下のステップを有する:無酸素銅(連続鋳造工程からの円筒状鋳塊は、銅結晶粒径が20mm以下である)→拡管引抜→熱処理(温度=400~900℃、15~120分)。拡管引抜ステップは、銅の結晶粒径を均一に分布させるために繰り返され得る。外径は0%~30%拡がり、断面積は-10%~+10%の範囲内で変化した。銅又は銅合金を出発材料として使用した場合、外表面周辺領域における銅の結晶粒径は、10~150μmの範囲であった。外表面領域における無酸素銅の銅結晶粒径は、105及び146μmであった。平均粒径の2倍の粒径を有する結晶粒が占める面積割合が総面積の25%未満の場合、スパッタリング工程中の異常放電の数が低減された。 Patent Document 4 (Mitsubishi Materials Corporation) and Patent Document 5 (Mitsubishi Materials Corporation) are methods for manufacturing a cylindrical sputtering target having an outer diameter of 140 to 180 mm, an inner diameter of 110 to 135 mm, and a length of 1,000 to 4,000 mm. Is disclosed. This manufacturing method has the following steps: oxygen-free copper (cylindrical ingots from continuous casting steps have a copper crystal grain size of 20 mm or less) → tube expansion drawing → heat treatment (temperature = 400-900 ° C, 15- 120 minutes). The expansion tube extraction step can be repeated to evenly distribute the crystal grain size of copper. The outer diameter expanded by 0% to 30%, and the cross-sectional area varied within the range of -10% to + 10%. When copper or a copper alloy was used as the starting material, the crystal grain size of copper in the outer surface peripheral region was in the range of 10 to 150 μm. The copper crystal grain size of oxygen-free copper in the outer surface region was 105 and 146 μm. When the area ratio occupied by the crystal grains having a particle size twice the average particle size was less than 25% of the total area, the number of abnormal discharges during the sputtering process was reduced.

特許文献6(三菱マテリアル株式会社)及び特許文献7(三菱マテリアル株式会社)は、外径140~180mm、内径110~135mm、長さ1,000~4,000mmを有する円筒型スパッタリングターゲット材の製造方法を開示している。この製造方法は以下のステップを有する:無酸素銅(異常放電を防止するため、(Si+C)元素の量が10ppm未満の円柱状鋳塊)→熱間加工(圧延/押出加工により結晶粒径20mm以下の銅を製造)→拡管引抜→熱処理(温度=400~900℃、15~120分)。拡管引抜ステップは、銅の結晶粒径を均一に分布させるために繰り返され得る。肉厚は15%~25%大きくなり、外径は0%~30%拡がり、内径は0~20%拡がった。銅又は銅合金を出発材料として使用した場合、外表面周辺領域における銅の結晶粒径は、10~150μmの範囲であった。外表面領域における無酸素銅の銅結晶粒径は、59、84及び103μmであった。平均粒径の2倍の粒径を有する結晶粒が占める割合が総面積の20%未満の場合、スパッタリング工程中の異常放電の数が低減された。 Patent Document 6 (Mitsubishi Materials Corporation) and Patent Document 7 (Mitsubishi Materials Corporation) manufacture cylindrical sputtering target materials having an outer diameter of 140 to 180 mm, an inner diameter of 110 to 135 mm, and a length of 1,000 to 4,000 mm. The method is disclosed. This manufacturing method has the following steps: oxygen-free copper (cylindrical ingot with (Si + C) element content less than 10 ppm to prevent abnormal discharge) → hot working (rolling / extrusion to crystal grain size 20 mm) Manufacture the following copper) → Rolling out tube → Heat treatment (temperature = 400-900 ° C, 15-120 minutes). The expansion tube extraction step can be repeated to evenly distribute the crystal grain size of copper. The wall thickness increased by 15% to 25%, the outer diameter increased by 0% to 30%, and the inner diameter increased by 0 to 20%. When copper or a copper alloy was used as the starting material, the crystal grain size of copper in the outer surface peripheral region was in the range of 10 to 150 μm. The copper crystal grain size of oxygen-free copper in the outer surface region was 59, 84 and 103 μm. When the proportion of crystal grains having a particle size twice the average particle size was less than 20% of the total area, the number of abnormal discharges during the sputtering process was reduced.

従先行技術調査から、銅円筒型ターゲット形成のための製造方法は、表2に示すように大部分が鋳造(Cu-OF)→熱間加工(圧延/押出)→冷間加工(引抜)→熱処理の工程を含むことがわかった。高品質のコーティング又は薄膜を高品質のターゲット材から作製するためには、スパッタリング工程中の異常放電の問題を低減するために、銅結晶粒の粒径が均一かつ150μm未満であることが必要である。しかし、従来技術は、常に、用途に適するように銅の微細構造を変えるための熱処理ステップを含んでいた。本発明は、鋳造(Cu-OF)→熱間加工(押出)→冷間加工(引抜)のステップにより、熱処理を必要とすることなく、スパッタリング法による薄膜コーティング塗布に適した微細構造を維持しながら銅円筒型ターゲットを作製することを目的とし、更には製造コストを削減する。 From the prior art search, most of the manufacturing methods for forming copper cylindrical targets are casting (Cu-OF) → hot working (rolling / extrusion) → cold working (drawing) → It was found to include a heat treatment step. In order to produce a high quality coating or thin film from a high quality target material, the grain size of the copper crystal grains must be uniform and less than 150 μm in order to reduce the problem of abnormal discharge during the sputtering process. be. However, prior art has always included a heat treatment step to alter the copper microstructure to suit the application. The present invention maintains a microstructure suitable for thin film coating application by the sputtering method without the need for heat treatment by the steps of casting (Cu-OF) → hot working (extrusion) → cold working (pulling). However, the purpose is to produce a copper cylindrical target, and further reduce the manufacturing cost.

過去の研究の円筒型ターゲットの銅結晶粒径 Copper crystal grain size of cylindrical targets in past studies

Figure 2022022959000003
Figure 2022022959000003

特開2012-111994号公報Japanese Unexamined Patent Publication No. 2012-111994 特開2013-057112号公報Japanese Unexamined Patent Publication No. 2013-057112 中国特許第102994962号明細書Chinese Patent No. 1029949462 特開2015-203125号公報Japanese Unexamined Patent Publication No. 2015-203125 米国特許出願公開第2016-0194749号明細書U.S. Patent Application Publication No. 2016-0194479 米国特許出願公開第2016-0203959号明細書U.S. Patent Application Publication No. 2016-0203959 米国特許第9748079号明細書U.S. Pat. No. 9,748,079

したがって、本発明者であるオリエンタルカッパー社のVachakarn Techachunhakitは、熱間押出技術を使用して、熱処理ステップを必要とすることなく、銅結晶粒径の均一性を維持するとともに、粒径をスパッタリング法による薄膜コーティング塗布に適した50~150μmの範囲としながら銅円筒型ターゲットを作製するための製造方法を開発した。 Therefore, the inventor, Vachakarn Techachunhakit of Oriental Copper Co., Ltd., uses a hot extrusion technique to maintain the uniformity of the copper crystal grain size and to sputter the grain size without the need for a heat treatment step. We have developed a manufacturing method for producing a copper cylindrical target with a range of 50 to 150 μm suitable for applying a thin film coating.

文献調査から、高品質の薄膜は、均一な結晶粒径を有する150μm未満のターゲットに依拠すると結論づけることができる。したがって、本発明の目的は、スパッタリング法による薄膜コーティング塗布のための銅円筒型ターゲットを、高品質の薄膜を製造するために銅結晶粒径を50~150μmの範囲に制御できる熱間押出から製造することである。調査した銅結晶粒の粒径及び均一性に影響を有する熱間押出工程のパラメータは:
1)熱間押出工程の前の鋳塊温度
2)押出速度(メインラム速度)
である。
From literature research, it can be concluded that high quality thin films rely on targets with uniform grain sizes of less than 150 μm. Therefore, an object of the present invention is to manufacture a copper cylindrical target for coating a thin film coating by a sputtering method from hot extrusion in which the copper crystal grain size can be controlled in the range of 50 to 150 μm in order to produce a high quality thin film. It is to be. The parameters of the hot extrusion process that affect the grain size and uniformity of the copper grains investigated are:
1) Ingot temperature before hot extrusion process 2) Extrusion speed (main ram speed)
Is.

熱間押出工程中の押出ダイ後方の銅の急速な冷却速度は、図5に示すように、押出した銅を直ちに水に通すこと(又は水中押出)によって達成される。これは、銅の結晶粒成長を防止するための重要な技術である。水の温度は40℃を超えるべきではない。その後直ちに、図6の示すように、銅バーを冷間引抜工程に供して、51~100ビッカース硬さの範囲の硬度を有する銅ターゲットを作製する。 The rapid cooling rate of copper behind the extrusion die during the hot extrusion process is achieved by immediately passing the extruded copper through water (or underwater extrusion), as shown in FIG. This is an important technique for preventing the growth of copper grains. The temperature of the water should not exceed 40 ° C. Immediately thereafter, as shown in FIG. 6, the copper bar is subjected to a cold drawing step to produce a copper target having a hardness in the range of 51-100 Vickers hardness.

表面コーティング用スパッタリングシステムを示す図である。It is a figure which shows the sputtering system for surface coating. 物理的スパッタリング技術を示す図である。It is a figure which shows the physical sputtering technique. スパッタリング装置を示す図である。It is a figure which shows the sputtering apparatus. 薄膜コーティング中のプラズマ発生を示す図である。It is a figure which shows the plasma generation in a thin film coating. 水中熱間押出システムを示す図である。It is a figure which shows the underwater hot extrusion system. 冷間引抜工程を示す図である。It is a figure which shows the cold drawing process. 実験の位置を示す図である。It is a figure which shows the position of an experiment. 銅結晶粒径測定の位置を示す図である。It is a figure which shows the position of the copper crystal grain size measurement.

本発明の銅円筒型ターゲットを作製するための製造方法は、銅鋳塊(Cu純度99.99%以上及び酸素5ppm未満)を鋳造して直径12インチのロッドを形成するステップ、その後得られた銅ロッドを熱間押出(これは銅結晶粒の粒径及び均一性の制御において重要である)のステップを含む。調査するパラメータは:
1)熱間押出工程の前の鋳塊温度(800、850、及び900℃)
2)ダイを通した銅ロッドの押出に使用した油圧シリンダーの速度から測定した押出速度(5、10、及び20mm/秒)
である。
The manufacturing method for producing the copper cylindrical target of the present invention was obtained by casting a copper ingot (Cu purity of 99.99% or more and oxygen of less than 5 ppm) to form a rod having a diameter of 12 inches. The step of hot extrusion of the copper rod (which is important in controlling the particle size and uniformity of the copper crystal grains) is included. The parameters to investigate are:
1) Ingot temperature (800, 850, and 900 ° C.) before the hot extrusion process.
2) Extrusion speed (5, 10, and 20 mm / sec) measured from the speed of the hydraulic cylinder used to extrude the copper rod through the die.
Is.

制御されるパラメータは、銅の冷却速度である。通常、銅が熱間押出工程で処理された後、「動的再結晶」と呼ばれる現象から、銅結晶粒径が小さくなる。しかし、冷却速度を制御することなく、銅バーを周囲雰囲気中で自然冷却した場合、銅結晶粒径をより大きくし、結晶粒径の不均一性を生じる「結晶粒成長」と呼ばれる次のステップへと再結晶化が継続又は発展するには、わずか10秒の時間で十分である。 The parameter to be controlled is the cooling rate of copper. Usually, after copper is processed in a hot extrusion process, the copper grain size becomes smaller due to a phenomenon called "dynamic recrystallization". However, when the copper bar is naturally cooled in the ambient atmosphere without controlling the cooling rate, the next step called "grain growth" is to increase the grain size of the copper and cause non-uniformity of the grain size. Only 10 seconds is sufficient for the recrystallization to continue or develop.

したがって、本発明は、銅バーの冷却速度を、40℃以下の温度の冷却水を用いて制御する。押し出した銅ロッドを直ちに、ダイ後方に配置された冷却水浴に10秒以内に浸漬して、銅の結晶粒成長を防止する。 Therefore, in the present invention, the cooling rate of the copper bar is controlled by using cooling water having a temperature of 40 ° C. or lower. Immediately immerse the extruded copper rod in a cooling water bath located behind the die within 10 seconds to prevent copper grain growth.

熱間押出ステップの後、銅ロッドを冷間引抜ステップに供して、決められた外径及び内径を有し、使用前の表面硬度が100ビッカース硬さを超えない銅ターゲットを作製する。この研究の詳細を以下に示す。 After the hot extrusion step, the copper rod is subjected to a cold drawing step to produce a copper target having a determined outer diameter and inner diameter and having a surface hardness of no more than 100 Vickers hardness before use. Details of this study are shown below.

直径12インチ、長さ550mmの銅鋳塊を800、850又は900℃に加熱する。次いで、鋳塊を押出ダイに通して押出して、外径155mm、内径100mmを有する銅ロッドを形成する。高温の銅ロッドを、直ちに、ダイの後方に配置した水浴に浸漬する。押出速度を、表3に示すように、5、10又は20mm/秒に設定する。 A copper ingot 12 inches in diameter and 550 mm in length is heated to 800, 850 or 900 ° C. The ingot is then extruded through an extrusion die to form a copper rod with an outer diameter of 155 mm and an inner diameter of 100 mm. Immediately immerse the hot copper rod in a water bath located behind the die. The extrusion rate is set to 5, 10 or 20 mm / sec as shown in Table 3.

銅ロッドの温度及び押出速度 Copper rod temperature and extrusion speed

Figure 2022022959000004
Figure 2022022959000004

次いで、冷却した銅ロッドを、引抜ダイを使用した冷間引抜工程に供し、外径及び内径がそれぞれ150mm及び95mmの銅ロッドを作製する。冷間引抜工程から得られた銅ロッドを、図7に示すように、頭部、中央部、及び尾部で試験する。 Next, the cooled copper rod is subjected to a cold drawing step using a drawing die to prepare copper rods having an outer diameter and an inner diameter of 150 mm and 95 mm, respectively. Copper rods obtained from the cold drawing step are tested at the head, center and tail as shown in FIG.

銅結晶粒径の試験は、内径から外径まで測定した半径方向に5箇所の同じ位置で実施した。図8に示すように、位置1は、内表面に近い位置であり、位置2、3、4及び5はそれぞれ内表面から離れている。位置5は外表面に最も近い。 The copper crystal grain size test was carried out at five same positions in the radial direction measured from the inner diameter to the outer diameter. As shown in FIG. 8, position 1 is a position close to the inner surface, and positions 2, 3, 4 and 5 are separated from the inner surface, respectively. Position 5 is closest to the outer surface.

異なる押出条件を使用して得られた銅結晶粒径の試験を、表4~30に報告し、表31にまとめる。 Tests of copper crystal grain size obtained using different extrusion conditions are reported in Tables 4-30 and summarized in Table 31.

銅の結晶粒径、温度800℃、熱間押出速度5mm/秒、頭部 Copper crystal grain size, temperature 800 ° C, hot extrusion speed 5 mm / sec, head

Figure 2022022959000005
Figure 2022022959000005

銅の結晶粒径、温度800℃、熱間押出速度5mm/秒、中央部 Copper crystal grain size, temperature 800 ° C, hot extrusion speed 5 mm / sec, central part

Figure 2022022959000006
Figure 2022022959000006

銅の結晶粒径、温度800℃、熱間押出速度5mm/秒、尾部 Copper crystal grain size, temperature 800 ° C, hot extrusion speed 5 mm / sec, tail

Figure 2022022959000007
Figure 2022022959000007

銅の結晶粒径、温度800℃、熱間押出速度10mm/秒、頭部 Copper crystal grain size, temperature 800 ° C, hot extrusion speed 10 mm / sec, head

Figure 2022022959000008
Figure 2022022959000008

銅の結晶粒径、温度800℃、熱間押出速度10mm/秒、中央部 Copper crystal grain size, temperature 800 ° C, hot extrusion speed 10 mm / sec, central part

Figure 2022022959000009
Figure 2022022959000009

銅の結晶粒径、温度800℃、熱間押出速度10mm/秒、尾部 Copper crystal grain size, temperature 800 ° C, hot extrusion speed 10 mm / sec, tail

Figure 2022022959000010
Figure 2022022959000010

銅の結晶粒径、温度800℃、熱間押出速度20mm/秒、頭部 Copper crystal grain size, temperature 800 ° C, hot extrusion speed 20 mm / sec, head

Figure 2022022959000011
Figure 2022022959000011

銅の結晶粒径、温度800℃、熱間押出速度20mm/秒、中央部 Copper crystal grain size, temperature 800 ° C, hot extrusion speed 20 mm / sec, central part

Figure 2022022959000012
Figure 2022022959000012

銅の結晶粒径、温度800℃、熱間押出速度20mm/秒、尾部 Copper crystal grain size, temperature 800 ° C, hot extrusion speed 20 mm / sec, tail

Figure 2022022959000013
Figure 2022022959000013

銅の結晶粒径、温度850℃、熱間押出速度5mm/秒、頭部 Copper crystal grain size, temperature 850 ° C, hot extrusion speed 5 mm / sec, head

Figure 2022022959000014
Figure 2022022959000014

銅の結晶粒径、温度850℃、熱間押出速度5mm/秒、中央部 Copper crystal grain size, temperature 850 ° C, hot extrusion speed 5 mm / sec, central part

Figure 2022022959000015
Figure 2022022959000015

銅の結晶粒径、温度850℃、熱間押出速度5mm/秒、尾部 Copper crystal grain size, temperature 850 ° C, hot extrusion speed 5 mm / sec, tail

Figure 2022022959000016
Figure 2022022959000016

銅の結晶粒径、温度850℃、熱間押出速度10mm/秒、頭部 Copper crystal grain size, temperature 850 ° C, hot extrusion speed 10 mm / sec, head

Figure 2022022959000017
Figure 2022022959000017

銅の結晶粒径、温度850℃、熱間押出速度10mm/秒、中央部 Copper crystal grain size, temperature 850 ° C, hot extrusion speed 10 mm / sec, central part

Figure 2022022959000018
Figure 2022022959000018

銅の結晶粒径、温度850℃、熱間押出速度10mm/秒、尾部 Copper crystal grain size, temperature 850 ° C, hot extrusion speed 10 mm / sec, tail

Figure 2022022959000019
Figure 2022022959000019

銅の結晶粒径、温度850℃、熱間押出速度20mm/秒、頭部 Copper crystal grain size, temperature 850 ° C, hot extrusion speed 20 mm / sec, head

Figure 2022022959000020
Figure 2022022959000020

銅の結晶粒径、温度850℃、熱間押出速度20mm/秒、中央部 Copper crystal grain size, temperature 850 ° C, hot extrusion speed 20 mm / sec, central part

Figure 2022022959000021
Figure 2022022959000021

銅の結晶粒径、温度850℃、熱間押出速度20mm/秒、尾部 Copper crystal grain size, temperature 850 ° C, hot extrusion speed 20 mm / sec, tail

Figure 2022022959000022
Figure 2022022959000022

銅の結晶粒径、温度900℃、熱間押出速度5mm/秒、頭部 Copper crystal grain size, temperature 900 ° C, hot extrusion speed 5 mm / sec, head

Figure 2022022959000023
Figure 2022022959000023

銅の結晶粒径、温度900℃、熱間押出速度5mm/秒、中央部 Copper crystal grain size, temperature 900 ° C, hot extrusion speed 5 mm / sec, central part

Figure 2022022959000024
Figure 2022022959000024

銅の結晶粒径、温度900℃、熱間押出速度5mm/秒、尾部 Copper crystal grain size, temperature 900 ° C, hot extrusion speed 5 mm / sec, tail

Figure 2022022959000025
Figure 2022022959000025

銅の結晶粒径、温度900℃、熱間押出速度10mm/秒、頭部 Copper crystal grain size, temperature 900 ° C, hot extrusion speed 10 mm / sec, head

Figure 2022022959000026
Figure 2022022959000026

銅の結晶粒径、温度900℃、熱間押出速度10mm/秒、中央部 Copper crystal grain size, temperature 900 ° C, hot extrusion speed 10 mm / sec, central part

Figure 2022022959000027
Figure 2022022959000027

銅の結晶粒径、温度900℃、熱間押出速度10mm/秒、尾部 Copper crystal grain size, temperature 900 ° C, hot extrusion speed 10 mm / sec, tail

Figure 2022022959000028
Figure 2022022959000028

銅の結晶粒径、温度900℃、熱間押出速度20mm/秒、頭部 Copper crystal grain size, temperature 900 ° C, hot extrusion speed 20 mm / sec, head

Figure 2022022959000029
Figure 2022022959000029

銅の結晶粒径、温度900℃、熱間押出速度20mm/秒、中央部 Copper crystal grain size, temperature 900 ° C, hot extrusion speed 20 mm / sec, central part

Figure 2022022959000030
Figure 2022022959000030

銅の結晶粒径、温度900℃、熱間押出速度20mm/秒、尾部 Copper crystal grain size, temperature 900 ° C, hot extrusion speed 20 mm / sec, tail

Figure 2022022959000031
Figure 2022022959000031

銅円筒型ターゲットの結晶粒径 Crystal grain size of copper cylindrical target

Figure 2022022959000032
Figure 2022022959000032

本発明の最良の方法
「発明を実施するための形態」に詳細に記載したとおりである。
The best method of the present invention is as described in detail in "Modes for Carrying Out the Invention".

Claims (9)

99.99%以上の銅金属を含む、銅円筒型ターゲット。 A copper cylindrical target containing 99.99% or more of copper metal. 酸素含有量は5ppm以下である、請求項1に記載の銅円筒型ターゲット。 The copper cylindrical target according to claim 1, wherein the oxygen content is 5 ppm or less. 総不純物量は100ppm以下である、請求項1又は2に記載の銅円筒型ターゲット。 The copper cylindrical target according to claim 1 or 2, wherein the total amount of impurities is 100 ppm or less. 熱間押出工程によって製造された請求項1~3のうちいずれか一項に記載の銅円筒型ターゲットであって、前記熱間押出工程は熱処理ステップを伴わない水中熱間押出工程及び冷間引抜である、銅円筒型ターゲット。 The copper cylindrical target according to any one of claims 1 to 3 manufactured by a hot extrusion step, wherein the hot extrusion step is an underwater hot extrusion step and a cold drawing without a heat treatment step. Is a copper cylindrical target. 銅鋳塊は800~900℃の範囲の温度に加熱される、銅円筒型ターゲットの製造方法。 A method for manufacturing a copper cylindrical target in which a copper ingot is heated to a temperature in the range of 800 to 900 ° C. 押出速度は、5~20mm/秒の範囲である、請求項5に記載の銅円筒型ターゲットの製造方法。 The method for manufacturing a copper cylindrical target according to claim 5, wherein the extrusion speed is in the range of 5 to 20 mm / sec. 押出された銅ロッドを、周囲空気と接触させることなく直ちに水に浸漬する、請求項5又は6に記載の銅円筒型ターゲットの製造方法。 The method for manufacturing a copper cylindrical target according to claim 5 or 6, wherein the extruded copper rod is immediately immersed in water without coming into contact with ambient air. 表面硬度は、400ビッカース硬さ以下である、請求項1~4のうちいずれか一項に記載の銅円筒型ターゲット。 The copper cylindrical target according to any one of claims 1 to 4, wherein the surface hardness is 400 Vickers hardness or less. 銅結晶粒径は、50~150μmの範囲である、請求項1~4のうちいずれか一項に記載の銅円筒型ターゲット。 The copper cylindrical target according to any one of claims 1 to 4, wherein the copper crystal grain size is in the range of 50 to 150 μm.
JP2021010435A 2020-06-26 2021-01-26 Method for manufacturing copper cylindrical targets for thin film coating using sputtering method from hot extrusion technology Active JP7309217B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TH2001003722 2020-06-26
TH2001003722 2020-06-26

Publications (2)

Publication Number Publication Date
JP2022022959A true JP2022022959A (en) 2022-02-07
JP7309217B2 JP7309217B2 (en) 2023-07-18

Family

ID=78973062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021010435A Active JP7309217B2 (en) 2020-06-26 2021-01-26 Method for manufacturing copper cylindrical targets for thin film coating using sputtering method from hot extrusion technology

Country Status (3)

Country Link
JP (1) JP7309217B2 (en)
CN (1) CN113846297A (en)
TW (1) TWI778503B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114589212B (en) * 2022-03-21 2023-12-29 宁波江丰电子材料股份有限公司 Hot extrusion forming method for ultra-high purity copper target

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012111994A (en) * 2010-11-24 2012-06-14 Furukawa Electric Co Ltd:The Cylindrical target material, its manufacturing method and its sheet coating method
JP2013057112A (en) * 2011-09-09 2013-03-28 Hitachi Cable Ltd Cylindrical sputtering target material, and wiring board and thin film transistor using the same
JP2016156097A (en) * 2016-05-25 2016-09-01 古河電気工業株式会社 Sputtering target
JP2017137558A (en) * 2016-02-05 2017-08-10 住友化学株式会社 Production method of cylindrical target
JP2018059171A (en) * 2016-10-07 2018-04-12 三菱マテリアル株式会社 Hot extrusion material for cylindrical sputtering target and manufacturing method of cylindrical sputtering target
JP2018135573A (en) * 2017-02-23 2018-08-30 株式会社Uacj銅管 Cylindrical sputtering target material and method for manufacturing the same
JP2020105563A (en) * 2018-12-27 2020-07-09 三菱マテリアル株式会社 Copper stock for sputtering target

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011024909A1 (en) * 2009-08-28 2011-03-03 古河電気工業株式会社 Copper material for use in a sputtering target, and manufacturing method therefor
KR101515341B1 (en) * 2009-09-18 2015-04-24 후루카와 덴키 고교 가부시키가이샤 Method for producing copper material for use as sputtering target
CN103510055B (en) * 2012-06-27 2015-10-21 宁波江丰电子材料股份有限公司 The preparation method of high-purity copper target material
JP5783293B1 (en) * 2014-04-22 2015-09-24 三菱マテリアル株式会社 Material for cylindrical sputtering target

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012111994A (en) * 2010-11-24 2012-06-14 Furukawa Electric Co Ltd:The Cylindrical target material, its manufacturing method and its sheet coating method
JP2013057112A (en) * 2011-09-09 2013-03-28 Hitachi Cable Ltd Cylindrical sputtering target material, and wiring board and thin film transistor using the same
JP2017137558A (en) * 2016-02-05 2017-08-10 住友化学株式会社 Production method of cylindrical target
JP2016156097A (en) * 2016-05-25 2016-09-01 古河電気工業株式会社 Sputtering target
JP2018059171A (en) * 2016-10-07 2018-04-12 三菱マテリアル株式会社 Hot extrusion material for cylindrical sputtering target and manufacturing method of cylindrical sputtering target
JP2018135573A (en) * 2017-02-23 2018-08-30 株式会社Uacj銅管 Cylindrical sputtering target material and method for manufacturing the same
JP2020105563A (en) * 2018-12-27 2020-07-09 三菱マテリアル株式会社 Copper stock for sputtering target

Also Published As

Publication number Publication date
JP7309217B2 (en) 2023-07-18
TWI778503B (en) 2022-09-21
CN113846297A (en) 2021-12-28
TW202200799A (en) 2022-01-01

Similar Documents

Publication Publication Date Title
US20040238356A1 (en) Silver alloy sputtering target and process for producing the same
US10557195B2 (en) Sputtering target and/or coil, and process for producing same
KR20160022934A (en) Silver-based cylindrical target and process for manufacturing same
JP4522675B2 (en) Ultrafine grain copper sputter target
JP7426936B2 (en) Method for forming copper alloy sputtering target with refined shape and microstructure
JP7309217B2 (en) Method for manufacturing copper cylindrical targets for thin film coating using sputtering method from hot extrusion technology
TW201641199A (en) Piezoelectric wire EDM and method for manufacturing thereof
CN111254398B (en) Platinum sputtering target with high oriented grain and preparation method thereof
JP5354906B2 (en) Nickel-based semi-finished product having a cubic texture and its manufacturing method
CN108468030A (en) A kind of magnetically controlled sputter method that copper contact surfaces are silver-plated
KR102560279B1 (en) Method for manufacturing copper cylindrical target from hot extrusion technique for thin film coating using sputtering method
KR102476165B1 (en) Method for producing copper target for thin film coating technology by sputtering through hot extusion process
JP4477875B2 (en) High purity aluminum sputtering target
KR100967863B1 (en) Manufacture of fine-grained electroplating anodes
KR101115625B1 (en) Method for producing metallic flat wires or strips with a cubic texture
TWI824162B (en) Method for producing the copper target for thin film coating technology by sputtering method from hot extrusion process
JP2022042859A (en) Production of copper target for thin film coating by sputtering from hot extrusion process
KR100767718B1 (en) Electrode wire for high speed working and fabrication method of the same
CN115433907A (en) Hot extrusion method for preparing copper target for sputtering method film coating technology
WO2022070432A1 (en) Metal vapor deposition material
KR20130034824A (en) Method for forming oxidation prevention layer on surface of copper bonding wire via sputtering method and oxidized copper bonding wire manufactured using the method
CN115415351A (en) Preparation method of high-purity copper target and application of target
JPS61166956A (en) Manufacture of fin material for radiator
RU2205248C2 (en) Method for manufacture of tantalum tape
KR101273096B1 (en) Method of manufacturing a cylindrical target for a sputter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230117

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230628

R150 Certificate of patent or registration of utility model

Ref document number: 7309217

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150